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A Skewness-aware Matrix Factorization Approach for
Mesh-structured Cloud Services

Yongquan Fu, Dongsheng Li, Pere Barlet-Ros, Chun Huang, Zhen Huang, Siqi Shen, Huayou Su

Online cloud services need to fulfill clients’ requests scalably
and fast, otherwise, users’ experience and providers’ revenue
could be severely degraded. State-of-the-art cloud services are
increasingly deployed as a distributed service mesh. Service to
service communication is frequent in the mesh. Unfortunately,
problematic events may occur between any pair of nodes in the
mesh, therefore, it is vital to maximize the network visibility for
efficient network troubleshooting and application optimization.

A state-of-the-art approach is to model pairwise RTTs based
on a latent factor model represented as a low-rank matrix
factorization. A latent factor corresponds to a rank-1 component
in the factorization model, and is shared by all node pairs.
However, different node pairs usually experience a skewed set
of hidden factors like divergent routing paths, dynamic path
conditions, or transient network congestions, which cannot be
captured by existing latent factor models.

In this paper, we propose a skewness-aware matrix factoriza-
tion method named SMF. We decompose the matrix factorization
into the basic units of rank-one latent factors, and progressively
combine rank-one factors for different node pairs. We present
a unifying framework to automatically and adaptively select the
rank-one factors for each node pair, which not only preserves
the low rankness of the matrix model, but also adapts to skewed
network latency distributions.

Over real-world RTT data sets, SMF significantly improves the
relative error by a factor of 0.2x to 10x, converges fast and stably,
and compactly captures fine-grained local and global network
latency structures.

I. INTRODUCTION

Large-scale cloud services are typically organized as a mesh
of micro-services that are deployed over hundreds to thousands
of nodes, as illustrated in Figure 1. Service-to-service commu-
nication is frequent on the mesh structured service topology.
For example, a Web request may traverse thousands of servers
to search and aggregate results. A request’s service level
agreement (SLA) is determined based on the response from
the slowest server. As problematic locations are essentially
unpredictable a priori, we need to track RTTs by all nodes
and for all nodes [25].

Timely response is vital for ensuring the Quality of Experi-
ence (QoE) [49], otherwise, the increased delay significantly
affects users’ experience and providers’ revenue [13], [7].
Unfortunately, high latency issues may arise between any node
pairs of the service mesh, due to changing routing paths,
degraded path conditions, or transient network congestions.
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Fig. 1. An illustration of a service-mesh scheme [3], [4]. A cloud service
consists of a collection of loosely-coupled micro-services hosted on a set
of distributed servers. The service-to-service communication is managed by
a dedicated service-mesh proxy layer for autonomous traffic control and
optimization. The monitoring functionality is located at the proxy layer to
collect pairwise RTT status for the service mesh layer.

As a result, in order to correctly correlate the network issue
with the problematic service, it is vital to tell if a service is
affected by a network issue by monitoring pairwise RTTs of
the service mesh.

Meanwhile, optimizing the performance of the service mesh
needs pairwise RTTs. For example, we may choose the detour
routing scheme [44], [6], [35] that selects a relay on the
direct routing path between a set of hosts and forwards
packets via the relay. For example, Akamai SureRoute [40]
and Amazon CloudFront content distribution network (CDN)
[5] relay packets for end hosts.

A straightforward approach is to directly collect all-pair
network latency, which requires a quadratic number of probing
packets with respect to the system size, which does not scale
well. Therefore, in order to provide enough network visibility
for troubleshooting, it is of paramount importance to predict
missing measurement results. Besides the scaling limitations,
the measurement may also disturb normal application traffic,
as node resources are usually shared among multiple tenants.

To reduce the probing cost, researchers have proposed
network-latency prediction methods that embed the service
mesh into a low-dimensional vector space and estimate the
pairwise RTTs based on the vector distance of the corre-
sponding node pair. The vector-space representation succinctly
captures the pairwise network latency matrix, and needs only
O(N) probes to predict the full pairwise matrix for N hosts
in edge data centers where PingMesh becomes ineffective.
Further, the vector representation can act as the input for
various applications [45], [35], [28].

The vector space is usually represented as a low-rank matrix
factorization model [37], [33], [34], which represents each
node as a vector of variables. These variables are “latent”
in the sense that they are not directly observed, but should
be inferred via a mathematical model from observed data. A
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matrix factorization model is well known to be equivalently
represented as the sum of a set of rank-one matrices [24].
Given a rank-one matrix represented as the product of two
vectors FkG

T
k for k ≤ r, where a constant r denotes the

number of rank-one matrices, this rank-one matrix serves as
a “latent factor”, and the vector Fk and Gk serve as the
soft memberships of each row and each column of the RTT
matrix to this latent factor [15], [47]. As the same set of rank-
one matrices are shared by all nodes, the matrix factorization
model implicitly assumes that all node pairs are affected
by the same set of latent factors. However, our analyses in
Section III-C show that a real-world network latency matrix
is heterogeneous and highly skewed, different node pairs are
typically correlated with heterogeneous factors. Consequently,
the matrix factorization should be revisited to account for
skewed factors.

In this paper, we focus on improving the skewness aware-
ness for the matrix factorization model. We propose a
skewness-aware matrix factorization method we call SMF,
which decomposes the matrix factorization framework into the
basic units of rank-one matrices, and selectively combines the
rank-one entries for each node pair to account for skewed
network latency distributions.

The first challenge is how to smartly combine the rank-
one matrices. Existing methods assume positive correlations
between the rank-one matrices and the approximation results.
We relax this assumption and consider generalized scenarios
where each rank-one matrix is either positively correlated,
negatively correlated or irrelevant. Then, we model these rela-
tions within a unifying combination framework, by extending
the well-known orthogonal matching pursuit algorithm [41].
In each iteration, we add a new rank-one matrix into the
prediction, where each entry is either added, bypassed, or
decreased to account for the skewness of the network latency
distribution.

As most node pairs are unobserved, we need to automate
the selection decision for each entry. To that end, we treat the
selection decision as the rating score and the service mesh as
both clients and goods, and establish the selection decision
problem as a collaborative filtering task that predicts missing
rating scores between a set of clients and a set of goods.
Inspired by this analogy, we propose an adaptive prediction
method to map the collaborating filtering scores to discrete
combination choice by extending the well-known maximum
margin matrix factorization method [42], [48].

Finally, extensive experiments using real-world data sets
confirm that our approach reduces the relative errors by a
factor of 0.2x to 10x compared to state-of-the-art methods.
SMF converges fast and stably. Applying SMF to inform
the low-latency detour routing [44], [45] achieves close to
optimal performance. Further, we have evaluated the parameter
regions where SMF obtains good approximations and verified
its computational efficiency.

In summary, we make three primary contributions in this
paper:
• We quantify the skewness of the RTT metric with respect

to a set of local and global metrics, which motivates novel
insights to develop skewness-adaptive matrix models.

• We develop a skewness-aware matrix factorization frame-
work SMF that automatically and adaptively selects rank-
one latent factors for different node pairs.

• We perform extensive experiments on real-world data sets
to confirm that that SMF finds a good balance between
the low rankness and the adaptation to skewed RTT
distributions.

The rest of the paper is organized as follows. Section II
summarizes the related literature on the service mesh moni-
toring. Next, Section III presents the background and states
the requirements of adapting to skewed latent factors. Next,
Section IV introduces the basic ideas of the skewness-ware
matrix factorization. Section V presents the detailed algorithms
and analysis of the performance and the parameter choices.
Section VI reports the extensive simulation experiments com-
pared with state-of-the-art methods. Finally, we conclude in
Section VII.

II. RELATED WORK

Extensive studies have been made to enable network latency
measurement for large-scale distributed systems and data cen-
ter networks. We only introduce representative studies that are
most related to us.

Mesh Network Monitoring: iPlane [36] predicts end to
end network latency based on an Internet topology model.
iPlane issues active probes from wide-area vantage points
to routable network addresses. PingMesh [25] collects all-
pair round-trip time (RTT) measurement system in several
scales for geo-distributed data centers, which accumulates 24
TBs of probe results each day. [54] approximates network
latency in an OpenFlow network environment based on control
messages to and from the OpenFlow controller. Mobilyzer [39]
provides a controlled and isolated library for mobile network
measurement experiments. Our work is complementary to
these studies by predicting missing measurements.

Network Latency Prediction: In order to reduce the mea-
surement overhead, researchers proposed to predict network
latency with network coordinate methods. GNP [38] pioneers
this field by modeling the network latency matrix with an
Euclidean coordinate system and fitting this coordinate sys-
tem via a multidimensional scaling technique. Vivaldi [11]
combines a low-rank model with a height model that reflects
the first-hop delay of traversing the accessing link. IDES [37]
and DMFSGD [33] embed nodes using the two-factor matrix
factorization. Further, DMFSGD [33] proposes a generalized
framework of the low-rank matrix factorization via the SGD
optimization technique. Liu et al. [34] decompose the latency
metric to a distance component and a network feature com-
ponent by combining the Vivaldi and the matrix completion
theory. Fu et al. [19] stabilizes the matrix factorization process
under churns via the relative coordinates.

Zhu et al. [57] propose an adaptive matrix factorization
approach by data transformation. The transformed metrics
become more symmetric than the raw metrics, however, re-
transformed metrics become less stable when the observation
is incomplete, since the estimator’s inaccuracy will be am-
plified exponentially with respect to the transformation base.
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A second approach is to estimate the quantiles [59] instead
of the average RTT metric based on the quantile regression
framework. Generally, these methods assume that each pair
of nodes shares the same set of latent factors, which may not
hold when node pairs experience diverse hidden factors due to
divergent routing paths, dynamic path conditions, or transient
network congestions. Our work addresses this challenge via
a skewness-aware matrix factorization model that selectively
combines the latent factors.

Matrix Completion: Our study is related with the ma-
trix completion theory [8], which considers the problem of
recovering an incomplete matrix via a subset of observed
entries. For a rank-r m × n matrix (r � (m,n)) that
meets an incoherent1 condition, a unique rank-r matrix can be
recovered with a high probability. When the rank is unknown,
a generalized matrix completion problem seeks to best fit a
partially observed matrix with a minimum rank. Unfortunately,
minimizing the matrix rank exactly is NP-hard [8]. OR1MP
[47] iteratively computes a rank-one matrix of the top-left and
-right singular vectors of the approximation residual. However,
it is generally impossible to exactly recover the SVD result for
a partially observed matrix. Further, our study shows that, not
all rank-one matrices are useful to reduce the approximation
residual, moreover, different node pairs are correlated with
heterogeneous latent factors.

Traffic Matrix Interpolation: Real-world traffic matrices
are usually incomplete. Consequently, interpolating missing
entries becomes important. Note that traffic matrix inter-
polation is a related, but different problem, with different
properties. Xie et al. [52], [51], [50] exploit hidden spatial and
temporal structures with three-dimensional low-rank tensors,
which effectively reduces the estimation error. Zhang et al.
[56] interpolate incomplete traffic matrices with structure reg-
ularized low-rank matrix factorization and local interpolation
procedures. LENS [10] models the traffic matrices as the sum
of multiple matrices that are positively correlated with the
traffic matrix. Our work is a complement to these studies by
proposing a new model that keeps the low-rank interpretation
and adapts well to skewed latent factors.

III. PROBLEM STATEMENT

In this section, we first present the measurement environ-
ment for the mesh-structured cloud services, then introduce the
matrix factorization results, and discuss the open questions.

A. Measurement Architecture

A service mesh consists of a set of nodes located in mega
data center networks or edge data-center networks. Each node
hosts a set of networked micro-services, as discussed in the
introduction. Service to service communication is frequent,
while the latency between sending service requests and ob-
taining responses should meet network SLAs.

As the network issues may arise in unknown locations, it
is vital to maximize the network visibility between nodes for

1A well-known assumption of recovering a low-rank r matrix is incoher-
ence that spread the singular vectors out, which keeps the matrix not to be
closely aligned with the coordinate axes.

troubleshooting and proactive network optimization. To meet
these needs, it is necessary to monitor network latency between
any node pairs [33], [25]. Therefore, a global view of the
network conditions is needed, as the service mesh is managed
under a single entity.

We organize the measurement system as two components:
a data plane that consists of service-mesh nodes and a control
plane on a logically centralized server, inspired by the software
defined networks [36], [25], [54].

We assume that, the service mesh should have synchronized
their clocks, as otherwise we could not correlate the network
problems in different locations. The synchronization protocols
such as Network Time Protocol (NTP) [2] or the IEEE 1588
Precise Time Protocol (PTP) [1] can provide millisecond-level
precision for geo-distributed nodes.

(i) At the control plane, the logically centralized controller
schedules the RTT measurement process on the data plane.
To that end, the controller randomly samples a small list of
nodes as probing targets. The choices of probing targets are
randomized for different nodes for load balancing. The number
of probing targets depend on the measurement capability of the
data plane. For a scale of hundreds of nodes, our experiments
show that tens of probing targets is sufficient to obtain a good
accuracy.

Further, the controller handles the system dynamics, since
an offline node is useless and should be detected and filtered
by the controller. Accordingly, the controller keeps the online
status of the data plane as volatile states in the main memory.
Each online node periodically sends a heart-beating message
to the centralized controller to notify its online status. After
the controller successfully obtains a heart-beating message
from a node, the controller piggybacks a list of sampled
online nodes. The frequency of the heart-beat messages is
platform-dependent. Stable platforms with dedicated nodes
could choose a long period, while edge platforms should
choose a relatively short period to reflect system churns.

(ii) At the data plane, each service-mesh node performs a
number of measurements towards other nodes in the same
service mesh. It downloads the list of probing targets from
the controller, and measures the round-trip time (RTT) towards
these probing targets in a periodical approach. After collect-
ing the RTT samples in an interval, each node uploads the
RTT results to the persistent storage that is accessed by the
controller.

The data plane could use any kinds of measurement meth-
ods. For example, at the network or transport level, the data
plane may choose ICMP or TCP protocol based measurement
methods; while at the application level, the data plane could
use RPC or HTTP protocol based methods. Generally, the RTT
value amounts to the absolute difference between the time of
sending a request message to the probing target and that of
receiving the response message from this probing target.

The unit of a measurement interval determines the gran-
ularity of the monitoring process. Increasing the sampling
interval towards a probing target yields a coarser measurement
granularity. Generally, the time interval should be large enough
to obtain the response from the slowest probing target in the
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system, otherwise, a data-plane node may not collect the RTT
samples from some of its probing targets.

B. Challenges for RTT Matrix Completion

For a set of N nodes, the pairwise RTTs between N nodes
in an interval can be represented as a N -by-N matrix D.
The state-of-the-art approaches predict pairwise RTT values
based on the matrix factorization approach, which factorizes
a matrix D ∈ RN×N as a product of two low-dimensional
factor matrices F ∈ RN×r and G ∈ RN×r, i.e., D ≈ FGT ,
where r � N , and T denotes the transpose of a matrix.

Generally, a matrix factorization model is equivalent to a
sum of a set of rank-one matrices:

D̂ = FGT =
∑
k

FkG
T
k (1)

where Fk, Gk denote the k-th (k ≤ r) column vector of the
matrix F and G, respectively. The objective function seeks
to minimize the approximation residual between the observed
entries and the sum of the rank-one matrices:

min
F,G

∥∥∥∥∥D−
r∑

k=1

F∗kG
T
∗k

∥∥∥∥∥ (2)

As the matrix factorization approximates the target matrix
D via the sum of each rank-one matrix FkGTk , each of which
is assumed to be positively correlated with the approximation
results. Consequently, the matrix factorization assumes that all
node pairs experience the same set of latent factors.

Unfortunately, this assumption may not hold for the RTT
metric, which additively consists of many unobservable fac-
tors, e.g., the propagation latency, the queueing latency, the
transmission latency. The additive character implies that, for
two node pairs with a number of different routing links,
their RTTs are likely to be affected by independent latency
components, or hidden factors as they are invisible from the
end. Consequently, different node pairs are likely to experience
a diverse set of latent factors that are unobservable from the
end to end measurement, as the RTT metric only reveals the
sum of all factors, not individual factors.

C. Empirical Distributions

Next, we empirically analyze the RTT characteristics of
real-world data sets and motivate the prediction requirements.

1) Data Set
Real-world network connections are heterogeneous, there-

fore, an ideal network latency prediction algorithm should be
resilient to different network connections. We choose three
kinds of publicly available data sets different in terms of scale
and distributions, which provide an ideal benchmark to study
the generalized performance of different prediction algorithms:
• Seattle: The Seattle platform is an open peer-to-peer

cloud computing platform that includes donated personal
devices like personal computers, laptops and mobile
phones [9] This data set was collected in summer 2014
for three hours between 99 nodes. Each interval aggre-
gates pairwise RTT samples within 15.7 seconds, which
indicates short-term dynamics between Seattle nodes.

TABLE I
BASIC STATISTICS OF DATA SETS.

Trace Interval Mean STD Min Max
Seattle 15.7s 0.37s 0.90s 0.01s 90.50s
PlanetLab 14.7-hr 147.38ms 103.65ms 0.064ms 7892.8ms
RIPE 2-hr 118.47ms 106.02ms 0.08ms 10,425.75ms
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Fig. 2. The CCDFs of interquartile ranges of each row vector in the dataset.

• PlanetLab: The PlanetLab platform has been widely
used in many previous network prediction studies [36],
[33], [19]. This data set was collected in 2013 for a 9-
day period between 490 distributed nodes. Each inter-
val aggregates pairwise RTT measurements within 14.7
hours, which represents long-term RTT trends between
PlanetLab nodes.

• RIPE: The RIPE Atlas measurement platform consists
of tiny networked devices that issue measurements to a
small number of addresses, most of which are chosen by
the platform owner. There are two kinds of devices, i.e.,
Probes and Anchors, depending on their measurement
capability. The Anchor is more powerful than the Probe.
As we need dense RTT matrices to train the matrix
factorization methods, we choose RIPE Atlas nodes that
are powerful enough to probe each other. This data set2

was collected in August 19, 2018 between 250 RIPE
Atlas nodes.

Table I summarizes several basic statistics about the data
sets. We can see that the data sets span wide ranges.

2) Distributions
First, we compare the RTT distributions for each node. We

calculate the interquartile ranges for each RTT vector, i.e., the
difference between the 25th and the 75th percentiles of the
samples in the vector. In Figure 2, we see that the interquartile
ranges span wide intervals, thus different node pairs experience
divergent hidden factors.

Next, we evaluate the correlation between pairs of nodes.
We compute the linear correlation coefficient [43] for any pair

of nodes i and j, defined as c (i, j) =
〈 ~Di◦ ~Dj〉−〈 ~Di〉〈 ~Dj〉

σ( ~Di)σ( ~Dj)
,

where D denotes the pairwise RTT matrix, ~Dj denotes the i-th
row vector, ◦ denotes the hadamard operator

(
~Di ◦ ~Dj

)
k

=

DikDjk for i, j, k ∈ [1, N ], 〈·〉 denotes the average of the

vector, and σ
(
~Di

)
=

√〈
~Di ◦ ~Di

〉
−
〈
~Di

〉2
.

Figure 3 plots the heat map of the linear correlation coef-
ficients of each node pair. Darker pixels correspond to larger
correlation coefficients. We can see that two to three groups

2https://data-store.ripe.net/datasets/atlas-daily-dumps/
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(a) PlanetLab (b) Seattle (c) RIPE

Fig. 3. Heat maps of the pairwise correlation coefficients. We choose the
first interval for illustration purpose. Varying the intervals yields the same
conclusions. We randomly select a number of nodes from the data set as the
landmarks, calculate the vector of correlation coefficients from this node to
the landmarks. Then we compute the K-means clustering with these feature
vectors based on the Lloyd method [53]. Finally, we reorganize the correlation
coefficient matrix by putting nodes in the same cluster at adjacent positions,
and plot the heat map of the matrix where darker pixels correspond to larger
correlation values. During the experiments, we set the number of landmarks
to 16, the number of clusters to three. The same conclusions hold as we vary
the parameters.

TABLE II
FREQUENTLY USED NOTATIONS IN THIS PAPER.

Notations Meaning

N Number of nodes
D, D̂ RTT matrix and the estimated RTT matrix
X rank-1 matrix
β, β̂ Sign matrix and the estimated sign matrix
E Approximation residual

F , G rank-1 matrix model
(~u,~v, ~θ, b) Sign matrix model

r Approximation rank
Si Probing targets of node i
np Number of probing targets
rs Dimension of the estimated sign matrix
λ Regularized parameter

of nodes are separable from the rest of the plot, where intra-
group correlation coefficients are relatively larger than node
pairs from different groups. As a result, the pairwise RTT
distribution is highly skewed, and intra-group nodes are more
likely to experience similar latent factors than inter-group node
pairs. Accordingly, we need a powerful representative model
to account for skewed latent factor distributions in the RTT
matrix.

IV. SKEWNESS-AWARE MATRIX FACTORIZATION

Having analyzed the RTT characteristics of three data sets,
the RTTs of different node pairs are likely to be affected by
divergent hidden factors, which should be accounted by the
prediction algorithm.

Next, we first present naive approaches to account for
divergent latent factors and discuss its limitations, then present
a new matrix factorization model that keeps the interpretation
of the low-rank representation and adapts to the skewness of
the RTT distributions.

Table II summarizes frequently used notations used in this
paper.
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Fig. 4. Energy contained in the top-k singular values VS. the relative error
of the rank-k approximation using the SVD method. For a squared and
complete matrix D, SVD calculates a Frobenius-norm optimal approximation
with respect to D [24]. The SVD represents D as D = USV T , where
V T denotes the transpose of V , U ∈ RN×N is an orthogonal matrix,
i.e., UUT = UTU = I , V ∈ RN×N is also an orthogonal matrix, i.e.,
V V T = V TV = I , S is a squared diagonal matrix consisting of a vector of
descending-ordered real numbers (σ1, · · · , σN ), where σi ≥ 0 for i ≤ N .

A. Strawman Approaches

1) Increasing Rank
A straightforward approach is to increase the rank of the

matrix factorization model. In mathematics, the rank of a
matrix is the maximal number of columns or rows that are
linearly independent with each other, which is neatly charac-
terized by the number of positive singular values of the SVD
of this matrix [24]. The SVD can be equivalently represented
as the sum of k rank-1 matrices D̂ =

∑k
i=1 δiuiv

T
i , where δi

is the i-th singular value, ui is the i-th left singular vector,
and vi is the i-th right singular vector. Each rank-1 matrix
represents a latent factor that introduces a degree of freedom
to approximate the matrix.

We compute the relative error |Dij−D̂r
ij|

Dij
for each node pair

between the rank-k approximation D̂r and the RTT matrix D.
Further, we compute residual fraction of the total variance
captured by top-k singular values as 1 −

∑k
i δ

2
i∑N

i δ2i
, where δi

represents the i-th largest singular value.
Figure 4 shows the residual variance and the relative error

with increasing number of top singular values. First, 90% of
its variance can be captured with two to four top singular
values, therefore, the RTT matrix is approximately low-rank.
Second, the relative error is still high. A longer tail of singular
values implies a higher relative error, since the residual of the
SVD approximation is correlated with the remaining set of
singular values, represented as D − D̂k =

∑N
i=1 δiuiv

T
i −∑k

i=1 δiuiv
T
i =

∑N
i=k+1 δiuiv

T
i .

2) Incorporating Weights
A second approach is to regularize the latent factor model

for different node pairs. For example, let D̂′ [i, j] = D̂ [i, j] ·
w [i, j], where w denotes the weight matrix. The estimation
of each node pair is scaled independently, which introduces
N2 degrees of freedom to the prediction D̂. Accordingly, the
weighted model has enough degrees of freedom to recover
any matrix exactly. For example, [58] proposes to assign an N -
by-N real-valued weighted matrix to the low-rank matrix, and
estimates the weight matrix in a matrix completion framework.
As [58] uses a single weight matrix to regularize every latent
factor, it assumes that each latent factor is of equal importance
for each node pair, which may not hold due to complex routing
decisions and varying latency components.
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Instead of assigning real-valued weights to low-rank models,
we propose to decompose the matrix factorization framework
into the basic units of rank-1 matrices, and selectively combine
the rank-1 entries for each node pair, inspired by the well-
known orthogonal matching pursuit algorithm [41].

B. Ideal Skewness-aware Model

Next, we present an ideal model to account for skewed latent
factors assuming that we obtain the complete RTT matrix. In
the next subsection, we relax this assumption and present a
practical approach.

Recall that matrix factorization is equivalent to the sum of
rank-1 matrices, while each rank-1 matrix serves as a latent
factor. To make the matrix factorization be aware of skewed
latent factors, we should incorporate a rank-1 matrix entry for
a node pair only if this node pair is correlated with this latent
factor.

1) Correlation Model
Let k denote the index of the current rank-1 matrix (1 ≤

k ≤ r). Let D̂k be the approximation result of combining
the first k rank-1 matrices, and Ek = D − D̂k−1 the current
residual, where D̂0 represents an empty matrix.

We define three kinds of correlation types to combine the
latent factor for each node pair (i, j) as follows:

(i) Positive correlation: If the approximation residual
Ek [i, j] will be smaller by adding the rank-1 entry
Xk [i, j] to the current approximation D̂k−1 [i, j], i.e., D −(
D̂k−1 [i, j] + Xk [i, j]

)
< Ek [i, j], then we set the rank-1

entry Xk [i, j] to be positively correlated with the current
approximation residual.

Accordingly, we update the approximation for the node pair
i, j as: D̂k [i, j] = D̂k−1 [i, j] + Xk [i, j].

(ii) Negative correlation: If the approximation residual
Ek [i, j] will be smaller if we subtract the rank-1 entry
Xk [i, j] from the current approximation D̂k−1 [i, j], i.e.,
D −

(
D̂k−1 [i, j]−Xk [i, j]

)
< Ek [i, j], then we set the

rank-1 entry Xk [i, j] to be negatively correlated with the
approximation residual.

To reduce the approximation error, we update the approxi-
mation as: D̂k [i, j] = D̂k−1 [i, j]−Xk [i, j].

(iii) Irrelevance: Finally, if neither positive nor negative cor-
relations hold, we should skip this rank-1 component Xk [i, j]
for node pair i, j, since otherwise, the approximation residual
will increase. In other words, this rank-1 entry Xk [i, j] is
irrelevant with the current approximation residual.

Accordingly, the approximation residual either decreases
monotonically (positive and negative correlations) or keeps
the current status (irrelevance). Thus we not only keep the
interpretation of the matrix factorization, but also account for
the skewed latent factors.

2) Algebraic Representation Model
To unify the correlation model with the estimation purpose,

we represent the correlation model in a compact format. As the
“positive correlation, negative correlation, irrelevance” choices
are equivalent to three discrete choices (+1, -1, 0), respectively,
we summarize them in a pairwise matrix (denoted as a sign
matrix) β ∈ {+1,−1, 0}N×N .

Fig. 5. The diagram of the ideal correlation model.

Consequently, we transform the choice of the correlation
model from a combination optimization problem to a linear
algebraic problem. Now we can directly represent the k-th
approximation residual Êk = βk ◦Xk. The overall estimation
amounts to D̂ =

∑r
k=1 Êk =

∑r
k=1 βk ◦Xk.

3) Workflow
The ideal model can be represented as a recurrent frame-

work that predicts the residuals layer by layer, as illustrated
in Figure 5. Each recurrence aims to find a skewness-aware
rank-1 matrix to minimize the current residuals. The model
sequentially finds a rank-1 matrix with respect to the residual
and a sign matrix according to the correlation types. Then, it
combines the rank-1 matrix and the sign matrix to approximate
the residual. Finally, the overall estimation is updated and the
refreshed residual is forwarded to the next recurrence.

Lemma 1 shows that the ideal model either decreases the
approximation residual monotonically or keeps the current
status in each layer. The proof is put in the appendix.

Lemma 1. Assume that we obtain the perfect sign matrix, for
all k ≥ 1, ‖Ek+1‖ ≤ ‖Ek‖

Unfortunately, manually deciding the selection choices is
only possible for observed RTTs, but impossible for unob-
served node pairs. To address this challenge, SMF predicts
the selection choices to make the ideal model practical.

C. Our Work

1) Overview
SMF implements the ideal model with a layerwise learning

framework. SMF unrolls the recurrent framework of the ideal
model to a chained sequence of layers, and trains the model
layer by layer similar to the stacking architecture of the deep
neural network [27].

Each layer k takes the partially-observed residual as the
input, and computes a new rank-1 matrix by maximizing the
correlation with the current residual, then combines each entry
of this rank-1 matrix into the current approximation based
on the sign matrix, both of which are learnt from partial
observations. Next, SMF calculates the approximation residual
at this layer, and finally refreshes the residual and forwards that
to the next layer until reaching the final layer.

SMF improves the matrix factorization in several aspects:
• Explainability: SMF progressively finds a rank-1 matrix

to best explain the residual in each layer. Further, higher
layers’ rank-1 matrices are trained based on the residuals
with respect to lower layers’ rank-1 matrices. Thus there
exists no ambiguity for the rank-1 matrices.
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• What-if Analysis: SMF optimizes a separate rank-1 ma-
trix for each layer, and sequentially combines them with
the sign matrices to produce the residual approximation.
Thus SMF enables the operator to test the choice of rank
based on the layerwise RTT approximation from one to
r.

• Robustness: SMF formulates the model with respect to
the residual in each layer, which is known to be robust to
the gradient-vanishing problem, as proved by the ResNet
method [26].

• Modularity: SMF divides each layer to two conditionally
independent optimization problems and combines layer-
wise estimation into a modular framework.

2) SMF Components
(i) Rank-1 Matrix
As each rank-1 matrix amounts to a product of two vectors

[24], [47], we represent the rank-1 matrix Xk as Xk =
Fk(Gk)T , where Fk, Gk denote two vectors of length N .
Moreover, to keep the latent factor interpretable, we enforce
the rank-1 matrix Xk to be nonnegative by approximating the
absolute-value of the residual.

When the residual matrix is completely observed, the opti-
mal vectors can be calculated based on the SVD of Ek [24],
[47]: Xk = δk1u

k
1(vk1 )T , where δk1 , uk1 and vk1 denote the

largest singular value, the leftmost and the rightmost singular
vectors of Ek. While when the observation is incomplete, we
formulate a rank-1 matrix factorization problem to estimate
the vectors Fk and Gk.

(ii) Sign Matrix
We utilize the analogy between the sign matrix estimation

and the collaborative filtering problem that recovers missing
discrete rating scores (e.g., one to five stars) between a set of
clients and a set of goods, and predict the sign matrix βk with
a Maximum Margin Matrix Factorization (MMMF) [42], [18].

We represent pairwise signs with a low-dimensional coordi-
nate model. We assign each node a rs-dimensioned coordinate
(~ui, ~vi) and a threshold vector ~θi that serves as boundaries
to obtain the discrete signs. We make the coordinate model
tolerate skewed distributions by incorporating a bias parameter
to each node similar to [48], which captures the local factors
in each machine.

Let each node i keep a bias variable bi, the coordinate
distance Yij from node i to node j is calculated as the sum
of the vector dot-product result plus the bias scalars:

Yij = ~ui~vj + bi + bj (3)

For a pair of nodes i and j, we represent the sign from node
i to node j by mapping the coordinate distance ~ui~vj to “-1”,
0, “+1” using node i’s threshold values ~θi:

• If ~ui~vj ≤ ~θi(1), the estimated sign β̂ij = -1;
• If ~θi(1) ≤ ~ui~vj ≤ ~θi(2), β̂ij = 0;
• Otherwise, β̂ij = +1.

3) Example
We provide a simple example to illustrate the SMF algo-

rithm. Note that our purpose here is not to characterize the
performance of the SMF.

Fig. 6. Four nodes organized in a hierarchical topology.

Given four nodes as shown in Figure 6 with an RTT matrix:

D =

[
0 20 80 80
20 0 80 80
80 80 0 40
80 80 40 0

]
For example, we build a sampled RTT matrix to model the
partial choices of probing targets as follows:

D′ =

[
0 20 0 80
20 0 80 0
0 80 0 40
80 0 40 0

]
We compute a rank-1 matrix with respect

to the illustrative matrix D′, which gives
F1 = (−6.6791,−6.6791,−7.1096,−7.1096),
G1 = (−6.6791,−6.6791,−7.1096,−7.1096). The first
two nodes and the last two nodes are identical with each
other, respectively. Therefore, the rank-1 components captures
the global proximity index. Further, F1 and G1 are identical,
as the RTT matrix is symmetric.

Multiplying F1 and G1 yields the rank-1 matrix:

X1 =

[
0 44.6102 47.4854 47.4854

44.6102 0 47.4854 47.4854
47.4854 47.4854 0 50.5459
47.4854 47.4854 50.5459 0

]
Next, we calculate the residual E1 with respect to the RTT

matrix D as follows:

E1 =

[ 0 −24.6102 32.5146 32.5146
−24.6102 0 32.5146 32.5146
32.5146 32.5146 0 −10.5459
32.5146 32.5146 −10.5459 0

]
Some RTTs are overestimated, while the others are overesti-
mated, therefore, it is vital to selectively refine the residual.

Given the partially observed residual matrix E′1:

E′1 =

[ 0 −24.6102 0 32.5146
−24.6102 0 32.5146 0

0 32.5146 0 −10.5459
32.5146 0 −10.5459 0

]
, we find a new rank-1 matrix similar to step one, which
gives: F2 = (−4.7934,−4.7934,−4.3030,−4.3030), G2 =
(−4.7934,−4.7934,−4.3030,−4.3030).

The new rank-1 matrix amounts to:

X2 =

[
0 22.9771 20.6263 20.6263

22.9771 0 20.6263 20.6263
20.6263 20.6263 0 18.5161
20.6263 20.6263 18.5161 0

]
In order to automate the combination choices, we extract

the sign matrix with respect to the partially observed residual
matrix E′1:

β =

[ 0 −1 0 1
−1 0 1 0
0 1 0 −1
1 0 −1 0

]
based on Algorithm 2, and predict the sign matrix via the
MMMF framework, which gives:

U :

[
0.6074 −0.3540
0.8816 −0.1533
−1.0691 −0.2674
−0.5347 0.5162

]
, V :

[
−0.8211 −0.1208
−0.6933 0.1867
0.8124 −0.9372
0.3635 0.0986

]
, θ :

[
0.3265 0.3686
0.2530 0.2870
0.3905 0.5373
0.0705 0.0771

]
and the bias vector ( 0.1988 ,0.1186 ,-0.0130 ,0.6004).

The coordinate distance matrix can be derived by Eq (3) as:

Ŷ =

[
0 −0.1698 1.0110 0.9851

−0.3880 0 0.9655 1.0243
1.0959 0.7969 0 0.1724
1.1759 1.1861 −0.3308 0

]
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Fig. 7. The diagram of the SMF method.

Next, we automatically infer the sign from the coordinate
distance matrix via the threshold:

β̂ =

[ 0 −1 1 1
−1 0 1 1
1 1 0 −1
1 1 −1 0

]
which accurately recovers the sign matrix.

Based on the estimated rank-1 matrix and the sign matrix,
we obtain the selective combination X2 ◦ β as:

X2 ◦ β =

[ 0 −22.9771 20.6263 20.6263
−22.9771 0 20.6263 20.6263
20.6263 20.6263 0 −18.5161
20.6263 20.6263 −18.5161 0

]
Plugging this rank-1 approximation to the rank-1 approxi-

mation, yields

D̂2 =

[
0 21.6331 68.1117 68.1117

21.6331 0 68.1117 68.1117
68.1117 68.1117 0 32.0298
68.1117 68.1117 32.0298 0

]
The estimation matrix D̂2 is much more accurate than the
rank-1 estimation X1. Thus the selective combination effec-
tively penalizes the approximation residuals.

V. OPTIMIZATION METHODS

Having discussed SMF’s model, we next present optimiza-
tion details of the skewness-aware matrix factorization.

As stated in Section III-A, the monitoring framework con-
sists of a logically centralized controller in the control plane
and distributed service-mesh nodes in the data plane. The
controller predicts missing measurements in each interval:
It aggregates the measurements of an interval as a partially
observed matrix, and runs SMF to estimate missing matrix
entries.

A. Optimization Workflow
We summarize the workflow of SMF in Figure 7:
(i) For the first layer, let E1 be the partially observed RTT

matrix D, which consists of aggregated RTT samples of an
interval collected from the data plane (S1).

(ii) We compute a rank-1 matrix Xk (k is initialized as one
for the first layer) to maximize the correlation with the residual
Ek (E1 is initialized to the partially observed matrix D for
the first layer) (S2).

(iii) Next, we compute a sign matrix βk to determine
the combination choices of the current rank-1 matrix Xk to
minimize the approximation error of the residual Ek (S3).

(iv) We approximate the residual as the dot product of these
two matrices (S4): Êk = Xk ◦βk, and update the accumulated
RTT prediction as: D̂k = D̂k−1 + Êk =

∑k
l=1 Xl ◦ βl, where

◦ represents the element-wise product operator. Next, we
update the residual for each observed entry (i, j): Ek+1 [i, j] =
D [i, j]− D̂k [i, j].

(v) Let k ← k+1. If k < r, then we move to the next layer
until reaching the final layer; otherwise, we stop and output
the approximation as: D̂ =

∑r
l=1 Xl ◦ βl.

Fig. 8. Graphical model of key variables in the optimization workflow.

B. Loss Function

Based on the optimization workflow, we see that the rank-
1 matrix is optimized with respect to the residual from the
last layer, while the sign matrix is optimized with respect to
the observed sign samples, which is calculated based on the
correlation type between the residual and the approximated
rank-1 matrix. Thus, each layer optimizes two conditionally
independent optimization problem, as clearly shown in Figure
8.

Therefore, we separate the optimization problem to decom-
posed subproblems and design modular optimization work-
flow, due to the conditional independence between the rank-1
matrix and the sign matrix.

1) Rank-1 Matrix
The input to the rank-1 matrix completion is the partially

observed residual. We compute the residual based on predic-
tion D̂k−1 from the first to the k − 1-th layer:

Ek [i, j] = D [i, j]− D̂k−1 [i, j] (4)

for (i, j) ∈ Observed samples and k ≥ 2.
To find the rank-1 matrix for the k-th layer, we minimize the

difference between the rank-1 matrix and the absolute-valued
residual Ek as:

min
∥∥Fk(Gk)T − |Ek|

∥∥2
F

(5)

We formulate a regularized objective function for Eq (5) to
avoid the overfitting issue [60], [21]:

min Jk =
∥∥Fk(Gk)T − |Ek|

∥∥2
F

+ λ
∥∥FTk Fk −GTkGk∥∥2F (6)

where λ denotes a regularized factor. The regulariza-
tion

∥∥FTk Fk −GTkGk∥∥2F addresses the scaling ambiguity as
Fk(Gk)T = (FkR)(GkR)T holds for any orthogonal matrix
R [60]: Suppose Jk is defined in Eq (6), any stationary
point (Fk, Gk) of Jk with ∇J (Fk, Gk) = 0 implies that
FTk Fk = GTkG.

2) Sign Matrix
We extract the signs of observed node pairs as the input

to the sign prediction problem and predict signs of for un-
observed node pairs. The sign matrix is vital to keep the
combined prediction monotonically decreasing.

We next present a simple algorithm to set the sign matrix
β that is consistent with the selective combination rules
(presented in Algorithm 2 as shown in the Appendix B):
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First, if adding the new component reduces the absolute-
valued residual, then Xij is positively correlated, so we set
the corresponding sign to “+1”; second, if subtracting the new
component reduces the absolute-valued residual, then Xij is
negatively correlated, so we set the sign to “-1”; otherwise,
we set the sign to “0”.

Generally, let the ground-truth sign β [i, j] of each ob-
served node pair (i, j) be shifted to the interval {1, 2, 3} for
ease of performing the maximum-margin matrix factorization
(MMMF). We formulate a separable soft-margin classification
error L

(
Y, ~θ
)

for each pair of observed node pair (i, j) [42],
[14], [18]:

L
(
~ui, ~vj , bi, bj , ~θi

)
=
βij−1∑
c=1

h
(
~ui · ~vj + bi + bj − ~θi (c)

)
+

2∑
c=βij

h
(
~θi (c)− (~ui · ~vj + bi + bj)

)
=

2∑
c=1

h
(
T cij [βij ] · (θic − (~ui · ~vj + bi + bj))

)
(7)

where θic = ~θi (c), T cij [βij ] =
{

+1 c≥βij

−1 c<βij
serves as an

indicator function for the sign value βij , and h (z) ={ 1
2−z z<0
0 z>1

1
2 (1−z)

2 otheriwse
represent a smoothed hinge loss with

derivative: h′ (z) =
{ −1 z<0

0 z>1
z−1 otheriwse

Thus, we can optimize
the loss function with gradient based optimization techniques.

Further, We present a regularized loss function with respect
to Eq (7) for each node i [42], [14], [18] for robustness against
outliers and missing items:

gk(xi) =
∑
∈Si

L
(
~ui, ~vj , bi, bj , ~θi

)
+λ
(
‖~ui‖2F + ‖~vi‖2F + ‖bi‖2F

)
(8)

where xi =
[
~ui;~vi; bi; ~θi

]
, λ denotes the regularization con-

stant.

C. Algorithm

The key building block of each layer is the optimization of
the rank-1 matrix and that of the sign matrix, both of which
belong to the non-convex matrix factorization problem.

1) Rank-1 Matrix Optimization
First, we seek a new rank-1 matrix Xk, which needs

to be maximally correlated with the approximation residual.
We compute the rank-1 matrix with the stochastic gradient
descendent method that onverges fast to the vicinity of the
optimum regions and helps escape the local minimum for
distributed optimization [22], [31], [46], [29], [23], [21].

We optimize Eq (6) with the stochastic gradient descendent
method. Let Fk(i) and Gk(i) denote the row vectors of node
i. We optimize each node i’s row vectors in T rounds, whereas
in each round t, we compute the partial gradients of the row
vectors with respect to probed targets of node i, and then adjust
the row vectors towards the approximated negative gradient
direction scaled by a learning-rate parameter η1, which is
automatically chosen using the line search method [33]. We
summarize the optimization steps in Algorithm 3 (Appendix
B).

Algorithm 1: Optimization procedures of the SMF algo-
rithm.

1 SMF(D, r)
input : Partially observed RTT matrix D, rank r
output: Estimated RTT matrix D̂

2 Compute a rank-1 matrix X1 = F1(G1)T that is maximally
correlated with the partially observed RTT matrix D by calling
RankOne(D) in Algorithm 3 (Appendix B);

3 Set the RTT prediction as D̂1 = X1;
4 for Integer k ∈ [2, r] do
5 Compute the partially observed residual Ek = D− D̂k−1 ;
6 Find a rank-1 matrix Xk = Fk(Gk)T with respect to Ek

by calling RankOne(|Ek|) in Algorithm 3 (Appendix B);
7 Calculate the partially observed sign matrix βk by calling

SignRule(Ek [i, j], Xij) in Algorithm 2 (Appendix B);
8 Find a sign matrix β̂k by calling SignMatrix(βk) in

Algorithm 4 (Appendix B);
9 Update the RTT prediction D̂k = D̂k−1 + Xk ◦ β̂k;

10 Set k ← k + 1;

11 return D̂ =
r∑
k=1

Fk(Gk)T ◦ β̂k;

2) Sign Matrix Optimization
Second, we seek a sign matrix that determines the cor-

relation types for each node pair between the residual and
the current rank-1 matrix. We compute the sign matrix based
on the MMMF framework [42] that adaptively penalizes the
difference between the estimated signs and the ground-truth
ones.

We optimize Eq (8) with the nonlinear conjugate-gradient
optimization [42], [18]. We form a vector xi as the con-
catenation of the coordinate components of i, i.e., xi(s) =[
~ui; ~vi; ~θi; bi

]
, and adjust each node’s vector xi in T rounds,

whereas in each round s (s ≥ 1), we compute the conjugate
direction of the vector xi with respect to probed targets, and
move the vector xi a small distance in the direction of the
conjugate direction scaled by a learning-rate parameter η2,
which is automatically computed to meet the Strong wolfe line
search conditions [12]. The optimization steps are summarized
in Algorithm 4 (Appendix B).

3) Putting It All
Algorithm 1 summarizes the overall workflow. First, we find

a rank-1 matrix that is maximally correlated with the partially-
observed RTT matrix D (In line two). Next, we set the current
approximation based on the rank-1 matrix X1 ( in line three).
Then, we perform layerwise training (from lines four to ten),
by finding the rank-1 matrix and the sign matrix, and forward
the residual to the next loop cycle.

D. Analysis

1) Convergence
SMF generalizes the truncated SVD that recursively finds an

approximately optimal rank-1 matrix to the residual. The SVD
sums up the rank-1 matrix to form the low-rank prediction,
while SMF flexibly combines the rank-1 matrix to be aware
of the skewness of node pairs. As a result, the truncated SVD
is a special case for SMF.



10

SMF and ResNet [26] both optimize the residuals in a
layerwise approach. ResNet [26] forces each layer to learn
the residual feature between the output of this layer and
that of the last layer, which efficiently addresses the gradient
vanishing problems for deep neural networks. While SMF not
only forces each layer to approximate the residual, but also
regularizes the structure of the layer to be aware of skewed
latent factors. Accordingly, SMF adapts well to the matrix-
factorization context.

Recall that the rank-1 matrix factorization and the sign
matrix estimation are two conditionally independent optimiza-
tion problems. As a result, the problem of proving SMF’s
convergence is transformed to prove the convergence of the
rank-1 matrix factorization and that of the sign matrix in each
layer.

(i) Rank-1 Matrix
A point x is a stationary point iff its gradient ∇J (x) =0.

Geometrically, x is a local minimum iff x is a stationary point
and there exists a neighborhood area NA(x) of the vector x
such that J (z) ≥ J (x) for any z ∈ NA(x) [32]. We restate
the strict saddle property for twice differentiable functions
such as the rank-1 matrix factorization.

Definition 1 ( [20], [21]). A twice differentiable function J is
(ψ,Ω, ω)-strict saddle, if for any point x at least one condition
holds: (i) ‖∇J (x)‖ ≥ ψ; (ii) λmin

(
∇2J (x)

)
≤ −Ω; (iii) x

is ω-close to the set of local minima.

The strict saddle definition implies that for any point x,
either it has a large gradient, or it has a negative directional
curvature, or it is close to a local minima. Lemma 2 shows
that, the loss function Jk defined in Eq (6) satisfies the strict
saddle condition.

Lemma 2. Let σ∗1 , σ∗r denote the largest and the r-th
singular values of the residual Ek. The loss function Jk is
(ε,Ω (σ∗r ) , O

(
ε
σ∗r

)
)-strict saddle.

The proof of Lemma 2 directly derives from Theorem 4
in [21]. Accordingly, the rank-1 matrix factorization satisfies
that: All local minima are also globally optimal; Any saddle
point has at least one strictly negative eigenvalue in its Hes-
sian matrix, thus local search methods efficiently find points
towards the local minima [20], [21].

Further, the optimization process of the rank-1 matrix with a
random initialization converges to or a local minimizer almost
surely, as described in Lemma C and proved in Appendix C.

Lemma 3. If λ ≥ 0, η < 1
Lsmooth

, where Lsmooth denotes
the smoothness of function J , i.e. ‖∇J (x1)−∇J (x2)‖ ≤
L ‖x1 − x2‖, Algorithm 3 with a random initialization con-
verges to a local minimizer almost surely.

(ii) Sign Matrix
The nonlinear conjugate-gradient optimization converges to

zero gradients, as proved in Theorem 3.5 by Liu et al. [12]
under the following conditions:

Lemma 4. The gradient of the nonlinear conjugate-gradient
method converges to zero, i.e., lims→∞∇gk(s) = 0 given the
conditions:

• g (x) is bounded below on the level set Ł =
{x|g (x) ≤ g (x1)}, where x1 denotes the starting point.
And in some neighborhood of Ł, g is continuously differ-
entiable, and the gradient is Lipschitz continuous, i.e., for
a constant L > 0, such that ‖g (x)− g (y)‖ ≤ L ‖x− y‖.

• The level set Ł = {x|g (x) ≤ g (x1)} is bounded.
• Polak-Ribière scalar γs ≥ 0.
• Strong wolfe line search conditions: A positive step-

length η2 computed by a line search satisfies that
g(xs + η2Λxs) ≤ g(xs) + ρη2∆xs

TΛxs and ∆(xs +
η2Λxs)

TΛxs ≥ σ∆xs
TΛxs , for 0 < ρ < σ < 1.

• Descendent condition: ∆xs
TΛxs < 0.

• Property (*): There exists constants b > 0 and λ > 0
for all k, if |γs| ≤ b, and

∥∥x(s)− x(s− 1)
∥∥ ≤ λ, then

|γs| ≤ 1
2b .

(iii) Discussions
Further, significant efforts [20], [22], [29], [21], [31], [23],

[16], [30], [46] have proved that first-order local search
optimization algorithms have nice convergence guarantee for
general non-convex optimization problems: No spurious local
minimum arise in the optimization landscape; further, simple
local search methods escape saddle points efficiently and find
the exact low-rank matrix from arbitrary starting points with
high probability in polynomial time.

2) Robustness
In practice, some entries of the sign matrix may be incor-

rectly predicted. Specifically, there exists a small probability
that “+1” is flipped to “-1”, “-1” to “+1”, and “0” to “+1” or
“-1”. Note that mapping “+1” or “-1” to “0” does not degrade
the current approximation residual. We next bound the failure
probability that the sign of any server pair is always incorrect
in Theorem 1.

Theorem 1. Let r be the approximation rank and ε the
expected fraction of incorrectly predicted signs. For any server
pair, the expected number of correctly predicted signs amounts
to r (1− ε), the variance is εr (1− ε), and for t > 0, the
number of correct estimations is not within t

√
r (1− ε) from

its expectation is at most ε
t2 .

The proof is put in the appendix. For example, if ε = 0.2
and r = 8, the expected number of correct predictions amounts
to b8× 0.8c = 6, with the variance 0.2 · 8 (1− 0.2) = 1.28.
Further, note that when a sign is mapped to zero from “+1”
or “-1”, then the current approximation will be skipped and
the residual will not change accordingly.

3) Time Complexity
The time complexity of SMF amounts to the sum of time

for each layer, which is spent on finding the rank-1 matrix and
the sign matrix.

(i) Rank-1 matrix: The time complexity of the SGD
algorithm is proportional to the gradient computation. For each
node i, one gradient calculation takes O(np) time, where np
denotes the set of probing targets. N nodes take O(Nnp) time
to compute the gradient for one round. Algorithm 3 needs T
rounds, requiring O(TNnp) time.

(ii) Sign Matrix: The time complexity of the conjugate-
gradient method is linearly proportional to the calculation



11

of the conjugate gradient [18]. Let rs denote the dimension
of the coordinate, it takes O(rsnp) time to compute the
partial gradient and O(npr

2
s) time to derive the conjugate

gradient direction for each node i. Consequently, N nodes
take O(Nnpr

2
s). Algorithm 4 needs T rounds, requiring

O(TNnpr
2
s).

In summary, training a rank-r SMF model needs
O(rTNnp(1 + r2s)) time.

E. Parameter Choices

As the optimization problem is non-convex, it is challenging
to choose optimal parameters for the SMF method. For an
unknown dataset, we propose an offline approach to decide
the number of rank-1 components, the dimension of the sign
matrix, and the regularization constant. We fix all but one
parameters, and incrementally adjust the parameter until the
average relative error does not decrease significantly.

From our empirical experiments, a wide range of parameters
achieve similar degrees of the estimation accuracy. As the ma-
jority of a RTT matrix is typically captured by several singular
values from Figure 4. Therefore, we could select a relatively
small numbers of probing targets and rank-1 matrices, as well
as the dimension of the sign-matrix approximation.

VI. EVALUATION

Having presented the optimization algorithms, we next
systematically evaluate the performance of our method with
some of the state-of-the-art methods on real-world data sets.

A. Experimental Setup

We built a trace-driven controller-agent structured simulator.
We reuse the data sets introduced in Section III-C1 for
the simulator. The simulator parses the trace for continuous
network latency monitoring. During a slice, each agent actively
randomly samples a small set of nodes from the data set
as probing targets, then submits network latency values to
these targets to the controller. The controller collects probed
samples from all agents, then initializes parameters for each
node in the continuous vector space, and adjusts parameters
based on optimization rules until reaching the local minimum.
Afterward, the controller predicts network latency values for
missing node pairs.

Performance metric: We quantify the performance of
unobserved entries using relative error that is widely used
for network latency prediction studies. It is defined as the
ratio between the relative error and the ground-truth value
|Dij−D̂ij|

Dij
for each unobserved node pair (i, j). For each

setting, the simulation runs in ten times. The results reported
show the average relative error.

Default parameters: We choose the default parameters
for SMF to balance the diminishing returns of the expected
relative error and the computational cost, based on the sen-
sitivity analysis in Section VI-D. Specifically, we set the
approximation rank r to 8, the number of probing targets np
to 32, the bias MMMF coordinate dimension rs to 16, and the
regularized parameter λ to one.
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Fig. 9. The CCDFs of relative errors for different methods. We set the number
of probes per node to 32. The x-axis is in log-scale.

Our parameter choices yield sparse matrices. For example,
for a 99-by-99 matrix, setting the number of probing targets
to 32 implies that 32% of matrix entries are observed, while
for a 490-by-490 matrix, it implies that only 6.5% of matrix
entries are observed.

We run experiments on a MacBook-Pro Intel Core i7 with
Quad-core and 16 GB memory.

B. Comparison Results

First, we compare the relative error of our method with
some of the state-of-the-art methods. As we mentioned in
the related work, there are many methods proposed in the
literature for network latency prediction or matrix completion.
We choose four baseline algorithms covering the recent well-
known works: (i) Vivaldi [11]: predicts RTTs in an Euclidean
coordinate system and trains the coordinates via a scalable
spring-force field simulation. Further, Vivaldi incorporates a
height constant to model the access-link portion from end hosts
to the edge. (ii) DMFSGD [33]: predicts RTTs in a low-rank
matrix factorization model and trains the factorized matrices
based on the Stochastic Gradient Descendent (SGD) method.
(iii) Distance feature decomposition (denoted as DFD in the
plot) [34]: predicts RTTs via the product of a low-rank matrix
and a complete weight matrix that are trained by the Vivaldi
method [11] and the Penalty Decomposition (PD) method [55],
respectively. (iv) OR1MP [47]: recovers an incomplete matrix
by incrementally generating a rank-one basis matrix by the
SVD method and linearly combining this matrix to the current
approximation by computing a weight vector in a closed form.

For Vivaldi, DMFSGD and OR1MP, we directly down-
loaded authors’ implementations, while for DFD, we imple-
mented the algorithm based on [34].

For fair comparison, all methods use the same number of
probes, and set the same coordinate dimension and the iden-
tical set of probing targets. We set the regularized parameters
based on the recommended configuration of each method.

We plot the distributions of the relative errors. We set the
number of probing targets to 32 and the coordinate dimension
to eight. We compute the CCDF of relative errors for all
methods. From Figure 9, SMF consistently outperforms the
other methods in three data sets, while DFD, DMFSGD and
Vivaldi are less stable than SMF. OR1MP is less accurate than
SMF, since OR1MP combines a set of rank-one matrices with
a weight vector, which is insufficient to account for skewed
latent factors.
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Fig. 10. The convergence of the MAE values at each round. We plot the
average MAE and the standard deviations.
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Fig. 11. The average relative error as a function of the number of combined
rank-one matrices.

C. Convergence Analysis

Having shown the effectiveness of our method, we next
evaluate the convergence of SMF’s performance.

1) Sign-matrix Prediction
First, we evaluate the convergence of the sign-matrix pre-

diction process, as it determines the convergence of the
selective combination procedure. We quantify the difference
between the estimated sign matrix and the ground-truth re-
sult based on the normalized mean absolute error (MAE):∑

(i,j)∈missing entries |Ŷij−Yij|∑
(i,j)∈missing entriesYij

, where Yij represents the ground-truth

sign from i to j, and Ŷij denotes the estimated sign.
In Figure 10, we plot the average MAE values of the

coordinates at each round. We see that the MAE values mono-
tonically decrease towards the local minimum with increasing
numbers of rounds. Further, the MAE values generally in-
crease as we consider more rank-1 matrix components, while
most incorrect estimations are either mapping “+1” or “-1”
to “0”, since most incorrect signs are adjacent to the correct
values. Accordingly, the estimation accuracy is not affected
by the sign “0”, as it implies that we skip the current rank-1
component entry, therefore,

2) Approximation Residual
Having shown the convergence of the sign matrix prediction,

we next evaluate the relative error of approximation residuals
as we combine more rank-one matrices to the approximation.
In Figure 11, we see that the RTT matrix can be compactly
captured with two to three rank-one matrices. The average
relative error decreases significantly as we combine the sec-
ond and the third rank-one matrices, while combining more
matrices marginally decreases the average relative error.

D. Sensitivity Results

Having presented the convergence of the skewness-aware
matrix factorization, we next test the performance sensitivity
of our method. We fix all but one parameters to default values,
and vary the parameter configuration. We report the average
relative errors and the standard deviation.
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Fig. 12. Sensitivity of the approximation rank as we increase the rank from
4 to 20.
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Fig. 13. Sensitivity of the number of probing targets as we increase the
number from 16 to 48.
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Fig. 14. Sensitivity of the bias-MMMF dimension as we increase the
coordinate dimension from 4 to 20.

1) Approximation Rank
First, we compute the distributions of the relative errors as

we increase the approximation rank r from four to twenty.
In Figure 12, we see that eight to twelve rank-1 components
are enough to obtain an accurate estimation. Further, the
median, the 15-th and the 75-th percentiles of relative errors
are steady on the Planetlab dataset, since the PlanetLab dataset
is approximately low-rank. Comparatively, the relative errors
on the Seattle and RIPE dataset decrease significantly when
we increase the rank from 4 to 8, as these data sets have longer
tails of singular values than the PlanetLab dataset.

2) Number of Measurements for each Node
Next, we evaluate the choice of the number of targets. We

compute the relative errors for each setting. From Figure 13,
we see that the average relative error decreases progressively,
and 32 is enough to obtain relatively accurate results.

3) Biased-MMMF Dimension
Next, we vary the choice of the coordinate dimension for

predicting the sign matrix and plot the relative-error distribu-
tion. In Figure 14, we see that setting the dimension to 12 to 16
is enough to obtain a relatively high degree of estimation. The
median relative error decreases marginally on the PlanetLab,
but decrease progressively on the Seattle and RIPE datasets,
which also holds for the 15-th and 75-th percentiles of the
relative errors.

4) Regularization λ
Next, we study the performance sensitivity with respect to

the regularized parameter λ that controls the extent of the
regularization. We vary the regularized parameter from 0.4 to
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Fig. 15. Sensitivity of the regularization parameter λ as we increase the
regularized parameter λ from 0.4 to 2.
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Fig. 16. The average relative error and the standard deviation of the found
relay as a function of the number of targeting detouring hosts. For a set
of nodes (T1, . . . , TL) of size $ that need detour routing, we define
the optimal relay as the one that minimizes the average network latency:
1
$

∑$
j=1

(
dTjRO

+ dROTj

)
We quantify the detouring performance for

each node pair by comparing the optimal relay selected from the ground-
truth network latency matrix and that from the estimated all-pair network

latency matrix:

∣∣∣∑$
j=1

(
dTjRf

+dRfTj

)
−
∑$

j=1

(
dTjRO

+dROTj

)∣∣∣∑$
j=1

(
dTjRO

+dROTj

) , where

Rf and RO denote the estimated relay and the optimal relay respectively.

2 and compute the relative error distribution for each setting.
From Figure 15, the relative error keeps steady as we change
the regularized parameter, thus the prediction is less sensitive
to the regularization than other parameters.

Summary: From the sensitivity analysis, a wide range
of parameters yield similar accuracy. Therefore, we should
choose modest parameters in order to trade off well between
the accuracy and the computation complexity.

E. Use Case: Predicting Latency-optimal Detouring Servers

Having evaluated the performance of SMF, we next evaluate
the performance gains for selecting detouring routing nodes
that act as proxies to forward packets for end hosts, such as
Internet telephony [28]. Given a group of clients that need
detour routing via a relay, we choose a server from the overlay
with the minimal average RTT value towards this group of
clients.

Figure 16 plots the variations of the average relative errors
of the found relay as we vary the number of relayed hosts.
We can see that on the PlanetLab dataset, our method and
DMFSGD obtain the most accurate relays, since the PlanetLab
dataset can be well approximated via a low-rank model, while
on the Seattle and RIPE datasets, our method significantly
outperforms the other methods.

VII. CONCLUSION

Monitoring pairwise RTT status in a service mesh is vital for
network troubleshooting and performance management. How-
ever, an all-pair probing approach faces severe scaling limita-
tions. Existing matrix factorization based methods overcome

the scaling limitations, but could not truthfully capture the
skewed distributions of latent factors in the RTT distributions.

We address this challenge by proposing a skewness-aware
matrix factorization method named SMF to adaptively select
latent factors for different node pairs. We extend the orthog-
onal matching pursuit algorithm to the matrix factorization
context, by incrementally combining a new rank-one matrix
weighted by their correlations with the current approximation
residual. We propose an automatic combination method based
on the logical connection between the selection policies and
the recommendation system. Extensive experiments over real-
world data sets show that SMF significantly improves the
relative error by a factor of 0.2x to 10x, converges fast and
stably, and captures fine-grained local and global network
latency structures with two to three rank-one matrices.

Although this paper focuses on a software-defined mea-
surement architecture, we can decompose the representation
model to decentralized components. First, a rank-1 matrix
can be decomposed to separable models with respect to each
node. Second, the sign matrix model can be decomposed to
separate coordinates, as already proven in previous studies in
[17], [18]. After we decompose the representation model, we
may optimize tuples a decentralized procedure, which is left
as future work.
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APPENDIX

Note: The material in this Appendix is included for reviewer
information only. It will be included in the supplementary
material in the final version.

A. Proof of Lemma 1

Lemma 1: Assume that we obtain the perfect sign matrix,
for all k ≥ 1, ‖Ek+1‖ ≤ ‖Ek‖

Proof. For all k ≥ 1

‖Ek+1‖ = ‖Ek + βk+1. ∗Xk+1‖
=
∥∥minβk+1,Xk+1

(Ek, Ek + βk+1. ∗Xk+1)
∥∥ ≤ ‖Ek‖

holds, which completes the proof.

Therefore, it is vital to control the estimation accuracy of
the sign matrix.

B. Algorithm Pseudocodes

(i) SignRule(Ek [i, j], Xij ), Algorithm 2:
(ii) RankOne(|Ek|), Algorithm 3:
(iii) SignMatrix(βk), Algorithm 4:
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Algorithm 2: The rule of calculating the sign for an
observed node pair (i, j).

1 SignRule(Ek [i, j], Xij)
input : Ek [i, j]: Current approximation residual, Xij :

rank-one esimtation for pair (i, j)
output: Sign βk [i, j].

2 if |Ek [i, j] + Xij ]| < |Ek [i, j]| then
3 Set βk [i, j] = “+1”;

4 else if |Ek [i, j]−Xij ]| < |Ek [i, j]| then
5 Set βk [i, j] = “-1” ;

6 else
7 Set βk [i, j] = “0”;

8 return βk [i, j] ;

Algorithm 3: SGD based rank-one matrix optimization.
1 RankOne(|Ek|)

input : Partially observed residual |Ek|, learning rate η1,
optimization rounds T

output: Fk, Gk
2 for t = 1, 2, · · · , T do
3 for i ∈ 1, 2, · · · , N do
4 Compute the partial gradients of ∂J

∂Fk(i)
and ∂J

∂Gk(i)
of

node i as:
∂J

∂Fk(i)
= λFk (i)

(
FTk Fk −GTkGk

)
−∑

j∈Si
(|Eij | − Fk(i)Gk(j))Gk(j)

∂J
∂Gk(i)

= −λGk (i)
(
FTk Fk −GTkGk

)
−∑

j∈Si
(|Eji| − Fk(j)Gk(i))Fk(j)

(9)

5 Update the coordinate as:

Fk(i) = Fk(i)− η1 ∂J
∂Fk(i)

Gk(i) = Gk(i)− η1 ∂J
∂Gk

(i)
(10)

6 return Fk, Gk;

C. Convergence Analysis of the Rank-1 Matrix

For a twice differentiable function such as the rank-1 matrix
factorization, a vector x is a local minimum iff it is a stationary
point and satisfies that the Hessian matrix ∇2J (x) is positive
definite. A vector x is a strict saddle point iff it is a stationary
point and satisfies that the minimum eigenvalue of the Hessian
matrix ∇2J (x) is less than zero, i.e., λmin

(
∇2J (x)

)
< 0

[21]. Further, if λmin
(
∇2J (x)

)
= 0, then x is either a local

minima or a degenerate saddle point.
Lemma: If λ ≥ 0, η < 1

Lsmooth
, where Lsmooth denotes

the smoothness of function J , i.e. ‖∇J (x1)−∇J (x2)‖ ≤
L ‖x1 − x2‖, Algorithm 3 with a random initialization con-
verges to a local minimizer almost surely.

Proof. Lemma 5 states that the gradient descendent algorithm
efficiently finds points towards the local minima, given that
the step size η is less than 1

Lsmooth
, where Lsmooth denotes

the smoothness of the objective function J .

Lemma 5 ([31]). For any twice continuous differentiable
function that satisfies the strict saddle property, if η <

1
Lsmooth

, where Lsmooth denotes the smoothness of function,
i.e. ‖∇J (x1)−∇J (x2)‖ ≤ L ‖x1 − x2‖, the gradient de-

Algorithm 4: Sign matrix optimization.
1 SignMatrix(β)

input : Partially observed sign matrix β, learning rate η2.
output: ~u, ~v, ~θ and b

2 for s = 1, 2, · · · , T do
3 for i ∈ 1, 2, · · · , N do
4 Let the gradient of xi be

∇xJ (xi) =

[
∂J

∂ui
;
∂J

∂vi
;
∂J

∂θi
;
∂J

∂bi

]
(11)

where ∂J
∂u

, ∂J
∂v

, ∂J
∂θ

, ∂J
∂b

are the partial derivatives with
respect to ~ui, ~vi, ~θi and bi:

∂J

∂uiz
= λuiz −

∑
j∈Si

2∑
c=1

T cij [βij ] ·h′
(
T cij [βij ] ·

(
θic − β̂ij

))
vjz

(12)

∂J

∂viz
= λviz −

∑
j∈Si

2∑
c=1

T rji [βji] ·h′
(
T cji [βji] ·

(
θjc − β̂ji

))
ujz

(13)
∂J

∂θic
=
∑
j∈Si

T cij [βij ] ·h′
(
T cij [βij ] ·

(
θic − β̂ij

))
(14)

∂J

∂bi
= λbi −

∑
j∈Si

2∑
c=1

T cij [βij ] ·h′
(
T cij [βij ] ·

(
θic − β̂ij

))
(15)5

6 Calculate the nonnegative Polak-Ribière scalar γi [12]
by ensuring that the updated Λxi(s) and Λxi(s− 1)
must be conjugate:

γi = max(0,
∆xi(s)

T (∆xi(s)−∆xi(s− 1))

∆xi(s− 1)T∆xi(s− 1)
) (16)

We set ∆xi(0) = −∇xJ (xi(0)), and
Λxi(0) = ∆xi(0);

7 Calculate the conjugate gradient Λxi(s) as

Λxi(s) = ∆xi(s− 1) + γiΛxi(s− 1) (17)

where ∆xi(s− 1) denotes the negative gradient ∇xJ ,
i.e.,

∆xi(s) = −∇xJ (xi(s− 1)) (18)

and Λxi(s− 1) denotes the conjugate direction in the
(s− 1)-th round;

8 Update the vector xi(s) = xi(s) + η2Λxi(s);
9 Update the coordinate

[
~ui; ~vi; ~θi; bi

]
= xi(s);

10 return ~u, ~v, ~θ and b;

scendent algorithm with a random initialization converges to
a local minimizer or −∞ almost surely.

Further, since λ ≥ 0, the objective function J is non-
negative, thus the objective function J converges to a local
minimizer almost surely.

D. Proof of Theorem 1

Theorem 1: Let r be the approximation rank and ε the
expected fraction of incorrectly predicted signs. For any server
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pair, the expected number of correctly predicted signs amounts
to r (1− ε), the variance is εr (1− ε), and for t > 0, the
number of correct estimations is not within t

√
r (1− ε) from

its expectation is at most ε
t2 .

Proof. Assume that the sign matrix can be correctly predicted
for at least (1− ε) (for ε ∈ [0, 1]) fractions of entries in each
iteration, and that the incorrect signs are spread uniformly at
random over the matrix. Then the sign of any server pair is
incorrectly predicted with a probability ε. For any matrix entry
(i, j) and the index k, ‖Ek+1 [i, j]‖ ≤ ‖Ek [i, j]‖ holds with
a probability (1− ε).

Since the sign matrices of different iterations are indepen-
dent with each other, the always-failure probability is at most
εr, which decreases exponentially to zero with increasing rank
r. For example, if ε = 0.1 and r = 8, the always-failure
probability amounts to εr = 0.18 ≈ 0.

Generally, let Zk [i, j] be an indicator function of whether
the estimated sign is correct for the k-th iteration:

Zk [i, j] =

{
1 β̂ [i, j] == β [i, j]

0 β̂ [i, j] 6= β [i, j]

We can see that the probability Pr(Zk == 1) = 1 − ε.
Let Z [i, j] be the random variable of the number of correct
predictions for the server pair (i, j). Then we have

Z [i, j] =

r∑
k=1

Zk [i, j] (19)

The expected number of correct predictions for the server pair
(i, j) can be calculated as:

E [Z [i, j]] = E [
∑r
k=1 Zk [i, j]]

=
∑r
k=1E [Zk [i, j]]

=
∑r
k=1 (1× (1− ε))

= r (1− ε)

(20)

Further, the variance of the number of correct predictions can
be written as:

V ar (Z [i, j]) = V ar [
∑r
k=1 Zk [i, j]]

=
∑r
k=1 V ar [Zk [i, j]]

=
∑r
k=1

(
E
[
(Zk [i, j])

2
]
− (E [Zk [i, j]])

2
)

=
∑r
k=1

((
12 × (1− ε)

)
− (1− ε)2

)
= εr (1− ε)

(21)

By the standard Chebyshev’s inequality, for δ > 0, we have

P (|Z [i, j]− r (1− ε)| > δ) ≤ εr (1− ε)
δ2

By taking δ = t
√
r (1− ε), where t > 0, we have

P
(
|Z [i, j]− r (1− ε)| < t

√
r (1− ε)

)
≥ 1− ε

t2
(22)

which implies that the probability that a particular Z [i, j] not
within t

√
r (1− ε) from its expectation is at most ε

t2 .


