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ABSTRACT 

Catalysts for oxygen reduction reaction (ORR) are key components in emerging energy technologies such as fuel 

cells and metal-air batteries. Developing low-cost, high performance and stable electrocatalysts is critical for the 

extensive implementation of these technologies. Herein, we present the first procedure to prepare colloidal 

chromium phosphide CrP nanocrystals. We further test for the first time the performance of this material, 

combined with carbon, as ORR electrocatalyst. CrP-based catalysts exhibited remarkable activities with a limiting 

current density of 4.94 mA cm-2 at 0.2 V, a half-potential of 0.65 V and an onset potential of 0.8 V at 1600 rpm, 

which are comparable to commercial Pt/C. Advantageously, CrP-based catalysts displayed much higher stabilities 

and higher tolerances to methanol in alkaline solution. Using DFT calculation, we demonstrate CrP to provide a 

very strong chemisorption of O2 which facilitates its reduction and explains the excellent ORR performance 

experimentally obtained for this material.  
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1. INTRODUCTION 

Proton exchange membrane fuel cells and metal air batteries are actively investigated as promising clean energy 

conversion and storage technologies. Common to both emerging technologies is the use of an oxygen cathode 

where ambient oxygen is reduced to OH- groups in solution. This reaction requires the participation of 4 electrons, 

what makes it very sluggish and translates in a limitation of the overall performance of the system. To accelerate 

this reaction, Pt or Pt-based alloys are generally required [1-4], what strongly increases the device cost and 

constitutes one of the major barriers toward commercialization. Hence, considerable efforts are involved in the 

design and production of ORR catalysts not based on Pt or Pt-group metals. Optimum ORR catalysts have been 

found within most material families, including metal oxides [5,6], carbides [7-9], phosphides [10-17], chalcogenides 

[18] and even metal-free catalysts [19-21] etc. Among them, phosphides are particularly interesting due to their 

stability, excellent electrical conductivities and abundance and low cost of phosphorous. Within this family, PdP2 

[14], Co2P [15], CoP [16] and Ru2P [17] have already demonstrated excellent ORR activities, comparable to 

commercial Pt catalysts. 

However, among the metal phosphides, chromium phosphide has been surprising ignored in most of its potential 

technological applications in spite of its a priori suitable properties. This is particularly shocking taking into account 

the relatively high abundance of chromium in the earth crust, above that of nickel, zinc or copper for example, and 

its high global annual production due to their use in metallurgy, what makes it a relatively low cost material. 

Chromium phosphide is a hard-wearing metallic conductor displaying a high thermal stability, good resistivity to 

oxidation and anti-corrosion toward water and dilute acids [22-28]. These properties make CrP an appealing 

candidate in a wide range of applications. However, very few papers have reported the synthesis and applications 

of chromium phosphides [22-24]. In particular, CrP has been produced in film form by chemical vapour deposition 

[22,23], but never in the form of nanoparticles.  

In a previous work, we showed that triphenyl phosphite (TPP) can be used as a low-cost and air-stable phosphorous 

precursor to produce a range of binary and ternary metal phosphides such as Ni2P, Co2P, Fe2P, Cu3P, MoP and Ni2-

xCoxP [29,30]. However, due to the low-boiling point of the presented procedure attempts to produce metal 

phosphides that required higher crystallization temperatures were not successful.  

In the present work, we demonstrate the production of CrP nanocrystals (NCs) using TPP as a highly suitable 

phosphorous precursor employing a high boiling point solvent. The produced CrP NCs were combined with carbon 



and tested as electrocatalyst for ORR. Through an exhaustive investigation, we demonstrate CrP-based catalysts to 

be highly suitable for oxygen electroreduction.  

EXPERIMENTAL SECTION 

Chemicals: Triphenyl phosphite (TPP, 99%) was purchased from Alfa Aesar. Chromium hexacarbonyl (Cr(CO)6, 99+%) 

and oleylamine (OAm, approximate C18 content 80-90%) were purchased from ACROS Organics. Carbon-

supported Pt NCs (Pt/C, 20 wt% Pt), Nafion (5 wt% in a mixture of low aliphatic alcohols and water) and potassium 

hydroxide (KOH, 85%) were purchased from Sigma Aldrich. Chloroform, acetone and ethanol were of analytical 

grade and obtained from various sources. Milli-Q water was supplied by a PURELAB flex from ELGA. All chemicals 

were used as received without further purification. 

Synthesis of CrP NCs: All reactions were carried out under argon atmosphere using standard Schlenk line 

techniques. In a typical synthesis, 10 mL of OAm and 1 mL of TPP were mixed in a 50 mL three-neck flask equipped 

with a condenser and a stir bar. The system was heated to 120 °C under Ar flow and maintained at this temperature 

for at least 1 h. Then, 110 mg (0.5 mmol) of Cr(CO)6 was quickly added into the flask under Ar flow. The temperature 

was then increased to 320 °C in 20 min and kept at that temperature for 2 h. Afterward, the mixture was allowed 

to cool down to room temperature by removing the heating mantle. Excess ethanol was added to the black product 

followed by centrifugation at 5000 rpm (3200 g) for 5 min. Purification was achieved by another twice 

dispersion/precipitation steps using 1:3 (v:v) chloroform/ethanol. Finally the supernatant was discarded and the 

precipitated material was collected and dried in ambient conditions. 

Material characterization: Transmission electron microscopy (TEM) characterization was carried out using a ZEISS 

LIBRA 120, operating at 120 kV and a JEOL 1011 operating at 100 kV. Carbon-coated TEM grids from Ted-Pella were 

used as substrates. Powder X-ray diffraction (XRD) patterns were collected directly from the as-synthesized NPs 

dropped on a Si (501) substrate using a Bruker-AXS D8 Advanced X-ray diffractometer with Ni-filtered (2 µm 

thickness) Cu K radiation (λ = 1.5406 Å) operating at 40 kV and 40 mA. A LynxEye linear position-sensitive detector 

was used in reflection geometry. High-resolution TEM (HRTEM) studies were conducted using a field emission gun 

FEI Tecnai F20 microscope at 200 kV with a point-to-point resolution of 0.19 nm. High angle annular dark-field 

(HAADF) STEM was combined with electron energy loss spectroscopy (EELS) in the Tecnai F20, by using a GATAN 

QUANTUM filter. Scanning electron microscopy (SEM) analyses were carried out using a ZEISS Auriga microscope 

with an energy dispersive X-ray spectroscopy (EDS) detector operating at 20 kV. Dispersive spectrometer Jobin-

Yvon Lab Ram HR 800 with Olympus BXFM microscope optic was used to obtain Raman spectra. X-ray 



photoelectron spectroscopy (XPS) was carried out on a SPECS system equipped with an Al anode XR50 source 

operating at 150 mW and a Phoibos 150 MCD-9 detector. The pressure in the analysis chamber was below 10−7 Pa. 

The area analyzed was about 2 mm × 2 mm. The pass energy of the hemispherical analyzer was set at 25 eV and 

the energy step was set at 0.1 eV. Data processing was performed with the CasaXPS program (Casa Software Ltd., 

UK). Binding energy values were corrected using the C 1s peak at 284.8 eV. Fourier transform infrared spectroscopy 

(FTIR) was performed on an Alpha Bruker FTIR spectrometer with a platinum attenuated total reflectance (ATR) 

single reflection module. 

Electrochemical measurements: The as-synthesized CrP NPs were mixed with carbon black (Vulcan XC-72) with a 

weight ratio of 30% in a mixture chloroform and ethanol (1:1). The CrP and carbon mixture was sonicated for 1 h 

and then washed several times with chloroform and acetone. The precipitate was dried in air and then annealed 

at 450 °C under 5% H2/Ar for 2 h to remove surface ligand. The catalysts ink were prepared by mixing 5 mg of the 

annealed CrP/C composite, 1 mL of 1:1 (v:v) deionized water/isopropanol and 17.5 µL of 5 wt% of Nafion to form 

a homogenous ink by sonicating for 1 h. Subsequently, 5 µL of the suspension was deposited onto a cleaned glassy 

carbon (GC, 3 mm in diameter) rotating disk electrode (RDE) with a geometric area of 0.07 cm2, and dried in 

ambient conditions before electrochemical measurements. For comparison, electrodes based on commercial Pt/C 

(20 wt% Pt) catalyst were also fabricated following the above process. 

Electrochemical measurements were conducted at room temperature on a BioLogic Electrochemical workstation 

using a standard three-electrode cell with the fabricated GC electrode as working electrode, Pt mesh as counter 

electrode and Hg/HgO as reference electrode. The linear sweep voltammetry (LSV) curves for ORR measurements 

were conducted from 0.2 to -0.7 V versus Hg/HgO at a scan rate of 5 mV s-1 with different rotating rates in O2-

saturated 0.1 M KOH electrolyte. The cyclic voltammetry (CV) measurements were performed at a scan rate of 5 

mV s-1 without rotating in O2 or Ar-saturated 0.1 M KOH electrolyte. To evaluate the catalyst durability, 

chronoamperometry was collected at -0.3 V versus Hg/HgO in O2-saturated electrolyte with a rotating rates of 200 

rpm. Methanol tolerance measurements were conducted under the same condition as chronoamperometric tests 

but added 3M methanol at 1000s and for comparison, another same amount of H2O was added at 2000s. As a 

reference electrode, Hg/HgO calibrated with respect to the reversible hydrogen electrode (RHE) in all 

measurements (+ 0.866 V vs RHE) was used. 

Density functional theory (DFT): The electronic structure and energy calculations were carried out by the spin-

polarized DFT using the Vienna ab initio simulation package (VASP) [31-34]. The projector augmented wave (PAW) 



potentials were used to describe ion cores and valence electrons interactions [35,36]. The adopted exchange-

correlation functional was the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof [37]. A 

kinetic energy cut off of 350 eV was used with a plane-wave basis set. The integration of the Brillouin zone was 

conducted using a 1×1×1 Monkhorst-Pack grid [38]. The last two layers were fixed and all the other atoms were 

fully relaxed until the force was converged to 0.05 eV/Å and the total energy was converged to 1.0×10-4 eV/atom. 

A (211) surface was cut based on the bulk structure of CrP, and a model with 1×2 unit cell and 6 layers was 

established. To avoid the image interactions sufficiently large vacuum of 10.0 Å has been taken along the z-axis. 

The adsorption energy (Eads) of nitrobenzene was defined as follows: 

Eads = Esubstrate+adsorbates– Eadsorbates – Esubstrate               (1) 

where Esubstrate+adsorbates, Eadsorbates, and Esubstrate are the total energies of adsorbate molecules and the CrP substrate, 

a gas phase adsorbate, and an isolated substrate, respectively. A negative value indicates an exothermic 

chemisorption. 

The free energy diagrams of the oxygen reduction reactions were evaluated by the method of Nørskov et 

al. [39]. Free energy change from initial states to final states of the reaction was calculated according to 

the following equation: 

ΔG = ΔE + ΔZPE – TΔS + ΔGU + ΔGpH + ΔGfield            (2) 

where ΔE was the energy difference between reactants and products, obtained from DFT calculations; ΔZPE 

and ΔS were the energy differences in zero-point energy and entropy; T was the temperature and 298.15 K was 

considered; ∆GU = eU, where U was the electrode potential with respect to standard hydrogen electrode and e was 

transferred charge; ΔGpH was defined as kBTln10×pH, where kB was the Boltzmann constant. In this study pH=13 

was chosen for alkaline medium according to experimental condition (0.1 M KOH solution). ΔGfield was the free 

energy correction resulted from the electrochemical double layer, which was neglected in the present study 

according to the previous studies [39]. The free energy of H2O was calculated in the gas phase with a pressure of 

0.035 bar, which was the equilibrium vapor pressure of H2O at 298.15 K. The free energy of O2 was obtained from 

the free energy change of the reaction O2 + 2H2 → 2H2O, which was -4.92 eV at 298.15 K and a pressure of 0.035 

bar. According to a computational hydrogen electrode model suggested by Nørskov et al. [39] the free energy of 

(H++e-) in solution at standard conditions was assumed as the energy of 1/2 H2. The free energy of OH- was derived 



from the reaction of H+ + OH- → H2O, which was in equilibrium in water solution [40]. The entropies and vibrational 

frequencies of O2, H2, and H2O in gas phase were taken from the NIST database [41]. Zero-point energy and 

entropies of the adsorbed species were estimated from the vibrational frequencies. In these frequencies 

calculations, the substrate of HL or HN sheet was fixed. 

2. RESULTS AND DISCUSSION 

CrP NPs were produced from the reaction of chromium hexacarbonyl and triphenyl phosphite in oleylamine, as 

detailed in the experimental section. Figure 1a shows a representative TEM micrograph of the NPs produced 

following this procedure. NPs showed spheroidal geometry with an average size of 17±3 nm (Figure 1b). XRD 

patterns showed the NPs to have the CrP orthorhombic phase, with pnma space group (Figure 1f). HRTEM analysis 

confirmed their orthorhombic phase with a= 5.3600 Å, b= 3.1140 Å and c= 6.0180 Å (Figure 1c-e). Annular dark 

field scanning TEM (ADF-STEM) and STEM-EELS elemental composition maps revealed all NPs contained Cr and P 

and to have both elements uniformly distributed throughout each NP (Figure 1g). No secondary phases were 

detected by XRD, HRTEM and STEM-EELS analyses. Extensive SEM-EDX analysis showed the as-synthesized CrP NPs 

to have an excess of phosphorous, P/Cr = 1.4 (Figure S1), which could be attributed to the presence of phosphorous 

precursor as ligand on the NPs surface.  



 

Figure 1. (a) Representative TEM micrograph of CrP NPs. (b) Histogram for the measured particle size distribution 

(17 ± 3 nm). (c) HRTEM image of a single CrP NP. (d) Detail of the squared regions of the single CrP NPs. (e) Its 

respective power spectrum fitting with the CrP orthorhombic phase. (f) XRD pattern of CrP NPs including the JCPDS 

80-1382 reference. (g) Annular dark field scanning TEM (ADF-STEM) image of some CrP NPs and areal density of 

each of the elements extracted from the EELS spectrum image. 

 

Figure 2 shows the Cr 2p, P 2p and valence band region of the XPS spectra of CrP NPs that had been exposed to air 

before measurement. The Cr 2p region showed Cr to be present at the NP surface in three different chemical states. 

Approximately 30% of the detected Cr was found in a chemical state compatible with CrP (575 and 583.9 eV). The 

other two chemical environments, a Cr3+ (578.0 and 587.6 eV) and a Cr6+ (579.8 and 589.4 eV), were associated 

with a slight surface oxidation of the NPs to a Cr(III) phosphate, Cr2O3 and CrO3 or CrO2(OH)2 species [42-44]. Two 

P chemical states were identified from XPS analysis of the P 2p electron states. A P 2p3/2 peak at 130.0 eV matched 

well with P in a metal phosphide environment such as CrP. This component accounted for 39% of the P in the 

outermost 2-3 nm surface of the NPs. The second component, accounting for 61% of the P detected, was found at 
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a higher binding energy, 134.1 eV for 2p3/2, which we assigned to a phosphate environment emerging from the 

partial oxidation of the surface of the CrP NPs when exposed to air. The atomic ratio of P and Cr at the NP surface 

detected by XPS was P/Cr=2.65, suggesting a highly P-rich NP surface, which was consistent with the confirmed 

excess P on the NPs by EDX measurement. The excess P on the NP surface may be derived from the phosphorous 

ligand on the NPs surface. As shown in figure 2c, a significant density of occupied states can be detected by XPS at 

the material Fermi level, which probes the metallic or highly degenerated character of the produced CrP. 

 

Figure 2. Cr 2p (a), P 2p (b) and valence band (c) regions of the XPS spectrum of CrP NPs. 

The presence of OAm and phosphorous ligand on the NP surface was confirmed by FTIR analysis. As shown in 

Figure 3, the FTIR spectrum of the as-produced CrP NPs displayed peaks at 2906 and 2839 cm-1 attributed to the 

C-H stretching vibration of the alkyl group of OAm. Additionally, peaks attributed to the bending vibration of N-H 

at 1594 cm-1 and C-H at 1439 cm-1 were also identified. These features were slightly shifted compared with pure 

OAm, consistently with its binding to the NPs surface. A peak at 3130 cm-1 was assigned to the stretching vibration 

of =CH from the TPP phenyl group, which also appeared shifted with respect to pure TPP (3055 cm-1). The FTIR 

spectrum of TPP displays several additional peaks between 600 to 1200 cm-1. The peak at 1181 cm-1 is attributed 

to the stretching vibration of C-O and the peaks at 854 and 681 cm-1 were assigned to the bending vibration of C-

H of the phenyl group. However, those peaks merged into a broad band centered at 870 cm-1 in the FTIR spectra 

of as-produced CrP NPs. The absence of all these features in the FTIR spectra of the final NPs after annealing under 

H2/Ar treatment confirmed the elimination of organic ligands from the NP surface. 
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Figure 3. FTIR of OAm, TPP, as-produced CrP NPs and CrP after annealing at 450 °C for 2 h under H2/Ar. 

The electrocatalytic performance toward ORR of CrP NPs was evaluated in alkaline condition. To prepare CrP 

catalyst, CrP NPs were supported on carbon black to a weight ratio of 3:7 (CrP NPs/C) through sonication and 

subsequent annealing at 450 °C under H2/Ar, and then measured using a three-electrode system in O2-saturated 

0.1 M KOH (see experimental section for details). CVs were initially measured both in Ar and in O2 saturated 

electrolyte, as shown in Figure 4a. Beyond the non-Faradic current characteristic of a double-layer charge-

discharge, no noticeable features were observed for CrP catalyst within an Ar-saturated electrolyte. On the other 

hand, when the electrolyte was saturated with O2 a cathodic peak centered at 0.63 V was clearly detected, 

indicating remarkable electrocatalytic activity of CrP NPs toward ORR. Figure 4b shows polarization curves 

measured at different electrode rotation speed, from 400 to 2500 rpm. As expected, the limiting current density 

increased with the rotation speeds due to the promoted diffusion of oxygen at the surface of electrodes. The 

limiting current density of CrP NPs electrode at 0.2 V under 1600 rpm reached 4.94 mA cm-2, with a half-potential 

of 0.65 V and an onset potential of 0.8 V. These values were comparable to those obtained with a commercial Pt/C 

electocatalyst, which provided a limiting current density of 5.63 mA cm-2 with a half-potential of 0.79 V and an 

onset potential of 0.95 V (Figure 4d).  

Meanwhile, the excellent ORR activity of the CrP electrocatalysts was further revealed through small Tafel slopes, 
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64 mV dec-1, indicating a high sensitive of the electric current response to the applied potential and a favorable 

kinetics for CrP catalyst (inset in figure 4d). Notice that CrP NPs were supported on low-cost commercial carbon in 

the present work, thus the measured catalytic performance did not rely on the electrocatalytic activity of doped 

graphenes [45-47], carbon nanotubes [48-51] or highly ordered porous carbon matrices [52,53] (table S1). 

The ORR kinetics of the CrP electrode was further analyzed by the Koutecky-Levich plots calculated from the 

measured LSV curves. As shown in Figure 4c, the Koutecky-Levich plots exhibited good linearity and approximately 

parallel dependences of the inverse of the current density with the square root of the rotation speed for applied 

voltages in the range from 0.2 to 0.6 V. This indicated first-order reaction kinetics with the oxygen concentration 

and denoted that, within the studied range, electron transfer numbers for ORR did not depend on the applied 

potential [54,55]. The calculated electron transfer number for CrP electrocatalysts toward ORR was from 3.8 to 4.1, 

showing a high selectivity toward total oxygen reduction and the dominance of the one-step, 4-electron oxygen 

reduction pathway, in the ORR.  

Stability was assessed by chronoamperometric analysis (Figure 4e). CrP/C-based electrodes exhibited much higher 

stabilities than Pt/C toward ORR in 0.1 M KOH, with a negligible degradation even after 60 h of continuous 

operation. In contrast, during the same operation time, Pt/C electrodes lost approximately 60% of the initial 

current density. Methanol tolerance measurements were performed by adding methanol to the electrolyte during 

the choronoamperometric measurements. As shown in Figure 4f, the current density measured from CrP/C 

electrocatalysts showed very minor changes upon the addition of methanol, up to a 3 M concentration, into the 

electrolyte. The slightly changes may be actually associated to the dilution of the KOH electrolyte when methanol 

was added to the solution. This was confirmed by a similar current density change upon addition of the same 

amount of H2O into the solution, proving a virtually no influence of methanol in the electrocatalytic ORR on CrP-

baed electrodes. Overall, CrP-baed electrodes showed much higher stabilities than commercial Pt/ electrocatalysts 

and other electrocatalysts previously reported (Table S1).  

 



 

Figure 4. (a) CV curves of CrP/C in Ar-and O2-saturated 0.1 M KOH solution. (b) LSV curves of CrP/C at various 

rotating rates in O2-saturated 0.1 M KOH solution at a scan rates of 5 mV s-1. (c) The corresponding K-L plots. (d) 

The comparison of LSV for CrP/C and commercial 20% Pt/C, insertion is the Tafel plots of CrP/C and Pt/C catalysts. 

(e) chronoamperometric measurements of CrP/C and commercial Pt/C in 0.1 M KOH solution at 0.57 V versus RHE 

in O2-saturated 0.1 M KOH solution with a rotating rates of 200 rpm. (f) Methanol tolerance evaluation of CrP/C 

and commercial Pt/C in O2-saturated 0.1 M KOH solution, for comparison, same amount of H2O was added at 2000 

s. Insertion showed enlarged data for CrP/C catalyst. 

First-principles calculations (DFT) were carried out to elucidate the process and parameters behind the exceptional 

ORR catalytic performance of CrP and to determine the rate limiting step. In alkaline solution, the kinetically most 

favorable reaction pathway for the ORR process on CrP was considered to be the O+OH dissociation pathway, 

which can be divided into four steps [55]: i) adsorption of an O2 molecule onto CrP surface site (O2*); ii) reduction 

of O2* with H2O* to an OOH group adsorbed on the CrP site (OOH*); iii) transition from OOH* to an adsorbed O* 

atom; and iv) transition from O* to an adsorbed OH* (Figure 5). The optimized adsorption structures of O2*, OOH*, 

OH* and O* on CrP catalyst and their adsorption energies were shown in Figure S2. The adsorption of O2 on CrP, 

the first step in the ORR, was the first investigated. O2 strongly chemisorbs on CrP. The O2 end-on adsorption was 

the most stable configuration, with very low adsorption energy, -3.01 eV. The notable strength of the adsorption 

was corroborated by the large elongation of the O=O bond length (dO=O = 1.50 Å) relative to the gas-phase value 

0.2 0.4 0.6 0.8 1.0

-6

-5

-4

-3

-2

-1

0

 

 

J
 (

m
A

 c
m

-2
)

E (V vs. RHE)

 400 rpm

 625 rpm

 900 rpm

 1225 rpm

 1600 rpm

 2025 rpm

 2500 rpm

0.02 0.03 0.04 0.05
0.1

0.2

0.3

0.4

0.5

 

 

 0.2 V (n=4.11)

 0.3 V (n=4.08)

 0.4 V (n=3.81)

 0.5 V (n=3.77)

 0.6 V (n=3.99)

J
--
1
 (

m
A

-1
 c

m
2
)


-1/2

 (rpm
-1/2

)

0.0 0.2 0.4 0.6 0.8 1.0
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

O2

 

J
 (

m
A

 c
m

-2
)

E (V vs. RHE)

Ar

0.2 0.4 0.6 0.8 1.0
-6

-5

-4

-3

-2

-1

0

 

 

J
 (

m
A

 c
m

-2
)

E (V vs. RHE)

Pt

CrP
-2.1 -1.8 -1.5 -1.2 -0.9 -0.6

0.75

0.80

0.85

0.90

0.95

1.00

64 mV dec -1

 

E
 (

V
 v

s
. 

R
H

E
)

Log (J mA cm
-2

)

Pt

CrP

33 mV dec -1

0 20 40 60
0

20

40

60

80

100

Pt/C

 

 
R

e
la

ti
v
it
y
 C

u
rr

e
n

t 
(%

)

Time (h)

CrP/C

a b c

d e f

0 500 1000 1500 2000 2500 3000

-2

0

2

4

6

8

 

 

J
 (

m
A

 c
m

-2
)

Time (s)

add methanol

0 1000 2000 3000

-1.20

-1.16

-1.12

-1.08

 

J
 (

m
A

 c
m

-2
)

Time (s)

add H2O



(dO=O = 1.23 Å), making it easier for the O=O bond to be broken. These highly activated O2* already pointed 

toward a potentially high ORR catalytic activity. Furthermore, since H2O2 is directly dissociated to two OH radicals, 

less efficient 2e- pathway will not occur during the ORR process. Figure 5 shows the free energy diagrams for 4e- 

oxygen reduction process of CrP in alkaline medium. Two pathways were considered: i) O2 dissociation (Figure 5a); 

and ii) O2 hydrogenation (Figure 5b). As shown in Figure 5, O-O breaking processes (O2→2O* or O2* + H2O*→

OOH* + OH*) are down-hill. On the other hand, OH*→OH- is the main uphill process owing to the strong 

adsorption of OH to CrP (~ 4 eV), which suggests that this is the ORR rate-limiting step. 

 

Figure 5. Free-energy diagrams for the reduction of O2 at different electrode potential in alkaline medium on CrP 

for (a) O2 dissociation pathway and (b) O2 hydrogenation pathway. 
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3. CONCLUSION 

In summary, we successfully prepared monodispersed CrP NCs via a facile one-step colloidal synthetic strategy. 

Compared with presented CVD method, our method could allow producing CrP with nanometric particle size and 

with a very high throughput and material yield. CrP NPs were mixed with carbon to prepare electrocatalysts for 

the ORR. CrP-based electrocatalysts demonstrated a high activity and stability toward ORR in an alkaline electrolyte 

and a high tolerance to methanol. DFT calculation revealed a strong adsorption of O2 on the surface of CrP NPs 

which facilitated cleavage. On the other hand, the OH- desorption was considered the rate limiting step in the ORR 

reaction. Overall, CrP was demonstrated as a new low-cost and earth abundant ORR electrocatalyst with high 

technological potential in alkaline fuel cells and metal air batteries.  
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