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Abstract

In this paper, the acrodynamic shape optimization problems with uncertain operat-
ing conditions has been addressed. After a review of robust control theory and the
possible approaches to take into account uncertainties, the use of Taguchi robust
design methods in order to overcome single point design problems in Aerodynamics
is proposed. Under the Taguchi concept, a design with uncertainties is converted
into an optimization problem with two objectives which are the mean performance
and its variance, so that the solutions are as less sensitive to the uncertainty of the
input parameters as possible. Furthermore, the Multi-Criterion Evolutionary Algo-
rithms (MCEAs) are used to capture a set of compromised solutions (Pareto front)
between these two objectives. The flow field is analyzed by Navier-Stokes computa-
tion using an unstructured mesh. The proposed approach drives to the solution of a
multi-objective optimization problem that is solved using a modification of a Non-
dominated Sorting Genetic Algorithm (NSGA). In order to reduce the number of
expensive evaluations of the fitness function a Response Surface Modeling (RSM) is
employed to estimate the fitness value using the polynomial approximation model.
During the solution of the optimization problem a Semi-torsional Spring Analogy
is used for the adaption of the computational mesh to all the obtained geometrical
configurations. The proposed approach is applied to the robust optimization of the
2D high lift devices of a business aircraft by maximizing the mean and minimizing
the variance of the lift coefficients with uncertain free-stream angle of attack at
landing and takeoff flight conditions, respectively.
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1 Introduction

In spite of the important effect of operating- and manufacturing-uncertainties
on the performance, traditional aerodynamic shape optimization has focused
on obtaining the best design given a set of deterministic flow conditions.
Clearly, it is important to maintain near-optimal performance levels at off-
design operating conditions, and to ensure that performance does not degrade
appreciably when the component shape differs from the optimal one due to
manufacturing tolerances and normal wear and tear. These requirements nat-
urally lead to the idea of robust optimal design wherein the concept of robust-
ness in front of different perturbations is built into the design optimization
procedure.

The recognition of the importance of incorporating the probabilistic nature of
the variables involved in designing and operating complex systems has led to
several investigations in the recent past. Some of the basic principles of robust
optimal design are discussed by Egorov et al.[1]. They make the observations
that a) robust design optimization is in essence multi-objective design opti-
mization because of the presence of the additional objective (robustness) and,
b) the addition of the robustness criterion may result in an optimal solution
that is substantially different from that obtained without this criterion. Dif-
ferent approaches to robust optimal design are also mentioned in this paper.

The main objective of this paper is to develop a robust aerodynamic opti-
mization scheme for achieving consistent improvements of the performance
over a given range of uncertainty parameters. This scheme has the following
two major advantages: (a) it prevents severe degradation in the off-design
performance, and (b) it is not sensitive to the number of design points.

The imposition of the additional requirement of robustness results in a multiple-
objective optimization problem requiring appropriate solution procedures. Typ-
ically the costs associated with multiple-objective optimization are relevant.
Therefore, efficient multiple-objective optimization procedures are crucial for
the rapid deployment of the principles of robust design in industry. Here, we
focus on the applications of an evolutionary algorithm for multiple-objective
optimization [2] by using Pareto front concept. Applications of this evolution-
ary method to some difficult model problems involving the complexities (con-
vex, non-convex, discrete or discontinuous Pareto Front) are also presented in
Ref.[2]. The computed Pareto-optimal solutions closely approximate the global
Pareto-front and exhibit good solution diversity. Many of these solutions were
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obtained with relatively small population sizes.

The final goal of this study is to propose an algorithm to take into account the
uncertainties related with fluctuating operating conditions integrating them
into an automatic shape optimization problem in aerodynamics. We propose
to use Taguchi robust design methods in order to overcome single point design
problems. The latter techniques produce solutions that perform well for the
selected design point but have poor off-design performance. Under the Taguchi
concept, a design with uncertainties is converted into an optimization problem
with two objectives which are mean performance and its variance, so that the
solutions are as less insensitive to the uncertainty of the input parameters as
possible. Furthermore, the Multi-Criterion Evolutionary Algorithms (MCEAS)
are used to capture a set of compromised solutions (Pareto front) between
these two objectives. The flow field is analyzed by Navier-Stokes computation.
In order to reduce the number of expensive evaluations of fitness function,
Response Surface Modeling (RSM) is employed to estimate fitness value using
the approximate model. During the solution of the optimization problem a
Semi-torsional Spring Analogy is used to adapt a single computational mesh
to all geometrical configurations obtained during the optimization process.
The proposed approach is applied to the robust optimization of the 2D high
lift devices of a business aircraft, by maximizing the mean and minimizing the
variance of the lift coefficients under uncertain free-stream angle of attack at
landing and takeoff flight conditions respectively

2 Robust Control and Taguchi Methodology

Many products are now routinely designed with the aid of computer mod-
els. Given the inputs designable engineering parameters and the parameters
representing manufacturing process conditions the model generates the prod-
uct’s quality characteristics. The quality improvement problem is to choose
the designable engineering parameters such that the quality characteristics
are uniformly good in the presence of variability of different conditions.

We consider objective functions of the form f: X ® B — R, where z € X
represents decision variables, inputs (designs) controlled by the engineer, b €
B represents uncertainty, inputs not controlled by the engineer, and f(z,b)
quantifies the loss suffered by design z under the uncertain conditions b.

Our (unattainable) goal is to find x* € X such that, for every b € B,

f(z*,b) < f(x,b) VereX (1)

The unsolvable problem of finding z* € X that simultaneously minimizes



f(z,b) for each b € B is the central problem of statistical decision theory: and
a decision rule that simultaneously minimizes risk for every possible state of
nature. A standard way (e.g., Ferguson[3]) of negotiating this problem is to
replace each f(x,-) with a real-valued attribute of it, e.g.,

Minimax Principle :

min ¢(x), where ¢(x) = sup f(x;b). (2)

zeX beB

Bayes Principle :

min ¢(z), where ¢(x) :/f(x,b)p(b)db (3)

zeX
B

where p denotes a probability density function on B.

The minimax principle is extremely conservative. It seeks to protect the
decision-maker against the worst-case scenario. The Bayes principle seeks to
minimize average loss in a way that can be customized (via the choice of p)
to the application. This formulation of the quality control problem was first
proposed by Welch, Yu, Kang, and Sacks[4], although their suggestion appears
to have had little effect on engineering practice.

Although the above formulation and proposed solution of the quality improve-
ment problem is modern, the problem itself predates the engineering commu-
nity’s use of computer models. To motivate our own approach to this problem,
and the more general robust design problem, we briefly summarize the con-
tributions of G. Taguchi. See Roy[5] for a broader context and more detailed
discussion of Taguchi’s far-ranging contributions to quality engineering.

In the statistical approach, one consider the fluctuating operating conditions
b = (b;)i=1... n as samples of random variables B = (B;);=1,... n, whose sta-
tistical characteristics are known (mean up = (u')i=1..n, variance og =
(U%i)i:17.,_7]\,, etc). One also suppose, for the sake of simplicity, that the ran-
dom variables (B;);=1,. n are independent. The statistical characteristics of
operating conditions can be determined by experimental measurements or
engineering experience. Gaussian Probability Density Functions (PDFs) or
truncated Gaussian PDF's are often used in practice (see [6] for instance).

The main consequence of this assumption is that the cost function of the prob-
lem is also a random variable f. According to the Von Neumann-Morgenstern
decision theory, the best choice is then to select the design which leads to
the best expected fitness. This is known as the Maximum Expected Values



(MEV) criterion. The decision or design that minimizes the risk is known as
the Bayes’ decision and is solution of the following problem:

Minimize py = / f(z,b)pp(b)db, x € R", (4)
Q(B)

Q(B) and pp are the range and the PDF of the random variable B. Then, the
MEV criterion just consists in minimizing the statistical mean s of the cost
function.

This approach is a significant improvement over previous methods. The robust
design problem is now considered with a rigorous statistical framework. This
allows to take into account the random fluctuations of the fitness in the opti-
mization problem, but also to take care about the frequency of the occurrence
of the events, thanks to PDFs. Then, the most probable events have a larger
influence in the decision than extreme and unlikely events.

However, problem (4) does not address the variability of the fitness. The mean
value of the fitness is the only criterion that is considered in the Bayes’ deci-
ston. For engineering problems, one also would like to select a design for which
the fitness is not subjected to large variations when operating conditions fluc-
tuate. Then, a second criterion is often joined to the MEV criterion that relies
on the minimization of the variance UJ% of the fitness:

by = / (. b)pn(b)db

Minimize , X e R, (5)
/ — 17’ (b)db
a(B)

This approach aims at determining a trade-off between the expected fitness
and the expected fitness variation as operating conditions randomly fluctuate.
Although this approach is satisfactory from theoretical and practical view-
points, its application is not straightforward. Particularly, the estimation of
the mean and variance can be tedious for complex CFD applications. This
issue is detailed below. To estimate the mean and variance of the random
variable f, one can simply use statistical estimators in a classical Monte-Carlo
approach. A sample of operating conditions (b;);—1__n if size N is generated
according to the PDF pp. Then, unbiased estimators of the mean and variance



are:

This approach does not suffer from point-optimization effect since the sample
(b;)i=1....~ is generated randomly according to the PDF pg.

3 Multi-Objective GAs

The approach described in the previous section drives to the solution of a
multi-objective optimization problem. The test cases presented in this work
have been solved using a modification of a Non-dominated Sorting Genetic
Algorithm (NSGA).

There exist several variants of GAs for multi-objective optimization problems;
see for example Vector Evaluated GAs (VEGAS)[7] and Non-dominated Sort-
ing GAs (NSGAs)[8]. For further information on GAs for multi-objective opti-
mization see Reference [9] and references therein. In the following, we describe
the basic ideas of NSGA.

The fitness values are computed using the following procedure:
ALGORITHM: Non-dominated Sorting

Choose a large dummy fitness value F;

repeat

Find the non-dominated individuals among the individuals whose fitness
values are not set;

Set the fitness value of individuals found in previous step to F;
Decrease the dummy fitness value;
until (fitness values of all individuals are set)

The GAs used is based on NSGA. Since our key idea is to employ the tourna-
ment selection, it is necessary to make some modifications. The fitness values



are computed exactly in the same way as in NSGA. For each tournament, a
fixed number of individuals are selected randomly. The individual which has
the highest fitness value wins the tournament, i.e., it is selected to be a parent
in the breeding. If there are several such individuals then the first one to enter
the tournament wins.

Unfortunately, if there were no modifications to the previous tournament se-
lection, the population would usually converge towards one point on the set
of Pareto optimal solutions whereas the aim was to obtain several points from
the Pareto set. Therefore, some kind of mechanism is required in order to
maintain diversity in population. The most obvious way would be to use the
fitness value sharing. It has been shown that this approach fails to preserve
the diversity in population [10]. Therefore, a modified algorithm is proposed.

Instead of using any of the previously considered methods, we employ a new
way to preserve the diversity of the population. We shall call this approach a
tournament slot sharing. A sharing function is defined by

di \?
1- ( E ) ;Zf dij < Oshare
O share

Sh(d;;) = (7)

0, otherwise,

where d;; is the genotypic distance between the individuals ¢ and j, i.e., in our
case the Euclidean distance between the vectors defining the designs ¢ and j.
The parameter o4 is the maximum sharing distance for a tournament slot.
This very same sharing function Sh(d;;) is also used in the classical fitness
value sharing. Now, the probability for the individual 7 to enter a tournament
is computed using the formula

b = 1/ 3271 Sh(di;)
b (1) %, Sh(dyy))

(8)

where the parameter n is the size of population. Hence, this is the same as
the roulette wheel selection for the rivals in a tournament. Each individual’s
slice of roulette wheel is proportional to the inverse of the sum of all sharing
functions associated to this individual.

An elitist mechanism is added to our algorithm since it guarantees the cost
function values to decrease monotonically from one generation to the next.
Also, it usually accelerates the convergence. This is implemented by copying
from the old population to the new population all the individuals which would
be non-dominated in the new population. Hence, the number of copied indi-
viduals varies from one generation to another. For coding, we have used the



floating point coding [11]. This is a rather natural choice, since the design is
defined by a vector of floating point numbers. The crossover is made using one
crossover site.

The mutation uses a special distribution promoting small mutations. More
precisely, the mutation is performed in the following way for a single string:
the floating point numbers of the string under consideration are gone through
one by one. Let us assume that x is one of these numbers and it is to be
mutated. Let [ and u be the lower and upper limits for . The mutated x is
denoted by x,, and it is computed as follows:

1. Set t =(x—1)/(u—1);

2. Compute
t —rnd\”
t—t ; , rnd < t,
3 rnd =t (9)
d—t\"
t+(1—t) (7%) . rnd >t

where rnd is a random number from the closed interval [0, 1];
3. Set x, = (1 — t)l + tiu.

In step 2, the parameter p defines the distribution of the mutation. We call
this parameter the mutation exponent. If p = 1 then the mutation is uniform.
The probability of small mutations grows as the value of p grows. Hence, we
are ready to present the following GA and the parent selection procedure:

ALGORITHM: The Modified NSGA
Initialize population:
Compute object functions (in parallel);
do © = 2, number — of — generations
Compute fitness values using non-dominated sorting;
Compute probabilities for each individual to enter tournament;

repeat



Select two parents;
Form two children using crossover;
until (new population is full);
Perform mutation;
Compute object functions (in parallel);
Copy individuals from old population according to elitism;

enddo

ALGORITHM: Select Parent
repeat
Select one individual to tournament using the probabilities p; in (8);
until (tournament is full );
Find best the individual from the tournament according to the fitness values.

Since about fifteen years ago, Genetic Algorithms have been introduced in
aerodynamics shape design problems (see [12] [13][14]. The main concern re-
lated to the use of genetic algorithms is the computational effort needed for
the accurate evaluation of a configuration that might lead to unacceptable
computer time if compared with more classical algorithms. Eventhough, fit-
ness function value can be effectively estimated by using an approximated
Response Surface Modeling.

4 2D NS Solver on Unstructured Mesh

In the examples shown at the end of this paper we have solved the 2D Navier-
Stokes equations by using a Finite-Volume Galerkin method on unstructured
meshes. A 2D unstructured mesh has been generated by the pre/post-processing
software GID of CIMNE. To solve the Euler part of the equations, a Roe
scheme has been used. To compute turbulent flows a kK — ¢ model has been
chosen. Near-wall turbulence has been computed by a two-layer approach.
Time dependant problems have been solved using a fourth order Runge-Kutta
scheme.



5 Response Surface Modeling Methods|[15]

One of the most important advantages obtained by using response surface
models in optimization is a significant reduction in the computational cost.
This allows the user to perform global optimization and reliability-based op-
timization, which are otherwise prohibitively computationally expensive. In
addition, the use of response surface models allows the design engineer to
quickly perform a variety of trade-off studies which provide information about
the sensitivity of the optimal aircraft design with respect to changes in per-
formance criteria and to off-design conditions.

The reduction in the computational cost of optimization provided by response
surface models motivates their use in the modeling of data, despite the fact
that, under certain conditions, they can produce some numerical noise.

In many RSM applications, either linear or quadratic polynomials are assumed
to accurately model the observed response values. If n, analysis are performed
and p =1, ..., n,, then a quadratic response surface (RS) model has the form

Y =+ 3 P+ Y el (10)

1<j<ny 1<j<k<n,

where y®) is the response; :cg-p ) and x,(f ) are the n, design variables; and co, cj,
and ¢, — 14 j+k) are the unknown polynomial coefficients. Note that there
are n; = (n, + 1)(n, + 2)/2 coefficients (i.e., model terms) in the quadratic

polynomial. This polynomial model may be written in matrix notation as

y® = T X®) (11)

where C' is the vector of length n, of unknown coefficients to be estimated,

C = [co, €1y ey Cry—1], (12)
and X(p) is the vector of length n, corresponding to the form of the xg-p ) and
2P terms in the polynomial model (10). For the p™ observation this is

X® =12, 2, al), ("), 2P, (D)), (13)

Note that there is a difference between the p* vector of independent variables,
X® _ and the p*" vector of independent variables mapped into the form of the
polynomial model, X®),

10



Estimating the unknown coefficients requires n, analysis, where ng > n;. Un-
der such conditions, the estimation problem may be formulated in matrix
notation as

Y ~ XC, (14)

where Y is the vector of ng observed response values,

Y - [y(l)’ y(2)7 ) y(HS)]7 (15)

and X is the matrix formed by the n, row vectors X® which is assumed to
have rank n;. Thus, X may be expressed as

12 2 (z(D)?
X = (16)
1 x&ns) xg”s) (x%’zs))z

The unique least squares solution to Equation (14) is

¢ = (xx) ' X", (17)

where (X ¢ )71 exists if the rows of X are linearly independent. When C' is

substituted by C into Equation (11), values of the response may be predicted
at any location x by mapping x into X® . In matrix notation this corresponds
to

Yy =CTX®, (18)

Note that if ny, > n, the system of equations is overdetermined. Thus, the
predicted response values (from the polynomial model) at the original sam-
ple locations may differ from the observed response values at the sampled
locations.

Polynomial RS models can be considered as global models in which all of the
ns observed values of the response are equally weighted in the fitting of the
polynomial surface. At an unsampled location in design space, x, response
observations that are near to x (in the sense of Euclidean distance) have an
equal influence on the predicted response, f (x), as the response observations
that are far from x. It can be argued that such a global model may not be

11



the best approximation if the true unknown response has many real local
optima (as opposed to the artificial local optima created by numerical noise).
In such a situation an approximation scheme having local modelling properties
may be more attractive, i.e., where f (x) is more strongly influenced by nearby
measured response values and is less strongly influenced by those further away.
Such local modelling behavior is characteristic of interpolation models, for
which DACE models are one particular implementation.

6 Semi-torsional Spring Analogy for Mesh Movement

During any shape optimization process there is a need for a simple, robust and
computationally efficient scheme for maintaining element quality during mesh
deformation. This can be provided by a spring analogy approach. This scheme
must work in both 2D and 3D, be able to handle large deformations, and
work well for fully unstructured meshes. Paper [16] presented such a scheme,
developed as an extension of the 2D semi-torsional approach. We have used it
in our optimization approach to perform 2D Multi-element unstructured mesh
movement due to slat/flap position modifications. This has allowed to use
the same computational mesh for all the different computational geometries
obtained during the solution of the optimization problem.

6.1 Lineal spring analogy

Spring analogy models consist in considering the mesh as an assembly of
springs with a given stiffness for each one. Each of the edges of the mesh
is considered as a spring. Then, after the modification of the geometry of the
boundary, the new resulting mesh is obtained as the new equilibrated position
of the springs network.

The lineal spring stiffness k;; for a given element edge 7 — j takes the following
general form:

A
(e — i) + (5, — s ;) + (5, — v5,)%°

ki = : (19)

where the superscript n denotes time step, (y7;,v5,,v5,;) and (y7';, v5;, v5 ;)
are the spatial coordinates of the two nodes connected by the edge i — j at
time step n, and A\ and 3 are coefficients. The fictitious spring force F)Z acting
on node ¢ from edge ¢ — j is

—n —n

Fo=k0, -7, (20)

12



where ?: and ?7 are nodal displacements of node j and ¢ at step n respec-
tively. The static equilibrium equation for node i at time step n is

NE; —n —n
Zlk?j(%—%):& (21)
=

where N,; is the number of nodes directly connected to node ¢ through fictitious
springs. A system of equations is derived by applying the equilibrium equation
to all nodes in the mesh. Nodal coordinates are updated by adding the nodal
displacements to the old coordinates:

=74 (22)

The coefficient 3 is often taken to be 0,5, which means that the stiffness is
inversely proportional to the length of the edge, and A = 1.

6.2 Semi-torsional spring analogy

A semi-torsional spring analogy model is similar to the lineal formulation, with
angle information incorporated into the spring stiffness. Neither displacement
formulation nor force transformation is needed, and this approach is therefore
easy to implement[16]. For 2D triangular elements, a semi-torsional stiffness
of an edge i — j was proposed by Blom [17].

lineal

0 Y

ksemi—torsional o

(23)

where 0 is the angle facing the edge on an element. However, this semi-torsional
model is not directly applicable to 3D elements. Moreover, an internal edge
in a 2D triangular mesh is attached to two elements, and faces two angles
which are usually different in magnitude. The above definition gives different
stiffness values to a single edge when it is considered on each of its two attached
elements.

To deform 2D /3D unstructured meshes for solving moving boundary problems,
we propose a semi-torsional spring analogy model based on Zeng’s previous
work [16], in which the stiffness of an edge is defined as the sum of its lin-
ear stiffness and its semi-torsional stiffness, with the semi-torsional stiffness

13



depending on the angle facing the edge, i.e.

_ lineal semi—torsional

N (24)
k,semi—torsional — Lk Z
i - . i

1 sin?0r,

where the lineal stiffness is defined as in Eq. (19), NE;; is the number of
elements sharing edge i—j, and 0% is the facing angle, defined as the angle that
faces the edge i — j on the mth element attached to the edge. k is a coefficient
having the dimension of the stiffness. In all our numerical experiments, we set
the value of the coefficient to be 1,0. On a tetrahedron with vertices i, j, k
and [, the angle that faces the edge 7 — j is taken as the angle formed between
triangle A" and triangle A",

By substituting (24) into (20), the spring forces on nodes ¢ and j are expressed

Fy) - (Hk > ) 5] ) 25)

li =1 sin?0y,

where [Fj;] = [Fiz, Fiy, Fizy Fia, Fjy, FjZ]T, [u;j] = [ui,vi,wi,uj,vj,wj]:r are vec-
tors of spring forces and displacements at nodes ¢ and j , [B] is a 6 x 6 matrix
whose elements are given by By, = —0,q + 0pg+3 + 0ptaq, With 0,y =1if p =g
and 9,, = 0if p # q.

For a 2D triangular mesh one edge within the mesh shares two elements and
Eq. (24) simplifies to

. , 1 1
kisjemz—torszonal -k < + ) , (26)

sin%0;  sin20,
where 6; is the angle facing edge ¢ — j on the triangle A\;;;, 0 is the angle
facing edge © — j on A, and k, [, ¢ and j are the vertices of the elements.

In a 2D triangular mesh, spring forces on the edge i — j are

7= (i +# (g * ) ) 7] 0] @)

lij Sin201 Sin292

where [E] = [Ex,Fiy,ij.F}y]T, [uw] = [UZ‘,UZ',UJ‘,’U]‘]T7 and [B*] isadx4
matrix whose elements are given by By = —d,5 + 0pgr2 + Oprag

14



With the above definition for semi-torsional stiffness, an angle approaching 0
or m makes the edge facing this angle very stiff, which prevents further change
in the angle and thus avoids element inversion.

6.3 Boundary improvement

Since the static equilibrium equations for the mesh are elliptic, the principle of
Saint Venant holds for deformation of the mesh. Therefore, boundary displace-
ment does not spread far into the mesh. A boundary-improvement technique
was suggested to handle this localization of deformation [19]. The stiffness of
springs adjacent to the boundary was increased so that surface displacement
could be spread further into the mesh. To implement this, the coefficient X is
magnified by a constant factor for springs adjacent to the boundary.

Several layers of elements near the boundary can be made stiffer by this
boundary improvement technique. In our experiments, we imposed one layer
of boundary stiffness modification by increasing A\ from 1,0 to 3,5.

Some additional techniques to improve this situation can be seen in [27].

6.4 Mesh Testing Results

We have implemented the semi-torsional model for 2D multi element airfoil
geometries with slat and flap movement, see Figure 1. In this example, the
main-body of an airfoil is fixed and the position and the orientation of slat and
flap are modified. Then, the interior mesh is modified by using above analogy
methods according to the boundary displacement. Figure 1 shows the mesh
movement provided for different positions of slat and flat.

7 Application to High Lift Device Optimization

In order to test the proposed approach the robust optimization of a high lift
device has been faced. The goal of the optimization is to maximize C} or g—; at
landing or takeoff fly conditions by modifying the positions and orientations
of slat and flap. The aerodynamic coefficients are computed using N-S flow
solver. Here the design variables are the positions (2 coordinates for each one)
and angles of slat and flap, so that we have six design variables in total.

15
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Fig. 1. Example of 2D springs methods for unstructured mesh movement. Mesh
movement provided for different positions of slat and flat.

7.1  Single-point Lift Maximization at Landing Flight Condition

For landing configurations, we only concern about the maximum lift, because
in this situation drag is considered as convenient. So that, the optimization
problem is defined as

(28)




The nominal operating condition is defined for landing conditions by the free-
stream incidence o = 15°, Mach number M., = 0,15 and Reynolds number
Re = 1,8 x 10°.

Figure 2 shows the convergence history of lift coefficient obtained during the
optimization process. The optimized airfoil slat and flap positions are shown
in Figure 3 compared with the baseline multi element airfoil. Red one shows
the optimized airfoil positions and blue one is the baseline airfoil. The opti-
mized pressure distribution is shown in Figure 4. Again, red points show the
pressure distribution on optimized airfoil and blue ones show baseline pressure
distribution. Table 1 gives the detailed evolution of the lift coefficient value
during the optimization process.
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Fig. 2. Convergence history of lift coefficient
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Fig. 3. Optimized multi element airfoil configuration for landing

Table 1
Lift coefficient values during optimization

Generations 0 10 20 30 40 50

C 4,073 4,805 4,816 4,822 4,825 4,827
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7.2 Single-point Lift Maximization at Takeoff Flight Condition

For takeoff conditions, we not only concern about maximum lift but also about
minimum drag. So, the optimization problem is defined as

max g; (29)

The nominal operating condition are defined for takeoff conditions by the free-
stream incidence o = 8°, Mach number M., = 0,15 and Reynolds number
Re = 1,8 x 10°.

Figure 5 shows the convergence history of the aspect ratio of lift to drag
coefficient obtained during the optimization process. The optimized airfoil
slat and flap positions are shown in Figure 6 compared with the baseline
multi element airfoil. Red one shows the optimized airfoil positions and blue
one is the baseline airfoil. Streamlines over optimized multi-element airfoil are
shown in Figure 7. It is obviously noticed that there is a vortex behind slat.
Table 2 gives the detailed aspect ratio value of lift to drag coefficient obtained
during the optimization process.

Table 2
Aspect ratio values of lift to drag coefficient during optimization

Generations 0 10 20 30 40 50

C1/Cq 22,59 34,13 36,20 36,37 36,51 36,55

By comparing the optimized airfoil configurations of the two above optimiza-
tion problems we can observe that the flap is more slopping down for landing
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Fig. 6. Optimized multi element airfoil configuration for takeoff
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Fig. 7. Streamlines over multi element airfoils optimized for takeoff

than for takeoff. This is due to the fact that both maximum lift and maxi-
mum drag are needed for landing, whereas maximum lift and minimum drag
are needed for takeoff.
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7.8 Lift Maximization With Uncertain Angle of Attack at Landing Flight
Condition

In this case we assume that the free-stream angle of attack is subject to random
fluctuations. For simplicity, we assume that its PDF is uniform in the interval
(159 — 2915 + 2°). The mean angle of attack corresponds to the nominal
incidence 15°. Free-stream Mach number is M., = 0, 15 and Reynolds number
Re = 1,8 x 10°. The mathematical formulation of the resulting optimization
problem is defined as

maxC;  at My =,0,15, a = [15" —2° 15" + 2]. (30)

According to the Taguchi robust control theory, the above design problem with
uncertainties can be converted into the following two-objective optimization
problem, one objective is the mean value of the lift coefficient, and the other
is the variance of lift coefficient over the range of uncertainty.

1 N
max fi = pc, = Nzcli
=

1 N (31)

min f2 =0¢, = ﬁ Z(Oll - MCZ)Q

where N = 5, M, = 0,15 and «; = [13°/14°,15° 16°, 17°]. The above two-
objective optimization problem is solved via Multi-objective GAs.

Figure 8 shows the compromised Pareto front of the above two-objective op-
timization problem. Figure 9 illustrates the optimized airfoil slat and flap
positions of one solution on pareto front compared with the baseline and tra-
ditional one-point optimized shape. Red one shows the robust optimized airfoil
positions, blue one is the baseline airfoil and green one is traditional designed
airfoil in section 7.1. Stream lines over optimized airfoil are shown in Figure 10.
Two clear vortices appear behind the slat and the flap. The optimized pressure
distribution is shown in Figure 11. Red points show the pressure distribution
on optimized airfoil and blue ones show baseline pressure distribution.

Figure 12 shows a comparison between one of the obtained robust optimized,
the traditional single-point optimized and the baseline airfoils. We can see
how the lift coefficient of the robust optimized airfoil is not as sensitive as
the single-point optimized one to the fluctuation of the angle of attack. This
is also illustrated by the value of C; for the optimized and baseline airfoils in
table 3.
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Fig. 8. Pareto front between mean lift and its variance
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Fig. 9. Robust optimized multi element airfoil configuration for Landing

Frameo001 | 19 Jul 2007 | FE-Volume Trange Data.

Fig. 10. Stream lines over the robust optimized airfoil

8 Conclusion

The problem of aerodynamic shape optimization with uncertain operating con-
ditions is addressed in this paper. It is solved by using the Taguchi concept

21



Frame001 | 19 Jul 2007 |

=

Plp_{infty}
e e
N ®
T ™
I '

i

osf \H . s
g £ "
B S k
-0.1 o 0.1 0.2 0.3 o4 0.5

Fig. 11. Comparison of pressure distributions between robust optimized and baseline
airfoil for landing

481
=
46
o
aaf /
42f Baseline airfoil
Single-point optimized
Robust optimized
a T T n
12 13 14 15 16 17 18

&

Fig. 12. Comparison of the lift coefficient between robust optimized, traditional
single-point optimized and baseline airfoils

converting design with uncertainties into a two-objective optimization prob-
lem: one objective is the mean performance, the other one is the variance of
the performance. To overcome the difficulty related to the high computational
cost required by robust design and GAs, a response surface modeling strat-
egy is proposed that relies on the polynomial approximation, to estimate the
fitness value. In addition, a semi-torsional spring analogy is used for the defor-
mation of the computational mesh in order to fit it to the different geometries
obtained during the shape optimization process.

This methodology is demonstrated for a realistic high lift device’s lift max-
imization in subsonic flow with fluctuation on free stream incidence angle.
This optimization problem is solved using the proposed Taguchi robust con-
trol method successfully.
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Table 3
Comparison of robust optimized airfoil performances with traditional single-point
optimized and baseline ones

a 139 140 15° 16° 170
Baseline C, 4,2461 4,3220 4,3757 4,4161 4,4427
Airfoil Cy 0,1742 0,1837 0,1939 0,2041 0,2147

Optimized ~ Ci 41,6762 4,7596 4,8271 4,8753 4,9015

(Landing) C; 02130 0,2224 0,2328 0,2458 0,2602

Robust
C 4,7129 4,7302 4,7358 4,7307 4,7155
Optimized
) Cy 0,2440 0,2540 0,2642 0,2751 0,2870
(Landing)
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