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Abstract

A neural network noise prediction model for a turbulent boundary layer noise mech-
anism has been created using a feed forward multilayer perceptron and a noise spec-
trum database collected from a family of NACA 0012 aerofoils. The results of the
neural network model were compared against the Brooks model and it was found
that the quality of the prediction was improved over the entire range of the data.
The model was also validated against experimental data not utilised the training of
the neural, with positive results.
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1 Introduction

"The noise generated by an aircraft is an efficiency and environmental issue for
the aerospace industry. NASA have issued a mandate to reduce the external
noise generated by the whole airframe of an aircraft by 10 decibels (dB) in the
near term future [13]. A component of the total airframe noise is the self-noise
of the aerofoil itself; this is defined as the noise generated when the aerofoil
passes through smooth non-turbulent inflow conditions. The noise is generated
through an interaction of the aerofoil with its own boundary layer and/or the
near wake region.
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There have been various modeling attempts to predict the noise of an aero-
foil. Howe [11] reviewed the various methodologies and grouped the different
approaches into three groups:

- Theories based upon the Lighthill acoustic analogy [12],

- Theories based on the solution of special problems approximated by the
linearised hydrodynamics equations [1] [2] [8],

- Semi-empirical models [4].

An example of a semi-empirical model is the model of Brooks, Marcolini and
Pope [4], referred to here as the Brooks model. This model was formulated
from an extensive set of acoustic wind tunnel tests, upon several different
chord length NACA 0012 aerofoil sections. By using a scaling rule to scale
the noise generated by the aerofoil (see Section 4.1) a noise prediction model
dependent on the frequency of the noise, the angle of attack,the freestream
velocity and the geometric parameters of the aerofoil was created. More details
on the experimental procedures and the modeling methodology for the Brooks
model are contained within [4]. Formulated in 1989 the Brooks model is still
utilised for noise prediction in wind turbine designs ! .

2 Data Modeling

Both the Brooks model and the neural network model in this paper are exam-
ples of data modelling, or function regression. The aim of function regression
is to model the conditional distribution of the output variables, conditioned
upon the input variables. Using an input-target data set, a function relating
the input variables to the output variables can be approximated [3].

Determining the correct function complexity is often complicated by the pres-
ence of random noise in the input-target data set. The aim is to determine
the most appropriate model complexity which represent the trends within the
data, whilst ignoring the specifics of the noise. If the model complexity is too
simple, then the data is under-fitted and the trends in the data are ignored;
conversely if too complex then the data is over-fitted and the model cannot
differentiate between the trends in the data and the noise. The choice of model
complexity is a design variable and is discussed in Section 4.2.

! NREL Airfoil Noise: http: //wind.nrel.gov/designcodes /simulators /NAFNoise/



3 Neural Networks

A neural network is a collection of data processing units, termed neurons,
interconnected to each other. Each neuron adopts a different state depending
upon the inputs of the network. Output neurons then interpret these states,
yielding the output of the network. Neural networks can be adapted to a
multitude of different tasks by adapting the free parameters of the network
until the correct output is achieved. This flexibility allows the neural network
to model the functional dependency of any problem. The complexity of this
modeling ability is determined by the number of neurons utilised within the
neural network.

Neural networks are capable of representing any function in any dimension
and up to any desired degree of accurac) They have been described as uni-
versal approximation functions [10], making neural networks an ideal tool for
function regression. In this paper a noise prediction model has been created
by performing function regression using a neural network with an input data
set of aerofoil parameters and a target output of the aerofoil noise emissions.
Artificial neural networks have also been successfully applied to a range of
aeronautical issues in fault diagnostics, modeling and simulation and control
systems [6].

The artificial neural network application used in this paper is the open source
neural networks C++ library Flood 2. The artificial neural network type utilised
by Flood is known as the multilayer perceptron. The four components of this
artificial neural network are described in the following sections.

3.1 Neuron Model

The neuron model used by Flood is the perceptron. This forms the charac-
teristic component of the mulitlayer perceptron. A perceptron is defined by
3 different parameters: the free parameters of the perceptron, a combination
function and an activation/transfer function [9] and [14].

The free parameters of each perceptron consists of a bias value b, and a vector
of synaptic weights w’ = [wi, ..., w,], where n corresponds to the number
of input nodes. The combination function 4 within the perceptron determines
the dot product of the input signal vector, x = [21,...,2,)7, with the synaptic

weight vector plus the bias value.

The output of the combination function is termed u, and is passed to the

? www.CIMNE.com/flood



activation function. The activation function g(u) yields the output signal of
the perceptron, y. There are a variety of activation functions that can be
used [5], but the most frequently used activation functions are the linear and
sigmoid functions [9]. Equation 1 defines the output of the perceptron in terms
inputs and the free parameters.

y(x;0,w) =g <b + iwifﬂz) (1)

i—1
3.2  Network Architecture

The manner in which the neurons within the network are connected together
and arranged is described as the network architecture. The characteristic net-
work architecture used in the multilayer perceptron is the feed forward ar-
chitecture [14]. The feed-forward network architecture typically consists of an
input layer of sensorial nodes, one or more layers of hidden neurons and an
output layer of neurons. Information passes from the input layer to the output
layer via the hidden layers.

The output at some node yy, is given as a combination of the outputs of all
the individual perceptrons in the hidden layer. This is expressed as shown in
Equation 2.

h1 n
yk(x;a) = g (b,(f) + ng) . g (bg-l) - ZlU](l)l’i)) (2)
i=1

J=1

The index k extends over the outputs, k =1, . .. s Nowtputs- The index j extends
over the hidden layer, j = 1,...,hy. The superscripts (1) and (2) refer to
the hidden and output layer, i.e. the function g™ refers to the activation
function of a perceptron in the hidden layer and the function 7@ to a output
perceptron.

3.2.1 Objective Functional

The suitability of the neural network model is evaluated using an objec-
tive functional, which measures the quality of the output against the target
data. For this application the objective functional used is the mean squared
error (MSE). The MSE is calculated as the square of the difference be-
tween the known output (Ymeasurea)and predicted output of the neural net-
work (Ypredictea), summed over all of the samples and averaged using the total
number of samples.



Defined in terms of the parameters of the multilayer perceptron, the MSE is
given as shown in Equation 3. The index ¢ extends over () samples of the
input-target data set, and the index k over the number of outputs of the
system. The term ¢, is the target output of the system; zero error is achieved
when the output of the system y;. is equal to .

MSEfy (x z (3 i) - 7] 0

3.8  Training Algorithm

The magnitude of the error between the neural network output and the target
data is reduced by optimising the free parameters of the multilayer perceptron
(a) using a training algorithm.

The training algorithm used in this application was the conjugate gradient
method [15]. This is a first order algorithm, as it uses both the objective
function and its gradient vector to optimise the free parameters in the network.

4 Noise Prediction Neural Networks

A neural network has been created to model the noise generated by turbulent
boundary layer noise mechanism. This noise is generated at high Reynolds
number flow conditions, where the boundary layer upon the aerofoil is tur-
bulent; noise occurs from the boundary layer itself and when the turbulence
passes over the trailing edge of the aerofoil and mixes with the free-stream
flow.

4.1 Input-Target Data

The input-target data set was created from a noise database taken by digitis-
ing the appropriate figures from [4]. The database contains 1503 entries and
consists of the following variables:

Database Variables: frequency (Hz), angle of attack (°), chord length (m),
span (m), freestream velocity (ms™!), suction side displacement thickness >

3 The suction side displacement thickness was determined using an expression de-
rived from boundary layer experimental data from [4].



(m), retarded observer distance (m), observer position angles [§ and ¢] (°)
and sound pressure level? (dB)

The input-target data set was created by using a scaling rule to reduce this
set of 9 variables to 5. Following the methodology of the Brooks model the
9 variables are scaled using a pressure noise scaling observation from Ffowcs-
Williams and Hall [7], reducing the 9 input variables to 5. The final 5 input
variables and single target variable are:

Input Variables: frequency (Hz), angle of attack (°), chord length (m),
freestream velocity (ms~') and suction side displacement thickness (m)
Output/Target Variable: Scaled sound pressure level (dB)

The scaled sound pressure level is given by Equation 4. The terms M, L, ox
and 7 are the Mach number, aerofoil span, suction side displacement thickness
and the retarded observer position respectively.

0rL
Scaled SPL1/3 = SPL1/3 — 10 lOg <A/[55—2

Te

) (W

For all of the data sampled the directivity factor, D, is equal to unity. This
corresponds to an observer position normal to the surface of the trailing edge.

4.2 Training Results

"To determine the correct functional complexity for our neural network model,
several different neural networks with differing complexity were created. These
were all trained with the same training data set. The model complexity was
then assessed using a separate validation data set; using this data set it can
be seen if the current model is over or under-fitting the data.

The validation data set consists of all the data from the 10.16 cm chord length
aerofoil. This set contains 263 samples, representing approximately 18% of the
full database. The training data set consists of the remaining data. The neural
networks were trained with the training data set with the following stopping
criteria:

Evaluation Goal: 0.001,

Gradient Norm Goal: 0.0,

e Maximum Training Time: 1000000 seconds,
e Number of Training Epochs: 15000.

4 Note that the sound pressure level is sampled in the 1/3 octave spectrum



After this training the error (MSE) was then evaluated using the validation
data set. The training and validation data can be seen in Table 1. From the
training and validation MSE for neural networks with 5, 10 and 15 neurons in
the hidden layer it can be seen that with 5 neurons in the hidden layer there
is under-fitting, and with 15 there is over-fitting for the data.

Table 1
- Training and validation error.

Number of Neurons 5 10 15

Training Error 6.722  3.731  2.500
Validation Error 15.093 12.094 19.866

5 Noise Prediction Results

After determining the optimal network architecture as 5:10:1, this multilayer
perceptron was then trained for a further 5000 epochs using all of the available
data. Figure 1 shows the noise prediction of the neural network model against
experimental data and the Brooks model. It can be seen that the Brooks
model over and under-predicts the SPL at both low and high frequency values,
whereas the neural network prediction closely follows the experimental data.
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Fig. 1. Neural network prediction against experimental data and Brooks model
prediction for a 15.24 cm chord length aerofoil at a = 12.6° and freestream velocity
of 39.6ms ™!

The accuracy of the Brooks model and the fully trained neural network over
all of the experimental configurations is displayed in Figures 2 and 3 respec-
tively. The broken line shown in both plots represents the optimal model, in
which the prediction matches the experimental data. It can be seen that the



Brooks model predicts substantially lower values of the SPL at low SPL values,
showing that the Brooks model is under-fitting the data. Compare this to the
neural network model which provides a better fit across all of the equipment
configurations.
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Fig. 2. Regression plot for the Brooks model; correlation coefficients R? = 0.654
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Fig. 3. Regression plot for the neural network model; correlation coefficients
R?=0.917

6 Additional Experimental Data

The Brooks model was validated using data from addition experiments on a
NACA 0012 aerofoil [16]. Similarily this experimental data can also be used
to test the neural network model. The aerofoil used in these experiments has
the same profile but with a chord length of 0.229 m and a span of 0.533 m.
The experiments were also conducted at a different observer distance (r,=2.81
m) and over a different range of freestream velocities; but the observer posi-
tion remains the same as before. The prediction of a single experiment using
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Fig. 4. Noise prediction results of a 22.9 cm chord length aerofoil at o = 3.9° and a
freestream velocity of 61.3ms™!

the neural network model is shown in Figure 4. The suction side displace-
ment thickness inputed into the neural network model was evaluated using
the boundary layer expressions determined in [4] for an untripped boundary
layer, corresponding to the experimental conditions. It can be seen that at the
lower frequency values the neural network model closely follows the experimen-
tal data. At the high frequencies the prediction is lower than the experimental
values, but still follows the spectral shape of the noise.

7 Conclusions and Future Work

In this paper it has been shown that neural networks can be successfully ap-
plied to the problem of aerofoil noise prediction. The noise output of an aerofoil
has been parameterised using a noise scaling rule and the geometric parame-
ters of the aerofoil. After determining the optimal neural network complexity,
the prediction quality of the neural network has been compared against the
existing Brooks model. Upon reviewing the prediction quality of all the ex-
perimental configurations tested, it was shown that the neural network model
provided better results across the entire range. The prediction quality of the
neural network was also verified upon data not included in training the neural
network, with positive results shown.

It is possible to extend the work shown here to different noise mechanisms not
covered in this paper. Also contained within the Brooks paper is data from
a laminar boundary layer noise mechanism and the associated semi-empirical
model. This model also exhibits regions of under-fitting and can be further
improved upon.
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