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EXPLICIT DYNAMIC ANALYSIS OF THIN MEMBRANE STRUCTURES 

Roberto Flores, Enrique Ortega and Eugenio Oñate 

International Center for Numerical Methods in Engineering (CIMNE) 
Universidad Politécnica de Cataluña 
Edificio C1, Campus Norte, UPC 
Gran Capitán, s/n, 08034 Barcelona, España 

Abstract. An explicit dynamic structural solver developed at CIMNE for the analysis of 

parachutes is presented. The canopy fabric has a negligible out-of-plane stiffness, 

therefore its numerical study presents important challenges. Both the large changes in 

geometry and the statically indeterminate character of the system are problematic from 

the numerical point of view. This report covers the reasons behind the particular choice 

of solution scheme as well as a detailed description of the underlying algorithm. Both 

the theoretical foundations of the method and details of implementation aiming at 

improving computational efficiency are given. Benchmark cases to assess the accuracy 

of the solution as well as examples of practical application showing the performance of 

the code are finally presented. 
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1 Problem overview 
This report describes the theoretical foundation as well as applications of PUMI_MEM, 

an explicit dynamics structural solver developed at CIMNE. This code is part of the 

PARAFLIGHT parachute simulation suite [1] which also includes a potential flow 

solver [2]. The mechanical analysis of thin membrane structures braced with cables (e.g. 

parachutes) is a challenging task. Two effects entail a host of numerical problems [3]: 

 In general the structure is not statically determinate for an arbitrary set of loads 

(i.e. it behaves like a mechanism). Thus, it might be impossible to reach an 

equilibrium state without drastic changes in geometry. The structural response is 

therefore highly nonlinear and may cause severe convergence problems. 

 Due to the virtually zero bending stiffness of the components the material 

behaviour is irreversible. The fabric is able to resist tensile stresses but buckles 

(wrinkles) almost immediately under compressive loads. This asymmetric 

behaviour further complicates the mechanical analysis [4][5]. 

In the particular case of parachutes there is an additional complication due to the nature 

of the applied forces. These being mostly pressure loads, their direction is not known a 

priori but is a function of the deformed shape and must therefore be computed as part of 

the solution. This is an additional source of non-linearity. Finally, matters are further 

complicated by the extreme sensitivity of the pressure field to changes in geometry [6]. 

In view of these challenges it was decided to use a finite element (FE) dynamic 

structural solver. An unsteady analysis is insensitive to the problems caused by the lack 

of a definite static equilibrium configuration. In a dynamic problem the structure is 

constantly in equilibrium with the inertial forces so the solution is always unique. Even 

if only the long-term static response is sought the dynamic study offers clear 

advantages. Furthermore, the extension to transient dynamic problems becomes trivial. 

There are two basic kinds of dynamic solvers, implicit and explicit [7]. Their main 

features are: 

 Implicit: Can be made unconditionally stable (allows for large time steps). Cost 

per time step is large, each step requires solving a non linear problem using an 

iterative algorithm. The radius of convergence of the iterative algorithms is 

however limited so the time step cannot be made arbitrarily large. 
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 Explicit: Only conditionally stable. The stability limit is determined by the 

material properties and the geometry of the FE mesh. Cost per time step is low. 

When the structural response does not deviate much from linearity the implicit 

treatment is advantageous as it allows advancing in time quickly. Also, the static 

equilibrium (when it exists) can be reached in a small number of iterations. However, 

when the behaviour is heavily non-linear, the time increment must be cut back in order 

for the iterative schemes to converge and the computational increases quickly. There is 

also a loss of robustness caused by the possibility of the algorithms failing to converge. 

On the other hand, the explicit method is extremely insensitive to these effects and 

requires a number of time steps that does not change substantially as the system 

response becomes more complex. Material non-linearities and large displacements 

which are extremely detrimental for the convergence behaviour of the implicit scheme 

do not affect so adversely the explicit algorithm. 

In view of the difficulties expected the choice was made to use an Explicit FE structural 

solver. A further advantage is the ability of the algorithm to be easily vectored and thus 

take advantage of modern parallel processing architectures. Linear cable and membrane 

elements where selected due to their ease of implementation. The fabric is modelled 

using three-node membrane elements due to their geometric simplicity. As the three 

nodes of the element can be always assumed to lie in a plane, the definition of the local 

coordinate systems is straightforward. When a quadrilateral element is passed from the 

aerodynamic solver, it is internally transformed into a pair of triangular elements in 

order to carry the analysis. 

A local corrotational reference frame is used for each cable and membrane element in 

order to remove the large rigid-body displacement field and isolate the material strains. 

Inside each element a simple small-strain formulation is used due to the properties of 

the fabric. Tensile deformations are always small, on the other hand compressive strains 

can become extremely large due to the inclusion of a wrinkling model (zero 

compression stiffness). There is however no stress associated with the compressive 

strains and, correspondingly, no strain energy. The small-strain formulation is therefore 

adequate, as only the small tensile deformations must be into account to calculate the 

stress state. 
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While not strictly necessary to model the parachute behaviour, tetrahedral solid (3D) 

elements have been included in the code. They prove useful in modelling the dynamic 

interaction between the parachute and its payload. As they are meant to model bodies 

undergoing only small deformations a linear formulation is considered adequate for the 

task at hand. 
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2 Problem Formulation 

2.1 Weak equilibrium statement 

We start using the internal equilibrium statement for a continuum which relates the 

gradient of the stress field to the applied loads 
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were iu  and it  stand for prescribed surface displacements and tractions. In the case of a 

dynamic problem the body forces (bi) include the inertial loads given by: 
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where  is the density of the solid. Note that the time derivative in (2.2) is a total one, 

i.e. tracking the material particles. To obtain the Finite Element (FE) formulation of the 

problem we construct the weak formulation of (2.1). Let ui be an arbitrary test function 

(representing in this case a virtual displacement field). We may thus write: 
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Note that in (2.3) implicit summation has been used in order to keep the notation 

compact. Now, the weighted average of the equations is taken over the relevant domains 
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If (2.4) holds for any virtual displacement field, the equation becomes equivalent to 

(2.5). To keep the expressions simple without loss of generality it is common practice to 

assume that the virtual displacement field is compatible with any existing prescribed 

displacement constraints. This way the integrals over D can be dropped (i.e. 

0i Du   x ) but care must be taken to ensure that the solution is indeed 
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compatible with the constraints. The term containing the internal stresses can be 

integrated by parts yielding 
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The deformation gradient can be split into a symmetric and an antisymmetric part: 
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In the expression above ij represents the virtual strain field and ij is the virtual local 

rotation. Given that the stress tensor is symmetric the product ij ij   vanishes. 

Expression (2.6) then becomes the virtual work principle 
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Eq. (2.8) states that when the system is in equilibrium the change in strain energy 

caused by an arbitrary virtual displacement field equals the work done by the external 

forces. 

2.2 Finite element discretization 

To obtain the FE discretization we build an approximate solution interpolating the nodal 

values of the displacements [8]. A virtual displacement field can be obtained in the 

same way 

 ( ) ( ) ( ) ( )k k l l
i i i iu N u u N u  x x x x   (2.9) 

In (2.9) u  represents the approximate solution and Nk is the interpolation function 

corresponding to the kth node (called a shape function). From now on supra-indexes will 

be used to indicate nodal values. The virtual strain field is a linear function of the virtual 

displacement field so it also a linear function of l
iu , it is possible therefore to write 
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With the ,
l
ij kA coefficients being linear functions of the shape function gradients. For a 

dynamic problem the inertial term (2.2) is discretized as 
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As the shape functions are not functions of time (their value does not change for a given 

material point) the time derivative in (2.11) affects only the nodal displacements. 

Rearranging equation (2.8) so only the inertial term remains on the LHS yields 
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As the virtual nodal displacements are arbitrary, it is possible to set all but one of them 

to zero. This way as many equations as degrees of freedom existing on the system are 

obtained. By setting 

 1 ; 1 : ,b b
a au u i a j b      (2.13) 

The following set of equations is obtained: 
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In the equation above sum is assumed over j & k. The equations can also be written in 

matrix form as 

   Mu b t I  (2.15) 

M is called the mass matrix, b and t are the external nodal generalized forces and I is 

the internal force vector. If the mechanical response is linear the stress tensor can be 

written as a linear combination of the nodal displacements. The internal force vector can 

then be recast as 

 I = Ku  (2.16) 

where K is the stiffness matrix of the system. Even if the behaviour of the structure is 

not truly linear, this may be useful as a linearization around some base state. 

It is possible to solve for the acceleration in (2.15) by inverting the mass matrix 

    -1u M b t I  (2.17) 

The system of ODEs (2.17) together with the suitable initial conditions 
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can be advanced in time to yield the displacement field at every instant. Solving for the 

acceleration term in (2.17) requires inverting the mass matrix. To speed up the 

computations without significant loss of accuracy, the mass matrix is usually replaced 

by its lumped (diagonal) counterpart 
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In the expression above ij  represents the Kronecker delta function (i.e. one when i=j 

and zero otherwise). 

In order to form the matrix and load vectors appearing in (2.15) an element-by-element 

approach is used. As the shape function of node k is nonzero only inside elements 

containing said node, the integrals need only evaluated in the appropriate elements, for 

example: 
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2.3 Time integration 

The integration of the system (2.17) can be performed using both implicit and explicit 

schemes [7]. For the reasons outlined previously, the explicit method has been chosen. 

The explicit second order central differencing scheme has been selected due to its high 

efficiency coupled with acceptable accuracy. Given a series of points in time and their 

corresponding time increments 
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let us define the change in midpoint velocity as 
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Observe that in (2.22) the accelerations and velocities are expressed at different instants. 

This scheme provides second order time-accuracy by virtue of using a centered 
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approximation for the time derivative. Once the intermediate velocities have been 

computed, the displacements can be updated 
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This scheme is fully explicit in that sense that if  
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possible to compute the updated displacement and velocity without the need to solve 

any equations. That is, (2.23) yields the new values without the need to solve any 

additional equation. Obviously the method is not self-starting, as at the initial time step 

the value of 
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 is not known (the initial conditions (2.18) are specified for i=0). To 

deal with this inconvenience we may use one sided differencing to estimate the velocity 

at i=+1/2 
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Using this value together with (2.22) gives 
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Using this dummy velocity value the time integration can be started. Please remark that 

the choice of  0t  has no effect on the final result. The method outlined has an 

extremely low computational cost per time step, however it shows a very important 

limitation. The explicit scheme is only conditionally stable meaning the time step 

cannot be made arbitrarily large lest the solution diverges. The maximum allowable 

time step is given by 

 
max
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t
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with max being the angular frequency of the highest eigenmode of the system. The 

expression (2.26) is truly valid only for undamped systems. If damping is included in 

the model (it always is for practical reasons) then its effect can be accounted for trough 
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In the expression above  is the damping ratio of the highest eigenmode. From (2.27) it 

becomes obvious that damping can have a very detrimental effect on the stability limit. 

While (2.27) provides a very good estimate of the allowable time step, it is not practical 

to calculate the highest eigenvalue of the system as this calls for solving a complex 

problem (the number of degrees of freedom in the model can be very large). Fortunately 

there is a simple upper bound estimate of max  

 max max
elem   (2.28) 

with max
elem  being the highest elemental eigenfrequency in the model. The interaction 

with neightbouring elements always causes the highest system eigenmode to be slower 

than the highest isolated-element normal mode. Thus a conservative stability limit can 

be used in place of (2.26) 
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The maximum frequency is associated with dilatational modes. An alternative estimate 

of the maximum time step is given by the minimum transit time of the dilatational 

waves across the elements of the mesh: 
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In (2.30) Le is some characteristic element dimension and cd is the dilatational wave 

speed. For an isotropic linear elastic solid 

 

 

2

2
; ;

3 2(1 ) 3 1 2

dc

E E
K G G K

 


 
 




    
 

 (2.31) 

where  and  are the Lamé constants which can be calculated from the shear modulus 

(G) and bulk modulus (K) as stated above. 



 12

2.4 Mass scaling 

If a poor quality mesh is used, some degenerate elements (i.e. having close to zero 

volume) might be present. These can be extremely detrimental to the performance of the 

algorithm as their associated characteristic lengths will be very small. Hence, the global 

stability limit given by (2.30) becomes extremely low, calling for a large number of 

time steps in order to finish the simulation. To overcome this problem the code includes 

a selective mass scaling options which introduces local changes in the element density 

in order to keep the stability limit within acceptable levels. For those elements where 

the value given by (2.30) is considered excessively small the density is artificially 

augmented in order to decrease the wave speed (2.31). The user can select the maximum 

acceptable scatter in the elemental stability limits and the code (using the statistics for 

the complete model) automatically corrects the elements falling outside the established 

bounds. It must be stressed that the effect of the increased density on the global 

dynamic response is very small because the elements affected are only those with very 

small volumes. As the mass of these elements, even after scaling, is a negligible fraction 

of the total system mass the overall behaviour of the structure is almost unchanged (i.e. 

the inertial properties remain basically the same). In those cases where only the 

system’s static response in sought, mass scaling can be used in a more aggressive 

manner without altering the solution. 
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3 Numerical damping 
To achieve a smooth solution it is always needed to introduce some amount of damping 

into the numerical model. In a real structure different types of damping are always 

present (e.g. material, aerodynamic, etc…) so the observed behaviour is usually smooth. 

On the other hand, the dissipation provided by the basic explicit algorithm is really 

small. This is a problem when a steady state solution is sought but is also undesirable 

when simulating transient events as high frequency noise can contaminate the solution. 

To allow greater flexibility controlling the solution process two forms of user-adjustable 

damping are provided; Rayleigh damping and bulk viscosity. In the first case a damping 

matrix is built from the mass and stiffness matrices: 

   C M K  (3.1) 

The equation system (2.15) supplemented with this damping term becoming 

    Mu b t I Cu   (3.2) 

The  term creates a damping force which is proportional to the absolute velocity of the 

nodes. This is roughly equivalent to having the nodes of the structure move trough a 

viscous fluid. The damping ratio introduced by the mass proportional damping term on 

a mode of frequency  is 

 
2




  (3.3) 

From (3.3) it is apparent that the  term affects mainly the low frequency components 

of the solution. It can be useful to accelerate convergence to a static solution when only 

the long-term response is sought. However, when the transient response must be 

accurately determined this factor should not be included (or at least the  parameter 

must be chosen in order to ensure the damping ratio for the lowest mode is very small). 

The  term on the other hand introduces forces that are proportional to the material 

strain rate. An extra stress d is added to the constitutive law 

  el
dσ D : ε  (3.4) 

with Del being the tangent stiffness tensor of the material. The fraction of critical 

damping for a given mode is: 
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2

    (3.5) 

In this case only the high order modes are affected appreciably. This is desirable as it 

prevents high frequency noise from propagating while leaving the low order response 

(which is usually the part sought) almost unchanged. The  parameter however must be 

used sparingly, as it has a very detrimental effect on the stability limit (because its effect 

is greatest for the highest eigenmode of the system). 

An additional form of damping is included to prevent high frequency “ringing”. This is 

caused by excitation of element dilatational modes which are always associated with the 

highest eigenvalues of the system. An additional hydrostatic stress is included in the 

constitutive routines which is proportional to the volumetric strain rate. This volumetric 

viscous stress is given by 

 1h d e volb c L     (3.6) 

In the expression above b1 is the desired damping ratio for the dilatational mode. A 

suitable value is b1=0,06. 
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4 Element formulation 
The elements chosen are linear two-node cables and three node membranes. As an 

introduction to the details of implementation the cable element formulation is described 

first. While extremely simple, it contains many of the relevant features needed to 

formulate the surface element. As only small tensile strains are expected, a small-strain 

formulation has been adopted to calculate the elemental stresses. This assumption 

allows for efficient coding while maintaining acceptable accuracy. 

4.1 Two-node linear cable element 

Let us consider a linear element stretching between nodes i and j 

i

j

iI

jIdf

i

j

iI

jIdf

 
Fig. 1 – Linear cable element internal and external loads 

An external distributed loading per unit length df  acts on the element whose cross 

sectional area will be denoted by A. As we shall be facing a large displacement 

problem, the position of the nodes can be written either on the undeformed (reference) 

configuration or in the deformed (current) configuration. From now on we shall use 

upper-case letters to denote the original coordinates while lower-case will be reserved 

for the current configuration. For example, the original length of the cable element is 

given by 

 0 iL  jX X  (4.1) 

while the actual length at any given time is 

 ( )L t  j ix x  (4.2) 

The unit vector along the element is 
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From the change in length of the element the axial strain and stress can be obtained. 

Assuming linear elastic behaviour: 

 0

0

; max(0, )
L L

E
L

  
   (4.4) 

As we assume the cables buckle instantly under compressive loads, there is a lower 

bound on the allowable stresses. Therefore in (4.4) a minimum stress value of zero is 

enforced. Using this result the internal forces at the nodes become: 

 ;A A    i l j lI e I e  (4.5) 

The nodal generalized external force due to the distributed loading is calculated as 

indicated in (2.14). If the load df  is constant across the element it reduces to: 
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When numerical damping is included the stress term in (4.4) is augmented with the 

viscous contributions 
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d
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   j i 1x x e 
   (4.7) 

Note that in (4.7) the bulk viscosity term is slightly modified as it includes the axial 

strain rate instead of the volumetric strain rate. While using equations (4.1)-(4.7) is the 

most efficient way to calculate the internal forces for the element in a large 

displacement problem, it is also useful to have a closed expression for the elemental 

stiffness matrix (if the Rayleigh damping matrix is needed for example). This is 

specially simple if a local reference frame aligned with the element is chosen: 

i ji ji j
 

Fig. 2 – Cable local reference frame 

For a virtual displacement of the end nodes we can calculate the change in length and in 

stress as 

  
0

j j j jE
L u u u u

L              (4.8) 

Thus, the element stiffness matrix in the local coordinate system is given by 
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Of course, the stiffness matrix is taken as zero whenever compressive strains exist in the 

element. The mass matrix can be obtained using (2.20) and the expressions of the shape 

functions in the local reference frame 
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As previously stated, the diagonal form of the mass matrix is usually preferred, thus 

(4.10) is replaced with: 

 
1 0

0 12

AL  
  

 
dM  (4.11) 

The element characteristic size used to estimate the allowable time step (2.30) for the 

case of a simple cable element is taken as L0 (the cable reference length). Note that it is 

not necessary to consider the possibility of smaller values as a cable under compression 

shows no stiffness and therefore has a vanishing elastic wave speed. Due to the one-

dimensional character of the problem, the dilatational wave speed can be safely replaced 

with the longitudinal wave speed 

 l

E
c


  (4.12) 

4.2 Three-node linear membrane element 

Given that large displacements are expected, the strain state of the element is easier to 

assess using a local corrotational frame than in the global reference system [9]. Let us 

consider a triangular element defined by its three corner nodes 
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Fig. 3 – Triangle local reference frame 

The three unit vectors along the local axes are obtained from 
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Any point of the triangle can now be identified by its two local coordinates (,) 

  ( , ) ( ) , ( )    1 1
1 2x - x e x - x e  (4.14) 

As a linear triangle always remains flat, the problem is greatly simplified by analysing 

the stress state on the - plane. 
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Fig. 4 – Nodal coordinates in the local triangle reference frame 

It is worth mentioning that the strain state of the triangle depends only on three 

parameters, as some of the nodal coordinates vanish in the corrotational reference frame 

(Fig. 4). In Fig. 4 the original (undeformed) geometry has been denoted with the 

subindex 0. The material strain is obtained from the interpolated displacement field 

 
3

2

( , ) ( , )j j j

j

u u N u u   


  (4.15) 

Note that in (4.15) node 1 has been excluded from the sum as it is fixed at the origin of 

the local reference system. To calculate the strain the gradients of the shape functions 

must be known. While it is possible to obtain a closed expression for the shape 



 19

functions of an arbitrary triangle it is somewhat simpler to operate on a “canonical” 

element shape where the functions have a simpler form. To this effect we use an 

additional transformed coordinate system (p-q) 

1 2

3

 0,0

p

q

 1,0

 0,1

1 2

3

 0,0

p

q

 1,0

 0,1

 
Fig. 5 - Transformed coordinate system 

The shape functions now become: 

 1 2 31 ; ;N p q N p N q      (4.16) 

The transform from the p-q plane to the  system is given by the isoparametric 

transform 
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The gradients of the shape functions can be recovered from 
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where J is the Jacobian of the isoparametric transform. Its value can be obtained from 

(4.16) & (4.17) and is constant across the element (due to its linear nature) 
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Inverting the system (4.18) yields the gradients sought 
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The components of the strain tensor can now be determined easily 
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 (4.21) 

Note that in (4.21) the null terms have been dropped in order to achieve an efficient 

algorithm. The corresponding stresses are calculated assuming a plane stress state (an 

acceptable hypothesis for thin surface elements) and linear elastic isotropic behaviour. 
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 (4.22) 

As the membrane buckles under compressive loads, the stresses given by the expression 
above must be corrected to account for this fact. To this end we shall refer to (4.22) as 
the trial stress state (t). Three different membrane states are considered [10]: 

 Taut: The minimum principal trial stress is positive. No corrections are needed 
(Fig. 6-A) 

 Wrinkled: Membrane is not taut, but the maximum principal strain is positive. 
Trial state is replaced with a uniaxial stress state (Fig. 6-B) 

 Slack: The maximum principal strain is negative. The corrected stresses are zero 
(Fig. 6-C) 
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Fig. 6 – Trial membrane stress states - Taut (A) Wrinkled (B) and Slack (C) 

To calculate the correct stress state the average in-plane direct strain and maximum 

shear strain are first found: 
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The principal strains can now be evaluated and the stress state of the membrane 

assessed. If the maximum principal strain is compressive the membrane is slack and the 

stress tensor is null 

 max ; 0
2I m Iif

      σ 0  (4.24) 

otherwise, the minimum principal trial stress is checked. Whenever it is positive 

(tensile) the membrane is considered taut 
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Under any other circumstances the membrane is wrinkled and the stress state must be 
properly corrected (Fig. 7) 
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 (4.26) 
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Fig. 7 – Stress correction for wrinkled membrane 

The elastic stresses are next augmented with viscous terms to introduce a suitable level 

of numerical damping. To speed-up calculations the nodal velocities are expressed in a 

reference frame attached to the first node of the element, thus cancelling out the 

corresponding values: 

 ; ;    1 2 2 1 3 3 1
r r rv 0 v v v v v v  (4.27) 

The velocities are then expressed in their components on the local reference frame 

    , ,i iv v    i i
r 1 r 2v e v e  (4.28) 

Note that the velocity components in (4.28) are not those measured in the corrotational 

reference frame, but simply the projections over the local axes of the nodal relative 
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velocities. It is not necessary to subtract the effect of the rotation as the spin rate will be 

automatically eliminated from the velocity gradient when calculating the strain rate 

(2.7). The components of the strain rate tensor are 
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 (4.29) 

In a similar way to (4.7) the damping stresses are given by 
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 (4.30) 

where the characteristic wave speed for the membrane has been taken as 

 
 21

m

E
c

 



 (4.31) 

The total stress (elastic plus viscous) is then used to calculate the nodal forces using the 

change in energy due to the internal forces. Using the virtual deformation field 
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 (4.32) 

The total work done by the internal stresses during a virtual displacement is calculated 

integrating over the element the change in energy. As the triangular linear elements 

create a constant strain (and stress) field a single point Gauss quadrature is adequate to 

capture the effect of the virtual displacement 

  0: d tA               σ ε  (4.33) 

with t being the element thickness and A0 its reference (undeformed) area. The original 

surface is used in (4.33) because under compressive loads the element can shrink to a 
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small fraction of its original dimensions. However, as long as the material remains 

active (i.e. wrinkled but not slack) the actual volume of material stressed is given not by 

the element projected area (as calculated from the nodal coordinates) but from its 

original surface. On the other hand, when the membrane is taut the small strains 

involved make the reference area a good approximation of the real surface. 

The internal force vector derived from (4.33) is: 
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 (4.34) 

In order to keep the algorithm as efficient as possible, the terms that vanish due to the 

particular choice of reference frame have been dropped from the expression above. 

 

When the element faces are subject to a pressure loading, the corresponding nodal 

generalized forces are obtained from (2.14). For the particular case of a uniform 

pressure p acting on the upper face (the side towards which the normal vector n points) 

the values are 
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 (4.35) 

where Ap stands for current projected area of the element: 

 2 3

2pA
 

  (4.36) 

Finally, once all the components of the internal forces have been determined on the 

local reference frame, the global force vector can be assembled. The transformation to 

the global inertial reference system is performed through 
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nI I I   i

glob 1 2I e e n  (4.37) 

The mass matrix for the element, assuming uniform density, is 
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M  (4.38) 

The lumped mass matrix is obtained summing the columns of (4.38) 
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dM  (4.39) 

To obtain a safe estimate of the allowable time step, a conservative estimate of the 

characteristic element length has been used. The element size is taken as: 
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 (4.40) 

4.3 Four-node linear tetrahedral solid element 

This element has been designed to model the loads suspended from the parachute in 

order to enable modelling of the complete parachute-payload dynamical system. While 

only small strains are expected the rigid body displacements involved are usually very 

large. In order to completely isolate the material behaviour from these effects a 

corrotational formulation similar to case of the membrane has been adopted. The base of 

the element is used to define the local corrotational reference frame in the same way as 

it was done for the triangular membrane. 
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Fig. 8 – Tetrahedron corrotational reference frame 

The three unit vectors along the local axes are obtained from 
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Any point x of the tetrahedron can now be identified by its three local coordinates 

(,) 

  ( , , ) ( ) , ( ) , ( )      1 1 1
1 2x - x e x - x e x - x n  (4.42) 

Due to this particular choice of coordinates, the vertices of the element no longer have 

arbitrary coordinates because some components are null 
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Therefore, it is possible to calculate the strain field inside the tetrahedron (which is 

constant for linear elements) as a function of only six variables. The interpolated 

displacement field is given by 
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where node 1 does not enter the sum as it remains always at the origin of the local 

frame. In order to calculate the gradients of the shape functions an isoparametric 

transform is applied in order to perform the relevant operations on a simpler geometry. 

The transformed coordinate system shall be denoted as (p-q-r). 
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Fig. 9 – Tetrahedron reference coordinates in the p-q-r system 

The shape functions in the transformed system have very simple expressions: 

 1 2 3 41 ; ; ;N p q r N p N q N r        (4.45) 
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It can be observed in (4.45) that the four shape functions always add to one. The  

coordinates of a point with know values of p-q-r is given by 
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  (4.46) 

Using the chain rule the derivatives of the shape functions with respect to the 

transformed coordinates can be obtained from 
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J  (4.47) 

The Jacobian of the isoparametric transform (J) can be obtained from (4.45) & (4.46)

and is constant across the element 
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Inverting the system (4.47) yields the gradients sought 
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 (4.49) 

The components of the strain tensor can now be determined easily 
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 (4.50) 
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To keep the notation as compact as possible, a sub-index has been introduced in (4.50) 

which indicates derivation of the shape function with respect to a certain local 

coordinate. For example: 
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 (4.51) 

As was the case for the membrane element, the null terms in (4.50) have been dropped 

to improve efficiency. The corresponding stresses are calculated assuming a linear 

elastic isotropic behaviour. 
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The corresponding nodal generalized forces can be determined form the principle of 

virtual work. Given an arbitrary virtual displacement field, the work done by the nodal 

loads should equal the virtual change in strain energy 
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The virtual strain field is a linear combination of the gradients of the shape functions 

and the virtual nodal displacements given by 
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 (4.54) 

Notice that the expression for the virtual deformation field is far more complex than the 

formula for the strain field (4.50). This happens because no single component of the 

virtual displacement field can be discarded. Combining (4.54) and (4.53) yields the 

internal force vector 
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 (4.55) 

As always, only the non-vanishing terms have been included in (4.55) for the sake of 

efficiency. The volume of the element is obtained from the isoparametric transform as 

 2 3 4

6 6
el   
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 (4.56) 

In order to calculate the damping terms, the nodal velocities are transformed to the 

corrotational reference frame. This is a two step process. First, the velocities of all the 

nodes are measured relative to the origin of the system (i.e. the first node). This yields 

the intermediate velocity w whose components are given by: 

     1, , , , wherei i iw w w        i i i i i
r 1 r 2 r rv e v e v n v v v  (4.57) 

Due to the choice of the reference frame, the following relationship must exist between 

the intermediate velocities and the angular velocity of the corrotational reference system 
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 (4.58) 

It is therefore easy to calculate the spin rate of the local reference frame 
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Subtracting the spin-induced components from the intermediate velocities, the 

corrotational velocities are finally obtained 
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In (4.60) the tilde indicates the value measured in the corrotational frame of reference. 

The velocities (4.60) can be used together with (4.50) to yield the components of the 

strain rate tensor 
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 (4.61) 

In order to improve performance the elastic stresses and the stiffness proportional terms 

from the Rayleigh damping are computed together in a single step. To this effect an 

equivalent strain tensor is defined as 

  eqε ε ε  (4.62) 

The equivalent strain is used in the constitutive law (4.52) in order to efficiently include 

the damping term. Additionally, a bulk viscosity is included both to reduce high 

frequency ringing and to prevent collapse during high speed events. The linear bulk 

viscosity takes the form defined in (3.6). Therefore an additional hydrostatic stress is 

included in the material computations, which is given by 

 1
lbv
h d e volb c L     (4.63) 

Under high rate of deformation conditions the nodal velocities may become higher than 

the dilatational wave speed of the material. The element could therefore flip inside-out 

in less than one time step. To prevent this kind of behaviour an additional quadratic 

bulk viscous term is included which smears shocks over several elements. This allows 

simulation of, for example, impact and blast events. The quadratic hydrostatic viscous 

stress takes the form: 

  2

2 min(0, )qbv
h e volb L     (4.64) 
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Note that the quadratic bulk viscosity (4.64) is only active when the strain rate is 

compressive. As the only purpose of this term is to prevent the elements from 

collapsing, it is not included when the material undergoes an expansion. The fraction of 

the critical damping (needed to calculate the stability limit) due to the combined effect 

of the viscous stresses (4.63) & (4.64) is 

 2
1 2 min(0, )bv e

vol
d

L
b b

c
     (4.65) 

Under most circumstances a value of 1,2 is appropriate for the quadratic bulk viscosity 

parameter (b2). 

When pressure loads are prescribed on faces of a tetrahedral element, the contributions 

to the internal force vector can be obtained from: 

  1 1,2,3,4
3

i
i

ij

A
p j   j iI n  (4.66) 

In (4.66) index j indicates the node on which the load is calculated and i is the face 

number on which pressure pi is acting; Ai is the face area and ni the outward normal. 

Face numbering is shown in Fig. 10. 
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Fig. 10 - Face numbering for tetrahedral elements 

Once all nodal loads have been calculated on the corrotational frame, the contribution to 

the global force vector (which is always expressed in global coordinates) is obtained 

from (4.37). 

The mass matrix for the element, assuming uniform density, is 
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M  (4.67) 

Therefore, the lumped mass becomes 
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dM  (4.68) 

A safe estimate of the allowable time step is given by the minimum height of the 

element 
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5 Validation examples 
In this chapter several benchmark cases are presented in order to test solution accuracy. 

The cases focus on the non-linear aspects of the solutions, the main challenge when 

analysing structural membranes. 

5.1 Cable element subject to weight load 

From elementary mechanics it is known that the equilibrium deformed shape of a cable 

with uniform weight per unit length is a catenary. The vertical position and arc length 

along the cable vary according to: 

 cosh ; sinh
x x

y a s a
a a

       
   

 (5.1) 

where the parameter a depends on the boundary conditions. We consider the problem of 

a cable which stretches across two point at the same level located a distance 2d apart. 

Initially the cable is shaped like a “V” with the apex a distance d below the suspension 

points. The total length of the cable is therefore 2 2d . Substituting this condition in 

(5.1) the value of a and the height of the catenary () can be obtained 

 1, 49 ; 0,895
d

d
a

   (5.2) 

2d
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Fig. 11 - Catenary problem definition 

The cable has been discretized with 20 linear elements. In order to check also the 

behaviour of the membrane formulation a strip made of triangular elements has been 

suspended the same way as the cable. The strip is modelled with a mesh of 20x4 

triangles. The relevant properties chosen are: 

 
3 2

10 ; 1000 ; 9,8
kg m

E GPa g
m s

    (5.3) 

The values of  obtained from the FEM solution are given in Table 1, the agreement 

with the theoretical calculation is excellent. The deformed mesh shape is shown in Fig. 

12. 
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Fig. 12 - Catenary problem. Deformed shape 

 
 Cable elements Membrane elements 

/d 0,896 0,8971 

Table 1 - Computed geometry for the catenary problem 
 

5.2 Circular membrane under uniform pressure 
Also known as Henky’s problem in the literature [11] this benchmark studies the elastic 
deformation of an initially round and flat membrane with fixed edge. The membrane is 
pressurized thus acquiring a dome-like shape. The characteristics of the membrane are: 

 0,1425 ; 311488 ; 0,34R m Et Nm     (5.4) 

Reference values can be found in the literature for the vertical displacement of the 
central point of the membrane for an applied pressure of 100KPa (Pauletti 2005). The 
solution was computed using an unstructured mesh containing 344 triangular elements. 
 

 Pauletti (SATS) Pauletti (ANSYS)  PUMI_MEM 
Deflection (mm) 33,1 31,9 34,8 

Table 2 – Central deflection of the membrane (mm) 
 

While there is not a single definite reference solution in the literature, the result 
obtained compares well with the two values presented. It must be stressed that slight 
differences must be expected because the deformations experienced by the membrane 
exceed the strict limits of validity of linear elasticity. 

                                                 
1 Value for the triangular elements is an average. Due to the constraints imposed by the discretisation the 
deformed shape is not perfectly cylindrical. 
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Fig. 13 – Henky’s problem. Deformed shape 

5.3 Square airbag inflation test 
This benchmark computes de vertical displacement at the centre of an initially flat 
square airbag of side length 840mm. An internal pressure of 5kPa is applied. This is a 
validation test for the wrinkling model, as the deformed configuration is strongly 
affected by the no-compression condition. The textile properties are: 

 588 ; 0,6 ; 0,4E MPa t mm     (5.5) 

A mesh composed of 16x16 squares is used for each side of the airbag. Each square has 
then been divided into 4 equal triangles in order to eliminate mesh orientation effects. 
The total number of triangular elements is therefore 2048. The next table shows the 
comparison of the result from PUMI_MEM with several sources [12][13][14]. The 
differences are negligible. 

 Contri Ziegler Hornig PUMI_MEM 
Deflection (mm) 217,0 216,0 216,3 216,2 

Table 3 – Central displacement of the airbag (mm) 

 
Fig. 14 – Square airbag. Deformed shape 
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6 Application examples 
Here some examples of the use of the code are presented. The focus during the design 

of PUMI_MEM was on parachute analysis. As such many examples come from this 

field. Applications to other fields will also be highlighted. 

6.1 Ram air parachute modelling 

 
Fig. 15 - Fastwing parachute. Initial configuration and final deformed shape 

Coupled with a potential flow solver, the code has been used to simulate a high-

performance parachute for delivery of heavy payloads. The canopy was designed and 

manufactured by CIMSA in the framework of the FASTWing Project [10]. The model 

contains an unstructured distribution of 11760 triangular elements (8824 for the 

aerodynamic surfaces exposed to the wind and 2936 for the internal ribs) and 11912 

cable elements to model the suspension and control lines as well as the reinforcement 
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tapes integrated into the canopy. The simulation is initialized with a partially inflated 

parachute configuration. The aerodynamic loads are updated as the simulation proceeds 

until a stable configuration is reached. Fig. 15 shows the change in shape from the 

beginning of the simulation to the equilibrium configuration. 

 
Fig. 16 – Fastwing parachute right turn manoeuvre. Starting from the steady state the right brake 

is pulled. Yaw angle increases form left to right 

The code has also been used to predict the dynamic response of the parachute in order to 

simulate, for example, manoeuvres. The choice of an explicit scheme allows for instant 

transition from static to dynamic analysis if an unsteady flow solver is available. It must 

be stressed that the time step used by the structural solver is very short while for most 

applications the high-order modes of the mechanical response are of little relevance. 

Therefore it is not necessary to update the aerodynamic loads at every step in order to 

obtain a satisfactory global response. This saves processing time on the part of the flow 

solver. Fig. 16 illustrates a right turn manoeuvre. 
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6.2 Drag canopy deployment 

This is a simple inflation test aimed at exploring the capabilities of the code to simulate 

parachute deployment and inflation. Direct calculation of the pressure field around the 

partially inflated canopy is an extremely challenging task. Therefore, semi-empirical 

correlations have been used for the pressure field. Deployment takes place in two steps. 

Initially the apex of the canopy is pulled in the direction of the incident wind. Once the 

lines and canopy have been stretched the inflation phase begins. The parachute is 

discretized with an unstructured grid of 3390 triangular elements and 2040 cable 

elements modelling the suspension lines and fabric reinforcements. Fig.  17 shows the 

inflation stage, including the final steady configuration. 

 
Fig.  17 – Several stages of the parachute deployment 

6.3 Draping simulation 

By virtue of the wrinkling model the code is able to simulate the interaction between 

flexible fabrics and rigid objects. In the example shown a square membrane 3m across 

is released on top of a rigid circular disc with a diameter of 2m. The fabric is subject to 

the action of gravity, contact forces and damping forces introduced to simulate the 

effect of the air. The definition of the rigid surface is analytic so it does not need to be 

discretized (i.e. it does not enter the mesh). The membrane has been meshed with an 

unstructured grid of 8262 elements. The complete process, 4s of real time, can be 
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simulated in just 9s in a current mid-range desktop computer. Fig. 18 shows several 

snapshots of the process. 

 
Fig. 18 - Draping simulation. Snapshots taken every 0,4s 

6.4 Blast loading of inflatable structures 

In recent times, use of inflatable structures as shelters against blast waves and even as a 

means of containing the effects of explosions has become a topic of interest. In order to 

address this kind of problem an additional material model has been incorporated in the 

code which allows for simulation of the propagation of pressure perturbations on air. An 

equation of state model has been used together with the tetrahedral elements in order to 

asses the blast wave attenuation which takes place across the inflatable structure. The 

events being simulated involve extremely short time scales during which the distances 

travelled by most nodes of the mesh are not large compared with the general dimensions 

of the structure. Thus, a lagrangian formulation for the air is acceptable, at least for 

those volumes not directly exposed to the effect of the blast. This is the case for the air 

contained inside the structure and for those parts of the atmosphere shielded from the 

explosion. Assuming an ideal gas which evolves in an isentropic way, the relation 

between pressure and density is: 
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0

pp
  
  (6.1) 

where the subindex 0 denotes some reference conditions (e.g. initial conditions) and  is 

the ratio of specifics heats of the gas. The pressure at any time is therefore obtained 

from 

 0
0 0

0

p p p
 


         

 (6.2) 

It is thus possible to calculate the pressure using the initial conditions and the change in 

volume of the element. This information is available from (4.56). The speed of sound in 

the medium is given by 

 2 p
c 


  (6.3) 

An equivalent bulk stiffness for the air can be obtained from (6.3) by defining 

 2 eq
eq

K
c K p


    (6.4) 

The parameter Keq is an estimate of the volumetric stiffness of the air. A gas has no 

shear stiffness so excessive mesh distortions could appear if only the pressure term (6.2) 

were included into the material response for those elements modelling air. To counter 

this problem some level of numerical shear stiffness is added to the formulation in order 

to control mesh distortion while not affecting the overall properties of the solution. To 

this effect this stabilizing term is defined as: 

  1num eqG K    (6.5) 

The parameter  must be kept small in order to prevent excessive accumulation of 

energy in the form of shear deformation. The complete material response (including the 

shear stabilization term) is then given by 

 0
02 numG p

     
σ e I  (6.6) 

The stability limit for the gas elements is calculated in the usual way (2.30) using (6.3) 

as the characteristic wave sped. As the speed of sound in air is much smaller that the 
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wave speeds in solids, the air elements are not usually a limiting factor (except in cases 

of severe element distortion). 

The example presented corresponds to a conceptual design for a blast containment 

device. The overall dimensions of the structure are 16x11x4,5m. Due to the double 

symmetry only a quarter of the geometry has been modelled. The mesh contains 

2376000 tetrahedral elements and 79440 triangular membrane elements. The volume 

elements are located inside the cells of the structure and in the surrounding atmosphere. 

The volume of atmosphere meshed extends 9m outside the structure (see Fig. 19). 

 
Fig. 19 – Computational domain geometry. Structure shown in dark grey and surrounding 

atmosphere in light gray 

The pressure field corresponding to the explosion of a charge of 10kg of TNT has been 

computed with an Euler flow solver and used as prescribed load history on the inner 

wall of the structure. In a regular desktop computer the code is able to advance 10 time 

steps approximately every 9s. Given to short time scales involved (the time it takes for 

the shockwave to leave the domain is on the order of 10ms) the CPU time for a 

complete simulation is in the neighbourhood of 10 minutes (the exact value depends on 

the particular conditions of each simulation, as the stability limit changes as the mesh 
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deforms). The explicit algorithm proves itself extremely efficient when dealing with fast 

transient events. Fig. 20 shows four snapshots of the temporal evolution of the structural 

deformations. 

 
Fig. 20 - Inflatable structure subject to blast loading. Time between frames: 2ms 
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7 Conclusions 
The theoretical background as well as details of implementation of an explicit dynamic 

structural solver (PUMI_MEM) have been presented. The software was developed as 

part of a broader effort to build a coupled fluid-structural analysis package for parachute 

simulations. The code was designed to obtain robust solutions of the highly nonlinear 

behaviour of structural membranes. The severe convergence problems due to the 

statically indeterminate behaviour of the structure where overcome by performing a 

dynamic simulation (even when only the static solution is sought). To counter the 

limitations imposed by the large changes in geometry expected an explicit time 

integration scheme was chosen. While this limits the allowable time step, issues related 

to the limited convergence radius of implicit schemes are completely eliminated. Even 

if the time step limitation might seem problematic at first, the very lost cost per iteration 

more than overcomes this issue. Another important characteristic of thin membranes is 

their virtually zero compression strength due to wrinkling. This has to be accounted for 

in order to obtain realistic solutions. As there is no global stiffness matrix to assemble in 

the explicit method, implementation of a wrinkling model is straightforward. Only the 

constitutive law has to be changed to include no-compression behaviour. Several 

benchmarks have been presented showing the accuracy of the results in situations where 

the geometrical nonlinearities and the asymmetry of the material response are 

determinant. The choice of a dynamic solver also enables study of the system’s transient 

response with no changes to the code. Examples of application to parachute deployment 

and manoeuvres have been presented. While initial focus was on parachute simulation, 

applications to other fields of technological interest have been tested. In all cases the 

code has shown an excellent performance in terms of CPU time. 
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Abstract. An explicit dynamic structural solver developed at CIMNE for the analysis of 

parachutes is presented. The canopy fabric has a negligible out-of-plane stiffness, 

therefore its numerical study presents important challenges. Both the large changes in 

geometry and the statically indeterminate character of the system are problematic from 

the numerical point of view. This report covers the reasons behind the particular choice 

of solution scheme as well as a detailed description of the underlying algorithm. Both 

the theoretical foundations of the method and details of implementation aiming at 

improving computational efficiency are given. Benchmark cases to assess the accuracy 

of the solution as well as examples of practical application showing the performance of 

the code are finally presented. 
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1 Problem overview 
This report describes the theoretical foundation as well as applications of PUMI_MEM, 

an explicit dynamics structural solver developed at CIMNE. This code is part of the 

PARAFLIGHT parachute simulation suite [1] which also includes a potential flow 

solver [2]. The mechanical analysis of thin membrane structures braced with cables (e.g. 

parachutes) is a challenging task. Two effects entail a host of numerical problems [3]: 

 In general the structure is not statically determinate for an arbitrary set of loads 

(i.e. it behaves like a mechanism). Thus, it might be impossible to reach an 

equilibrium state without drastic changes in geometry. The structural response is 

therefore highly nonlinear and may cause severe convergence problems. 

 Due to the virtually zero bending stiffness of the components the material 

behaviour is irreversible. The fabric is able to resist tensile stresses but buckles 

(wrinkles) almost immediately under compressive loads. This asymmetric 

behaviour further complicates the mechanical analysis [4][5]. 

In the particular case of parachutes there is an additional complication due to the nature 

of the applied forces. These being mostly pressure loads, their direction is not known a 

priori but is a function of the deformed shape and must therefore be computed as part of 

the solution. This is an additional source of non-linearity. Finally, matters are further 

complicated by the extreme sensitivity of the pressure field to changes in geometry [6]. 

In view of these challenges it was decided to use a finite element (FE) dynamic 

structural solver. An unsteady analysis is insensitive to the problems caused by the lack 

of a definite static equilibrium configuration. In a dynamic problem the structure is 

constantly in equilibrium with the inertial forces so the solution is always unique. Even 

if only the long-term static response is sought the dynamic study offers clear 

advantages. Furthermore, the extension to transient dynamic problems becomes trivial. 

There are two basic kinds of dynamic solvers, implicit and explicit [7]. Their main 

features are: 

 Implicit: Can be made unconditionally stable (allows for large time steps). Cost 

per time step is large, each step requires solving a non linear problem using an 

iterative algorithm. The radius of convergence of the iterative algorithms is 

however limited so the time step cannot be made arbitrarily large. 
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 Explicit: Only conditionally stable. The stability limit is determined by the 

material properties and the geometry of the FE mesh. Cost per time step is low. 

When the structural response does not deviate much from linearity the implicit 

treatment is advantageous as it allows advancing in time quickly. Also, the static 

equilibrium (when it exists) can be reached in a small number of iterations. However, 

when the behaviour is heavily non-linear, the time increment must be cut back in order 

for the iterative schemes to converge and the computational increases quickly. There is 

also a loss of robustness caused by the possibility of the algorithms failing to converge. 

On the other hand, the explicit method is extremely insensitive to these effects and 

requires a number of time steps that does not change substantially as the system 

response becomes more complex. Material non-linearities and large displacements 

which are extremely detrimental for the convergence behaviour of the implicit scheme 

do not affect so adversely the explicit algorithm. 

In view of the difficulties expected the choice was made to use an Explicit FE structural 

solver. A further advantage is the ability of the algorithm to be easily vectored and thus 

take advantage of modern parallel processing architectures. Linear cable and membrane 

elements where selected due to their ease of implementation. The fabric is modelled 

using three-node membrane elements due to their geometric simplicity. As the three 

nodes of the element can be always assumed to lie in a plane, the definition of the local 

coordinate systems is straightforward. When a quadrilateral element is passed from the 

aerodynamic solver, it is internally transformed into a pair of triangular elements in 

order to carry the analysis. 

A local corrotational reference frame is used for each cable and membrane element in 

order to remove the large rigid-body displacement field and isolate the material strains. 

Inside each element a simple small-strain formulation is used due to the properties of 

the fabric. Tensile deformations are always small, on the other hand compressive strains 

can become extremely large due to the inclusion of a wrinkling model (zero 

compression stiffness). There is however no stress associated with the compressive 

strains and, correspondingly, no strain energy. The small-strain formulation is therefore 

adequate, as only the small tensile deformations must be into account to calculate the 

stress state. 
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While not strictly necessary to model the parachute behaviour, tetrahedral solid (3D) 

elements have been included in the code. They prove useful in modelling the dynamic 

interaction between the parachute and its payload. As they are meant to model bodies 

undergoing only small deformations a linear formulation is considered adequate for the 

task at hand. 
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2 Problem Formulation 

2.1 Weak equilibrium statement 

We start using the internal equilibrium statement for a continuum which relates the 

gradient of the stress field to the applied loads 
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were iu  and it  stand for prescribed surface displacements and tractions. In the case of a 

dynamic problem the body forces (bi) include the inertial loads given by: 
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where  is the density of the solid. Note that the time derivative in (2.2) is a total one, 

i.e. tracking the material particles. To obtain the Finite Element (FE) formulation of the 

problem we construct the weak formulation of (2.1). Let ui be an arbitrary test function 

(representing in this case a virtual displacement field). We may thus write: 
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Note that in (2.3) implicit summation has been used in order to keep the notation 

compact. Now, the weighted average of the equations is taken over the relevant domains 
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If (2.4) holds for any virtual displacement field, the equation becomes equivalent to 

(2.5). To keep the expressions simple without loss of generality it is common practice to 

assume that the virtual displacement field is compatible with any existing prescribed 

displacement constraints. This way the integrals over D can be dropped (i.e. 

0i Du   x ) but care must be taken to ensure that the solution is indeed 
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compatible with the constraints. The term containing the internal stresses can be 

integrated by parts yielding 

 0
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ij i i i i
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b u d t u d
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   (2.6) 

The deformation gradient can be split into a symmetric and an antisymmetric part: 

 
1 1

2 2
j ji i i

ij ij
j j i j i

u uu u u

x x x x x

     
      

                  
 (2.7) 

In the expression above ij represents the virtual strain field and ij is the virtual local 

rotation. Given that the stress tensor is symmetric the product ij ij   vanishes. 

Expression (2.6) then becomes the virtual work principle 
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Eq. (2.8) states that when the system is in equilibrium the change in strain energy 

caused by an arbitrary virtual displacement field equals the work done by the external 

forces. 

2.2 Finite element discretization 

To obtain the FE discretization we build an approximate solution interpolating the nodal 

values of the displacements [8]. A virtual displacement field can be obtained in the 

same way 

 ( ) ( ) ( ) ( )k k l l
i i i iu N u u N u  x x x x   (2.9) 

In (2.9) u  represents the approximate solution and Nk is the interpolation function 

corresponding to the kth node (called a shape function). From now on supra-indexes will 

be used to indicate nodal values. The virtual strain field is a linear function of the virtual 

displacement field so it also a linear function of l
iu , it is possible therefore to write 

 , , ( )ijl l l l
ij ij m m ij m l
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With the ,
l
ij kA coefficients being linear functions of the shape function gradients. For a 

dynamic problem the inertial term (2.2) is discretized as 
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As the shape functions are not functions of time (their value does not change for a given 

material point) the time derivative in (2.11) affects only the nodal displacements. 

Rearranging equation (2.8) so only the inertial term remains on the LHS yields 

 
2

,2

N

k
k l l l l l l l li

i i i i i ij ij m m

d u
N N u d b N u d t N u d A u d

dt
     

   

          (2.12) 

As the virtual nodal displacements are arbitrary, it is possible to set all but one of them 

to zero. This way as many equations as degrees of freedom existing on the system are 

obtained. By setting 
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The following set of equations is obtained: 
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In the equation above sum is assumed over j & k. The equations can also be written in 

matrix form as 

   Mu b t I  (2.15) 

M is called the mass matrix, b and t are the external nodal generalized forces and I is 

the internal force vector. If the mechanical response is linear the stress tensor can be 

written as a linear combination of the nodal displacements. The internal force vector can 

then be recast as 

 I = Ku  (2.16) 

where K is the stiffness matrix of the system. Even if the behaviour of the structure is 

not truly linear, this may be useful as a linearization around some base state. 

It is possible to solve for the acceleration in (2.15) by inverting the mass matrix 

    -1u M b t I  (2.17) 

The system of ODEs (2.17) together with the suitable initial conditions 
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can be advanced in time to yield the displacement field at every instant. Solving for the 

acceleration term in (2.17) requires inverting the mass matrix. To speed up the 

computations without significant loss of accuracy, the mass matrix is usually replaced 

by its lumped (diagonal) counterpart 
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In the expression above ij  represents the Kronecker delta function (i.e. one when i=j 

and zero otherwise). 

In order to form the matrix and load vectors appearing in (2.15) an element-by-element 

approach is used. As the shape function of node k is nonzero only inside elements 

containing said node, the integrals need only evaluated in the appropriate elements, for 

example: 
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2.3 Time integration 

The integration of the system (2.17) can be performed using both implicit and explicit 

schemes [7]. For the reasons outlined previously, the explicit method has been chosen. 

The explicit second order central differencing scheme has been selected due to its high 

efficiency coupled with acceptable accuracy. Given a series of points in time and their 

corresponding time increments 

 
       

           

0 1 1

1 1 1

, ... , , , , ...

... , , , ...

i i i

i i i i i i

t t t t

t t t t t t

 

       
 (2.21) 

let us define the change in midpoint velocity as 
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Observe that in (2.22) the accelerations and velocities are expressed at different instants. 

This scheme provides second order time-accuracy by virtue of using a centered 
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approximation for the time derivative. Once the intermediate velocities have been 

computed, the displacements can be updated 
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This scheme is fully explicit in that sense that if  
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possible to compute the updated displacement and velocity without the need to solve 

any equations. That is, (2.23) yields the new values without the need to solve any 

additional equation. Obviously the method is not self-starting, as at the initial time step 

the value of 

1

2d

dt

  
 u

 is not known (the initial conditions (2.18) are specified for i=0). To 

deal with this inconvenience we may use one sided differencing to estimate the velocity 

at i=+1/2 
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Using this value together with (2.22) gives 
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Using this dummy velocity value the time integration can be started. Please remark that 

the choice of  0t  has no effect on the final result. The method outlined has an 

extremely low computational cost per time step, however it shows a very important 

limitation. The explicit scheme is only conditionally stable meaning the time step 

cannot be made arbitrarily large lest the solution diverges. The maximum allowable 

time step is given by 

 
max

2
t
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with max being the angular frequency of the highest eigenmode of the system. The 

expression (2.26) is truly valid only for undamped systems. If damping is included in 

the model (it always is for practical reasons) then its effect can be accounted for trough 
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In the expression above  is the damping ratio of the highest eigenmode. From (2.27) it 

becomes obvious that damping can have a very detrimental effect on the stability limit. 

While (2.27) provides a very good estimate of the allowable time step, it is not practical 

to calculate the highest eigenvalue of the system as this calls for solving a complex 

problem (the number of degrees of freedom in the model can be very large). Fortunately 

there is a simple upper bound estimate of max  

 max max
elem   (2.28) 

with max
elem  being the highest elemental eigenfrequency in the model. The interaction 

with neightbouring elements always causes the highest system eigenmode to be slower 

than the highest isolated-element normal mode. Thus a conservative stability limit can 

be used in place of (2.26) 
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The maximum frequency is associated with dilatational modes. An alternative estimate 

of the maximum time step is given by the minimum transit time of the dilatational 

waves across the elements of the mesh: 
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In (2.30) Le is some characteristic element dimension and cd is the dilatational wave 

speed. For an isotropic linear elastic solid 
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where  and  are the Lamé constants which can be calculated from the shear modulus 

(G) and bulk modulus (K) as stated above. 
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2.4 Mass scaling 

If a poor quality mesh is used, some degenerate elements (i.e. having close to zero 

volume) might be present. These can be extremely detrimental to the performance of the 

algorithm as their associated characteristic lengths will be very small. Hence, the global 

stability limit given by (2.30) becomes extremely low, calling for a large number of 

time steps in order to finish the simulation. To overcome this problem the code includes 

a selective mass scaling options which introduces local changes in the element density 

in order to keep the stability limit within acceptable levels. For those elements where 

the value given by (2.30) is considered excessively small the density is artificially 

augmented in order to decrease the wave speed (2.31). The user can select the maximum 

acceptable scatter in the elemental stability limits and the code (using the statistics for 

the complete model) automatically corrects the elements falling outside the established 

bounds. It must be stressed that the effect of the increased density on the global 

dynamic response is very small because the elements affected are only those with very 

small volumes. As the mass of these elements, even after scaling, is a negligible fraction 

of the total system mass the overall behaviour of the structure is almost unchanged (i.e. 

the inertial properties remain basically the same). In those cases where only the 

system’s static response in sought, mass scaling can be used in a more aggressive 

manner without altering the solution. 
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3 Numerical damping 
To achieve a smooth solution it is always needed to introduce some amount of damping 

into the numerical model. In a real structure different types of damping are always 

present (e.g. material, aerodynamic, etc…) so the observed behaviour is usually smooth. 

On the other hand, the dissipation provided by the basic explicit algorithm is really 

small. This is a problem when a steady state solution is sought but is also undesirable 

when simulating transient events as high frequency noise can contaminate the solution. 

To allow greater flexibility controlling the solution process two forms of user-adjustable 

damping are provided; Rayleigh damping and bulk viscosity. In the first case a damping 

matrix is built from the mass and stiffness matrices: 

   C M K  (3.1) 

The equation system (2.15) supplemented with this damping term becoming 

    Mu b t I Cu   (3.2) 

The  term creates a damping force which is proportional to the absolute velocity of the 

nodes. This is roughly equivalent to having the nodes of the structure move trough a 

viscous fluid. The damping ratio introduced by the mass proportional damping term on 

a mode of frequency  is 

 
2




  (3.3) 

From (3.3) it is apparent that the  term affects mainly the low frequency components 

of the solution. It can be useful to accelerate convergence to a static solution when only 

the long-term response is sought. However, when the transient response must be 

accurately determined this factor should not be included (or at least the  parameter 

must be chosen in order to ensure the damping ratio for the lowest mode is very small). 

The  term on the other hand introduces forces that are proportional to the material 

strain rate. An extra stress d is added to the constitutive law 

  el
dσ D : ε  (3.4) 

with Del being the tangent stiffness tensor of the material. The fraction of critical 

damping for a given mode is: 
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2

    (3.5) 

In this case only the high order modes are affected appreciably. This is desirable as it 

prevents high frequency noise from propagating while leaving the low order response 

(which is usually the part sought) almost unchanged. The  parameter however must be 

used sparingly, as it has a very detrimental effect on the stability limit (because its effect 

is greatest for the highest eigenmode of the system). 

An additional form of damping is included to prevent high frequency “ringing”. This is 

caused by excitation of element dilatational modes which are always associated with the 

highest eigenvalues of the system. An additional hydrostatic stress is included in the 

constitutive routines which is proportional to the volumetric strain rate. This volumetric 

viscous stress is given by 

 1h d e volb c L     (3.6) 

In the expression above b1 is the desired damping ratio for the dilatational mode. A 

suitable value is b1=0,06. 
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4 Element formulation 
The elements chosen are linear two-node cables and three node membranes. As an 

introduction to the details of implementation the cable element formulation is described 

first. While extremely simple, it contains many of the relevant features needed to 

formulate the surface element. As only small tensile strains are expected, a small-strain 

formulation has been adopted to calculate the elemental stresses. This assumption 

allows for efficient coding while maintaining acceptable accuracy. 

4.1 Two-node linear cable element 

Let us consider a linear element stretching between nodes i and j 

i

j

iI

jIdf

i

j

iI

jIdf

 
Fig. 1 – Linear cable element internal and external loads 

An external distributed loading per unit length df  acts on the element whose cross 

sectional area will be denoted by A. As we shall be facing a large displacement 

problem, the position of the nodes can be written either on the undeformed (reference) 

configuration or in the deformed (current) configuration. From now on we shall use 

upper-case letters to denote the original coordinates while lower-case will be reserved 

for the current configuration. For example, the original length of the cable element is 

given by 

 0 iL  jX X  (4.1) 

while the actual length at any given time is 

 ( )L t  j ix x  (4.2) 

The unit vector along the element is 
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From the change in length of the element the axial strain and stress can be obtained. 

Assuming linear elastic behaviour: 

 0

0

; max(0, )
L L

E
L

  
   (4.4) 

As we assume the cables buckle instantly under compressive loads, there is a lower 

bound on the allowable stresses. Therefore in (4.4) a minimum stress value of zero is 

enforced. Using this result the internal forces at the nodes become: 

 ;A A    i l j lI e I e  (4.5) 

The nodal generalized external force due to the distributed loading is calculated as 

indicated in (2.14). If the load df  is constant across the element it reduces to: 

 
0 2

L

i

L
N dL i d db f f  (4.6) 

When numerical damping is included the stress term in (4.4) is augmented with the 

viscous contributions 

   0
0

( )
; max(0, ) d

d
E b c L

dt L

     
 

   j i 1x x e 
   (4.7) 

Note that in (4.7) the bulk viscosity term is slightly modified as it includes the axial 

strain rate instead of the volumetric strain rate. While using equations (4.1)-(4.7) is the 

most efficient way to calculate the internal forces for the element in a large 

displacement problem, it is also useful to have a closed expression for the elemental 

stiffness matrix (if the Rayleigh damping matrix is needed for example). This is 

specially simple if a local reference frame aligned with the element is chosen: 

i ji ji j
 

Fig. 2 – Cable local reference frame 

For a virtual displacement of the end nodes we can calculate the change in length and in 

stress as 

  
0

j j j jE
L u u u u

L              (4.8) 

Thus, the element stiffness matrix in the local coordinate system is given by 
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K  (4.9) 

Of course, the stiffness matrix is taken as zero whenever compressive strains exist in the 

element. The mass matrix can be obtained using (2.20) and the expressions of the shape 

functions in the local reference frame 
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M

 (4.10) 

As previously stated, the diagonal form of the mass matrix is usually preferred, thus 

(4.10) is replaced with: 

 
1 0

0 12

AL  
  

 
dM  (4.11) 

The element characteristic size used to estimate the allowable time step (2.30) for the 

case of a simple cable element is taken as L0 (the cable reference length). Note that it is 

not necessary to consider the possibility of smaller values as a cable under compression 

shows no stiffness and therefore has a vanishing elastic wave speed. Due to the one-

dimensional character of the problem, the dilatational wave speed can be safely replaced 

with the longitudinal wave speed 

 l

E
c


  (4.12) 

4.2 Three-node linear membrane element 

Given that large displacements are expected, the strain state of the element is easier to 

assess using a local corrotational frame than in the global reference system [9]. Let us 

consider a triangular element defined by its three corner nodes 
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Fig. 3 – Triangle local reference frame 

The three unit vectors along the local axes are obtained from 
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 (4.13) 

Any point of the triangle can now be identified by its two local coordinates (,) 

  ( , ) ( ) , ( )    1 1
1 2x - x e x - x e  (4.14) 

As a linear triangle always remains flat, the problem is greatly simplified by analysing 

the stress state on the - plane. 
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Fig. 4 – Nodal coordinates in the local triangle reference frame 

It is worth mentioning that the strain state of the triangle depends only on three 

parameters, as some of the nodal coordinates vanish in the corrotational reference frame 

(Fig. 4). In Fig. 4 the original (undeformed) geometry has been denoted with the 

subindex 0. The material strain is obtained from the interpolated displacement field 
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j

u u N u u   


  (4.15) 

Note that in (4.15) node 1 has been excluded from the sum as it is fixed at the origin of 

the local reference system. To calculate the strain the gradients of the shape functions 

must be known. While it is possible to obtain a closed expression for the shape 
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functions of an arbitrary triangle it is somewhat simpler to operate on a “canonical” 

element shape where the functions have a simpler form. To this effect we use an 

additional transformed coordinate system (p-q) 
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Fig. 5 - Transformed coordinate system 

The shape functions now become: 

 1 2 31 ; ;N p q N p N q      (4.16) 

The transform from the p-q plane to the  system is given by the isoparametric 

transform 
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  (4.17) 

The gradients of the shape functions can be recovered from 
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J  (4.18) 

where J is the Jacobian of the isoparametric transform. Its value can be obtained from 

(4.16) & (4.17) and is constant across the element (due to its linear nature) 
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J  (4.19) 

Inverting the system (4.18) yields the gradients sought 
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The components of the strain tensor can now be determined easily 
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 (4.21) 

Note that in (4.21) the null terms have been dropped in order to achieve an efficient 

algorithm. The corresponding stresses are calculated assuming a plane stress state (an 

acceptable hypothesis for thin surface elements) and linear elastic isotropic behaviour. 
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 (4.22) 

As the membrane buckles under compressive loads, the stresses given by the expression 
above must be corrected to account for this fact. To this end we shall refer to (4.22) as 
the trial stress state (t). Three different membrane states are considered [10]: 

 Taut: The minimum principal trial stress is positive. No corrections are needed 
(Fig. 6-A) 

 Wrinkled: Membrane is not taut, but the maximum principal strain is positive. 
Trial state is replaced with a uniaxial stress state (Fig. 6-B) 

 Slack: The maximum principal strain is negative. The corrected stresses are zero 
(Fig. 6-C) 
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Fig. 6 – Trial membrane stress states - Taut (A) Wrinkled (B) and Slack (C) 

To calculate the correct stress state the average in-plane direct strain and maximum 

shear strain are first found: 
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 (4.23) 
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The principal strains can now be evaluated and the stress state of the membrane 

assessed. If the maximum principal strain is compressive the membrane is slack and the 

stress tensor is null 

 max ; 0
2I m Iif

      σ 0  (4.24) 

otherwise, the minimum principal trial stress is checked. Whenever it is positive 

(tensile) the membrane is considered taut 
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 (4.25) 

Under any other circumstances the membrane is wrinkled and the stress state must be 
properly corrected (Fig. 7) 
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 (4.26) 
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Fig. 7 – Stress correction for wrinkled membrane 

The elastic stresses are next augmented with viscous terms to introduce a suitable level 

of numerical damping. To speed-up calculations the nodal velocities are expressed in a 

reference frame attached to the first node of the element, thus cancelling out the 

corresponding values: 

 ; ;    1 2 2 1 3 3 1
r r rv 0 v v v v v v  (4.27) 

The velocities are then expressed in their components on the local reference frame 

    , ,i iv v    i i
r 1 r 2v e v e  (4.28) 

Note that the velocity components in (4.28) are not those measured in the corrotational 

reference frame, but simply the projections over the local axes of the nodal relative 
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velocities. It is not necessary to subtract the effect of the rotation as the spin rate will be 

automatically eliminated from the velocity gradient when calculating the strain rate 

(2.7). The components of the strain rate tensor are 
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 (4.29) 

In a similar way to (4.7) the damping stresses are given by 
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 (4.30) 

where the characteristic wave speed for the membrane has been taken as 
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The total stress (elastic plus viscous) is then used to calculate the nodal forces using the 

change in energy due to the internal forces. Using the virtual deformation field 
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 (4.32) 

The total work done by the internal stresses during a virtual displacement is calculated 

integrating over the element the change in energy. As the triangular linear elements 

create a constant strain (and stress) field a single point Gauss quadrature is adequate to 

capture the effect of the virtual displacement 

  0: d tA               σ ε  (4.33) 

with t being the element thickness and A0 its reference (undeformed) area. The original 

surface is used in (4.33) because under compressive loads the element can shrink to a 
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small fraction of its original dimensions. However, as long as the material remains 

active (i.e. wrinkled but not slack) the actual volume of material stressed is given not by 

the element projected area (as calculated from the nodal coordinates) but from its 

original surface. On the other hand, when the membrane is taut the small strains 

involved make the reference area a good approximation of the real surface. 

The internal force vector derived from (4.33) is: 
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 (4.34) 

In order to keep the algorithm as efficient as possible, the terms that vanish due to the 

particular choice of reference frame have been dropped from the expression above. 

 

When the element faces are subject to a pressure loading, the corresponding nodal 

generalized forces are obtained from (2.14). For the particular case of a uniform 

pressure p acting on the upper face (the side towards which the normal vector n points) 

the values are 
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 (4.35) 

where Ap stands for current projected area of the element: 

 2 3

2pA
 

  (4.36) 

Finally, once all the components of the internal forces have been determined on the 

local reference frame, the global force vector can be assembled. The transformation to 

the global inertial reference system is performed through 
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glob 1 2I e e n  (4.37) 

The mass matrix for the element, assuming uniform density, is 

 

1 1 1
2 4 4

0 1 1 1
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1 1 1
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M  (4.38) 

The lumped mass matrix is obtained summing the columns of (4.38) 
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1 0 0

0 1 0
3

0 0 1

tA
 
   
  

dM  (4.39) 

To obtain a safe estimate of the allowable time step, a conservative estimate of the 

characteristic element length has been used. The element size is taken as: 
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x x
 (4.40) 

4.3 Four-node linear tetrahedral solid element 

This element has been designed to model the loads suspended from the parachute in 

order to enable modelling of the complete parachute-payload dynamical system. While 

only small strains are expected the rigid body displacements involved are usually very 

large. In order to completely isolate the material behaviour from these effects a 

corrotational formulation similar to case of the membrane has been adopted. The base of 

the element is used to define the local corrotational reference frame in the same way as 

it was done for the triangular membrane. 
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Fig. 8 – Tetrahedron corrotational reference frame 

The three unit vectors along the local axes are obtained from 
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Any point x of the tetrahedron can now be identified by its three local coordinates 

(,) 

  ( , , ) ( ) , ( ) , ( )      1 1 1
1 2x - x e x - x e x - x n  (4.42) 

Due to this particular choice of coordinates, the vertices of the element no longer have 

arbitrary coordinates because some components are null 
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Therefore, it is possible to calculate the strain field inside the tetrahedron (which is 

constant for linear elements) as a function of only six variables. The interpolated 

displacement field is given by 
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  (4.44) 

where node 1 does not enter the sum as it remains always at the origin of the local 

frame. In order to calculate the gradients of the shape functions an isoparametric 

transform is applied in order to perform the relevant operations on a simpler geometry. 

The transformed coordinate system shall be denoted as (p-q-r). 
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Fig. 9 – Tetrahedron reference coordinates in the p-q-r system 

The shape functions in the transformed system have very simple expressions: 

 1 2 3 41 ; ; ;N p q r N p N q N r        (4.45) 
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It can be observed in (4.45) that the four shape functions always add to one. The  

coordinates of a point with know values of p-q-r is given by 
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  (4.46) 

Using the chain rule the derivatives of the shape functions with respect to the 

transformed coordinates can be obtained from 
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J  (4.47) 

The Jacobian of the isoparametric transform (J) can be obtained from (4.45) & (4.46)

and is constant across the element 
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Inverting the system (4.47) yields the gradients sought 
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 (4.49) 

The components of the strain tensor can now be determined easily 
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 (4.50) 
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To keep the notation as compact as possible, a sub-index has been introduced in (4.50) 

which indicates derivation of the shape function with respect to a certain local 

coordinate. For example: 

 
i

i N
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 (4.51) 

As was the case for the membrane element, the null terms in (4.50) have been dropped 

to improve efficiency. The corresponding stresses are calculated assuming a linear 

elastic isotropic behaviour. 

 
2

; ;
3

h

v
v h v

G

K  


      

 

     

σ e I

e ε I
 (4.52) 

The corresponding nodal generalized forces can be determined form the principle of 

virtual work. Given an arbitrary virtual displacement field, the work done by the nodal 

loads should equal the virtual change in strain energy 

 :
el

j j

j

d 


  F u σ ε  (4.53) 

The virtual strain field is a linear combination of the gradients of the shape functions 

and the virtual nodal displacements given by 
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 (4.54) 

Notice that the expression for the virtual deformation field is far more complex than the 

formula for the strain field (4.50). This happens because no single component of the 

virtual displacement field can be discarded. Combining (4.54) and (4.53) yields the 

internal force vector 
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 (4.55) 

As always, only the non-vanishing terms have been included in (4.55) for the sake of 

efficiency. The volume of the element is obtained from the isoparametric transform as 

 2 3 4

6 6
el   

  
J

 (4.56) 

In order to calculate the damping terms, the nodal velocities are transformed to the 

corrotational reference frame. This is a two step process. First, the velocities of all the 

nodes are measured relative to the origin of the system (i.e. the first node). This yields 

the intermediate velocity w whose components are given by: 

     1, , , , wherei i iw w w        i i i i i
r 1 r 2 r rv e v e v n v v v  (4.57) 

Due to the choice of the reference frame, the following relationship must exist between 

the intermediate velocities and the angular velocity of the corrotational reference system 
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 (4.58) 

It is therefore easy to calculate the spin rate of the local reference frame 

 
2 2 2

3 3
2 2 3 2

1
: , ,

w w w
w  
 

   

  
       

Ω  (4.59) 

Subtracting the spin-induced components from the intermediate velocities, the 

corrotational velocities are finally obtained 
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In (4.60) the tilde indicates the value measured in the corrotational frame of reference. 

The velocities (4.60) can be used together with (4.50) to yield the components of the 

strain rate tensor 
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 (4.61) 

In order to improve performance the elastic stresses and the stiffness proportional terms 

from the Rayleigh damping are computed together in a single step. To this effect an 

equivalent strain tensor is defined as 

  eqε ε ε  (4.62) 

The equivalent strain is used in the constitutive law (4.52) in order to efficiently include 

the damping term. Additionally, a bulk viscosity is included both to reduce high 

frequency ringing and to prevent collapse during high speed events. The linear bulk 

viscosity takes the form defined in (3.6). Therefore an additional hydrostatic stress is 

included in the material computations, which is given by 

 1
lbv
h d e volb c L     (4.63) 

Under high rate of deformation conditions the nodal velocities may become higher than 

the dilatational wave speed of the material. The element could therefore flip inside-out 

in less than one time step. To prevent this kind of behaviour an additional quadratic 

bulk viscous term is included which smears shocks over several elements. This allows 

simulation of, for example, impact and blast events. The quadratic hydrostatic viscous 

stress takes the form: 

  2

2 min(0, )qbv
h e volb L     (4.64) 
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Note that the quadratic bulk viscosity (4.64) is only active when the strain rate is 

compressive. As the only purpose of this term is to prevent the elements from 

collapsing, it is not included when the material undergoes an expansion. The fraction of 

the critical damping (needed to calculate the stability limit) due to the combined effect 

of the viscous stresses (4.63) & (4.64) is 

 2
1 2 min(0, )bv e

vol
d

L
b b

c
     (4.65) 

Under most circumstances a value of 1,2 is appropriate for the quadratic bulk viscosity 

parameter (b2). 

When pressure loads are prescribed on faces of a tetrahedral element, the contributions 

to the internal force vector can be obtained from: 

  1 1,2,3,4
3

i
i

ij

A
p j   j iI n  (4.66) 

In (4.66) index j indicates the node on which the load is calculated and i is the face 

number on which pressure pi is acting; Ai is the face area and ni the outward normal. 

Face numbering is shown in Fig. 10. 
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Fig. 10 - Face numbering for tetrahedral elements 

Once all nodal loads have been calculated on the corrotational frame, the contribution to 

the global force vector (which is always expressed in global coordinates) is obtained 

from (4.37). 

The mass matrix for the element, assuming uniform density, is 
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M  (4.67) 

Therefore, the lumped mass becomes 
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dM  (4.68) 

A safe estimate of the allowable time step is given by the minimum height of the 

element 
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5 Validation examples 
In this chapter several benchmark cases are presented in order to test solution accuracy. 

The cases focus on the non-linear aspects of the solutions, the main challenge when 

analysing structural membranes. 

5.1 Cable element subject to weight load 

From elementary mechanics it is known that the equilibrium deformed shape of a cable 

with uniform weight per unit length is a catenary. The vertical position and arc length 

along the cable vary according to: 

 cosh ; sinh
x x

y a s a
a a

       
   

 (5.1) 

where the parameter a depends on the boundary conditions. We consider the problem of 

a cable which stretches across two point at the same level located a distance 2d apart. 

Initially the cable is shaped like a “V” with the apex a distance d below the suspension 

points. The total length of the cable is therefore 2 2d . Substituting this condition in 

(5.1) the value of a and the height of the catenary () can be obtained 

 1, 49 ; 0,895
d

d
a

   (5.2) 
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Fig. 11 - Catenary problem definition 

The cable has been discretized with 20 linear elements. In order to check also the 

behaviour of the membrane formulation a strip made of triangular elements has been 

suspended the same way as the cable. The strip is modelled with a mesh of 20x4 

triangles. The relevant properties chosen are: 

 
3 2

10 ; 1000 ; 9,8
kg m

E GPa g
m s

    (5.3) 

The values of  obtained from the FEM solution are given in Table 1, the agreement 

with the theoretical calculation is excellent. The deformed mesh shape is shown in Fig. 

12. 
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Fig. 12 - Catenary problem. Deformed shape 

 
 Cable elements Membrane elements 

/d 0,896 0,8971 

Table 1 - Computed geometry for the catenary problem 
 

5.2 Circular membrane under uniform pressure 
Also known as Henky’s problem in the literature [11] this benchmark studies the elastic 
deformation of an initially round and flat membrane with fixed edge. The membrane is 
pressurized thus acquiring a dome-like shape. The characteristics of the membrane are: 

 0,1425 ; 311488 ; 0,34R m Et Nm     (5.4) 

Reference values can be found in the literature for the vertical displacement of the 
central point of the membrane for an applied pressure of 100KPa (Pauletti 2005). The 
solution was computed using an unstructured mesh containing 344 triangular elements. 
 

 Pauletti (SATS) Pauletti (ANSYS)  PUMI_MEM 
Deflection (mm) 33,1 31,9 34,8 

Table 2 – Central deflection of the membrane (mm) 
 

While there is not a single definite reference solution in the literature, the result 
obtained compares well with the two values presented. It must be stressed that slight 
differences must be expected because the deformations experienced by the membrane 
exceed the strict limits of validity of linear elasticity. 

                                                 
1 Value for the triangular elements is an average. Due to the constraints imposed by the discretisation the 
deformed shape is not perfectly cylindrical. 
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Fig. 13 – Henky’s problem. Deformed shape 

5.3 Square airbag inflation test 
This benchmark computes de vertical displacement at the centre of an initially flat 
square airbag of side length 840mm. An internal pressure of 5kPa is applied. This is a 
validation test for the wrinkling model, as the deformed configuration is strongly 
affected by the no-compression condition. The textile properties are: 

 588 ; 0,6 ; 0,4E MPa t mm     (5.5) 

A mesh composed of 16x16 squares is used for each side of the airbag. Each square has 
then been divided into 4 equal triangles in order to eliminate mesh orientation effects. 
The total number of triangular elements is therefore 2048. The next table shows the 
comparison of the result from PUMI_MEM with several sources [12][13][14]. The 
differences are negligible. 

 Contri Ziegler Hornig PUMI_MEM 
Deflection (mm) 217,0 216,0 216,3 216,2 

Table 3 – Central displacement of the airbag (mm) 

 
Fig. 14 – Square airbag. Deformed shape 
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6 Application examples 
Here some examples of the use of the code are presented. The focus during the design 

of PUMI_MEM was on parachute analysis. As such many examples come from this 

field. Applications to other fields will also be highlighted. 

6.1 Ram air parachute modelling 

 
Fig. 15 - Fastwing parachute. Initial configuration and final deformed shape 

Coupled with a potential flow solver, the code has been used to simulate a high-

performance parachute for delivery of heavy payloads. The canopy was designed and 

manufactured by CIMSA in the framework of the FASTWing Project [10]. The model 

contains an unstructured distribution of 11760 triangular elements (8824 for the 

aerodynamic surfaces exposed to the wind and 2936 for the internal ribs) and 11912 

cable elements to model the suspension and control lines as well as the reinforcement 
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tapes integrated into the canopy. The simulation is initialized with a partially inflated 

parachute configuration. The aerodynamic loads are updated as the simulation proceeds 

until a stable configuration is reached. Fig. 15 shows the change in shape from the 

beginning of the simulation to the equilibrium configuration. 

 
Fig. 16 – Fastwing parachute right turn manoeuvre. Starting from the steady state the right brake 

is pulled. Yaw angle increases form left to right 

The code has also been used to predict the dynamic response of the parachute in order to 

simulate, for example, manoeuvres. The choice of an explicit scheme allows for instant 

transition from static to dynamic analysis if an unsteady flow solver is available. It must 

be stressed that the time step used by the structural solver is very short while for most 

applications the high-order modes of the mechanical response are of little relevance. 

Therefore it is not necessary to update the aerodynamic loads at every step in order to 

obtain a satisfactory global response. This saves processing time on the part of the flow 

solver. Fig. 16 illustrates a right turn manoeuvre. 
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6.2 Drag canopy deployment 

This is a simple inflation test aimed at exploring the capabilities of the code to simulate 

parachute deployment and inflation. Direct calculation of the pressure field around the 

partially inflated canopy is an extremely challenging task. Therefore, semi-empirical 

correlations have been used for the pressure field. Deployment takes place in two steps. 

Initially the apex of the canopy is pulled in the direction of the incident wind. Once the 

lines and canopy have been stretched the inflation phase begins. The parachute is 

discretized with an unstructured grid of 3390 triangular elements and 2040 cable 

elements modelling the suspension lines and fabric reinforcements. Fig.  17 shows the 

inflation stage, including the final steady configuration. 

 
Fig.  17 – Several stages of the parachute deployment 

6.3 Draping simulation 

By virtue of the wrinkling model the code is able to simulate the interaction between 

flexible fabrics and rigid objects. In the example shown a square membrane 3m across 

is released on top of a rigid circular disc with a diameter of 2m. The fabric is subject to 

the action of gravity, contact forces and damping forces introduced to simulate the 

effect of the air. The definition of the rigid surface is analytic so it does not need to be 

discretized (i.e. it does not enter the mesh). The membrane has been meshed with an 

unstructured grid of 8262 elements. The complete process, 4s of real time, can be 
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simulated in just 9s in a current mid-range desktop computer. Fig. 18 shows several 

snapshots of the process. 

 
Fig. 18 - Draping simulation. Snapshots taken every 0,4s 

6.4 Blast loading of inflatable structures 

In recent times, use of inflatable structures as shelters against blast waves and even as a 

means of containing the effects of explosions has become a topic of interest. In order to 

address this kind of problem an additional material model has been incorporated in the 

code which allows for simulation of the propagation of pressure perturbations on air. An 

equation of state model has been used together with the tetrahedral elements in order to 

asses the blast wave attenuation which takes place across the inflatable structure. The 

events being simulated involve extremely short time scales during which the distances 

travelled by most nodes of the mesh are not large compared with the general dimensions 

of the structure. Thus, a lagrangian formulation for the air is acceptable, at least for 

those volumes not directly exposed to the effect of the blast. This is the case for the air 

contained inside the structure and for those parts of the atmosphere shielded from the 

explosion. Assuming an ideal gas which evolves in an isentropic way, the relation 

between pressure and density is: 
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where the subindex 0 denotes some reference conditions (e.g. initial conditions) and  is 

the ratio of specifics heats of the gas. The pressure at any time is therefore obtained 

from 

 0
0 0

0

p p p
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It is thus possible to calculate the pressure using the initial conditions and the change in 

volume of the element. This information is available from (4.56). The speed of sound in 

the medium is given by 

 2 p
c 


  (6.3) 

An equivalent bulk stiffness for the air can be obtained from (6.3) by defining 

 2 eq
eq

K
c K p


    (6.4) 

The parameter Keq is an estimate of the volumetric stiffness of the air. A gas has no 

shear stiffness so excessive mesh distortions could appear if only the pressure term (6.2) 

were included into the material response for those elements modelling air. To counter 

this problem some level of numerical shear stiffness is added to the formulation in order 

to control mesh distortion while not affecting the overall properties of the solution. To 

this effect this stabilizing term is defined as: 

  1num eqG K    (6.5) 

The parameter  must be kept small in order to prevent excessive accumulation of 

energy in the form of shear deformation. The complete material response (including the 

shear stabilization term) is then given by 

 0
02 numG p

     
σ e I  (6.6) 

The stability limit for the gas elements is calculated in the usual way (2.30) using (6.3) 

as the characteristic wave sped. As the speed of sound in air is much smaller that the 
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wave speeds in solids, the air elements are not usually a limiting factor (except in cases 

of severe element distortion). 

The example presented corresponds to a conceptual design for a blast containment 

device. The overall dimensions of the structure are 16x11x4,5m. Due to the double 

symmetry only a quarter of the geometry has been modelled. The mesh contains 

2376000 tetrahedral elements and 79440 triangular membrane elements. The volume 

elements are located inside the cells of the structure and in the surrounding atmosphere. 

The volume of atmosphere meshed extends 9m outside the structure (see Fig. 19). 

 
Fig. 19 – Computational domain geometry. Structure shown in dark grey and surrounding 

atmosphere in light gray 

The pressure field corresponding to the explosion of a charge of 10kg of TNT has been 

computed with an Euler flow solver and used as prescribed load history on the inner 

wall of the structure. In a regular desktop computer the code is able to advance 10 time 

steps approximately every 9s. Given to short time scales involved (the time it takes for 

the shockwave to leave the domain is on the order of 10ms) the CPU time for a 

complete simulation is in the neighbourhood of 10 minutes (the exact value depends on 

the particular conditions of each simulation, as the stability limit changes as the mesh 
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deforms). The explicit algorithm proves itself extremely efficient when dealing with fast 

transient events. Fig. 20 shows four snapshots of the temporal evolution of the structural 

deformations. 

 
Fig. 20 - Inflatable structure subject to blast loading. Time between frames: 2ms 
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7 Conclusions 
The theoretical background as well as details of implementation of an explicit dynamic 

structural solver (PUMI_MEM) have been presented. The software was developed as 

part of a broader effort to build a coupled fluid-structural analysis package for parachute 

simulations. The code was designed to obtain robust solutions of the highly nonlinear 

behaviour of structural membranes. The severe convergence problems due to the 

statically indeterminate behaviour of the structure where overcome by performing a 

dynamic simulation (even when only the static solution is sought). To counter the 

limitations imposed by the large changes in geometry expected an explicit time 

integration scheme was chosen. While this limits the allowable time step, issues related 

to the limited convergence radius of implicit schemes are completely eliminated. Even 

if the time step limitation might seem problematic at first, the very lost cost per iteration 

more than overcomes this issue. Another important characteristic of thin membranes is 

their virtually zero compression strength due to wrinkling. This has to be accounted for 

in order to obtain realistic solutions. As there is no global stiffness matrix to assemble in 

the explicit method, implementation of a wrinkling model is straightforward. Only the 

constitutive law has to be changed to include no-compression behaviour. Several 

benchmarks have been presented showing the accuracy of the results in situations where 

the geometrical nonlinearities and the asymmetry of the material response are 

determinant. The choice of a dynamic solver also enables study of the system’s transient 

response with no changes to the code. Examples of application to parachute deployment 

and manoeuvres have been presented. While initial focus was on parachute simulation, 

applications to other fields of technological interest have been tested. In all cases the 

code has shown an excellent performance in terms of CPU time. 
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