
QuESo: a Quality Model for Open Source Software Ecosystems

Oscar Franco-Bedoya1,2, David Ameller1, Dolors Costal1 and Xavier Franch1

1Group of Software and Service Engineering, Universitat Politècnica de Catalunya,
Campus Nord, Omega building, Jordi Girona Salgado 1-3, Barcelona, Spain

2Universidad de Caldas, Manizales, Colombia
{ohernan, dameller, dolors, franch}@essi.upc.edu
http://www.essi.upc.edu/˜gessi/

Keywords: Quality Model, Software Ecosystem, Quality Measures, Open Source Software

Abstract: Open source software has witnessed an exponential growth in the last two decades and it is playing an increas-
ingly important role in many companies and organizations leading to the formation of open source software
ecosystems. In this paper we present a quality model that will allow the evaluation of those ecosystems in
terms of their relevant quality characteristics such as health or activeness. To design this quality model we
started by analysing the quality measures found during the execution of a systematic literature review on open
source software ecosystems and, then, we classified and reorganized the set of measures in order to build a
solid quality model.

1 INTRODUCTION

Software ecosystems are emerging in the last years
as a new way to understand the relationships between
software projects, products, and organizations. There
are two widespread definitions:
• A software ecosystem is “a set of actors func-

tioning as a unit and interacting with a shared
market for software and services. A software
ecosystem consists of actors such as independent
software vendors (ISV), outsourcers, and cus-
tomers. A software ecosystem typically is inter-
connected with institutions such as standardiza-
tion organizations, open source software commu-
nities, research communities, and related ecosys-
tems” (Jansen and Cusumano, 2013).
• A software ecosystem is “a collection of software

projects which are developed and evolve together
in the same environment” (Lungu et al., 2009).
In the first definition software ecosystems are un-

derstood from a holistic business oriented perspective
as a network of actors, organizations and companies,
while the second definition focuses on technical and
social aspects of a set of software projects and their
communities. In this paper we try to reconcile both
visions and consider the business oriented perspec-
tive together with the technical and social perspec-
tives in order to assess software ecosystem quality in
its broader sense.

We focus on a particular kind of software ecosys-
tems, i.e., those that are built around an Open Source
Software (OSS) initiative (e.g., Android, Gnome, and
Eclipse ecosystems), namely OSS ecosystems. We
have identified three dimensions of quality in OSS
ecosystems: the first dimension is the quality of the
software platform in which the projects of the ecosys-
tem are built upon (e.g., the Android ecosystem pro-
vides the Android platform used by all the Android
mobile apps); the second dimension, as mentioned
in Jansen and Cusumano (2013), is the quality of the
OSS communities that grow inside the ecosystem and
ecosystem’s projects (e.g., the Gnome community it-
self, i.e., the community of the platform, but also the
communities of the projects that belong to the ecosys-
tem such as Anjuta, Banshee, and Abi Word commu-
nities); the third dimension of quality is inherent to the
ecosystems themselves, i.e., the quality derived from
the understanding of the OSS ecosystem as a network
of interrelated elements (e.g., the number of Eclipse
plug-ins and their dependencies between them can be
used to assess the ecosystem’s interrelatedness).

Assessing the quality of OSS ecosystems is of vi-
tal importance because quality assurance is a way to
prevent bad decisions, avoid problems, and it allows
to verify the compliance with the requirements and
the business goals. It can also be used for quality
systematic monitoring to provide feedback and exe-
cute preventive actions. For example, before deciding

Paper accepted in ICSOFT-EA'14

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/237678642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.essi.upc.edu/~gessi/


to integrate a project into an established OSS ecosys-
tem it is crucial to perform a good quality assessment
to avoid problems such as inactive user communi-
ties, low level of community cohesion, or even syn-
ergetic evolution problems, i.e., lack of collaboration
between the key developers.

One way to ensure that the quality assessment
has covered the most important characteristics of the
ecosystem is to use a quality model, “the set of char-
acteristics and the relationships between them which
provide the basis for specifying quality requirements
and evaluating quality” (ISO/IEC 9126, 2001). Un-
fortunately, currently there is not any quality model
for OSS ecosystems available in the literature, except
from some measures distributed among many papers.

To fill this gap, in this paper we present QuESo,
a quality model for the quality assessment of OSS
ecosystems. To obtain this quality model, first, we
searched in the literature for all available measures
related to OSS ecosystems, and second, we designed
the quality model using both a bottom-up strategy by
classifying the measures found, and a top-down strat-
egy by analysing the relationships in the quality char-
acteristics that can be assessed by the measures (e.g.,
to assess the community activeness we can count the
number of changes in the source repository or the
number of messages in the mailing lists in a recent
period of time).

The rest of the paper is structured as follows: in
Section 2 we review the related work; in Section 3
we explain the methods used to construct and design
the quality model; in Section 4 we explain the QuESo
quality model; in Section 5 we provide examples of
real measures and their meaning; in Section 6 we dis-
cuss the validity and the observations made in this
work; and finally, in Section 7 we provide the con-
clusions and the future work.

2 RELATED WORK

When talking about quality models in the software
domain it is inevitable to mention the ISO quality
model (ISO/IEC 25000, 2014). This quality model
targets the quality of a software product, from three
perspectives: internal, external, and quality of use.
The specific quality characteristics of the ISO quality
model do not cover the important dimensions of OSS
ecosystems such as the ones related to the community
or the ones related to the health of the ecosystem.

The QualOSS quality model (Soto and
Ciolkowski, 2009) gives a good representation
for one of the three dimensions covered by QuESo,
the OSS community. However we had to extend

it with new characteristics that are relevant in the
context of OSS ecosystems (see Section 4.2 for
details).

As we will explain in Section 3, we have found
many papers that, although do not provide a quality
model, they propose a good set of measures to eval-
uate some aspects of OSS ecosystems. We would
like to mention some of these works, in particular, the
ones that provided the most interesting measures.

• Hartigh et al. (2013) developed a concrete
measure tool for evaluating business ecosystems
based on the classification made by Iansity and
Lieven (2004). They conceptualized the business
ecosystem health as financial health and network
health based on a set of eight measures.

• Mens and Goeminne (2011) provided a set of
measures (e.g., number of commits, total bugs
mailing list), by exploring social software engi-
neering, studying the developer community, in-
cluding the way developers work, cooperate, com-
municate and share information.

• Neu et al. (2011) presented a web application for
ecosystem analysis by means of interactive visual-
izations. The authors used the application to anal-
ysis the GNOME ecosystem study case.

• Kilamo et al. (2012) studied the problem of
building open source communities for industrial
software that was originally developed as closed
source.

Finally we remark the existence of two other sec-
ondary studies about software ecosystems (Manikas
and Hansen, 2013; Barbosa and Alves, 2011), but in
both cases the studies did not have a research question
about quality metrics or quality assessment for soft-
ware ecosystems. Also, it is worth mentioning that as
a way to complete our SLR we included the results of
these two studies to our SLR (see Section 3.1).

3 METHOD

In this section we explain the two methodologies fol-
lowed in this paper. The first one is related to the
way we gathered the measures from the available lit-
erature using a Systematic Literature Review (SLR)
while the second one is related to the way we designed
the QuESo quality model.

3.1 Systematic literature review

An SLR is a method to identify, evaluate, and interpret
the available research relevant to a particular topic, re-

Paper accepted in ICSOFT-EA'14

2



search question, or phenomenon of interest (Kitchen-
ham and Charters, 2007).

The protocol described here for the literature re-
view is part of a wider SLR that we are conducting
with the goal of identifying the primary studies re-
lated to OSS ecosystems. A more detailed explana-
tion of the protocol can be found in Franco-Bedoya et
al. (2014).

The research question that addresses the measures
and indicators related to the ecosystem quality is:
What measures or attributes are defined to assess or
evaluate open source software ecosystems?

We defined a search string based on keywords de-
rived from all the SLR research questions:“(OSS OR
FOSS OR FLOSS OR Open Source OR Free Software
OR Libre Software) AND ecosystem”.

The search strategy used was a combination
of sources: searches in digital libraries, manual
searches, the inclusion of specific papers from the
two secondary studies mentioned in Section 2 and the
chapters in a recently published book about software
ecosystems (Jansen and van Capelleveen, 2013).

As a result of the SLR, 53 primary studies were
selected, from them we identified 17 related to the
identification of measures to evaluate the quality of
OSS ecosystems. Figure 1 illustrates the SLR selec-
tion process.

Once we had collected the measures from the se-
lected papers, we used the following criteria from
Hartigh et al. (2013) and Neu et al. (2011) to include
them in QuESo:

1. User-friendly and operationalizable: measures
should be logical, easy to use and operationaliz-
able into a measurable entity.

2. Non-redundant: when we identified similar mea-
sures we selected only one of them, but we kept
all the sources for traceability.

After excluding non-operationalizable and merg-
ing the similar measures with the previous criteria, we
finally selected 68 different measures for the QuESo
quality model (note that some of the measures are
used to assess more than one characteristic of the
quality model).

3.2 Quality model construction

There exist several proposals for quality model con-
struction that focus on software quality. Most of
them follow top-down strategies (Franch and Car-
vallo, 2003; Behkamal et al., 2009). In short, they
take as a basis a reference quality model such as
the ISO quality model (ISO/IEC 25000, 2014), take
their quality characteristics as departing point and re-

BookManual 
search

Secondary 
studies

Digital 
libraries

35 11 1 6

Papers with measures 
of OSS ecosystems

17

Figure 1: Selection of primary studies.

fine them till they end up with a hierarchy with spe-
cific measures at its lower level. Remarkably, the
proposal in Radulovic and Garcia-Castro (2011) is
mainly bottom-up oriented, i.e., it takes a set of mea-
sures as departing point to build the model. For
our purposes, a bottom-up approach is the most ad-
equate because: (1) a well-established reference qual-
ity model (or even, in its defect, a complete and sys-
tematic body of knowledge) for software ecosystems
is still missing (Jansen et al., 2013), and (2) there al-
ready exist a myriad of specific measures that can be
applied to OSS ecosystems and that have been identi-
fied in our SLR. Furthermore, although it focuses on
the construction of software quality models, we can
easily use it to the construction of a quality model for
OSS ecosystems.

Radulovic and Garcia-Castro (2011) proposal
consists of a clearly defined sequence of steps:

1. To identify basic measures.

2. To identify derived measures.

3. To identify quality measures (by aggregation of
basic and derived measures).

4. To identify relationships between measures.

5. To specify relationships between measures.

6. To define domain-specific quality sub-
characteristics.

7. To align quality sub-characteristics with a quality
model.

Note that the alignment in the seventh step
partly implies top-down reasoning. Quality sub-
characteristics that have been previously defined

Paper accepted in ICSOFT-EA'14

3



QuESo

Maintenance 
capacity

Sustainability

Process 
maturity

Community 
quality

Size

Cohesion

Activeness

Heterogeneity

Regeneration
ability

Effort 
balance

Expertise
balance Visibility

Ecosystem
network 
quality

Resource 
health

Network 
health

Information 
consistency

Financial
Vitality

Clustering

Trustworthiness

Interrelatedness

Synergetic 
evolution

Platform 
quality

Dimension

Characteristic

Sub-characteristic

From QualOSS

Figure 2: QuESo quality model.

are related to others already specified in the ex-
isting model. If needed, some new quality sub-
characteristics can be specified, or existing ones can
be modified or excluded.

We have followed all the steps of the proposal.
In particular, for steps 1 and 2, devoted to identify
measures, we have based our work on the SLR de-
scribed in Section 3.1. The application of step 7 re-
quires the use of a reference quality model. Since, to
our knowledge, a quality model for the whole scope
of OSS ecosystems is still missing, we have decided
to use QualOSS (Soto and Ciolkowski, 2009) which
measures the performance of open source communi-
ties. Clearly, new quality sub-characteristics emerg-
ing from measures related to the ecosystem consid-
ered as a whole will have to be specified, since they
are not addressed by QualOSS.

4 QuESo QUALITY MODEL

In this section we describe the QuESo quality model
obtained as a result of the application of the proce-
dure described in Section 3.2. The model is com-
posed of two types of interrelated elements: quality
characteristics and measures. Quality characteristics
correspond to the attributes of an open source soft-
ware ecosystem that are considered relevant for eval-
uation. The quality characteristics are organized in a
hierarchy of levels that is described in the rest of this
section. For the lack of space, in the tables presented

in this paper we have omitted the descriptions. The
whole set of measures with their definitions is avail-
able in the Appendix. Also, note that we opted to keep
the measure names that appear in the primary studies,
even that in some cases the name given is not the most
appropriate, we discuss about this topic in Section 6.

The quality characteristics in QuESo have been
organized in three dimensions: (1) those that relate to
the platform around which the ecosystem is built, (2)
those that relate to the community (or set of communi-
ties) of the ecosystem and (3) those that are related to
the ecosystem as a network of interrelated elements,
such as projects or companies (see Figure 2).

4.1 Platform-related quality
characteristics

Platform-related quality characteristics consist of the
set of attributes that are relevant for the evaluation of
the software platform.

As a result of our SLR, we have observed that the
selected papers do not provide measures for evaluat-
ing open source platform-related quality characteris-
tics. This fact may indicate that there are not signifi-
cant differential issues for open source software qual-
ity with respect to generic software quality that moti-
vates the need of specific measures.

Then, similarly as done in the QualOSS model,
since a mature proposal such as ISO 25000-
SQuaRE (ISO/IEC 25000, 2014) focuses on generic
software quality, QuESo adopts directly the character-

Paper accepted in ICSOFT-EA'14

4



Table 1: List of measures for maintenance capacity.

Sub-char. Measure

Size Number contributors
Size Number of members
Size Number authors
Size Number bug fixer
Size Number of committers
Size Number of core developers
Size Number of nodes and edges
Cohesion Betweenness centrality
Cohesion Cluster of collaborating

developers
Cohesion Ecosystem connectedness
Cohesion Out degree of keystone actors
Activeness Bug tracking activity
Activeness Buildup of assets
Activeness Community effort
Activeness Date of last commit
Activeness Files changed
Activeness Files per version
Activeness Lines added
Activeness Lines changed
Activeness Lines removed
Activeness Mailing list
Activeness Number of commits
Activeness Contributor commit rate
Activeness Developer activity diagrams
Activeness Temporal community effort
Activeness Number of event people

istics and sub-characteristics proposed by ISO 25000-
SQuaRE and this part of the quality model is omitted
in the paper.

4.2 Community-related quality
characteristics

Following the procedure described in Section 3.2,
the QuESo proposal for community-related quality
characteristics is based both on the set of measures
identified in our SLR and on the QualOSS quality
model (Soto and Ciolkowski, 2009) (see Figure 2).

QualOSS specifies three community characteris-
tics, namely, maintenance capacity, sustainability and
process maturity.

4.2.1 Maintenance capacity

Soto et al. define maintenance capacity as the ability
of a community to provide the resources necessary for
maintaining its products and mention that aspects rel-
evant to it are the number of contributors to a project

Table 2: List of measures for sustainability.

Sub-char. Measure

Heterogeneity Geographical distribution
Reg. ability Temporal community effort
Reg. ability New members
Effort bal. Contributor commit rate
Effort bal. Developer activity diagrams
Effort bal. Maximum number of commits of

a developer
Effort bal. Member effort
Effort bal. Member activity rate
Effort bal. Number of activity communities
Effort bal. Number of developer releases
Effort bal. Number of developer projects
Effort bal. Project developer experience
Effort bal. Temporal community effort
Effort bal. Total effort of members
Exper. bal. Expertise view contributor
Exper. bal. Principal member activity
Exper. bal. Relation between categorical

event and developer participation
Visibility Number of event people
Visibility Inquires or feature requests
Visibility Job advertisements
Visibility Number of downloads
Visibility Number of mailing list users
Visibility Number of passive user
Visibility Number of reader
Visibility Number of scientific publications
Visibility Social media hits
Visibility Visibility
Visibility Web page requests

and the amount of time they contribute to the devel-
opment effort. In order to align maintenance capacity
with our identified measures it is refined in three sub-
characteristics: size, cohesion and activeness. The
size of the community influences its maintenance ca-
pacity and can be evaluated by measures such as num-
ber of core developers and number of committers. The
ability of the community to collaborate defined by its
cohesion is also relevant. A measure that can be used
to evaluate cohesion is the ecosystem connectedness
in the community social network. Finally, the active-
ness of the community can be evaluated by measures
such as bug tracking activity and number of commits.

We have identified 26 measures that can be used
to measure the maintenance capacity (see Table 1).

4.2.2 Sustainability

Sustainability is the likelihood that a community re-
mains able to maintain the products it develops over

Paper accepted in ICSOFT-EA'14

5



an extended period of time. According to Soto et al.
it is affected by heterogeneity and regeneration abil-
ity and, as a result of our measure analysis, we have
specified additional sub-characteristics besides them:
effort balance, expertise balance and visibility.

The heterogeneity of a community contributes to
its sustainability. For instance, if a community is
mainly composed of employees of a particular com-
pany, there is the risk of the company cutting its fi-
nancial support. Heterogeneity can be evaluated by
measures such as geographical distribution of com-
munity members.

Regeneration ability also enhances sustainability
since a community that has been able to grow in the
past increases its chances of not declining in the fu-
ture. A measure that we have identified for it is for
instance, new members which counts the number of
new members of the community at any point of time.

The effort balance is relevant for sustainability
i.e., if most of the contribution effort comes from one
or a small number of members of the community and
it is not uniformly distributed, then its continuity is
highly dependent on that small set of members. On
the other hand, a balanced effort distribution among
all members facilitates its continuity over time. Some
measures for effort balance are: number of developer
projects and number of developer releases.

In a similar way, the expertise balance among
most members of a community is again a way to guar-
antee its sustainability. A community highly depen-
dent on the expertise of one or a few members suffers
from a risky situation. A measure for this is, for in-
stance, expertise view contributor which calculates a
contributor expertise based on the number and type of
files he changed within a month.

The visibility of a community gives it the capac-
ity of attracting people to contribute and support it if
needed. Examples of measures identified for visibil-
ity are: number of downloads, social media hits and
web page requests.

We have identified 28 measures that can be used
to measure the sustainability quality (see Table 2).

4.2.3 Process maturity

Process maturity is the ability of a developer com-
munity to consistently achieve development-related
goals by following established processes. It can be
assessed for specific software development tasks with
the answers of questions such as: is there a docu-
mented process for the task? (Soto and Ciolkowski,
2009). Apparently, this characteristic requires qual-
itative assessment more than quantitative measures.
This is consistent with the results of our SLR since
we have not identified measures devoted to evaluate

Table 3: List of measures for resource health.

Sub-char. Measure

Trustworthiness Zeta model
Trustworthiness Z-score
Financial vitality Liquidity
Financial vitality Solvency
Financial vitality Network resources

process maturity aspects. The absence of measures
for process maturity hampers the application of the
bottom-up process to further refine this characteristic.

4.3 Ecosystem network quality
characteristics

Since QualOSS does not address the network-related
quality, this part of QuESo is exclusively based on the
analysis of measures identified in our SLR.

QuESo proposes two ecosystem network-related
characteristics: resource health and network health.
In this paper we take as definition for health applied
to software ecosystems: longevity and a propensity
for growth (Jansen, 2014; Lucassen et al., 2013) .

4.3.1 Resource health

Resource health facilitates the combination of value
activities from multiple actors to obtain value-
creating end products (Anderson et al., 2009). It
is related to the financial health concept defined by
Hartigh et al. (2013): “The financial health is a
long-term financially based reflection of a partner’s
strength of management and of its competences to
exploit opportunities that arise within the ecosystem
and is directly related to the capability of an ecosys-
tem to face and survive disruptions”. In the OSS
ecosystem case this means that there is a set of part-
ners or actors functioning as a unit and interacting
among them. Their relationships are frequently op-
erated through the exchange of information and re-
sources. Two sub-characteristics, particularly relevant
to resource health, are the financial vitality and the
trustworthiness of the ecosystem.

The financial vitality is the viability and the ability
to expand (i.e., robustness, ability to increase size and
strength) of the ecosystem (Li et al., 2013). Two ex-
amples of measures that evaluate it are liquidity and
solvency financial measures. They can be obtained
directly, e.g., using balance sheet data of partners, but
also indirectly, through the network relations.

Trustworthiness is the ability to establish a trusted
partnership of shared responsibility in building an

Paper accepted in ICSOFT-EA'14

6



Table 4: List of measures for network health.

Sub-char. Measure

Interrelatedness Contributor activity graph
Interrelatedness Project activity diagrams
Interrelatedness Networks node connection
Interrelatedness Ecosystem connectedness
Interrelatedness Ecosystem cohesion
Interrelatedness Centrality
Interrelatedness Variety of partners
Clustering Variety in products
Clustering Number community projects
Clustering Number active projects
Clustering Number of files
Synergetic evo. Distribution over the species
Synergetic evo. Ecosystem entropy
Synergetic evo. Ecosystem reciprocity
Information
consistency

Code vocabulary map

overall open source ecosystem (Agerfalk and Fitzger-
ald, 2008). Operational financial measures obtained
from bankruptcy models (e.g., Z-score and Zeta
model) are adequate to measure it because they take
short-term and long-term survival into account (Har-
tigh et al., 2013).

We have identified 5 measures that can be used to
measure the resource health quality (see Table 3).

4.3.2 Network health

Hartigh et al. (2013) define network health as a rep-
resentation of how well partners are connected in the
ecosystem and the impact that each partner has in its
local network. Healthy ecosystems show many rela-
tions and subsystems of different types of elements
that are intensely related (Gamalielsson et al., 2010).
Furthermore, in a healthy OSS ecosystem network,
these relations are mutualistic (Lundell and Forssten,
2009). Van der Linden et al. (2009) proposed to
evaluate the network health of an OSS ecosystem
before its adoption. To align network health with
the identified measures we have refined it into four
sub-characteristics: interrelatedness, clustering, syn-
ergetic evolution and information consistency.

Interrelatedness is the ability of the nodes of
an OSS ecosystem to establish connections between
them. It can be evaluated by measures such as cen-
trality i.e., the number of network relations of a node,
and project activity diagrams that allows to obtain the
kind of project evolution.

Clustering is the capacity of the species (or nodes)
in the entire ecosystem to be classified around its
projects. It also enables small OSS projects to come

together as a large social network with a critical
mass (Scacchi, 2007). Basic measures as number
community projects, number of files and variety in
products can be used to identify clusters using social
network analysis techniques (Lungu et al., 2010).

Synergetic evolution is the ability of the subsys-
tems that constitute the whole ecosystem to form a dy-
namic and stable space-time structure (Haken, 1980;
Li et al., 2013). Measures such as ecosystem entropy
and ecosystem reciprocity can be used to evaluate syn-
ergetic evolution. The ecosystem entropy measure is
based on the definition of software system entropy
from Jacobson (2004) who states that it is a mea-
sure for the disorder that always increases when a
system is modified. Ecosystem reciprocity measures
direct and active collaboration between the company
and its customers in creating value propositions (e.g.,
through collaboration with key developers in an OSS
community and other companies within the ecosys-
tem) (Glott et al., 2013).

Information consistency is the consistency of the
core information elements across the breadth of an
ecosystem. The code vocabulary map measure evalu-
ates this sub-characteristic. It consists of a summary
of terms used in the source code of the project that
can be used to obtain a general overview of the do-
main language of the project’s network.

We have identified 15 measures that can be used
to measure the network health quality (see Table 4).

5 EXAMPLES OF MEASURES

In this section we provide several examples extracted
from the papers selected in the SLR. In particular we
have selected the examples that belong to the Gnome
software ecosystem. Our intention is to clarify the
type of measures that are mentioned in this paper with
examples and also to provide some evidence of the
feasibility to obtain these measures. As mentioned in
Jansen (2014), one of the most habitual problems is
the absence of data to calculate the measures.

It is worth mentioning that to perform a complete
quality assessment of a software ecosystem we first
would need to define the assessment process which
is out of the scope of this paper. The quality assess-
ment process will have to deal with, e.g., How are
the values of each measure interpreted (i.e., defining
what are the good and the bad values)?; How can the
measures be merged to provide the assessment for
a particular sub-characteristic of the quality model?;
or What are the principles to perform the assessment
with missing, incorrect, and/or inconsistent measure
data? We are will provide the answer to these and

Paper accepted in ICSOFT-EA'14

7



other questions as part of our future work in this topic.
In the following we present the selected Gnome

examples of measure values organized by the charac-
teristics of the QuESo quality model. We omit pro-
cess maturity because we have not found quantita-
tive measures to evaluate it (see explanation in Sec-
tion 4.2.3). We also omit resource health measures
because examples for them are not reported in the
SLR papers for the Gnome ecosystem.

• The maintenance capacity can be evaluated from
the number authors measure which gives the
amount of people that change files in a project.
According to Goeminne and Mens (2013) data,
for the Gnome ecosystem there have been 3.500
different people having contributed at least once
to at least one of the Gnome projects between
1997 and 2012. The number of commits measure
is also relevant. Each commit corresponds to the
action of making a set of changes permanent. Ac-
cording to Jergensen and Sarma (2011) approx-
imately 480.000 commits were made in Gnome
from 1997 to 2007.

• A measure for sustainability is the member ac-
tivity rate which gives a value between 0 and 1
that helps to analyse the effort balance, i.e., a zero
value indicates a uniform distribution of the work,
which means that each person has the same activ-
ity rate while a value of 1 means that a single per-
son carries out all the work. The member activity
rate for the Gnome Evince project has had a value
between 0,7 and 0,8 from 1999 to 2009 according
to Mens and Goeminne (2011).

• The network health of an ecosystem can be eval-
uated by measures such as number community
projects and number active projects. For the
Gnome ecosystem, there were more than 1.300
projects between 1997 and 2012 and more than
25% of them had been active for more than six and
a half years. At the lower side of the spectrum,
more than 25% of all projects had been active less
than one year (Goeminne and Mens, 2013). An-
other measure for network health is the contribu-
tor activity graph. According to Neu et al. (2011)
one of the contributors of the Gnome ecosystem
has been working in 499 projects and has more
than 15.000 changes between 1998 and 2011.

6 DISCUSSION

Some observations were made during the design of
this quality model. In the following, the most inter-
esting ones are discussed:

• Completeness: since we followed a mainly
bottom-up strategy, the completeness of the qual-
ity model depends on how complete the set of
measures found in the literature is. In this sense,
we would like to remark that our quality model
may be not complete by one or more of the follow-
ing reasons: there may be some papers with rel-
evant measures not included in the SLR because
they were not present in digital libraries or be-
cause our search string did not find them; another
reason could be that some important measures are
not yet reported in the literature. In this work, our
intention was not to invent new measures but to
organize the existing ones into a quality model.

• Quantitative vs. qualitative: the measures found
in the literature are mostly quantitative, but a qual-
ity assessment may also include qualitative eval-
uations. For example, we commented in Sec-
tion 4.2.3 the lack of measures for process ma-
turity because in this case the assessment needs to
be done with qualitative evaluations of the com-
munity. Since we have focused on quantitative
measures, there may be other characteristics of the
quality model that require or that may be comple-
mented with qualitative evaluations.

• Unbalanced distribution of measures: just by
looking into the measure tables, it is easy to ob-
serve that the amount of measures for some char-
acteristics is high (e.g., activeness with 17 mea-
sures, visibility with 11 measures) while for other
is very low (e.g., heterogeneity with 1 measure, in-
formation consistency with 1 measure). This un-
balanced situation could be an indicator that more
research is needed for the characteristics with a
low amount of measures.

• Measure names: we have named the measures in-
cluded in the QuESo quality model with the same
names they are referred to in the SLR papers from
where they were extracted. The reason for this is
to improve traceability. However, some of those
measure names might be ambiguous or mislead-
ing because it is not evident from them how the
measure is evaluated (e.g., project activity dia-
grams). To improve measure understandability
we have listed their definitions in the Appendix.

7 CONCLUSIONS

In this paper we have presented QuESo, a quality
model for assessing the quality of OSS ecosystems.
This quality model has been constructed following
a bottom-up strategy that consisted in searching the

Paper accepted in ICSOFT-EA'14

8



available measures for OSS ecosystems in the litera-
ture and then organize them into several quality char-
acteristics. The presented quality model covers three
aspects of OSS ecosystems: the platform, the commu-
nity, and the ecosystem network; which altogether are
a good representation of the most important aspects
of an OSS ecosystem.

This quality model can be used as a starting point
for the quality assessment of an OSS ecosystem, and
it is in our plans for the future work to define a com-
plete quality assessment process (as described in Sec-
tion 5) and to apply it in a real quality assessment.
As consequence new measures may be needed for the
assessment, but this is the best way to improve, and
complete the quality model, and a way to prove its
capabilities in quality assessment.

ACKNOWLEDGMENTS

This work is a result of the RISCOSS project, funded
by the EC 7th Framework Programme FP7/2007-
2013 under the agreement number 318249. We would
also like to thank Carme Quer for her assistance.

REFERENCES

Agerfalk, P. J. and Fitzgerald, B. (2008). Outsourcing to
an Unknown Workforce: Exploring Opensourcing as
a Global Sourcing Strategy. Mis Quartely, 32(2):385–
409.

Anderson, J. C., Narus, J. A., and Narayandas, D. (2009).
Business Market Management: Understanding, Cre-
ating, and Delivering Value (3rd Edition). Prentice
Hall.

Barbosa, O. and Alves, C. (2011). A Systematic Mapping
Study on Software Ecosystems. In Proceedings of the
3rd IWSECO, pages 15–26.

Behkamal, B., Kahani, M., and Akbari, M. K. (2009). Cus-
tomizing ISO 9126 quality model for evaluation of
B2B applications. Information and Software Technol-
ogy, 51(3):599–609.

Franch, X. and Carvallo, J. P. (2003). Using quality models
in software package selection. IEEE Software, 20:34–
41.

Franco-Bedoya, O., Ameller, D., Costal, D., and Franch,
X. (2014). Protocol for a systematic literature re-
view on open source-software ecosystems. Techni-
cal report, Universitat Politcnica de Catalunya. Avail-
able online: www.essi.upc.edu/˜gessi/papers/
queso-slrprotocol.pdf.

Gamalielsson, J., Lundell, B., and Lings, B. (2010). The
Nagios community: An extended quantitative anal-
ysis. In Proceedings of the 6th OSS, pages 85–96.
Springer.

Glott, R., Haaland, K., and Bannier, S. (2013). D3.1 Draft
Business Model Risk Requirements Report. Deliver-
able of the RISCOSS FP7 project (grant 318249).

Goeminne, M. and Mens, T. (2013). Software Ecosystems:
Analyzing and Managing Business Networks in the
Software Industry, chapter Analyzing ecosystems for
open source software developer communities, pages
247–275. Volume 1 of (Jansen et al., 2013).

Haken, H. (1980). Synergetics. Naturwissenschaften,
67:121–128.

Hartigh, E., Visscher, W., Tol, M., and Salas, A. J. (2013).
Software Ecosystems: Analyzing and Managing Busi-
ness Networks in the Software Industry, chapter Mea-
suring the health of a business ecosystem, pages 221–
245. Volume 1 of (Jansen et al., 2013).

Iansiti, M. and Levien, R. (2004). Keystones and domina-
tors: framing operating and technology strategy in a
business ecosystem. Technical report, Harvard Busi-
ness School.

ISO/IEC 25000 (2014). Systems and software engineer-
ing – Systems and software Quality Requirements and
Evaluation (SQuaRE) – Guide to SQuaRE.

ISO/IEC 9126 (2001). Product quality – Part 1: Quality
model.

Jacobson, I. (2004). Object-Oriented Software Engineer-
ing: A Use Case Driven Approach. Addison Wesley.

Jansen, S. (2014). Measuring the health of open source soft-
ware ecosystems: Beyond the scope of project health.
Information and Software Technology, (Available on-
line).

Jansen, S., Brinkkemper, S., and Michael Cusumano
(2013). Software Ecosystems: Analyzing and Manag-
ing Business Networks in the Software Industry, vol-
ume 1. Edward Elgar Publishing.

Jansen, S. and Cusumano, M. (2013). Software Ecosystems:
Analyzing and Managing Business Networks in the
Software Industry, chapter Defining software ecosys-
tems: a survey of software platforms and business net-
work governance, pages 13–28. Volume 1 of (Jansen
et al., 2013).

Jansen, S. and van Capelleveen, G. (2013). Software
Ecosystems: Analyzing and Managing Business Net-
works in the Software Industry, chapter Quality re-
view and approval methods for extensions in software
ecosystems, pages 187–217. Volume 1 of (Jansen
et al., 2013).

Jergensen, C. and Sarma, A. (2011). The onion patch: mi-
gration in open source ecosystems. In Proceedings of
the 19th SIGSOFT and 13th ESEC/FSE, pages 70–80.
ACM.

Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen, T.
(2012). From proprietary to open source - Growing
an open source ecosystem. Journal of Systems and
Software, 85(7):1467–1478.

Kitchenham, B. and Charters, S. (2007). Guidelines for
performing Systematic Literature reviews in Software
Engineering Version 2.3. Technical report, Keele Uni-
versity EBSE.

Li, X., Jie, X., Li, Q., and Zhang, Q. (2013). Research
on the Evaluation of Business Ecosystem Health. In

Paper accepted in ICSOFT-EA'14

9

www.essi.upc.edu/~gessi/papers/queso-slrprotocol.pdf
www.essi.upc.edu/~gessi/papers/queso-slrprotocol.pdf


Proceedings of the 6th ICMSEM, pages 1009–1020.
Springer.

Lucassen, G., Rooij, K., and Jansen, S. (2013). Ecosystem
Health of Cloud PaaS Providers. In Proceedings of the
4th ICSOB, pages 183–194.

Lundell, B. and Forssten, B. (2009). Exploring health
within OSS ecosystems. In Proceedings of the 1st OS-
COMM, pages 1–5.

Lungu, M., Lanza, M., Gı̂rba, T., and Robbes, R. (2010).
The Small Project Observatory: Visualizing soft-
ware ecosystems. Science of Computer Programming,
75(4):264–275.

Lungu, M., Malnati, J., and Lanza, M. (2009). Visualizing
gnome with the small project observatory. In Proceed-
ings of the 6th MSR, pages 103–106. IEEE.

Manikas, K. and Hansen, K. M. (2013). Software ecosys-
tems A systematic literature review. Journal of Sys-
tems and Software, 86(5):1294–1306.

Mens, T. and Goeminne, M. (2011). Analysing the Evo-
lution of Social Aspects of Open Source Software
Ecosystems. In Proceedings of the 3rd IWSECO,
pages 1–14.

Neu, S., Lanza, M., Hattori, L., and D’Ambros, M. (2011).
Telling stories about GNOME with Complicity. In
Proceedings of the 6th VISSOFT, pages 1–8.

Radulovic, F. and Garcia-Castro, R. (2011). Extending
Software Quality Models - A Sample In The Domain
of Semantic Technologies. In Proceedings of the 23rd

SEKE, pages 25–30.
Scacchi, W. (2007). Free/Open Source Software Develop-

ment: Recent Research Results and Emerging Oppor-
tunities. In Proceedings of the 6th ESEC-FSE, pages
459–468.

Soto, M. and Ciolkowski, M. (2009). The QualOSS open
source assessment model measuring the performance
of open source communities. In Proceedings of the
3rd ESEM, pages 498–501.

van der Linden, F., Lundell, B., and Marttiin, P. (2009).
Commodification of Industrial Software: A Case for
Open Source. IEEE Software, 26(4):77–83.

SLR REFERENCES

[R1] Gamalielsson, J., Lundell, B., and Lings, B. (2010).
The Nagios community: An extended quantitative
analysis. In Proceedings of the 6th OSS, pages 85–96.
Springer.

[R2] Goeminne, M. and Mens, T. (2010). A framework
for analysing and visualising open source software
ecosystems. In Proceedings of IWPSE-EVOL, pages
42–47. ACM.

[R3] Goeminne, M. and Mens, T. (2013). Software Ecosys-
tems: Analyzing and Managing Business Networks
in the Software Industry, chapter Analyzing ecosys-
tems for open source software developer communi-
ties, pages 247–275. In (Jansen et al., 2013).

[R4] Hartigh, E., Visscher, W., Tol, M., and Salas, A. J.
(2013). Software Ecosystems: Analyzing and Man-
aging Business Networks in the Software Industry,
chapter Measuring the health of a business ecosystem,
pages 221–245. In (Jansen et al., 2013).

[R5] Jansen, S., Souer, J., Luinenburg, L., and Brinkkem-
per, S. (2012). Shades of gray: Opening up a soft-
ware producing organization with the open software
enterprise model. Journal of Systems and Software,
85(7):1495–1510.

[R6] Jergensen, C. and Sarma, A. (2011). The onion patch:
migration in open source ecosystems. In Proceedings
of the 19th SIGSOFT and 13th ESEC/FSE, pages 70–
80. ACM.

[R7] Kabbedijk, J. and Jansen, S. (2011). Steering insight:
An exploration of the ruby software ecosystem. In
Proceedings of the 2nd ICSOB, pages 44–55. Springer.

[R8] Kilamo, T., Hammouda, I., Mikkonen, T., and Aal-
tonen, T. (2012). From proprietary to open source -
Growing an open source ecosystem. Journal of Sys-
tems and Software, 85(7):1467–1478.

[R9] Lungu, M., Lanza, M., Gı̂rba, T., and Robbes, R.
(2010). The Small Project Observatory: Visualizing
software ecosystems. Science of Computer Program-
ming, 75(4):264–275.

[R10] Lungu, M., Malnati, J., and Lanza, M. (2009). Visu-
alizing gnome with the small project observatory. In
Proceedings of the 6th MSR, pages 103–106. IEEE.

[R11] Mens, T. and Goeminne, M. (2011). Analysing the
Evolution of Social Aspects of Open Source Soft-
ware Ecosystems. In Proceedings of the 3rd IWSECO,
pages 1–14.

[R12] Neu, S., Lanza, M., Hattori, L., and D’Ambros, M.
(2011). Telling stories about GNOME with Complic-
ity. In Proceedings of the 6th VISSOFT, pages 1–8.

[R13] Scacchi, W. and Alspaugh, T. A. (2012). Understand-
ing the role of licenses and evolution in open archi-
tecture software ecosystems. Journal of Systems and
Software, 85(7):1479–1494.

[R14] Shao, J., Kuk, G., Anand, S., Morley, J. G., Jackson,
M. J., and Mitchell, T. (2012). Mapping Collaboration
in Open Source Geospatial Ecosystem. Transactions
in GIS, 16(4):581–597.

[R15] Ververs, E., van Bommel, R., and Jansen, S. (2011).
Influences on developer participation in the Debian
software ecosystem. In Proceedings of the MEDES,
pages 89–93. ACM.

[R16] Weiss, M. (2011). Economics of collectives. In Pro-
ceedings of the 15th SPLC, pages 39:1–39:8. ACM.

[R17] Yu, L., Cawley, J., and Ramaswamy, S. (2012).
Entropy-Based Study of Components in Open-Source
Software Ecosystems. INFOCOMP Journal of Com-
puter Science, 11(1):22–31.

Paper accepted in ICSOFT-EA'14

10



APPENDIX: MEASURE DEFINITIONS

Measure Definition Sources

Amount of inquires or feature
requests

Number of inquire or feedbacks received for the OSS community. Con-
tributions could be corrective, adaptive, perfective or preventive.

R8

Betweenness centrality Reflects the number of shortest paths that pass through a specific node. R1
Bug tracking activity Number of comments created in project bug tracker and total number

of actions in the bug tracker. These discussions are often technical in
nature and focus on a specific defect or feature.

R6, R8, R15

Buildup of assets Total factor productivity over time. Can be measured using individual
company data.

R4

Centrality Number of relations clique memberships. Number of individual net-
work relations of a partner. The more central partner is the most per-
sistent. When the partners are in clique or cluster, its persistence is
considered high. Because is regarded as a secure environment.

R1, R4, R7

Cluster of collaborating
developers

The nodes are developers and the edges between them represent projects
on which they collaborated. They both make modifications to the
project for at least a certain number of times.

R9, R10

Code vocabulary map Summary of terms used in the source code of the project. The vocab-
ulary map is a tool for the developer who wants to obtain a general
overview of the domain language of a project.

R9

Community effort The combined effort of all members belonging to community. R3
Contributor activity graph The contributor distribution at ecosystem level. R12
Contributor commit rate Average between first and last commit. R12
Date of last commit Date of last commit of a project/community. R11
Developer activity diagrams Give an overview of the contributors daily activity within an ecosystem. R12
Distribution over the species Variety measure for niche creation factor. The equality of the division

of partners over the species. E.g., the distribution between numbers of
resellers, number of system integrators, numbers of OEM’s.

R4

Ecosystem cohesion Number of relations present in a subgroup/maximum possible of rela-
tion among all the nodes in the sub-group.

R4

Ecosystem connectedness Number of relations as a proportion of the theoretically maximum num-
ber of relations in all ecosystem. Is a metric of connectedness. Is a
property that keeps communities structure safe from risks, guaranteeing
their well-being and health.

R4

Ecosystem Entropy The second law of thermodynamics, in principle, states that a closed
system’s disorder cannot be reduced, it can only remain unchanged or
increase. A measure of this disorder is entropy. This law also seems
plausible for software systems; as a system is modified, its disorder,
or entropy, always increases. This is known as software entropy. Can
be viewed as being similar to the measurement of the existence of or-
der or disorder among the participating software components, software
products, or software organizations.

R17

Expertise view contributor Visualization about a contributor expertise based on file extensions
(number and type of files changed within a month).

R12

Files changed Number of files that has been changed. R12
Files per version Number of files per version. R11
Geographical distribution Geographical distribution of community members. R9
Job advertisements Number of job advertisements on the project/community. R8
Lines added Lines added. R12, R7
Lines changed Lines changed. R12
Lines removed Lines removed. R12
Liquidity Is a metric for the robustness factor: survival rates. Provide an indica-

tion whether a partner is able to meet its short-term obligations. Can
be measured with: financial status of a partner; counting the number of
new members in a business ecosystem.

R4

Mailing list Number of messages posted to project mailing lists and the number of
responses obtained from those messages.

R1, R11, R15,
R6, R2

Maximum number of commits
of a developer

The size and density of a contributor in a project. R12

Member activity rate Activity rate 1 means that a single person carries out all the work. R11

Paper accepted in ICSOFT-EA'14

11



Member effort The effort of member m in community c. R3
Network resources Measure for delivery innovations factor of productivity. They can be

measured directly, e.g., using balance of partners, but also indirectly,
through the network relations.

R4

Networks node connection Connections between central and non-central species or partners. R4
New members Counting the number of new members at any point in time. R4
Number active projects Number active projects. R3
Number authors Number of authors for projects. Author can change files in a project. R11, R3
Number bug fixer Number bug fixers in the community. R8
Number committers Number of committers per project. R11, R3, R9
Number of activity
communities

The number of activity communities in which member m is involved. R3, R7

Number of commits Total number of commits containing source code, documentation, and
translation. Average number of commits per week (project/community).

R15, R9, R11,
R12, R3, R14

Number of community project Number of projects built on top of the platform of a community. R8, R3
Number of contributors Total of contributors per project. R8, R12
Number of core developers Core developer contribute most of the code and oversee the design and

evolution of the project.
R1

Number of developer releases Number of releases that a developer has been active on a project. R6
Number of developer projects Number of projects of a developer. R12
Number of downloads Number of downloads from the official community portal or mirrors. R8, R7
Number of event people The number of people participating in project events and meetings gives

direct information on the activity in the community.
R8

Number of files Files during projects life. R14, R11
Number of mailing list users Number of users subscribed to the project mailing list. R8
Number of members The number of activity members involved in community c. R3, R5, R16
Number of nodes and edges Number of nodes and edges. R1
Number of passive user Passive users in the community. R8
Number of reader Number of readers in the community. R8
Number of scientific
publications

Number of scientific publications mentioning the community. R8

Out degree of keystone actors Is defined for this specific case as someone who has a lot of developers
he works with and also plays a large role in the software ecosystem.

R7

Principal member activity The principal activity of a member m for a given time t. Community c
for which m carried out the most effort.

R3

Project activity diagrams Allow identify the project evolution comparing six metrics; calculating
the contributors involvement distribution.

R12

Project developer experience Total number of releases in which the developer was active. R6
Reciprocity of the ecosystem (definition not provided). R7
Relation between categorical
event and developer
participation

Relation between categorical event and developer participation. R15

Social media hits Number of hits the project gets in the social media and blogs. R8, R7
Solvency Value creation measure for niche creation. Can be measured by stan-

dard metrics such as revenue share or profit share of newly introduced
products or technologies. An alternative is to look at the build-up of
partner equity.

R4

Temporal community effort The combined effort of all members belonging to community c during
time period t.

R3

Total effort of members Total effort done by a particular community member m in a set of com-
munities C.

R3

Variety in products Measure for the variety factor of niche creation. The variety in products
offered by the partner depends on alliances with other partners. Eu-
clidean distances towards the overall mean of the business ecosystem
can be used to measured most of these variety of scores.

R4, R13

Variety of partners Covariance with market indicates the variety of different partners a part-
ner has.

R4

Visibility Tell us something about the centrality of a partner in the market. Popu-
larity of the partner.

R4

Web page requests Total request to OSS community web page. R8
Zeta model Bankruptcy classification score model. R4
Z-score Bankruptcy model to test the creditworthiness and solvency of partners. R4

Paper accepted in ICSOFT-EA'14

12


	INTRODUCTION
	RELATED WORK
	METHOD
	Systematic literature review
	Quality model construction

	QuESo QUALITY MODEL
	Platform-related quality characteristics
	Community-related quality characteristics
	Maintenance capacity
	Sustainability
	Process maturity

	Ecosystem network quality characteristics
	Resource health
	Network health


	EXAMPLES OF MEASURES
	DISCUSSION
	CONCLUSIONS



