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Abstract:

The recognition of human motion intentions is a fundamental requirement to control efficiently an
exoskeleton system. The exoskeleton control can be enhanced or subsequent motions can be predicted,
if the current intended motion is known.

At H2T research has been carried out with a classification system based on Hidden Markov Models
(HMMs) to classify the multi-modal sensor data acquired from a unilateral passive lower-limb exoskele-
ton. The training data is formed of force vectors, linear accelerations and Euler angles provided by 7
3D-force sensors and 3 IMUs. The recordings consist of data of 10 subjects performing 14 different
types of daily activities, each one carried out 10 times.

This master thesis attempts to improve the motion classification by using physical meaningful derived
features from the raw data aforementioned. The knee vector moment and the knee and ankle joint angles,
which respectively give a kinematic and dynamic description of a motion, were the derived features
considered. Firstly, these new features are analysed to study their patterns and the resemblance of the data
among different subjects is quantified in order to check their consistency. Afterwards, the derived features
are evaluated in the motion classification system to check their performance. Various configurations of
the classifier were tested including different preprocessors of the data employed and the structure of the
HMMs used to represent each motion. Some setups combining derived features and raw data led to good
results (e.g. norm of the moment vector and IMUs got 89.39% of accuracy), but did not improve the best
results of previous works (e.g. 2 IMUs and 1 Force Sensor got 90.73% of accuracy).

Although the classification results are not improved, it is proved that these derived features are a
good representation of their primary features and a suitable option if a dimensional reduction of the
data is pursued. At the end, possible directions of improvement are suggested to improve the motion
classification concerning the results obtained along the thesis.





Kurzzusammenfassung:

Die Erkennung menschlicher Bewegungsabsichten ist eine grundlegende Voraussetzung für die ef-
fiziente Steuerung eines Exoskelettsystems. Die Exoskelettkontrolle kann verstärkt oder nachfolgende
Bewegungen vorhergesagt werden, wenn die aktuell beabsichtigte Bewegung bekannt ist.

Bei H2T wurde mit einem Klassifizierungssystem auf Basis von Hidden Markov Models (HMMs)
geforscht, um die multimodalen Sensordaten zu klassifizieren, die von den unteren Extremitäten eines
einseitigen passiven Exoskeletts gewonnen wurden. Die Trainingsdaten bestehen aus Kraftvektoren,
Linearbeschleunigungen und Euler-Winkeln, die von 7 3D-Kraftsensoren und 3 IMUs bereitgestellt wer-
den. Die Aufzeichnungen bestehen aus Daten von 10 Personen, die 14 verschiedene Arten von täglichen
Aktivitäten ausüben, von denen jede 10 mal durchgeführt wurde.

Diese Masterarbeit versucht, die Bewegungsklassifizierung zu verbessern, indem sie physikalisch sin-
nvolle, abgeleitete Merkmale aus den oben genannten Rohdaten verwendet. Das Knievektormoment
und die Knie- und Sprunggelenkwinkel, die jeweils eine kinematische und dynamische Beschreibung
einer Bewegung liefern, waren diese abgeleiteten Merkmale. Zunächst werden diese neuen Merkmale
analysiert, um deren Muster zu untersuchen. Danach wird die Ähnlichkeit der Daten zwischen den
verschiedenen Probanden quantifiziert, um ihre Konsistenz zu überprüfen. Anschließend werden die
abgeleiteten Merkmale im Bewegungsklassifizierungssystem ausgewertet, um ihre Leistung zu über-
prüfen. Diverse Konfigurationen des Klassifikators wurden getestet, darunter verschiedene Präprozes-
soren der verwendeten Daten und die Struktur der HMMs, die zur Darstellung jeder Bewegung ver-
wendet werden. Einige Setups, die abgeleitete Merkmale und Rohdaten kombinierten, führten zu guten
Ergebnissen (z.B. Norm des Momentvektors und IMUs erreichen eine Genauigkeit von 89.39% ), die
allerding knapp unter den besten Ergebnissen früherer Arbeiten liegen (z.B. 2 IMUs und 1 Kraftsensor
erhielten 90,73% der Genauigkeit).

Obwohl die Klassifikationsergebnisse nicht verbessert werden, wurde nachgewiesen, dass diese abgeleit-
eten Merkmale eine gute Darstellung ihrer primären Merkmale sind und eine geeignete Option darstellen,
wenn eine Dimensionsreduktion der Daten angestrebt wird. Am Ende werden Verbesserungsvorschläge
vorgestellt, die Potenzial zur Verbesserung der Bewegungsklassifizierung unter Berücksichtigung der
Ergebnisse dieser Arbeit besitzen.
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1. Introduction

The term exoskeleton comes from a biological field and it is described by the Cambridge Dictionary as:
A hard outer layer that covers, supports, and protects the body of an invertebrate animal such as an
insect or crustacean. The main concept of this description was the reason to name in the same way a
person-oriented wearable robot that supplements or replaces the function of a limb. Therefore, an ex-
oskeleton could be described as a wearable robot that allows for extending, complementing, substituting
or enhancing the human limb where it is worn (Pons, 2008).

The amount of people with mobility problems has increased enormously in the last decades (e.g stroke
or spinal cord injury). For instance, every year between 250000 and 500000 people suffer a spinal cord
injury according to the World Health Organization (2019). The development of devices in the area of
motion assistance have become really relevant in order to enhance the quality of life of these people. By
contrast, devices that augment physical abilities of humans to improve their performances in industrial
and military work are also in demand. In the past decade, robotic assistance devices such as exoskeletons
have made significant progress, and some products have already been commercialised ((Chen et al.,
2016a)).

The main classification of exoskeletons divides them according to the performance in cooperation with
the human actor: rehabilitative, assistive or augmentative systems. ( (Viteckova et al., 2018)). The first
two have medical purposes, and meanwhile exoskeletons for rehabilitation have as goal the assistance
with the motion recovery after accidents or illnesses, the other one pursues to design robotic devices
that provide a permanent support to the wearer. These two types of exoskeletons are oriented to patients
suffering from stroke, spinal cord injury (SCI) or similar problems (some examples can be found in
Lokomat (2019) and UniExo (2019)).

(a) Medical Robot Suit HAL 3 system
of the Japanese robotics firm Cyber-
dynes (Hybrid Assistive Limb, 2013)

(b) Toyota Motor Corp’s rehabilita-
tion robot Welwalk WW-1000 (Toyota,
2017)

Figure 1.1.: Examples of exoskeletons with medical purposes.
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Several projects in this area can be found currently in development. The Hybrid Assistive Limb (HAL)
is an example of a powered exoskeleton suit developed by the Tsukuba University in Japan. It was
designed for people with physical disabilities and among other achievements it was certified in Europe as
the first non-surgical medical treatment robot. Figure 1.1(a) shows the medical Robot Suit Hal 3 leg-only
device. There is also a HAL 5 full body device that works also with arms and torsos. Another example
of project, this time only focused on rehabilitation, is Toyota Motor Corp’s rehabilitation robot Welwalk
WW-1000, designed to aid in the rehabilitation of individuals with lower limb paralysis (Figure 1.1(b)).

Exoskeletons directed towards a human performance augmentation are aimed this time at healthy
subjects and it pursues a limb movement with an increment in strength and endurance. This kind of
exoskeleton can be found in different areas. The military sector could be an example, in which some
projects have been carried out to decrease fatigue and increase productivity (The three million suit (2014)
and Eric Adams (2018)). In industry there is a willingness towards the use of passive exoskeleton tech-
nology with the target of reducing injuries and fatigue, the main cause of errors and low productivity.
A clear example is the exoskeleton of the company Hyundai with the Hyundai Chairless Exoskeleton
(H-CEX). It is designed for workers who have to stay in a seated position throughout the day and it
helps workers lessen safety risks and decrease fatigue since it decreases the use of waist and lower body
muscles by 80% (Figure 1.2). Chen et al. (2016b) presents a survey of the current situation in the field
of Exoskeletons devices which explains current issues related to them like the control strategies used for
lower extremity exoskeletons or their limitation, and gives hints of possible directions that can be taken
in future research.

Figure 1.2.: Hyundai Chairless Exoskeleton (H-CEX). It is aimed to workers who have to stay in a seated
position throughout the day (Hyundai, 2018).

Getting more in deep in the exoskeleton’s control area, all the powered exoskeletons need a complex
control system (electric motors, pneumatics, levers and/or hydraulics). With the exception of rehabilita-
tive exoskeletons, in which almost all the motions are predefined, an exoskeleton should be capable to
adapt to different motion types in the minimum procedure time (Viteckova et al. (2018) and Beil et al.
(2018)). Each motion can be defined by its kinematic and dynamic description, and if these proper-
ties are contextualised in the exoskeleton’s control, the amount of variables to take into account is large
(moments, velocities, accelerations, forces, etc). Accordingly, in order to adapt, guide and support the
exoskeleton’s control to the motion intended to perform, it is crucial to estimate and consider it in real-
time (Jang et al., 2017). In that way, the control can be optimised, which allows an intuitive control of
the exoskeleton and an improvement of its acceptance and wearing comfort (Beil et al., 2018).

Once the main target is set, the necessity to carry out a motion classification during the exoskeleton’s
operation turns out to be an essential request. This classification has to be done using data that, as much
as possible, should describe that motion in an unequivocal way. Kinematic and dynamic properties char-
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acterise the nature of a motion, therefore data gathered with this kind of information should become one
of the best ways to represent human movements (Senanayake and Senanayake, 2010). Gait analysis have
been using different types of motion sensors and systems, such as accelerometer, gyroscope, magnetore-
sistive sensors, electromagnetic tracking system (ETS), force sensor and sensors for electromyography
(EMG). Based on these sensors, a single type or a combined sensor system of multiple types of sensors
may be used for various gait analysis applications.

The passive exoskeleton considered in this thesis equipped sensors that give kinematic and dynamic
data, but it is not directly related to the leg’s physics. This thesis should investigate if the usage of
meaningful derived features extracted from this data improves the classification system. Beside, this idea
was one of the suggestions in the conclusions of Patzer, Isabel and Asfour, Tamim (2019). Additionally,
a dimensional reduction of the current data set might be obtained since the derived features calculated
from the primary features should present a lower dimension and, at the same time, be more representative
and purposeful.

This thesis is organized as follows: Chapter 2 presents an overview of the work done until now in
the field of motion classification, containing a specific section for the projects carried out in H2T about
whole-body motion classification and more specifically for lower limb exoskeletons. Next, in Chapter 3,
the basics used along this thesis are introduced, like the database of motion recordings with which the
motion classification system will be tested or the theory behind the machine learning technique used
for the classification. Afterwards, Chapter 4 presents the new derived features that will be used in the
motion classification. This chapter also explains how were these features calculated from the sensor data,
and which assumptions were taken. Chapter 5 describes the basics of the two main issues addressed: a
resemblance analysis carried out using derived features and the classification system based on Hidden
Markov Models to identify motions. The results, conclusions and comments of the issues introduced in
Chapter 5 can be found in Chapter 6. Finally. Chapter 7 will do a summary of all the conclusions and
ideas extracted from the results and some future work is suggested.

Analysis of Derived Features for the Motion Classification of a Passive Lower Limb Exoskeleton



Page 4 Chapter 2. State of the Art

2. State of the Art

This section gives an overview of the main topics that will be addressed during this thesis: motion
classification, motion data and derived features. The last section focuses on the projects carried out in
H2T about motion classification for lower limb exoskeletons.

2.1. Applications of Motion Recognition

Human activity recognition has taken a really important role in a wide range of areas. In medicine, for
instance, reliable gait-phase classification is used in locomotion analysis and in identifying abnormalities
(Pappas et al., 2001). In gesture recognition, more focused on the motions and gestures of the face and
hands, pursues control devices with a minimum physical interaction with them. Fields like remote con-
trol (Stern et al., 2010) or sign language translation (Bhatnagar and Agrawal, 2015) are some examples.
In the entertainment industry, motion devices like the Microsoft’s camera Kinect, opened up a range of
possibilities in terms of interaction and control without the need for a game controller (Lun and Zhao,
2015). Although this device was created with entertainment purposes, other application like physical
therapy and rehabilitation, robotics control or education area, are starting to be consumers of this tech-
nology. Furthermore, more common cameras are used for motion identification and tracking in robotics
(Dondrup et al., 2015), in security (He et al., 2012) and in human motion representation and imitation
with the use of motion capture techniques.

2.2. Motion Data

To carry out this motion recognition, descriptive data from the motion has to be extracted. Depending on
the environmental circumstances and type of motion considered, this data should provide information of
a different constitution and type. The common data used to recognise motions can give kinematic (e.g
accelerometers or gyroscopes), dynamic (e.g. torques on articulations or reaction forces), biolectric (e.g.
electrical activity of the muscles) or visual (e.g. range cameras or RGB cameras) information.

A common motion capture sensor used to record kinematic data is the Inertial Measurement Unit
(IMU). It equips accelerometers, gyroscopes and sometimes magnetometers to report and measure kine-
matic data of a body like orientations or accelerations. IMUs are used in different areas such us inertial
navigation (Tan and Park, 2005), vehicle applications (Händel et al., 2010), behavior analysis (Szemes
et al., 2005) and in the biomedical field (Senanayake and Senanayake, 2010).

In human locomotion analysis, IMU sensors have been used in human locomotion analysis like human
activity monitoring (Yang and Hsu, 2010), fall detection (Wan et al., 2007) and gesture recognition (Akl
et al., 2011). Its light weight and cheap components are the reasons of its widespread use. Taborri
et al. (2015) detects the current gait phase of a lower limb orthosis by retrieving data of force and IMU
sensors and in Jang et al. (2017) a human gait recognizer is executed at the moment of foot contact as
estimated by an IMU on the pelvis. Jang et al. (2017) proposes a two-tier gait recognizer in a lower limb
exoskeleton that recognises different actions during five gaits by using two wireless IMUs integrated in
a hip exoskeleton. A last IMU setup example that will be mentioned is the one in the multisensor system
of the CUHK-EXO (Chen et al., 2017), where the IMUs are mounted on the backpack to obtain the
wearer’s trunk posture and pressure sensors are designed in the insoles and smart crutches to detect the
ground contact. With this information, the wearer’s center of gravity can be calculated in real-time and
the wearer’s motion intention can be estimated by detecting the change in motion data.

Analysis of Derived Features for the Motion Classification of a Passive Lower Limb Exoskeleton
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Electromyographic Signals (EMG) is biolectric data that measures the electrical activity of a mus-
cle. For instance, in the sensing system of the HAL-5 exoskeleton (a variant of the exoskeleton of the
Figure 1.1(a)), EMG sensors are attached on the wearer’s skin to detect the extensor and flexor muscle
activities of the knee and hip joints. Another example of use is in Matsubara and Morimoto (2013), where
it is introduced a bilinear modeling of EMG signals used to recognise five hand gestures for robotic hand
control. Another sensor that measure biolectric data is the Electroencephalography (EEG) sensor which
records electrical activity of the brain. Unfortunately for motion recognition purposes these two sensors
present some disadvantages. In the case of EMGs, environmental factors such as user fatigue, sweating,
and electrode shift can change surface EMG patterns and degrade classification performance over time
and electrode channels may also fail or become noisy due to loss of skin contact (Young et al., 2014).
Both sensors have the problem of poor signal quality during long-term use, which is aggravated by low
wearing comfort and the quality of the measured values can widely differ concerning the environmental
circumstances (Khalili Moghaddam and Lowe, 2019).

In the field of visual data, RGB cameras provide a lot of information about the situation, but are
dependent on the focus, illumination and orientation (Chen et al., 2015). Deep cameras, which show
distances to points from a specific reference, are not dependent on environmental lighting, but still the
angle of view is crucial and they can not offer information about the colours of the objects. 3D cameras,
like Kinect, combines an infrared projector and camera to generate a grid that locates objects in a certain
range. Some of its functionalities and fields of application can be found in Lun and Zhao (2015).

2.3. Derived Features

Once the motion data has been recorded, this set of features can be redundant, not representative enough
and too large to be managed. Therefore, in some cases a previous step in applications of machine learning
and pattern recognition is carried out consisting of constructing a derived and reduced set of features to
facilitate learning, and to improve generalisation and interpretability (Bishop, 2006). In lots of areas we
can find the use of derived features. As an example, in computer vision points, edges and objects are
extracted from the images and optical character recognition uses line directions, closed loops and line
intersection as features.

The extraction of features can become a really complex process in which is needed the use of the
domain knowledge of the data to create new features with the target of achieving good results in machine
learning algorithms.

A large amount of automation techniques can facilitate this process and, as Freeman (2014) argues,
represent a generation stage that expands the number of available features. Linear techniques would
be an example where new features that are linear combinations of the inputs are created (Zhu, 2005).
In the meanwhile, non-linear techniques use an arbitrary function of the original feature set to extract
new values. Variance-based feature extraction is an other technique that aims to create a projection that
preserves the variance in the data. As examples we have: Principal Component Analysis (PCA) (Jollife
and Cadima, 2016), Probabilistic PCA (PPCA) (Park et al., 2017) or Sparse PCA (SPCA) (Zou et al.,
2012). Distance-based feature extraction is an other approach to face this issue and aims to preserve
or optimize some property of the distance between points, as examples we have Fiser’s discriminant
analysis (FDA) and Multidimensional scaling (MDS) (Borg and Sireci, 1997). Classification grouping
techniques, like clustering, can be adapted to carry out feature extraction. Self-organizing maps (SOM)
and spectral clustering (Tsuruta and Aly, 2006) can be used in this instance. Presented as a stochastic
optimization problem, in Guo et al. (2010) a method for non-linear feature extraction is introduced using
genetic programming and an expectation maximization algorithm (GP-EM). The genetic program creates
a tree with input features at the leaf nodes and one feature at the top level of the tree is built from the base
features in the set. In the area of connectionist systems, autoencoders are regression neural networks
trained such that the output of the system is equal to the input. A layer with fewer nodes than the input
creates a bottleneck where node values are a good approximation of the inputs. Features can be extracted
by feeding inputs to the system and taking the outputs of the hidden nodes (Holden et al., 2006). Domain-
specific tools are usually used to design features. For example, in speech recognition applications often
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employ signal processing techniques to generate a set of features from the initial audio signal and that
are often more meaningful and trackable. Some features that are commonly used in this area include
frequencies, Zero-Crossing Points (ZCP) (Peltonen et al., 2002) and mean frequency (Tchorz et al.,
2017).

2.4. Motion Classification Methods

This section explains the different methods that are used in human motion classification. Firstly, we have
to devide them in two categories: heuristic rule-based classifiers and automated pattern recognition.

In the heuristic category, not exemplar training data is used, but the motion is specified by a set of
rules. For example, these rules can be based on the values of some joint angles of the body (Clark et al.,
2013). Afterwards, some parameters of the rules have to be tuned to do the classification of unknown
motions. For instance the starting and ending pose of a motion can be used to identify an iteration of this
motion.

In automated pattern recognition approaches, a captured template previously registered is compared
with the unknown motion. If the template motion is compared directly with the unknown motion to be
classified, the approach is called Direct Matching. Dynamic Time Warping (DTW) is the most famous
algorithm (Bemdt, 1994). The unknown motion is compared with a template sequence, but first they are
aligned to match time and speed of both sets of data (Myers et al., 1979). The differences between the
two sequences can be expressed in terms of distance or differences of the correlation coefficients (Wu
et al., 2012).

If the template is just used to determine parameters for the model training, then the method belongs to
the class of Modeled Based Matching. The model trained is fitted with the data and used to carry out the
classification of samples from unknown motions. In this sub-classification, the machine learning methods
and artificial neural networks are techniques used. This approach is characterised by the use of large data
sets, high compute times and difficulties to carry out an online implementation. Additionally, the set of
features has to be carefully selected to extract features with meaningful information about the motion
and, additionally an specific tuning is needed in order to train proper models. Machine learning based on
motion recognition is usually framed as a classification problem and the trained model is usually referred
to as a classifier. The models used with these methods consist of a large number of parameters, which
have to be determined in a training step based on pre-labeled motion data. The output of the classifier is
a discrete value related to the class in which the unknown motion got the highest probability.

A Hidden Markov Model (HMM) is a model frequently used for motion recognition for a number of
reasons. Motion data naturally has a time-based component, as the demonstrator moves through various
poses. The model representation of the motions has an intuitive representation, where each state is a
primitive motion or pose, and the state transition matrix describes the flow of the motion through these
various primitives (Freeman, 2014). Large sets of training data are usually required for HMM to be
accurate for human motion recognition (Lun and Zhao, 2015). To give some examples, in Panahandeh
et al. (2013) a classification of pedestrian activity and gait analysis based on IMUs is carried out. The
pedestrian motion is modeled with a continuous hidden Markov model where the hidden states are in
different gait phases. In Gehrig et al. (2009) real-world kitchen task are classified using HMMs based on
features consisting of optical flow gradient histograms. For each primitive motion unit they trained one
HMM and then concatenated these primitive motion units to form complex motion sequences.

Artificial neural networks (ANNs) refer to a collection of statistical learning algorithms based on
biological neural networks. An ANN models the system as a network of neurons with several layers.
Among the ANN models that can be found, multi-layer perception (MLP) has been used with motion data
(Anjo et al., 2012). NN-based additive nonlinear auto regressive exogenous (NN-ANARX) is an other
model that has been used to determine the quality of a rehabilitation exercise in terms of the difference
between the observed motion and the predicted motion using the trained model (Nomm and Buhhalko,
2013).

Support Vector Machines (SVMs) have also been used in motion classification in supervised learning
models. Madeo et al. (2013) proposed to segment a gesture into a sequence of units and formulate the
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gesture analysis problem into a classification task using SVM. Miranda et al. used SVM to identify
key poses in a sequence of body motion where the joint angles are used as features. The actual gesture
recognition was accomplished via a decision forest. Decision Forests constructed using pre-classified
training data have been also used in motion classification by modeling a gesture as a sequence of key
poses. Each path from a leaf node to the root was considered a gesture. Miranda et al. (2012) used
the decision forest algorithm to identify gestures in real-time on Kinect motion data. Also Randomized
Forests have been used in fall detection with the target of recognising the skeleton shape deformation
caused by the human body falling (Bian et al., 2012). The meta-algorithm Adaptive Boosting (Adaboost),
using decision dumps classifiers as the low-level classifiers, has been used to provide categorical gesture
recognition (Filipe and Henriques, 2017).

2.5. Motion Recognition at H2T

In H2T different projects concerning whole-body motion classifiaction and more specifically for Lower
Limb Exoskeletons (LLE) have been carried out. Since these works are the baseline of this thesis, they
will be explained below in more detail.

2.5.1. Whole-Body Motion

In H2T a reference model of the human body to capture human motions was designed and implemented
named Master Motor Map (MMM) (Terlemez et al., 2015). Its main target is the standardisation of
human motion representation and mapping to humanoid robots. It pursues the representation of the
kinematics and dynamics of the different motions in order to capture and represent interactions of the
humans with the environment. As a part of this project, a KIT Whole-Body Human Motion Database
(KIT H2T, 2014) has been developed to create a database of high quality human whole-body motion
capture (MoCap) recordings.

In Mandery et al. (2016) a dimensionality reduction for the whole-body human motion recognition was
carried out. They used a marker-based human motion capture system consisting on 56 markers placed
at characteristic anatomical landmarks of a human. The most interesting part regarding this thesis was
the extraction of derived features from the the Cartesian coordinates of the markers and the recording
time steps associated. A total number of 29 features with a total of 702 dimension was extracted to
describe the human motion. The main features extracted were: Cartesian velocity vectors of the markers,
joint angles and velocities of the 40 joints of the MMM reference model, the location and rotation of the
root pose, the whole-body Center of Mass and different whole-body angular momentums. An algorithm
named N-Best Feature Subset Exploration was used to search the space of all possible feature subsets for
the subsets with best performance. A subset of 4 derived features achieved an accuracy of 94.76% and a
subset of 8 features got 95.81%. It was used a motion recognition approach with HMMs and a set used
for evaluation of 353 different motion recordings captured from 9 different subjects.

2.5.2. Motion Classification for LLE

H2T introduced in 2013 the exoskeleton KIT-EXO-1 which was created to augment human capabilities
and for rehabilitation of the musculoskeletal system. In this first version there are force sensors on the
physical human-robot interface that measure the forces between user and exoskeleton during operation.
The force data is used to generate an intuitive device control approach, which allows the generation of
motion pattern based on interaction force pattern between the exoskeleton and the human (Beil et al.,
2015). The first prototype consists of two active DOFs in the knee and the ankle. It can be seen in
Figure 2.1.

The work done at H2T about exoskeletons has been oriented towards the motion classification in order
to improve intuitive control for exoskeletons. In Beil et al. (2018) a passive exoskeleton was used to create
a motion classification method based on Hidden Markov Models. In this first approach three IMUs and
seven 3D-force sensors were used to record the data and classify the motions using a training and testing
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Figure 2.1.: Exoskeleton KIT-EXO-1 of the H2T created for augmenting human capabilities and to use it
with rehabilitation purposes. Picture taken from Beil et al. (2015).

set consisting on 10 subjects performing 13 different motion tasks. Each motion was represented by a
fully-connected HMM with 14 states. An accuracy of 92.8% was obtained using a data window size of
300 ms and a stratified 5-fold cross validation.

In Patzer, Isabel and Asfour, Tamim (2019), as a continuation of the aforementioned work, a systematic
exploration of the feature space was carried out in order to simplify the sensor setup and consequently,
the amount of data used and the training time needed. A trade off between the number of sensors used
for the classification and the accuracy obtained was found. With the combination of 3 3D-force sensors
and 3 IMUs an accuracy of 92.20% was achieved, which is similar to the one got in Beil et al. (2018)
using 3 IMUs and 7 force sensors. The same setup of the motion classification system of the previous
work was used to carry out the evaluations.
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3. Basics

In this chapter the basics for this thesis are explained more in detail. First, the passive exoskeleton used at
H2T is described. Afterwards, the data recorded by the sensors used to train the Hidden Markov Models
is introduced. Finally, all the characteristics of the HMMs employed and the possible approaches used
to address different problems are explained.

3.1. Passive Exoskeleton

In this section the passive Exoskeleton of H2T will be described as well as the sensors used to capture
the data. This passive exoskeleton was introduced in Beil et al. (2018). Figure 3.1 show two pictures of
the rendering of the passive exoskeleton’s CAD model.

(a) Perspective frontal view of the
passive exoskeleton

(b) Perspective back view
of the passive exoskeleton

Figure 3.1.: Views of the rendering of the passive exoskeleton’s CAD model.

3.1.1. Structure and Design

The passive exoskeleton for the lower left limb was designed for the motion data recording’s setup
allowing at the same time a natural motion of the user. It consists of three aluminum frame parts for the
thigh, the shank and the foot which are connected by orthotic revolute joints at the knee and ankle. The
main purpose of the creation of this exoskeleton is to investigate which disposition, amount and type of
sensors a functional exoskelton should bring in order to carry out the best motion classification possible.
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The aluminum (EN-AW 5083) that constitutes its structure allows a tightened adjustment to the sub-
ject’s leg and provides slight compensation of the missing degrees of freedom at the ankle and knee joint
during the motion. Velcro straps are used to fix the exoskeleton to the wearer via the anterior thigh and
shank and by a shoe at the foot.

3.1.2. Sensors

Force Sensors

A 3D-force sensor is a device with capacitive readout designed and realised for the measurement of
mechanical power. The 3D term means that it can measure the normal force and two forces in shear
directions and perpendicular between them (Brookhuis et al., 2012).

In our case, seven force sensors model OMD-30-SE-100N are located in strategic locations to gather
force interactions by the main important muscles involved in the locomotion. It mesures the magnitude
and the directions Fx, Fy and Fz using only optical principles. The measurement characteristics of the
sensors are not the same in normal and shear directions (Optoforce Ltd., 2016). Nominal force, resolution
and deflection are 100N, 6.25mN amd 3mm in the normal direction, and 25N, 7mN and 2.5mm in the
shear direction. Up to four force sensors can be connected to one data acquisition unit, which records the
measured values at a maximum of 100 Hz. Figure 3.2(a) shows the location of the seven force sensors
(in red) regarding the muscles on where they are: m. rectus femoris (Figure 3.2(a) (a)), m. biceps femoris
(Figure 3.2(a) (b)), m. tibialis anterior (Figure 3.2(a) (c)) and m. gastrocnemius (Figure 3.2(a) (d)). In
Figure 3.2(b) we can find the distribution of the seven force sensors on the passive exskeleton.

(a) Force sensors location regarding the correspond-
ing leg’s muscles. Picture taken from Beil et al.
(2018).

(b) Setup of the seven force sensors
(blue) and the three IMUs (red).

Figure 3.2.: Pictures that relates the sensors’ distribution in the passive exoskeleton with the muscles on
where they are located

IMUs Sensors

An Inertial Measurement Unit (IMU) is an electronic device that includes a combination of gyroscopes
and accelerometers used to record a body’s orientation and linear accelerations. The usual configuration
is such that the reference system is set using the pitch, roll and yaw axes. A magnetometer is also usually
included as a heading reference.

The passive exoskeleton equips three IMUs located in different segments of the leg (thigh, shank and
foot). The model of these IMUs is BNO055 from Bosch Sensortec GmbH (Bosch Sensortec GmbH,
2014). This device is a System in Package (SiP) that integrates a triaxial 14-bit accelerometer and a
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triaxial 16-bit gyroscope. From this sensors the linear accelerations in Cartesian coordinates and angles
represented by quaternions are obtained as raw data. Since quaternions represent an angle in a way
that can set two angular configurations, they were transformed to Euler angles (roll, pitch and yaw).
Therefore, from all the IMUs, 18 values are obtained: three accelerations and three angles from each
IMU sensor. Figure 3.2(b) shows the distribution of the three IMUs located each one on each segment of
the leg.

3.2. Motion Data

In this section, the motion data used for training and testing the motion classification system is explained.
The data was recorded by three IMUs and seven force sensors while a subject was performing an specific
motion. For each motion’s recording, data samples of each sensor are registered every 10 ms. Each force
sensor captures a force vector which means three force values Fx, Fy and Fz in Newtons. Meanwhile
three IMUs register a linear acceleration vector ax, ay az in m/s and three Euler angles φ , θ and ψ in
radians. In total we have 21 primary features from the force sensors and 18 primary features from the
IMUs. Therefore 39 features are available if only the raw data from the sensors is considered.

For the recordings, ten healthy subjects were chosen to carry out different daily motions which were re-
peated ten times by each subject. In KIT H2T (2014) we can find the KIT Whole-Body Human Database
where further information of all the subjects can be found. The main characteristics of each subject are
shown in the Table 3.1).

Subj. Age Height[cm] Weight[Kg] UL circ.[cm] LL circ.[cm] UL len.[cm] LL len.[cm]

674 27 170 63 57.5 39.0 44.0 41.0
917 31 172 70 54.5 38.0 44.5 42.0
1717 22 178 74 54.5 35.0 45.5 41.5
1718 17 175 60 50.5 35.0 43.0 41.5
1719 24 172 66 59.0 36.5 45.0 45.0
1720 26 170 56 51.5 36.0 41.5 43.5
1722 25 171 64 61.0 37.0 42.0 37.0
1723 22 168 62 56.5 38.5 37.0 37.0
1724 29 175 75 55.0 36.5 44.0 39.5
1725 28 178 70 52.0 36.0 41.0 42.5
Avg. 25.1 172.9 66.0 55.2 36.8 42.8 41.1
Dev. 3.9 3.0 5.9 3.2 1.3 2.6 2.3

Table 3.1.: Overview of subject characteristics and physical parameters. UL denotes Upper Leg and LL
denotes Lower Leg.

Each of the ten subjects repeated ten times different daily motions wearing the passive exoskeleton.
The basic motions performed are the ones that follow (with its abbreviation in brackets): Walking For-
ward (WF), Walking Backward (WB), Turn Left (TL), Turn Right (TR), Sidesteps Right (SR), Sidesteps
Left (SL), Going Upstairs (GU), Going downstairs Backwards (GB), Going Downstairs (GD), Lift Object
(LO), Drop Object (DO), Stand Up (SU), Sit Down (SD) and Stand (ST).

Except for the motions TR, SR, DO, LO, SU, SD and ST, each motion had to be started with the leg on
which the exoskeleton is worn. Before and after each repetition, the subjects stood still (not recorded).
Also we have to inform that from the recordings, three repetitions of one IMU of the person ID1722 are
missing for the motion SU and in all the repetitions of the motions SD. Likewise, the data of the motion
GU execution is missing for subject ID1725.
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3.3. HMM-Based Motion Classification

This section introduces the method that will be used to carry out the motion classification. Its parameters
and other properties are explained in the subsequent sections. The notation has been adopted from Stamp
(2018) and some parts of the explanation from Rabiner (1989).

3.3.1. Hidden Markov Model

A Markov Model represents a system that can be described at any time as being in one of a set of
N different states S1,S2, ...,SN and that evolves from one state to another (possibly back to the same
state) according to a set of probabilities associated with the state (Rabiner, 1989). Figure 3.3 shows the
description of this random problem represented by a Markov chain. In this figure a model is represented
by five states each one being a node of the graph. All the nodes are interconnected using oriented edges
and each one has associated a transition probability ai j representing the probability of the Markov process
of changing from one state to another state.

Figure 3.3.: A Markov chain with five states (labeled from S1 to S5) with selected state transitions. Picture
from Rabiner (1989).

The particularity of a Hidden Markov Model is that the states are unobserved (hidden states). That
means that these unobservable states are those that we want to predict but at the same time they are not
possible to observe. Therefore we use other variables named Observations (O0,O1,O2, ...,OT−1), which
are possible to mesure, correspond to the physical output of the system being modeled and are related to
the states. The individual symbols of the observation is denoted as V =V0,V1,V2, ...,VM .

The probability to pass from one state to an other (or to remain in the same one) along the time, is
represented using a state transition probability matrix A, which is quadratic and its dimensions are equal
to the number of states N in the model (Expression 3.1). Each element ai j of A represents the probability
to pass from one state to another. To represent the probability of being in the actual state at a specific
time t is denoted as qt .

A =


a11 a12 ... a1N
a21 ... ... ...
... ... ... ...

aN1 ... ... aNN

 ai j = P(state q j at t +1 | state qi at t) (3.1)
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It is also needed to know the probabilities between observation and states. Each observation has a
probability that denotes how likely is that a certain state takes place when it is mesured that observation.
These probabilities are grouped in a observation probability matrix B where M is the number of distinct
observation symbols per state, implying a rectangular matrix of dimensions NxM (Expression 3.3). The
probabilities b j(k) are independent of t.

B =


b11 b12 ... b1M
b21 ... ... ...
... ... ... ...

bN1 ... ... bNM

 b j(k) = P(vk at t | state q j at t) (3.2)

To estimate the first state it is needed a vector that shows the probability of starting in each state. This
vector is named initial state distribution and it represented as π (Expression 3.3)

π =
[
π1 π2 ... πN

]
πi = P(q1 = Si) (3.3)

The transition from one state to the next is a Markov process of order 1, meaning that the probability
of the subsequent state depends only on the current state and the probabilities of the transition matrix A
are fixed. This idea can be expressed with

P(si
t |si

1,si
2, ...,si

t−1) = P(si
t |si

t−1) (3.4)

All these matrices define the Hidden Markov Model λ = (A,B,π) and they obey standard stochastic
constraints, which means that the sum of probabilities of each row is always 1 and its values follow a
probability distribution.

ai j > 0 b j > 0 πi > 0 (3.5)

N

∑
j=1

ai j =
N

∑
j=1

b j =
N

∑
i=1

πi = 1

Figure 3.4 shows a generic hidden Markov model in which X0,X1,X2, ...,XT−1 represents the hidden
state sequence that is determined by the current state and the Transition matrix A. The sequence of
observation variables O0,O1,O2, ...,OT−1 are the only ones that are possible to observe and they are
related to the hidden states by the Observation probability matrix B. The dashed line separates the hidden
part from the one that can be observed.

Figure 3.4.: Diagram of a generic Hidden Markov Model. Picture from Stamp (2018).
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Once a Hidden Markov Model is defined λ = (A,B,π), it can be used to give an observation sequence
O0,O1,O2, ...,OT−1 as follows:

1. An initial state is chosen q1 = Si using the Initial state distribution π

2. It is chosen Ot = vk depending on the symbol probability distribution of the current state Si, bi(k)

3. Transition to a new state qt+1 = S j considering the transition probability matrix A and the corre-
sponding element ai j.

4. It is set t = t +1 , and then return to step 2 if t < T . Otherwise the process is over.

3.3.2. HMM with Continuous Observations

The previous section considered that observations were characterised as discrete values taken from a
finite set of data with which a discrete probability density can be used for each state. However, as it
will be introduced in next chapters, the observation used in this thesis and in other application of HMMs
are continuous data vectors, that require a continuous probability density within each state of the model.
To be able of using a continuous observation space instead of a finite number of discrete values, the
components of the observation probability matrix B (Expression 3.3) must be replaced with a continuous
probability distribution.

For continuous observation, the probability density function of the D-dimensional observation Ot ,
related to the state i, using a Gaussian distribution with mean value vector µ and Σ (Bishop, 2006) is

bi(O) = (2π)

−D
2 |Σ|−1/2exp

(
−1

2
(Ot −µ)T −Σ

−1(Ot −µ)

)
(3.6)

3.3.3. Types of HMMs

In Beil et al. (2018) and in Patzer, Isabel and Asfour, Tamim (2019), only a fully connected topology
was used in the motion classification system. This kind of model, also called ergodic, has the property
that every state can be reached from every other state of the model. That supposes that in the Transition
Matrix (Expression 3.1) every single component is such that ai j > 0 for all i, j. Figure 3.3 shows a graph
that represents this kind of topology using 5 states.

Different types of HMMs can be used depending on the observed properties of the signal being mod-
eled. As an example, Figure 3.5 shows a Left-Right model or Bakis model (Saerens, 1993), in which the
state sequence associated with the model has the characteristic that as time increments the state index
increases or stays in the same state. In the example shown the states proceed from left to right. This
kind of topology is really suitable to model signals whose properties and constitution change over time.
A known application is the use of this model for speech recognition. In our case of motion recognition,
where each motion changes over time and has a continuity, this topology might improve the representa-
tion of the HMM. In this model the transition matrix is triangular with all the elements under the diagonal
equal to 0. If we consider the Expression 3.1, the state transition properties of a lef-right model have the
characteristic that ai j = 0 if j < i.

Another type of HMM is the Cyclic linear topology. This one is characterised by having the same
structure as the Left-Right, but in this case it is possible to proceed from the last state to the first one
creating a cycle. Concerning the transition matrix, this topology consists also in a triangular transition
matrix with 0s under the diagonal with the exception of the element aN1 which is greater that 0. The
graph of this model is similar to the one of Figure 3.5, but with a transition with direction from state 4
to state 1. This kind of HMM was used in Panahandeh et al. (2013) in a joint activity and gait-phase
classification. One great advantage of topologies with transition matrix where some ai j are 0s is the
reduction of calculations to train the model.
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Figure 3.5.: Left-Right model with 4 states. The states proceed from left to right. In this example there
is the exception that state 4 is not reachable from state 1. Picture taken from Stamp (2018).

3.3.4. Fundamental Problems for HMMs

In this section some application of HMMs are presented to face different issues. The Evaluation problem
and the Learning problem approaches will be the application of the HMMs that will be used in this thesis.
The Learning problem will be used to train a specific model for each motion and the Evaluation problem
to classify each new data sample in its corresponding motion.

Evaluation Problem

In this problem it is pursued to check if an observation sequence O1,O2, ...,OT belongs to a given HMM
model λ = (A,B,π). A probability is obtained that informs about how likely was that this model gener-
ated that specific sequence O. The probability of the observation sequence given the model is expressed
as P(O|λ ).

This kind of problem can be solved by considering every state sequence of length T (number of
observations)and then calculate the probability of the observation sequence O for each state sequence
Q = qi,q2, ...qT . If we consider statistical independence of observations, then we get that

P(O|Q,λ ) = bq1(O1) ·bq2(O2) · · ·bqT (OT ) (3.7)

The probability of O is got by summing a joint probability over all possible sequences q such that

P(Oλ ) = ∑
allQ

P(O|Q,λ )P(Q|λ ) = ∑
q1,q2,...,qT

πq1bq1(O1)aq1q2 bq2(O2) · · ·aqT−1qT bqT (OT ) (3.8)

To solve this problem a forward-backward procedure is required since otherwise the calculations are
computationally unfeasible. It considers the forward variable αt(i) defined as

αt(i) = P(O1,O2 · · ·Ot ,qt = Si|λ ) (3.9)

which gives the probability of the partial observation sequence O1,O2 · · ·Ot and state Si at time t given
the model λ . And the backward variable βt(i) such

βt(i) = P(Ot+1,Ot+2 · · ·Ot |qt = Si,λ ) (3.10)

which gives the probability of the partial observation sequence from t +1 to the end, given state Si at
time t. For more details about it, please consult Rabiner (1989).

Decoding Problem

In this problem it is pursued to find the correct state sequence. Taken into account an HMM model
λ = (A,B,π) and an observation sequence O = O1,O2, ...,OT , it is calculated the most likely sequence
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of hidden states Q = q1,q2, ...,qT produced by the observation sequence O.
Finding the correct state sequence means looking for the optimal one, which can differ depending on

the searching criteria (Rabiner, 1989). If we want maximise the expected number of correct individual
states, we would choose the states qt that are individually more likely. To solve this problem the following
variable is defined

γt(i) = P(qt = Si|O,λ ) (3.11)

which defines the probability of being in state St at time t given the observation sequence O and the
model λ . This equation can be expressed in terms of the forward-backward variable

γt(i) =
αt(i) ·βt(i)

∑
N
i=1 αt(i) ·βt(i)

(3.12)

Using γt(i), the next optimization problem should be solved to obtain the individually most likely state
qt at time t as

arg max
1<i<N

[γt(i)] (3.13)

For more details about it, please consult Rabiner (1989).

Learning Problem

This problem attempts to optimize the model parameters in such way that the output of a given obser-
vation sequence is predicted using a specific criterion. Therefore, this problem tries to define an HMM
model with all its parameters λ = (A,B,π). To do so, it is given some training observation sequences
O0,O1, ...,OT−1 and the definition of its structure (the number of hidden and visible states). The model
parameters λ = (A,B,π) are chosen in order to maximise P(O|λ ).

The Baum-Welch method or gradient techniques (Levinson et al., 1983) are used in order to chose
λ = (A,B,π) such that P(O|λ ) is a global maximum, although it can only provide a local maximum.
The HMM parameters are reestimated and updated in each iteration of the procedure looking for the best
representative model. For that purpose, the probability of being in state Si at time t, and state S j at time
t +1, given the model and the observation sequence is

ξt(i, j) = P(qt = Si,qt+1 = S j|O,λ ) (3.14)

As it was defined in the Decoding Problem case, γt(i) is defined as the probability of being in state Si
at time t, given the observation sequence and the model. It is possigle to relate γt(i) with ξt(i, j) in such
way that

γt(i) =
N

∑
j=1

ξt(i, j) (3.15)

If we do a sum of γt(i) over the time indexes, we would get the expected number of times that state Si
is visited. If the summatori is done with ξt(i, j), the number of transitions from Si to S j are calculated.
Then, the set of reestimation formulas for π , A and B are the following ones:

π i = γ1(i) ai j =
∑

T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt(i)

b j(k) =
∑

T
t=1(s.t.Ot=vk)

γt( j)

∑
T
t=1 γt( j)

(3.16)
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If the current model is λ = (A,B,π) and the reestimated model is λ = (A,B,π), model λ is more
likely than model λ since P(O|λ ) > P(O|λ ). That means that the observation sequence considered is
more probable to have been produced with this new model. For more details about the Learning Problem
approach, please consult Rabiner (1989).

3.4. Model Validation

In order to estimate the accuracy and predict the performance in practice of a classification system, a
model validation technique is carried out on a data set. A Cross-validation technique is the one chosen in
this work as it was already employed in previous works on which this thesis is based (Beil et al. (2018),
Patzer, Isabel and Asfour, Tamim (2019) and Mandery et al. (2016)). It targets to assess how the results
of a statistical analysis would be for an unrelated data set. In our case, the main reason behind the use of
a Cross-validation is the limited data available to evaluate the models. The main idea of this technique
is training a model with all the data but for a portion that is kept aside to use it later for testing.

The type of Cross-validation techniques is named K-Folds Cross Validation and its main characteristic
is that every observation from the whole dataset is used in the training and test set. More specifically in
this work, a Stratification in the validation is used, and it consists of keeping the proportion of data points
for each class (type of motion) in every fold, in such way that the data is divided equally among training
and test folds. Figure 3.6 shows a 5-Folds Cross Validation and a summary of the process. The train and
testing process follows the following steps:

1. The entire data set is randomly split into k folds, ideally between 5 and 10 considering the data
size (Ohannessian, 2017). The higher is the k value, less biased would be the model. However the
bias-variance trade-off should be such that keeps the variance in a low value.

2. The model is fitted using K−1 folds and the isolated fold is used to test it.

3. Points 1 and 2 are repeated until each fold has been employed as a testing fold. Each iteration is
call a Round and for each one the results should be stored to be considered once the process is
over.

4. Evaluate the results of each Round to extract the descriptive results of the process. The evalua-
tions that will be introduced in Section 3.5 are some possibilities to extract information about the
performance of the models.

Figure 3.6.: Diagram of a 5-Folds Cross Validation in which the accuracy metric is extracted in each
iteration in order to calculate a score associated with the Cross-validation at the end of the
process. Picture taken from Drouin, Alexander and Laviolette, François (2019).
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3.5. Evaluation of Results

This section explains how the success of the classification system is evaluated. Below the definitions
of the quantitative methods to represent this performance are presented. First the definition of the term
Accuracy is explained. Following the Recall and Precision are introduced to explain afterwards the idea
behind the F1score measurement.

During this section the following notation concerning the classification of motion samples are used:
T P are true positives, FP are false positives, FN are false negatives and T N are true negatives.

3.5.1. Accuracy

The Accuracy can be used to evaluate the performance of our model. In simple words, it is the ratio
of correct predictions to the total number of samples predicted. In the context of a supervised learning
approach, as in the case of our motion classification, it can be defined as the number of data points
correctly classified as positive T P or negative T N devided by the total number of samples.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.17)

We have to keep in mind that this metric gives a meaningful value, only if the number of samples
belonging to each class is equal or at least similar. If there are more samples of one class comparing to
others, a high accuracy for that class might not be a good result. If the cost of misclassification for the
minor classes is high, this metric would not be the most suitable evaluation expression to use.

3.5.2. Precision and Recall

Precision is an indicative that attemps to inform about the proportion of positive identifications that was
actually correct. In our case it quantifies the percentage of motion samples classified as an specific class
that actually belong to that class.

Precision =
T P

T P+FP
(3.18)

The statistical measure Recall, also called Sensitivity, is the measurement of the proportion of positive
identifications that are correctly indentified as this type. In the motion classification system, the Recall
gives the percentage of motion samples of an specific type that have been identified as such and not as
another motion one. In this case it is necessary to take into account the classifications carried out for the
other motions.

Recall or Sensitivity =
T P

T P+FN
(3.19)

3.5.3. F1 Score

This statistical measure is the weighted average of Precision and Recall (Van Rijsbergen, 1979). It gives a
valuable information if the cost of getting false positives is simmilar to the cost of getting false negatives.
Otherwise it will be also necessary to take a look at the Recall and the Sensitivity. Depending on if it
is pursued to reduce false negatives or false positives, the precision term can be weighted. For example
an F2 would allow to push the reduction of false negative. The Expression 3.21 shows how could be
possible to weight this measure. In the previouos example β would take 2.
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F1score = 2 · Precision ·Recall
Precision+Recall

(3.20)

Fβ = (1+β
2) · Precision ·Recall

(β 2 ·Precision)+Recall
(3.21)

3.5.4. Results in Multi-Class Classification

When the classification has to be carried out among multiple classes, the Accuracy can be defined as a
percentage of the correctly classified data points among all data points. In our approach, each observation
is evaluated in each HMM of the motions considered and the one that got the highest likelihood is
classified as that motion.

Meanwhile for Sensitivity, Precision and F1 Score, one class is considered and the remaining classes
are summarised as another global class. The average of the F1 scores of all the classes is calculated in
order to calculate the global F1 score of the whole classification. This average measure was already used
in Mandery et al. (2016) in which the number of data points of each class was considered to calculate the
F1 of the classification. The following expression shows this weighing

F1,Cassi f ier =
∑

N
i=1 ni ·F1,i

∑
N
i=1 ni

(3.22)

where ni is the number of data points for the class i, F1,i is the score obtained on the class i and N is
the number of classes (in our case the number of motions considered).
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4. Derived Features

This chapter introduces the new derived features used to carry out the Hidden Markov Model (HMM)
based motion classification. These features are calculated from the raw data and the intention is to
use more significant data regarding the human motion and reduce the dimensionality needed without
affecting the performance.

4.1. Joint Moments

On the basis of using derived features from the raw data, it was decided to use the knee and ankle
moments as new derived features due to the dynamic relevance that they mean for an human motion.
Mansur et al. (2013) suggests to use the dynamic features instead of kinematic features for human action
recognition using HMM. It is argumented that as they are derived from the physics-based representation
of the human body, such as the torques from some joints, they have a lower dimension than kinematic
features and less motion data is required to train the HMMs. In this section it is explained the calculation
of the knee moments and the ankle moments based on the force sensor values.

Figure 4.1.: Representation of the knee and ankle moments on the common reference systems
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4.1.1. Calculation of the Moments

To calculate the knee moment vector was considered a common reference system set up in the middle
of the rotation knee axis, in such way that Y-axis is vertical, X-axis goes along the rotation knee axis
and Z-axis direction is positioned forming a right-hand rule coordinate system in combination with the
other axes. Figure 4.1 shows a representation of the knee moments on the new common reference
system. The same oriented common reference system was used, but with the X-axis going along the
rotation ankle axis, to calculate the ankle moments. Using the dimensions of the exoskeleton CAD
model and considering the reference system of each force sensor, each force vector was transformed into
the common reference system aforementioned. We should point out that the moments calculated are
not the real moments that the knee or ankle are doing, but how much are the muscles, where the force
sensors are situated, contributing to create these moments. The dynamics of the exoskeleton, the weights
of different parts of the leg, the force reaction between ground and foot and other factors should be taken
into account to calculate a better approximation of the moment vector.

In this section it is explained only the calculation of the knee moments based on the force sensor
values. The procedure is analogous with the calculation of the ankle moments. The expression of both
moments are shown in the next section.

Coordinate axes of the force sensors

The coordinate axes of each sensor are oriented as it is shown in Figure 4.2(a). Each sensor has its own
orthogonal coordinate system. The axes orientation is always such that y axis is upright oriented, z axis
points towards the inside of the leg and x axis follows Right-hand rule with the others. Figure 4.2(b)
shows these axes for one generic force sensor.
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(a) Force sensors distribution in
the exoskeleton with reference
numbers. Reference axes of sen-
sors 1 and 2 are shown.

(b) Orthogonal coordinate system of one force sen-
sor.

Figure 4.2.: Orthogonal coordinate system of the force sensors.
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Transformation matrices

In order to calculate more easily the knee moments, the reference systems of each sensor is transformed
in a way that all of them have the same orientation. The global basis chosen B′ to use is the one that
appears in the Figure 4.3(a), in blue color with the x axis as the knee rotational axis.

To find the change of coordinates matrix from the basis of each sensor B to the new global basis B′,
the basis vector of B is expressed as linear combination of the basis vectors of B′.
Being B = (~u1, ~u2, ~u3) a basis of one of the sensors and B′ = (~v1,~v2,~v3) the new basis, the coordinates of
~u relative to the new basis B′ can be expressed uniquely as a linear combination of~v:

~u1 = a1 ·~v1 +a2 ·~v2 +a3 ·~v3

~u2 = b1 ·~v1 +b2 ·~v2 +b3 ·~v3

~u3 = c1 ·~v1 + c2 ·~v2 + c3 ·~v3

(4.1)

with ~a,~b and~c the coordinates of ~u relative to the basis B′. For each sensor the following expressions
are obtained. The number of each sensor corresponds to the number scheme of Figure 4.2.

Sensor 1 :
~u1 = ~v1

~u2 = ~v2

~u3 = ~v3

Sensor 2 :
~u1 =−~v1

~u2 = ~v2

~u3 =−~v3

Sensor 3 :
~u1 =−~v1 · cos(α)+~v3 · sin(α)

~u2 = ~v2

~u3 =−~v1 · sin(α)−~v3 · cos(α)
(4.2)

Sensor 4 :
~u1 =−~v1 · cos(α)−~v3 · sin(α)

~u2 = ~v2

~u3 = ~v1 · sin(α)−~v3 · cos(α)

Sensor 5 :
~u1 =−~v1

~u2 = ~v2

~u3 =−~v3

Sensor 6 :
~u1 = ~v1

~u2 = ~v2

~u3 = ~v3
(4.3)

Sensor 7 :
~u1 = ~v1

~u2 = ~v2

~u3 = ~v3

(4.4)

The change of basis matrix to change from B to the basis B′ regarding the expressions 4.1 is

M =

(
a1 b1 c1
a2 b2 c2
a3 b3 c3

)

This allows to find the force vectors ~w of the sensor i in the common reference system defined by B′

such that

|~wi|B′ = Mi |~wi|B
Each reference system of each sensor i has its own change of basis matrix
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(a) Lateral view of the exoskeleton
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(c) Section view with the dimensions
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Figure 4.3.: Main dimensions of the exoskeleton model used to compute the moments.
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M1 =
(1 0 0

0 1 0
0 0 1

)
M2 =

(−1 0 0
0 1 0
0 0 −1

)
M3 =

(
−cos(α) 0 −sin(α)

0 1 0
sin(α) 0 −cos(α)

)
(4.5)

M4 =

(
−cos(α) 0 sin(α)

0 1 0
−sin(α) 0 −cos(α)

)
M5 =

(−1 0 0
0 1 0
0 0 −1

)
M6 =

(1 0 0
0 1 0
0 0 1

)
(4.6)

M7 =
(1 0 0

0 1 0
0 0 1

)
(4.7)

4.1.2. Expressions of the Moments

Knee Moments

The expression of the moments are computed using the vector values in the new basis B′. The total
moment is split in the one produced by the upper leg Γul and the lower leg Γll

Γ = Γul +Γll =

Γul |x
Γul |y
Γul |z

+
Γll |x

Γll |y
Γll |z

 (4.8)

The expressions of the upper leg and lower leg using the dimensions in Figure 4.3(a) and Figure 4.3(b)
to calculate the knee moments are:

Γul |x = FS1y ·d2 +FS1z ·d3−FS2y ·d1 +FS2z ·d4 +FS3z ·d5

−FS3y ·d10 · cos(α)+FS4z ·d5−FS4y ·d10 · cos(α)+FS6z ·d5 +FS6y ·d11

Γul |y =−FS1x ·d2 +FS2x ·d1 +FS3x ·d10 · cos(α)−FS3z ·d10 · sin(α)

+FS4x ·d10 · cos(α)+FS4z ·d10 · sin(α)−FS6x ·d11

Γul |z =−FS1x ·d3−FS2x ·d4 +FS3y ·d10 · sin(α)−FS4y ·d10 · sin(α)

−FS6x ·d5−FS3x ·d5−FS4x ·d5

(4.9)

Γll |x =−FS7z ·d7−FS5z ·d6−FS5y ·d8 +FS7y ·d9

Γll |y = FS5x ·d8−FS7x ·d9

Γll |z = FS5x ·d6 +FS7x ·d7

(4.10)

Ankle Moments

As mentioned before, the procedure to calculate the ankle moments is analogous. Therefore, only the
expressions of the ankle moments will be shown in this section. Using the dimensions in Figure 4.3(c)
the following expressions are obtained (note that in this case only the force sensors of the lower leg are
used):
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Γll |x = FS5z ·d12−FS5y ·d8 +FS7z ·d13 +FS7y ·d9

Γll |y = FS5x ·d8−FS7x ·d9

Γll |z =−FS5x ·d12−FS7x ·d13

(4.11)

4.2. Leg Joint Angles

In this section two more derived features are introduced. These features are extracted from the Euler
angles of the IMUs. These two new derived features are the joint angles of the knee and the ankle, which
are representative for the kinematic description of a motion. The knee and ankle joint angles extracted
from the recordings are relative angles, which provide a value relating to the orientation between two
parts of the leg: the angle between the thigh and the shank (joint angle of the knee) and the angle
between the shank and the foot (joint angle of the ankle). Figure 4.4(a) shows these two angles as β for
the knee joint angle and γ for the ankle joint angle.

(a) Main angles of the joints of the leg. Picture taken
from Musculoskeletal Key (2008)

(b) Orientation of the IMUs
on the Passive Exoskeleton.
Picture adapted from Patzer,
Isabel and Asfour, Tamim
(2019).

Figure 4.4.: Representation of the angles that are pursued to calculate based on the IMU values of the
Passive Exoskeleton.

To calculate the knee joint angle it is considered the orientation of the two IMUs sensors that are
located on the thigh (IMU 1) and on the shank (IMU 2). Then, taking into account the reference system
of each IMU and the component of the Euler angle that describes a rotation about an axis parallel to the
rotation axis of the knee, as can be seen on the Figure 4.4(b), it is assumed that

ϕknee = ϕIMU1x−ϕIMU2x (4.12)
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The same idea can be used to calculate the joint angle of the ankle, but this time the pair of IMUs
considered is the one located on the shank (IMU 2) with the one located on the foot (IMU 3). Therefore
the expression to calculate the joint angle of the ankle is

ϕankle = ϕIMU3y−ϕIMU2x (4.13)

It is important to stand out that the angles calculated are approximations to the joint angles of a human
leg, fundamentally because the lower limb exoskeleton considered can only perform rotations around
one axis, meanwhile the human knee can perform rotations around three axes.
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5. Evaluations

In this chapter the main two topics of this thesis are introduced. Firstly, a feature analysis of the moments
is carried out to examine the intra and inter subject motion resemblace. The results extracted will be used
to analyse our data base and spot other issues regarding the motion classification. The second topic
consists of using the derived features, previously introduced, in a motion classification system based on
Hidden Markov Models. Different setups of the method for classification and data’s preprocessors will
be tested in order to find the best performance. In this chapter all the methods and procedures will be
presented and the results obtained will be shown in Chapter 6.

5.1. Moment Feature Analysis

In order to study the dynamic meaning and quality of the moment derived features, it was decided to carry
out an analysis to study the pattern, the consistence and other characteristics of these new features. Along
this section the motion recordings off all the subjects introduced in the Section 3.2 will be analysed. The
purpose of this analysis is study the motions execution among all the repetitions for a single subject and
the similarities between different subjects.

Another goal of this part will be to identify if a Hidden Markov Model (HMM) of a motion related
to a subject that tends to perform it differently in each repetition, affects negatively in the training of
the model . Each time the motion classification method is executed, the accuracy in the classification
for each subject is calculated. In that way, it is possible to know which are the subjects whose motions
are usually more correctly classified. Once these results among the classification tests were examined,
some tendencies were spotted on subjects that usually perform quite better or worse comparing with the
other subjects considered. In this section the following hypothesis is established to explain this kind
of tendency: "One reason of having a high accuracy in the classification for a subject (in comparison
with others) is because that subject performs a motion always in a more similar way, which turns on a
better model". The Correlation, which is a measure of dependence between two set of data, will be the
indicator to quantify similarities between recordings of the same motion. It is important to underline that
this motion study has been carried out using only the features of the moment vector which include all the
force sensor values. It could have been also possible to study these motions using values from the IMUs
sensors like the acceleration or the Euler angles.

5.1.1. Resemblance Analysis

The Resemblance Analysis pursues to quantify the resemblance among the execution of the same motion
among different repetitions carried out by different subjects. If the data differs a lot among subjects, that
feauture won’t be suitable to carry out a motion classification. But on the contrary, if data samples are
too similar the variety existing in a real situacion would not be represented. Something between these
two situations would be appropriate.

To this objective, the motion values were plotted and correlations (the strength of the linear relationship
between two samples of data) between pair of samples were calculated to quantify the similarities and
spot singularities or irregular events among the motions.

Before calculating the correlation the data is filtered using a digital lowpass filter to reduce noise or
outliers. In this way the data is smoothed and a clearer pattern can be distinguished. The parameters of
the filter depicted in Table 5.1 are chosen to obtain the highest correlations of the knee moments between
the motion recordings.
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Type of Filter Low Pass
Response Infinite pulse
Order 10

Half Power Freq 2 Hz
Sample Rate 0.1 Hz

Table 5.1.: Parameters of the filter used for the Resemblance Analysis of moments.

Additionally, the two motion recordings are syncronized. Firstly, the delay between data signals is
estimated. The delay is found by calculating the cross-correlation between each pair of signals at a set of
possibles lags, and then the estimated delay is given by the negative of the lag for which the normalized
cross-correlation has the largest absolute value. Afterwards the pertinent signal is delayed by prepending
zeros to align both. Continuing with the process, the output signals are trimmed considering the delay in
such way that the leading zeros section of one of the signals is removed and the corresponding section
of the other signal is also cut off. At the end, the sizes of both signals are matched by removing the last
data section. Figure 5.1 shows this process. First the delay D is estimated, afterwards 0’s are prepended
to the signal s1 in order to add the delay and align it with s2, and finally the parts corresponding to the
0s addition and the matching of the final segments are cut off.

Figure 5.1.: Outline for an alignment process of two motion data sets.

Once the two signals are aligned it is possible to quantify the linear relation between them. Therefore
the corresponding Pearson correlation coefficient can be computed after this synchronization as follows

ρX ,Y =
cov(X ,Y )

σX ·σY
(5.1)

where cov(X ,Y ) is the covariance between two samples, and σX and σY are the standard deviations
of the values of each data sample. The Figure 6.1 from the Section 6.1.1 shows an example of this
preprocessor.
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5.1.2. Intra-Subject Analysis

This study lies in analyse the moments among all the repetitions of the same motion and subject. Through
this study it is pursued to check the consistency of the knee moment feature. Also it is possible to see
if a certain subject carries out the same motion each time in a similar way. A high variability between
repetitions might be detrimental for the training of the model used to classify that motion.

After all intra-subject correlations have been calculated for one motion and subject, a heat map is
generated. This heat map shows the correlations between repetitions of motions carried out by the same
person.

5.1.3. Inter-Subject Analysis

In this second analysis it is pursued to spot similarities of motions between different subjects. High
correlation values among the repetitions of two subjects will mean that they present a similar way of per-
forming that motion. The results extracted can be useful to prove some results in the motion classification
and connect these results with physical characteristics of the subjects.

The study consists of comparing the best pair of repetitions of each subject with the best pair of
repetitions of the other subjects. Once all intra-correlations of all the subjects have been calculated, the
pair of each subject with the highest correlation is chosen. The repetitions of this pair are selected as the
ones with which the correlation analysis between subjects will be carried through.

To conclude, a last heat map is generated in which it is pursued to show the motion resemblance
among subjects. Therefore it will be possible to distinguish which subjects act in a similar way when
performing a certain motion. To generate this heat map the results of the Inter-Subject study are used.
Each component of the resemblance matrix is the mean of the four correlation values computed for
two subjects (Expression 5.2). We have to remember that only two repetitions of each subject were
considered.

ρ IDi,ID j
=

ρ(IDr1
i , IDr1

j )+ρ(IDr1
i , IDr2

j )+ρ(IDr2
i , IDr1

j )+ρ(IDr2
i , IDr2

j )

4
(5.2)

where IDi and ID j are two repetitions of that subject amd the superscript r1 and r2 denote the two
repetitions that got the highest correlations in the intra-subject analysis.

5.2. Motion Classification

In this section an outline of the motion classification system will be presented and the steps taken to carry
out all the classification process will be explained.

5.2.1. Data Preprocessing

In this section it is explained how the motion data is processed before being used in the training of the
Hidden Markov Models (HMMs).

Raw Data

All the raw data is stored in files and the force vectors, the linear accelerations and the Euler angle values
are synchronized in time using a sampling period of 10ms. Therefore, there is a value of each feature
each 10 ms which allows to have uniform data structures suitable for further processing.

During the recording of the data, the force sensors were connected to two different data acquisition
systems (DAQ), force sensor 1 to 4 to the first and force sensor 5 to 7 to the second. Each DAQ acquired
the raw analogue data using a frequency of 100 Hz. Meanwhile a micro-Controller (SAM3X8E ARM
Cortex-M3, Microchip Technology Inc.) processed orientations and linear accelerations of every IMU
with frequency of 80 Hz. Therefore, to get values on the same timestamps, the mesured values of
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the IMUs were interpolated to 100 Hz. Also it is important to highlight that the Euler angles were
calculated from the quaternion values recorded by the IMUs. It was rejected the used of quaternions
in Beil et al. (2018), since quaternions are ambiguous (one angular configuration can be described by
two quaternions). The quaternion sets of data were transform to Euler angles via the relations shown in
Equations ??, where qi are the quaternion components and φ , θ and ψ the Euler angles (Yaw, Pitch, and
Roll respectively).

φ = arctan

[
2(q0 ·q1 +q2 ·q3)

1−2 · (q2
1 +q2

2)

]
(5.3)

θ = arcsin[2(q0 ·q2−q3 ·q1)]
(5.4)

ψ = arctan

[
2(q0 ·q3 +q1 ·q2)

1−2 · (q2
2 +q2

3)

]
(5.5)

Calculation of Derived Features

Each component of a derived feature is calculated using the raw data and considering only a single
timestamp. In this way the new data is synchronized in time with the raw data and it is still possible to
work with a rectangular data structure.

As it has been already shown in the previous sections 4.1 and 4.2, the features of the moment vector
are calculated using the expressions 4.9 and 4.10 and the knee angles features are calculated with the
expressions 4.12 and 4.13. For each time stamp where a set of force values were recorded, the resultant
moment vector and norm of it are calculated. The knee and ankle angles are calculated likewise but
using the corresponding Euler angles from the IMUs recordings. Table 5.2 shows the primary features
from where the corresponding derived features were extracted. We have in total 6 derived features which
means that in total we have 45 features available to carry out the motion classification.

Primary Features Units Number Derived Features Units

Forces (Fx, Fy, Fz) N 21 Mx N ·mm
My N ·mm
Mz N ·mm
|M| N ·mm

Euler angles rad 9 φknee rad
φankle rad

Table 5.2.: Derived features and primary features from where they were calculated.

Data Filtering

To aim an improvement of the motion classification results, a filtering of the knee moment vector was
considered. The use of a filter that smooth the irregularities and reduce the noise can suppose a simpli-
fication of the outline of the data. If we take care of using this filter in a moderate way in order to not
eliminate relevant data information, the motion representation can be clearer represented and the motion
classification might improve. The smoother data set could reduce the number of states needed in the
Hidden Markow Models, which could result in simpler models and lower training times.

Analysis of Derived Features for the Motion Classification of a Passive Lower Limb Exoskeleton



Section 5.2: Motion Classification Page 31

It was considered to try a filter in a similar way as it was done in the Moment Feature Analysis. Unlike
in the Resemblance Analysis, in which the full sequence motion was used, in this case the filter is applied
in each window (e.g interval time of 300 ms). That supposes different conditions for the filtering, so its
parameters have to be tuned again. The filter used is a low pass filter (high frequencies, like the ones be-
longing to the noise, will be attenuated) and the order and the edge of frequency wn are the ones that can
be seen in Table 5.3. Once the filter’s parameters are calculated, the filter is applied twice, once forward
and once backward, in such way that it has linear phase. The order of the filter is twice the original order.
Figure 5.2 shows an example of the filter application for a data windows of 300 ms. The blue curve is
the original data and the orange one is the filtered data. The windows belongs to a section of the motion
Walking Forward.

Type of Filter Low Pass
Response Infinite pulse
Order 3

Edge of Freq. 0.15 rad/s
Type of Data Digital

Table 5.3.: Parameters of the filter used for the preprocessing of the moment feature.

Figure 5.2.: Data windows of 300 ms of the feature Mx where the original data (blue curve) and the
filtered data (orange curve) are plotted. The window belongs to one section of the motion
Walking Forward.

Windows Creation

A sliding window approach was used to segment the whole mesurement data stream of a motion. That
means that after a time equal to the sampling distance a new window is generated containing all the data
stream of a specific period of time (window size). In that way the data is split in different overlapping
windows until complete the entire motion and using always a constant window size (e.g. 300 ms).

Figure 5.4 represents the process for a generic feature. We can observe that the last window created is
such that its last timestamp coincides with the last timestamp of the whole data stream.

Analysis of Derived Features for the Motion Classification of a Passive Lower Limb Exoskeleton



Page 32 Chapter 5. Evaluations

Figure 5.3.: Representation of the sliding window approach. Picture taken from Beil et al. (2018)
.

For smaller window sizes the amount of time needed for the classification is shorter, so an online per-
formance of the classification system can be achieved. However, as it was tested in Beil et al. (2018), the
window size is usually inversely proportional to the accuracy. For example, a stratified 5-fold cross val-
idation obtained testing on all the subjects gave the following accuracies for each window size: 82.92%
for w = 100ms, 92.80% for w = 300ms and 97.45% for w = 600ms.

Data Normalisation

It is not possible to assume that the force sensors measure in the same way after each tightening of the
exoskeleton for a certain person. Factors like the differences of the inter-subject characteristics or of
tightness of the Velcro fasteners lead to different force values. Moreover concerning on the subject’s
gait style and the duration to carry out a specific motion, the linear accelerations and Euler angles can
differ drastically among repetitions of the same subject and when being compared with other subjects. A
solution to try to avoid these issues would be a calibration phase before the use of the exoskeleton, but
since one of the requirements of these exoskeleton is to improve its acceptance and usability, this option
must be dismissed.

Therefore, to make the classification robust against these influences, the differences of consecutive
feature values are calculated such Ft −Ft−1 and used as an input for the classifying system. However in
the following section 6.3 some tests were run without calculating these differences in order to study its
influence.

Finally, taking into account that the data ranges are really different among the features used, a data
normalisation is performed. Table 5.4 shows the approximate ranges for each feature in which we can
notice that the orders of magnitude are quiet different.

To carry out the data normalisation, for each window and type of scalar values, the maximum and
minimum values xmax and xmin are determined. Afterwards all individual values of each timestamp xt are
represented with the conversion to the interval [−1;1] as can be seen in the expression 5.6.

x̂t = 2 · xt − xmin

xmax− xmin
−1 (5.6)
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Feature Units Aprox. min Aprox. max

Linear accelerations m/s2 -5 3
Euler angles rad -3 2

Forces N -20 15
Knee moments N ·mm -1000 500
Joint angles rad -4 -1

Table 5.4.: Approximate range of values for each feature.

5.2.2. Motion Classification System

In the context of our motion classification system, a Learning problem is presented with the target of
determine the HMM’s parameters that best fit our training data for each motion. Each model is defined
by a matrix of transition probabilities A, a matrix of observation probabilities B and a vector of initial
probabilities π . The observations are modeled using a Gaussian distribution (Expression 3.6) since they
are continuous and the data samples are structured using a sliding windows approach.

For the data classification into motions, a Learning Problem is considered since we consider the case
in which we are trying to choose among several competing models the one that best matches the ob-
servations. In other words, we will face a multi evaluation problem in which motion data windows are
evaluated in each model’s motion Mi = (Ai,Bi,πi). A score is obtained regarding how likely that data
windows was generated by this model. Each window is labeled according to the model’s motion in which
the highest likelihood was obtained.

Figure 5.4.: Representation of multi evaluation problem to classify a data window. Picture taken from
Beil et al. (2018).

Next paragraphs explain the main settings used to carry out the tests. Some decisions of the setup
were chosen because of the results obtained in Beil et al. (2018) and Patzer, Isabel and Asfour, Tamim
(2019). Firstly, how was the setup of the classification system that has been mostly used until now is
explained. Secondly, the different setup possibilities are introduced looking for a better performance the
motion classifier.

Basic Setup

Considering the results that will be compared are the ones obtained from Patzer, Isabel and Asfour,
Tamim (2019), where an analysis of a dimensional reduction was carried out, only the settings for these
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tests will be presented. Some of them were extracted from the conclusions of Beil et al. (2018). The
results of these tests can be found in the following Section 6.3 in Table 6.6.

The data samples are processed using a sliding window approach using a window size of 300ms and
vectors are concatenated using a time step of 10 ms. The window size value was proved in Beil et al.
(2018) to have a good accuracy result of 92,80% while its corresponding latency of 389 ms allows an
online use of the classifier. Regarding the model of the continuous data of the windows, the covariance
matrix of the Gaussian distribution that represents the observations is diagonal. The values of the force
sensors (21 features) and the linear accelerations and Euler angles from the IMUs (18 features) were
used, meaning a total number of 39 featured to chose from.

For the training of the models, a fully-connected topology with 14 states to represent each motion
is used. In Beil et al. (2018) it was proved that this number of states and type of HMM allow a good
trade-off between accuracy and compute time. For the model training, 100 iterations are always run
to recalculate the transition and observation probability matrices and the initial state distribution. To
evaluate the results it was carried out a stratified 5-fold cross validation for all the configurations.

Adapted Setup

Different variations of the basic setup have been considered looking for better representations of the
motions in order to obtain higher accuracies in the motion classification and lower compute times.

The total of features now available is 45, where 6 are the new derived features. During the motion
classification tests a wide amount of combinations will be considered. First single features and derived
features will be used alone to see their single performance. Afterwards, the number of features will
increase and configuration mixing primary and derived features will be considered.

Regarding the preprocessor of the feature vectors, for some configurations the difference of two con-
secutive vectors (Ft−Ft−1) will be calculated to create the windows. This was already done in Beil et al.
(2018), where it was argued that inter-subject characteristics caused a huge variability among the values
captured each time the repetition of a motion was recorded. Therefore, calculating the differences among
values this variability that was producing an specific offset can be removed. Furthermore, taking into ac-
count that each data sample was recorded using a constant sammple period, it could be considered that
we are calculating a numerical differentiation of these value sequences as it was done in Mandery et al.
(2016). In the tests carried out, for each set configuration of features, a version with the calculation of the
differences and another without this calculation will be tested. In that way, we will be able to prove in
which cases this preprocesser is better. Also in the data preprocessor, features will be filtered to improve
the model’s definition. The filter applied is the one that was explained in Section 5.2.1.

With respect to the model training, different types of HMM will be tested. Left-Right and Cyclic are
HMM’s topologies, which were introduced in Section 3.3, will be evaluated. These topologies are char-
acterised by their simple structure since only subsequent states are connected. The models’ complexity
will be reduce in comparison with the fully-connected topology and consequently compute times will
drop. Another parameter of the models tested will be the number of states employed. Less states will be
used in combination with the aforementioned HMM topologies in order to find the model than represents
in a better way the considered motions and with a low compute time. As it can be expected, the use of
less number of states will lead to a reduction of the compute times of the classification system.

5.2.3. Model Validation and Evaluation of Results

This part referes to Sections 3.4 and 3.5 and it explains how is evaluated the performance of the motion
classification system and how are the results displayed.

Concerning the Model Validation, the HMMs were trained and tested using a 5-fold cross validation
over all the subjects and motions. It was also stratified to accommodate the varying number of gener-
ated windows per subject caused by the self-selected motion speed of subjects influencing the recording
lengths (Beil et al., 2018).

Using the evaluation techniques introduced in Section 3.5, it will be explained how the classification
performance is evaluated and how the results are addressed and displayed. While the classifier is running,
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Figure 5.5.: Display of results for a round in a train and testing process.

a log file records all the results and main events during one execution. Each time a round is launched the
number of windows used for training and testing are shown, and also the windows of each subject used
for testing. During a round, each time a motion is erroneously predicted, it is recorded on the log file
reporting how was the erroneous classification: "predicted wrong motion, is true motion".

After a round’s execution, the accuracy obtained for each subject and the global one is displayed. A
table that summarises the results is found at the end of the round’s report. Figure 5.5 is an example of
the results displayed after one round. First column shows the corresponding motions, second column
shows the precision calculated by using the Expression 3.18, third column refers to the recall metric
(Expression 3.19), fourth column is the F1score calculated using the Expression 3.20 and finally the last
column displays the number of windows that were taken to train a model of a specific motion. The last
row shows the average value of each column, but not for the F1score’s column (highlighted using a red
rectangle), whose value is calculated by using the Equation 3.22.

At the end of the log file, an overview of the results is shown. We can find there the number of wrong
and right predictions, the total hit rate, the hit rate per each round and the total duration of the classifier
execution.

Analysis of Derived Features for the Motion Classification of a Passive Lower Limb Exoskeleton



Page 36 Chapter 6. Results

6. Results

In this chapter the results of the presented analyses in Chapter 5 are exposed and described. On the
first part, the work and conclusions from the resemblance analysed using the motion derived features are
explained. On the second part we find a summary of the results obtained from the motion algorithm and
an overview of all the setup configurations that were evaluated.

6.1. Moment Feature Analysis

This section contains the main results from Section 5.1.1 in which the knee moments were used to
study the constitution of this new feature and analyse the motions. Firstly, we find an example for two
specific cases where all the steps taken to do a resemblance analysis are detailed. Afterwards, the main
results and conclusions from the Intra-Subjects and Inter-Subjects analyses are presented. Additionally,
a section explains the constitution of the data base created during the resemblance analysis.

6.1.1. Resemblance Analysis

A resemblance analysis was done with the recordings of 16 motions and 10 subjects which repeated each
motion 10 times, creating a data base that describes the constitution of each motion regarding the knee
moment vector. This moment vector was calculated using the force sensor values as it was explained in
Section 4.1. The data used was recorded by subjects which physical characteristics can be seen in the
Table 3.1. The motions analysed are the ones that follow: Walking Forward, Walking Backward, Turn
Left, Turn Left Small, Turn Right, Turn Right Small, Sidesteps Right, Sidesteps Left, Going Upstairs,
Going Downstairs Backwards, Going Downstairs, Lift Object, Lift Object Up, Drop Object, Stand Up
and Sit Down.

In this section, all the operations done during the resemblance analysis are shown. Two examples,
each one of a specific motion and subject, will be shown during the explanation of the process compared.
As we already mentioned in Section 5.1.1, this analysis targets to spot the similarities among repetitions
performed by the same subject and among different subjects to see the consisteny of the knee moment
feature.

Firstly, a correlation analysis between pairs of samples is carried out. Figure 6.1 shows the preproces-
sor in a three time series plots for the subject ID1717, motion Walking Forward and repetitions 6 and 9.
The first plot shows the knee moments data of two repetitions (repetition 6 in blue and 7 in red) directly
calculated from the force values and using the Equations 4.9 and 4.10. The second one plots the filtered
data using a low-pass filter with the parameters from the Table 5.1. The last one shows the two data
signals synchronized using the method explained in Figure 5.1.

Figure 6.2 shows the preprocessor to calculate the correlation between repetitions 1 and 4 of the subject
ID1719, motion Going Upstairs and component Mx. If we compare both examples shown, in the case of
Figure 6.1 the two data signals are more coinciding when they were synchronized than in the Figure 6.2.
That means that for the example of Going Upstairs both motins were not so similar performed, so a lower
correlation value than in the case of Walking Forward will be obtained.

In Figure 6.3 the correlation value is represented using a scatter plot where the knee Mx values of the
two repetitions considered ofr the motions Walking Forward are plotted once the data signals have been
synchronized. We can appreciate in the plot a tendency towards a linear relationship among both knee
moment samples. A high correlation value of 0.96 confirms this fact.

Figure 6.4 shows the scatter plot for the motion Going Upstairs. The linear relation is quite evident, but
as we predicted in the time series plots, taking a look at the plot where the signals where synchronized,
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Figure 6.1.: Time series plots from the data of two motion samples. It is shown the three steps taken
before the calculation of the correlation. Data from the repetition 6 and 9 of the motion
Walking Forward, subject ID1717 and knee moment Mx.

Figure 6.2.: Time series plots of the preprocessor to calculate the correlation between two samples. Data
from the repetition 1 and 4 of motion Going Upstairs, subject ID1719 and knee moment Mx.
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Figure 6.3.: Scatter plot of two repetitions once the data was filtered and synchroninized. The correlation
result is on the top. Data from the repetition 6 and 9 of the motion Walking Forward, subject
ID1717 and knee moment Mx.

the correlation is lower than the other case with less than 0.93. More examples of correlation analyses
carried with the motions Walking Backward, Going Downstairs Backward, Going Upstairs and Stand Up
can be found in the Section A.2 of the Appendix.

Once all intra-subject correlations have been calculated for one motion, subject and component of
the moment vector, a heat map is generated. The values that this heat map contains are percentages
of correlations between pairs of repetitions. Figure 6.5 shows the heat map corresponding to the knee
moment Mx, subject ID1717 and motion Walking Forward. We can observe a high mean correlation
among all the repetitions since, regarding the blue-coloured vertical bar located next to the heat map, the
minimum correlation is 86%. Meanwhile for the equivalent heat map of the motion Going Upstairs and
subject ID1719, the correlations values are a bit lower and the minimum one is about 80%.

Right after, the intra-subject analysis starts in which the similarities among different subjects will be
studied. The best pair of repetitions of each subject (the pair that got the highest correlation) with the best
pair of the other subjects (two repetitions for each subject are used) will be compared, as it was explained
in Section 5.1.3. The repetitions of this pair are selected as the ones to caary out the correlation analysis
between subjects.

In Figure 6.7 the correlations between the pair with highest correlation of the subject ID1717 and the
other pairs with the highest correlations of other subjects are shown. For subject ID1717 the pair of the
repetitions 1st and 8th were those that gave the highest correlation (98.72% in Firgure 6.5), therefore
these are the two repetitions that will be compared with other subjects. We can appreciate that the
correlations of the repetitions belonging to the same subject, the values obtained are similar, when they
are contrasted with the same repetition of the other subject. For instance, the repetitions 1 and 3 of the
subject ID720 with the repetition 1 from ID1717 are quite low in both cases. This low value might be
caused by a bad synchronization process.

Firgure 6.5) shows again the correlation among repetitions from different subjects, but this time for
the motion Going Upstairs. Compared with the other case, higher correletaion were obtained reaching
almost a 86%. However some really lower values appear with a minimum of a 5%, probably due to a
bad synchornization between the data signals.

To conclude, a last heat map is generated that shows the motion resemblance among subjects. Each
component of the resemblance matrix is calculated using the Expression 5.2. Figure 6.9 shows the heat
map of the comparison among all the subjects for the motion Walking Forward and the moment about
knee moment Mx. For this specific motion this matrix shows that subjects ID1723 and ID674 gave the
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Figure 6.4.: Scatter plot of two repetitions once the data was filtered and synchroninized. The correlation
result is on the top. Data from the repetition 1 and 4 of motion Going Upstairs, subject
ID1719 and knee moment Mx.

Figure 6.5.: Heat map of subject ID1717, motion Walking Forward and knee moment Mx.
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Figure 6.6.: Heat map of subject ID1719, motion Going Upstairs and knee moment Mx.

Figure 6.7.: Correlations between the repetitions with highest correlations among different subjects. Mo-
tion Walking Forward and knee moment Mx.
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Figure 6.8.: Correlations between the repetitions with highest correlations among different subjects. Mo-
tion Going Upstairs and knee moment Mx.

highest correlation of nearly 84%, which would mean that these two persons present a similar way of
performing the motion Walking Forward. Additionlly, low values are spot in some cases where ID1722
is compared with other subjects.

Figure 6.9.: Correlations of samples among different subjects. Motion Walking Foward and and knee
moment Mx.

In Figure 6.10 can be see the resemblance matrix of the motion Going Upstairs. In that case the
corellation of subjects ID674 and ID917 gave really low values. The samples chosen for these two
subjects present a pattern with a big delay when compared with others samples, which caused that the
synchronization was not done properly.
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Figure 6.10.: Correlations of samples among different subjects. Motion Going Upstairs and and knee
moment Mx.

6.1.2. Data of the Resemblance Analysis

A resemblance analysis was done for all motions and subjects creating a data base that describes the
constitution of each motion regarding the knee moment vector. This moment vector was calculated using
the force sensor values as it was explained in the Section 4.1. The data recorded used was recorded
by 10 subjects which physical characteristics can be seen in the Table 3.1. The motions analysed are
the ones that follow: Walking Forward, Walking Backward, Turn Left, Turn Left Small, Turn Right,
Turn Right Small, Sidesteps Right, Sidesteps Left, Going Upstairs, Going Downstairs Backwards, Going
Downstairs, Lift Object, Lift Object Up, Drop Object, Stand Up and Sit Down.

There is a time series plots and scatter plots like the ones in Figures 6.1 and 6.3 between all the pairs
of samples for each subject and vector moment’s component (Mx, My and Mz). Also, a heat map showing
all the intra-subjets correlations and a file with the means and standard deviations of the correlations
calculated.

Regarding the Inter-Subject analysis, we can find more plots like the one in Figures 6.1 and 6.3, but
this time comparing repetitions from difference subjects, but only the ones with highest intracorrelations,
as it was already mentioned in Section 5.1.3. The corresponding heat map puts together these correlations
to show an overview of the results.

Apart from these plots, we can find in this data base heat maps and files that summarise the results. A
heat map gives the means of intra-correlations for each component of the moment vector and for each
each subject. A similar heat-map was created also, but this time with the means of the inter-correlations.
Finally, to represent similarities of motion performance among different subjects, a last heat map shows
the intra-correlations. Hight values in this heat map mean that the studied motion was performed in a
similar way by the two corresponding subjects.

In order to outline a bit the data base, the following points define its structure and evaluations:

• For each subject and for each moment’s component Mk (Mx, My and Mz):

– Subject analysis: analysis between all the repetition of one subject.

∗ For each pair of repetitions (Sample i and Sample j):

· Time series plot: (Sample i , Sample j) vs Time.

· Scatter plot: Sample i vs Sample j.
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∗ Heat Map: matrix of correlations among all the repetitions.

∗ Mean and standard deviations of the correlations.

– Analysis between subjects: analysis between pair of repetitions with the highest correlations
from different subjectss

∗ For each pair of repetitions (Sample i of Subject A and Sample j of Subject B):

· Time series plot: (Sample i , Sample j) vs Time.

· Scatter plot: Sample i vs Sample j.

∗ Heat Map: matrix of correlation among repetitions of different subjects.

∗ Mean and standard deviations of the correlations.

• Correlations Intra-subject
– Heat Map: matrix of the mean of correlations of all subjects and all Mk.

– Mean and standard deviations of all the correlations for all the subjects.

• Best Intra-subject correlations
– For each Mk, a table with the highest correlations of each subject and the number of the

repetitions for which these correlations were calculated.

• Correlations Inter-Subject
– Heat Map: matrix of the mean of correlations for each subject and Mk. Means calculated

from the intra-subject correlations.

• Subjects Resemblance
– Heat Map for each Mk: matrix with the means of the four correlations values that where

calculated between pairs of subjects.

– Global Heat Map: matrix with the means of the values of the Heat Maps for each Mk. It
gives an idea of how similar two subjects perform the same motion.

6.1.3. Main Results of the Resemblance Analysis

This section gives insights of the most relevant results from the resemblance analysis. First, we will take
a look at the results of the Intra-Subject analysis with the target of discovering which are the subjects with
more variability in the motion’s performance. To do so, twelve different motions have been considered
and the global correlation results for each subject have been calculated (mean of Mx, My and Mz). The
results obtained will be used in Section 6.3.6 to identify if low correlations in certain subjects affect on
the motion classification accuracies for these subjects.

Table 6.1 and Table 6.2 show the means of Mx, My and Mz of the global correlation for all the motions.
The motions Stand Up, Sit Down and Lift Object have the highest correlations which might mean that
these motions are easier to repeat similarly than the others. On the other hand Walking Forward and Turn
Left gave the lowest values, so these were not repeated similarly by the subjects. In Table 6.3 we can find
an overview without differentiating motions, but split by the moment vector’s components. Additionally,
the last column shows the mean of these values. In rough lines, subjects ID1717 and ID1719 are the
ones that gave the highest correlation values. That means that these subjects carried out a motion more
similarly each time they repeated it. In the opposite case, we find subjects like ID1718 and ID1722,
which gave the lowest global correlation values. As it will be checked in Section 6.3.6, we will see if
these correlation results affect the performance of the HHMs for the motion classification.

Concerning the analysis of correlations among subjects, it was pursued to look into two different
questions. The first one was to analyse which are the motions that are usually more similarly performed
by the subjects. With this in mind, the mean of correlations between subjects were calculated for each
motion. Table 6.4 shows these results split by moment vector’s components and the total mean in the last
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Subject Walking Forw. Walking Back. Turn Right Turn Left G. Upstairs Stand Up

ID1717 77.37 80.31 94.10 75.69 95.93 87.39
ID1718 62.20 67.79 74.71 57.86 80.53 93.47
ID1719 67.53 87.62 89.47 66.12 93.73 96.68
ID1720 65.02 85.06 81.55 69.11 90.18 94.25
ID1722 67.48 48.14 77.93 67.18 93.11 94.89
ID1723 72.49 83.35 89.71 66.70 77.63 93.91
ID1724 54.09 56.09 89.42 54.83 91.90 93.76
ID1725 52.85 73.35 90.84 66.12 89.57 92.26
ID674 71.33 90.64 90.68 64.94 83.61 87.90
ID917 69.21 85.74 84.52 66.62 73.73 93.10
Mean 69.96 75.81 86.29 65.52 87.00 92.76

Table 6.1.: Mean of the global correlations ρ (mean of ρ(Mx), ρ(My) and rho(Mz)) for each subject (%).

Subject Sit Down S. Step Right S. Step Left Lift Object Drop Object G. Downstairs

ID1717 95.41 81.97 79.68 89.65 88.01 91.21
ID1718 93.61 50.35 68.16 84.72 66.99 70.68
ID1719 97.31 71.43 76.31 97.99 94.60 87.26
ID1720 92.79 74.45 86.82 87.28 71.32 88.66
ID1722 92.12 73.67 80.37 83.05 71.34 69.22
ID1723 87.20 67.13 65.70 91.68 82.14 79.38
ID1724 92.48 84.48 80.11 96.36 88.29 92.17
ID1725 93.76 70.96 77.45 94.79 92.50 87.67
ID674 87.90 77.69 78.02 88.29 85.86 92.19
ID917 76.61 77.66 67.77 83.89 91.43 85.93
Mean 90.02 73.01 76.04 89.77 83.25 84.44

Table 6.2.: Mean of the global correlations ρ (mean of ρ(Mx), ρ(My) and rho(Mz)) for each subject (%).

column. If we take a look at the results, the motions Stand Up, Sit Down and Lift Object are the ones with
the highest resemblances among the subjects. The three motions have in common that they are carried
out in a short period of time and made up by simple movements. It makes sense that Stand Up is the one
with the highest correlation, since it is just a fixed position.

The second question set out was to search for pairs of subjects that gave high correlations and try to
find the reason by taking a look on the physical characteristics of the subjects (Table 3.1). The Table 6.5
contains pairs of subjects which gave the highest correlations considering 6 different motions. Subjects
ID674, ID1717 and ID1723 were the ones that appeared more frequently pairing up among them or with
other subjects. Subjects ID674 and ID1723 have similar physical characteristics, the height is almost the
same and the leg dimensions are quite similar. However, subject ID1717 is taller and the leg dimensions
differ. As long as the subjects used for the recordings have similar physical characteristics (one of the
requirements set for the recordings in Beil et al. (2018)) and no obvious similarities were spotted among
the repetitions with highest correlations, we conclude that it is not possible to use the Analysis of Inter-
Subjects to prove physical resemblances among subjects.
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Subject ρ(Mx) ρ(My) ρ(Mz) Global ρ

ID1717 85.76 88.27 85.16 86.39
ID1718 62.38 75.95 79.44 72.59
ID1719 80.77 89.20 86.55 85.50
ID1720 72.43 83.96 90.30 82.33
ID1722 70.10 80.49 79.05 76.54
ID1723 68.89 88.36 82.00 79.75
ID1724 79.40 80.64 83.46 81.16
ID1725 77.75 83.48 84.30 81.84
ID674 80.46 86.25 83.05 83.25
ID917 74.84 81.78 82.43 79.69

Table 6.3.: Mean of correlations for all the motions of Mx, My and Mz and the global one (%).

Motion ρ(Mx) ρ(My) ρ(Mz) Global ρ

Walking Forward 48.62 71.84 77.41 65.96
Walking Backward 51.70 64.60 64.19 60.16

Turn Right 36.20 66.90 67.31 56.80
Turn Left 45.53 67.52 83.50 65.52

Going Upstairs 56.16 59.81 57.48 57.82
Stand Up 66.42 94.42 71.20 77.35
Sit Down 63.14 92.61 67.06 74.27

Side Step Right 51.40 50.18 65.28 55.62
Side Step Left 52.09 61.24 53.30 55.54
Lift Object 66.99 83.41 66.01 72.14
Drop Object 52.81 89.55 61.59 67.98

Going Downstairs 39.21 71.74 54.30 55.08
Mean 52.52 72.82 65.72 63.69

Table 6.4.: Mean of correlations for all the inter-subjects correlations of Mx, My and Mz and the global
one (%).

Motion Pair 1 ρ Pair 2 ρ Pair 3 ρ

WF ID1723,ID674 87.98 ID1717,ID1723 87.16 ID674,ID917 85.19
WB ID1719,ID674 76.56 ID1723,ID674 73.73 ID1720,ID917 73.38
TR ID1722,ID1723 81.55 ID1717,ID1725 76.45 ID1717,ID1722 75.74
TL ID1717,ID1725 88.82 ID1717,ID1719 87.34 ID1717,ID674 81.55
GU ID1717,ID1719 84.92 ID1717,ID1723 80.20 ID1719,ID1725 78.60
SU ID1719,ID1724 94.18 ID1718,ID1724 92.43 ID674,ID917 91.06

Table 6.5.: Pairs of subjects that got the highest correlations in the Inter-Subject analysis. The motions
considered are: "WF - Walking Forward", "WB - Walking Backward", "TR - Turn Right",
"TL - Turn Left", "GU - Going Upstairs" and "SU - Stand Up". Correlation values ρ are in
%.
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6.2. Joint Angles Analysis

In this part the theoretical joint angles of the knee and the ankle angles of the gait cycle are analysed
and compared with the angles extracted from the recordings of the motion Walking Forward using the
Expressions 4.12 and 4.13. The knee and ankle joint angles are relative angles, which provide an angular
variation between the orientations of the thigh and the shank (joint angle of the knee) and the angular
variation between the shank and the foot (joint angle of the ankle).

Figure 6.11(a) shows the theoretical joint angle of the knee during a gait cycle fragmented in gait
phases. In Figure 6.11(b) the data of the calculated knee joint angle is plotted during also a gait cycle,
but this time the X axis is temporal. The title of this plot 1X-2X, means that the components about X-axis
of the IMUs 1 and 2 were used to calculate this angle. Comparing both plots we can highlight that the
knee joint angle variation during the whole gait cycle is approximately 70 degrees in both cases and the
patterns are comparable.

(a) Theoretical joint angle of the knee during a gait cycle. Picture from Musculoskeletal
Key (2008).

(b) Joint angle of the knee calculated from the recordings of Walking Forwards, subject
ID1718 and repetition number 4.

Figure 6.11.: Comparison between the theoretical joint angle of the knee with the one calculated from
the recordings.
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Meanwhile in the Figure 6.12, we can see a comparison like the last one but this time between the the-
oretical joint angle of the ankle and the one calculated from the recordings. The title of the Figure 6.12(b)
3Y-2X stands also for the two IMUs use to calculate the joint angle. This time the Y direction of the IMU
3 and the X direction of the IMU 2 were the two values used. In this case, the angle variation is around
40 degrees and although this time both patterns are not as similar as in the previous comparison, the
angle variation take place in the same intervals of the gait cycle. As mentioned in Section 4.2 the angles
calculated are approximations to the knee and ankle joint angles of a human leg. Orientation, location
of the IMUs and the fact that the lower limb exoskeleton can only perform rotations around one axis are
some of the reasons why the real angles can not be extracted.

(a) Theoretical joint angle of the ankle during a gait cycle. Picture from Musculoskeletal
Key (2008).

(b) Joint angle of the ankle calculated from the recordings of Walking Forwards, subject
ID1718 and repetition number 4.

Figure 6.12.: Comparison between the theoretical joint angle of the ankle with the one calculated from
the recordings.
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6.3. Motion Classification

During this chapter, the results obtained during all the testing process are shown. This chapter targets
to analyse the set of possible configurations of raw data with derived features in order to find a suitable
setup to carry out the classification. Throughout the testing process, different factors have been taken
into account, like the amount of sensors used or the computational time needed. Additionally, one of the
sections explains that some corrupted raw data was found and how it was dealt with this problem.

6.3.1. Results with Raw Data

In this section the previous evaluations without using any derived feature will be shown in order to
compare them in subsequent sections. These results have been extracted from Patzer, Isabel and Asfour,
Tamim (2019), where it was pursued to obtain a high accuracy using the minimum amount of sensors. In
Table 6.6 there are the results ordered in an increasing way from the amount of 2 sensors to the maximum
set of 10 sensors. These evaluations were carried out with the 10 subjects of Table 3.1, the 14 motions
introduced in Section 3.2 (the motion Stand is not included), a window size of 300ms and using a 5-fold
cross validation.

These results show that the IMUs are the sensors that get better accuracy if they are used alone. When
two types of sensors are used together, a tendency exists in which IMUs 1 and 3 combined with force
sensors give the best performance. From the amount of using 5 sensors, the results improve a little
reaching the best result an accuracy of 92,85% using 8 sensors. That means an increment just lower than
the 2% when comparing it with the result of 91.16% obtained using five sensors.

Tests on all subjects, all motions, W300 and S14

Num. Sensors Num. Features Force Sensor IMU Sensor Accuracy (%)

2 12 - 1,3 86.35
9 7 3 85.34

12 - 1,2 84.66
9 5 3 84.60

3 15 5 1,3 89.53
15 7 1,3 89.08
15 6 1,3 89.04
15 3 1,3 88.81

4 18 6,7 1,3 90.73
18 3,6 1,3 90.69
18 5,6 1,3 90.48
18 3,5 1,3 90.44

5 24 3,5 1,2,3 91.16

6 27 1,3,5 1,2,3 92.20

7 30 1,5,6,7 1,2,3 92.61

8 33 1,2,5,6,7 1,2,3 92.85

9 36 1,2,3,5,6,7 1,2,3 92.77

10 39 1,2,3,4,5,6,7 1,2,3 92.40

Table 6.6.: Tests results on all motions, all subjects, window size of 300ms and HMMs with 14 states.
More results with different sensor combinations can be found in Patzer, Isabel and Asfour,
Tamim (2019).
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6.3.2. Corrupted Data

This section explains some irregularities that were found in the raw data found in the data base. More
specifically the corrupted data is found in the values corresponding to the force sensor 4 and some Euler
angle values in the recordings of some motions. Before explaining theses issues, the results done with
original data are presented

Tests run with the original data

This section presents the first tests using the new derived features and the whole raw data that were
carried out before noticing that some data was corrupted. The set of raw data used is the same as the one
in Beil et al. (2018) and Patzer, Isabel and Asfour, Tamim (2019).

Table 6.7 shows evaluations using derived featured alone or combined with raw data of tests run on
all the subjects, window size of 300 ms and using HMMs with 14 states. For each configuration a test
using the differences between feature vectors was run, as explained in Section 5.2.1. The Table 6.7
shows when this preprocessor was done when Diff=Yes. Meanwhile Table 6.8 shows the same setup
configuration than in the previous table, but this time all the evaluations were done on single subjects.
The results of the last column are the average accuracies of the accuracy from the evaluation of each
subject.

From this first tests we want to highlight the accuracy obtained using just knee moments with more
than a 34% evaluating on all the subjects and around 75% evaluating on single subjects. Although the
results are lower than the ones of Table 6.6, only 3 features are used. Also we realised that the use of
linear acceleration (configuration of Moments and IMU(l)), the performance of the classification drops
off significantly when the differences among feature vectors are calculated.

All subjects, W300 and S14

Features Num. Features Num. Sensors Diff. Accuracy(%)

J.angles 2 2 No 41.92
Yes 29.43

Moments 3 7 No 34.60
Yes 34.42

Moments,IMUs(l) 12 10 No 82.22
Yes 67.48

Moments,IMUs(e) 12 10 No 82.69
Yes 88.28

Moments,IMUs 21 10 No 87.60
Yes 89.07

Moments,FSs 39 7 No 89.34
Yes 92.27

Moments,IMUs,FSs 42 10 No 88.53
Yes 92.02

Table 6.7.: Results and compute times for configurations using only raw data. Tests were run on all the
subjects, window size of 300 ms and HMMs of 14 states.

Dismission of Force Sensor 4

During the Resemblance Analysis some anomalous values in the motion data were found corresponding
to the Force Sensor 4 (FS4). In some cases components on X, Y and Z directions of this sensor take
values inside the range of values 30 and 100 Newtons. The magnitude is much bigger as the one that this
sensor usually takes, as it can be seen in the Table 5.4.
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Single subjects, W300 and S14

Features Num. Features Num. Sensors Diff. avg. Accuracy(%)

J.angles 2 2 No 76.70
Yes 66.19

Moments 3 7 No 75.74
Yes 75.27

Moments,IMUs(l) 12 10 No 97.59
Yes 88.77

Moments,IMUs(e) 12 10 No 98.81
Yes 95.66

Moments,IMUs 21 10 No 99.15
Yes 95.85

Moments,FSs 39 7 No 99.80
Yes 97.98

Moments,IMUs,FSs 42 10 No 99.82
Yes 96.85

Table 6.8.: Results and compute times for configurations using only raw data. Tests were run on all the
subjects, window size of 300 ms and HMMs of 14 states.

To show the relevance of this issue, Table 6.9 shows some tests carried on all the subjects with the three
features of the moments. For the data setup of the tests in rows 2 and 4, the feature of the moments was
calculated without using the components regarding the FS4. If we take a look at the two configurations
presented, the classification results in the cases where FS4 was not used, the results improve about a 2%.

In Patzer, Isabel and Asfour, Tamim (2019), a dimensional reduction was carried out selecting the best
sensor setup to do the motion classification using an N-Best Feature Subset Exploration. The last force
sensor selected to include in the tests was just FS4, which it even makes the accuracy in the classification
decrease. We know now the main cause of this bad performance. Table 6.6 shows the results of the
aforementioned work where this fact can be observed. In order to face this problem it was decided to not
count on this force sensor during the motion classification tests.

Tests on all subjects, all motions, W300 and S14

Differences Features Number Accuracy(%)

No Moments 3 34.78
No Moments without FS4 3 37.60
Yes Moments 3 34.02
Yes Moments without FS4 3 36.42

Table 6.9.: Tests results carried out on all the subjects that compare a configuration where the moments
values where calculated using FS4 and an other where they were not used.

Dismission of some IMUs files

Another problem found on the data was some Euler angles values of the recordings which do not have
any value assigned, just a Not a Number string (’NaN’). The Expressions 5.3, 5.4 and 5.5 are the ones
that were used to calculate these values from the quaternion values recorded by the IMUs. There is
the possibility that the dominator in this equations gives sometimes a number close to 0, which would
explain these results. Due to a lack of time, it was decided just remove the files of IMU’s data where this
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problem appears. These data files are not too many, just for the subject 1722 and the motions Sit Down
and Stand Up.

6.3.3. Comparison of Derived and Primary Features

The tests that appear in this section target to compare the new derived features in comparison with the
raw data from where they were extracted. First each derived feature is evaluated alone and afterwards it
is mixed with other derived features or with the primary features from where they were calculated (e.g
combination of ’Moments’ and ’Force Values’ or combination of ’Joint Angles’ and ’Euler angles’).

In Table 6.10 can be seen some setups and the corresponding results. In the first four rows moments
features are evaluated alone. Results show that the norm of the moment vector is the single feature that
performs better. Only using the three components of the moments the results are around 37% of accuracy.
If we compare the results of ’Forces’ and ’Forces and Moments’, the last case, in which a higher number
of features is used, it even makes the results a bit worse. The main reason of this fact, might be an excess
of data used (over-fitting in the training process) and additionally the moments are not adding new data
to train the model. As it is said in Freeman (2014), redundant and correlated features increase classifier
complexity without adding additional information.

Moments and Forces

Differences Features Number Accuracy(%)

No Mx 1 17.64
No My 1 16.88
No Mz 1 16.31
No |M| 1 20.55
No Moments 3 37.60
Yes Moments 3 36.42
No Forces 18 81.78
Yes Forces 18 82.32
No Moments and Forces 21 81.43
Yes Moments and Forces 21 81.31

Table 6.10.: Tests results carried out on all the subjects that compare different configurations of derived
features (knee moments) and their primary features (forces from six force sensors). Window
size of 300 ms and 14 states used for the HMMs.

In Table 6.11 we can see a similar comparison like the one previously done. Using the joint angles
of the leg as a single feature, the results obtained are better than using one of the moment components
as a single feature to train the HMMs. Joint angles together, being just two features, perform also better
than when using the three features from the moment vector. Moreover, the same effect occurs when
mixing together derived and primary features, since the results did not improved when adding the joint
angles to the Euler angles. We conclude by saying that for future studies it will be better not to face
the improvement of the motion classification by mixing derived features with features that were used to
calculate them

6.3.4. Performance of Filtered Data

In this section the results obtained using the filter defined in Section 5.2.1 are presented. These test where
only carried out for classifications where features of the knee moment vector are considered, since the
filter was only designed for this kind of data.

As it can be seen in Table 6.12 and if we consider the configuration where the data differences were not
calculated, the improvement on single subject tests is almost a 7% increment. Meanwhile in Table 6.13,
for tests on all the subjects, the results improved in nearly a 3% using the configuration with filtered
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Joint Angles and Euler Angles (IMUs)

Differences Features Number Accuracy(%)

No Knee Angle 1 21.32
No Ankle Angle 1 24.22
No Joint Angles 2 41.92
Yes Joint Angles 2 29.43
No IMU(e) 9 81.22
Yes IMU(e) 9 87.00
No Joint Angles, IMU(e) 11 80.36
Yes Joint Angles, IMU(e) 11 86.11

Table 6.11.: Tests results carried out on all the subjects that compare different configurations of derived
features (joint angles) and their primary features (Euler angles from IMUs, IMU(e)). Win-
dow size of 300 ms and 14 states used for the HMMs.

data. In Section 6.3.5 it is possible to see also an improvement on the results for the test configurations
where the data has been filtered. It is important to outline that the filter needs to be tuned for each type of
feature, otherwise the results can get worse. This is the reason why when the filter is applied in moment
data where the differences have been calculated, the accuracy decreases.

For future work it would be interesting to design filters tuned for each feature and see if the classi-
fication improves. At the same time we should take a look on the compute times, because this kind of
preprocessor might increase the preprocessor time. Also it would be good to think about how to apply
this approach during on-line execution.

Tests on single subjects, all motions, W300 and S14

Differences Filtered Features Number avg Accuracy(%)

Yes No Moments 3 75.27
No No Moments 3 75.74
Yes Yes Moments 3 71.74
No Yes Moments 3 82.42

Table 6.12.: Tests results carried out on single subjects that compare different configurations with data
filtered and not filtered. Window size of 300 ms and 14 states used for the HMMs.

Tests on all subjects, all motions, W300 and S14

Differences Filtered Features Number Accuracy(%)

Yes No Moments 3 36.42
No No Moments 3 37.60
Yes Yes Moments 3 34.50
No Yes Moments 3 41.13

Table 6.13.: Tests results carried out on all the subjects that compare different configurations with data
filtered and not filtered. Window size of 300 ms and 14 states used for the HMMs.

6.3.5. Comparison of Topologies

This chapter refers to Section 3.3.3 where different types of HMMs where introduced. In order to try
the performance of other topologies and find a better representation of motions’ models, some tests were
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carried out changing the transition matrix. At the same time, models with lower number of states were
tested (until now testing always with 14 states) to see if less complex HMMs would represent better the
motions.

Figure 6.13 shows a multiplot where each subplot displays the accuracy result versus the compute time
of the topologies Fully Connected, Left-Right and Cyclic. The tests were run using the moment feature
and as always during this thesis, a window size of 300 ms. Each column of the plot shows results of tests
run using the same number of states for the model representations (5, 10 and 14 states). The first column
corresponds to tests where the differences were not calculated on the data. In the second column we can
find the results using data where the differences between consecutive values where calculated. The first
fact that stands out is the difference of computational time between the Fully Connected topology and
the other two. For 5 states the computational time of the Fully Connected is approximately 3 times more,
for 10 states almost 5 times more and for 14 states more or less 3 times more. At the same time we have
to underline that although the accuracy results did not improve, they didn’t get too much worse. For 5
states the accuracy drops in a range of 2-4%, for 10 states 4-5% and for 14 states 5-6%. Also it seems
that accuracy results with the type of HMM Left-Righ are usually a bit better than the results with Cyclic
topology. In order to compare the results of the different configurations under the same conditions, all
the tests were run in the same computer. The computer was an Intel Core i7-8700K CPU 3.70GHz and
11 cores were used for multiprocessing.

As these topologies allow a great reduction regarding compute times, it was considered to run tests
with the best raw data configurations using 14 states and with the cyclic topology. In that way, we can
have an idea of how is the performance using simpler models in terms of accuracy and compute time for
the best configurations of previous works. Table 6.14 shows pairs of results, one setup corresponding
with the best configurations found in Patzer, Isabel and Asfour, Tamim (2019) and the other setup with
the same configuration except for the topology used (cyclic). We can see that the compute times for
a cyclic topology are about one-fifth of the compute time used for the fully connected topology. With
respect to the accuracies, it drops in the cyclic case between 1 and a 4%. The more number of sensors
used, less significant is the difference in accuracy between both topologies.

Tests on all subjects, all motions, W300 and S14

Num. Sensors Features HMM Topology Accuracy(%) Time[min]

2 IMU:1,3 Fully connect 86.99 236.69
Cyclic 82.95 58.55

3 FS:5 IMU:1,3 Fully connect 89.71 244.98
Cyclic 86.25 51.13

4 FS:6,7 IMU:1,3 Fully connect 90.76 250.83
Cyclic 88.05 51.55

5 FS:3,5 IMUs Fully connect 91.17 253.27
Cyclic 89.76 55.93

6 FS:1,3,5 IMUs Fully connect 92.30 255.98
Cyclic 90.12 55.91

7 FS:1,5,6,7 IMUs Fully connect 92.72 256.91
Cyclic 91.08 55.24

8 FS:1,2,5,6,7 IMUs Fully connect 92.98 256.78
Cyclic 91.20 56.82

9 FS:1,2,3,5,6,7 IMUs Fully connect 92.77 289.12
Cyclic 91.56 57.75

Table 6.14.: Tests results of tests carried out on all the subjects to compare classification performances
for HMM of type full-connected and cyclic. Window size of 300 ms and 14 states used for
the HMMs.

In conclusion, we could say that Left-Righ and Cyclic topologies are a good option when the compute
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Figure 6.13.: Plot of results for different type of HMM and different number of states. The tests were
carried out using the moment feature, on all the motions and window size of 300 ms. FC:
Fully Connected (blue dots), LR: Left-Right (red dots) and C: Cyclic (green dots). The S
on the top of each subplot refers to the number of states.
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time is critical in the classification or is worth to reduce it to the detriment of accuracy. For future
work it would be interesting to try other type of HMMs and number of states in order to find the better
configuration an the most suitable trade-off between accuracy and compute time.

6.3.6. Effect of the Correlations

This section will connect the results and conclusions from the Resemblance Analysis (Section 6.1) to try
to prove the hypothesis set in the Section 5.1: "One reason of having a high accuracy in the classification
for a subject, in comparison with others, is because that subject performs a motion always in a really
similar way". To prove it, the results of different tests using the knee moment vector were connected
to the results of the resemblance analysis (Section 6.1.3). Tests carried out on all the subjects were
considered from where the single subjects results were pulled out to perform an Inter-Subject analysis.

Table 6.15 shows the setup of each test and a letter to identify them. Table 6.16 shows the accu-
racy obtained for each subject in the tests designed with a letter in the aforementioned table. Finally,
Figure 6.14 displays a plot of all the results to show in a qualitative way how are the global correla-
tions connected(shown in Table 6.3) and the single subject accuracy results. On the last figure it can
be observed that exists a proportional tendency between the accuracy obtained and the intra-correlation
calculated for a subject. Only tests using the knee moment features were run for this study since the
correlations were calculated using only these features. In future work it would be interesting to calculate
correlations among accelerations or Euler angles and do a similar study. In that way this tendency might
would be better identified.

To end this section we could simply say that data used for training with less variability (higher cor-
relations) would improve the results of the tests of the motion classifier. However, working in the im-
provement of this classifier with this ideal data could be detrimental in real applications. In real live the
variability of motions is much wider that the one found in the data base of motion recordings. Therefore,
motion data that present this variability and cause models not so well defined, help us to prepare the
classifier in real situations and to develop a robuster way to identify motions.

All subjects, W300 and S14

Differences Filtered Features Number avg Accuracy(%) Test Name

Yes Yes Moments 3 32.49 A
No Yes Moments 3 37.42 B
Yes No Momens and IMU(e) 12 88.28 C
Yes No Moments and IMU(l) 12 67.48 D
No No Moments and IMU(e) 12 82.69 E
No No Moments and IMU(l) 12 88.22 F
Yes No Moments and IMU 21 89.07 G
No No Moments and IMU 21 87.60 H

Table 6.15.: Different test setups that were run to do an study between the accuracy and correlation values
among subjects.

6.3.7. Best Evaluations with Derived Features

In this last section of this chapter, the results of the most significant configurations tested are shown
and discussed. Table 6.17 shows the results and the compute times of the best configuration sets that
were found in Patzer, Isabel and Asfour, Tamim (2019) where a dimensional reduction was pursued.
The configurations are ordered from less to more number of features and sensors. In all the cases the
differences of the feature vectors were calculated, a window size of 300 ms was used, tests were run on all
the subjects and a 5-fold cross validation was used to test the performance. Meanwhile in Table 6.18 we
can see evaluations with the same configuration than before, but using derived features or a combination
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Figure 6.14.: Plots of the results Accuracy(%) vs Correlation(%) of the different tests shown in Table 6.15
and Table 6.16.
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Subject A B C D E F G H mean

ID1717 34.10 37.64 88.58 68.47 81.48 85.73 88.62 85.88 73.49
ID1718 24.98 30.29 84.71 60.74 79.24 75.84 85.43 85.24 68.96
ID1719 34.32 48.00 92.59 72.13 81.26 87.44 94.65 90.59 77.69
ID1720 36.18 42.80 87.49 70.27 83.31 83.77 88.94 88.21 75.05
ID1722 32.48 43.81 84.34 68.76 83.36 84.56 87.84 84.52 73.61
ID1723 34.41 35.10 87.34 62.55 86.71 79.19 89.36 88.89 73.99
ID1724 31.86 38.37 91.28 63.69 79.54 85.33 90.05 82.99 72.65
ID1725 29.57 30.34 86.03 64.27 83.81 77.46 87.10 90.13 71.89
ID674 39.89 42.14 92.89 74.34 83.37 86.28 92.45 88.84 76.78
ID917 28.89 27.32 86.38 69.74 81.29 78.33 86.47 87.55 70.48

Table 6.16.: Subject single results of the accuracy (%) for each test shown in Table 6.15. On the first row
appear the letters that connect these results with the table were the setups of the tests are
written on.

of primary features (raw data) and derived features. In this table the results are ordered from less to more
number of features and for each configuration two tests were carried out: one where the differences of the
feature vectors were calculated (Diff=Yes) and another one where they weren’t (Diff=No). The Moments
features refers to the three components of the knee moment vector. Regarding the compute times, in both
tables and all cases the same type of computer run the tests, an Intel Core i7-8700K CPU 3.70GHz and
11 cores were used for multiprocessing.

Considering the features of the moment vector, we notice that the feature of the norm of it is really
representative of the forces. Firstly, as we could seen in Table 6.10, the norm of the moment vector
was the feature that got the best performance comparing with the use of other single features extracted
from the forces. And now in Table 6.18, if we check the setup using |M| and IMUs, we got a good
accuracy around 89% considering that we are representing the 18 force features from the forces in just
one feature. Even when we compare the setup using the three components of the moment vector and
the IMUs (Moments and IMUs) with the aforementioned configuration (|M| and IMUs), even though
with the first configuration two more features are used, the results are almost the same but the compute
time increases in the case with more features, as expected. To sum up, we can state that the norm of
the moments vector is a good representative of all the forces and a good option in order to carry out a
dimensional reduction in the data set.

About the features regarding the joint angles, combining them with forces (J.angles and Forces) the
accuracy achieved is 88.27% in the case where the differences were calculated. Considering that all the
Euler angles (9 features) are presented as only two features, the results are notable. If we compare the
results of only using forces (setup using Forces from the Table 6.10) with the addition of also these two
angles, the increment is around a 6%. If we take into account that with only forces we already obtained
around 82%, the increment is significant using only two more features.

Using together the two types of derived features (J.angles, Moments) the accuracy achieved is 78.43%
in the case where the differences were calculated. Although it is a 10% lower than the first configuration
of the Table 6.17 in which kinematic and dynamic variables are used (FS5 and IMU:1,3), in the first
case we are using one third of featues. Moreover, the compute time is reduced a 13%. In an other
setup where both derived features are used together with linear accelerations (J.angles, Moments and
IMUs(l)), the results achieved are around 89% in the case when no differences were calculated. This
result is comparable with the one where a similar amount of features is used (FS5 and IMU:1,3) of the
Table 6.17.

With regard to the data preprocessing, it was spotted that when the differences were calculated the
performance of the motion algorithm is usually better in almost all the cases. Only when the linear
accelerations are used, the accuracy on the classification obtained is higher if the differences were not
calculated. This can be seen in Table 6.18 and setup configuration of (J.angles and IMUs(l)), (Moments
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and IMUs(l)) and (J.angles, Moments and IMUs(l)).
Finally, regarding the compute times, we can see that the more features are used the higher is the

time needed. However, it seems that from the amount of approximately 20 features the addition of new
features increase the compute time does not increased a lot.

Primary Features - All subjects, W300 and S14

Features Num. Feat. Num. Sens. Diff. Accuracy(%) Time[min]

IMU:1,2 12 2 Yes 86.99 236.69
FS5 IMU:1,3 15 3 Yes 89.71 244.98

FS:6,7 IMU:1,3 18 4 Yes 90.76 250.83
FS:3,5 IMUs 24 5 Yes 91.17 266.78

FS:1,2,3,5,6,7 IMUs 36 9 Yes 92.77 303.34

Table 6.17.: Results and compute times for configurations using only raw data. Tests were run on all the
subjects, window size of 300 ms and HMMs of 14 states.

Primary and Derived Features - All subjects, W300 and S14

Features Num. Feat. Num. Sens. Diff. Accuracy(%) Time[min]

J.angles,Moments 5 9 No 70.98 213.83
Yes 78.43 211.47

J.angles,IMUs(l) 11 3 No 84.94 227.98
Yes 76.61 216.15

Moments,IMUs(l) 12 9 No 83.90 233.53
Yes 69.54 235.26

J.angles,Moments,IMUs(l) 14 9 No 88.93 241.75
Yes 83.61 239.29

|M|,IMUs 19 9 No 88.88 244.79
Yes 89.39 247.17

J.angles,Forces 20 9 No 84.18 250.55
Yes 88.27 253.28

Moments,IMUs 21 9 No 88.62 261.49
Yes 89.89 259.40

J.angles,Forces,Moments 23 9 No 83.96 256.78
Yes 88.07 259.11

J.angles,Forces,IMU(l) 29 9 No 88.87 256.00
Yes 89.31 255.49

Table 6.18.: Results of different configurations using raw data and derived features. The Momments
feature refers to the knee moments. Tests run on all the subjects, window size of 300 ms and
HMMs of 14 states.
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7. Conclusion and Outlook

In this thesis the use of derived features extracted from data recorded by a passive exoskeleton was
analysed in the context of motion classification. The initial set of raw data consisted of 3D force vectors
recorded by force sensors and 3D linear accelerations and Euler angles recorded by three IMUs. The
data set consists of recordings of 10 subjects performing 14 different daily motions, each one repeated
10 times. It was used as the training and testing set for the motion classifier.

In order to improve the motion classification by using more meaningful features, derived features were
extracted from the raw data aforementioned. The usage of these new features can additionally reduce the
amount of training data required. A first set of new features corresponding to the knee moments were
calculated. These features give a dynamic description of the motion and they are extracted from the force
vectors recorded. The other set of derived features are the joint angles of the knee and ankle, which give
a kinematic meaning of a motion and are calculated using the Euler angles.

Before starting the search of the best setup for the classification system, the new derived features of
the knee moment vector were analysed in order to study the consistency and spot patterns among data
from the same subject and from different subjects. A resemblance analysis was carried out in which
correlation between recordings of data were calculated to quantify the similarities among them. Firstly,
only recordings of the same motion were considered. An analysis, named Intra-Subject Analysis, was
focused on the study of single subjects. The repetitions performed by the subjects ID1717 and ID1719
gave the highest correlations meaning that they performed motions each time in a more similar way than
the other subjects. This fact was later connected with the motion classification to see which influence
has in the results of the classification. A second analysis named Inter-Subject Analysis had as a target
spot the motions that are usually more similarly performed by different subjects. The motions Stand Up,
Sit Down and Lift Object obtained the highest correlation indicating that they are easier to repeat more
similarly than the others. Meanwhile, motions like Going Downstairs or Walking Backward obtained the
lowest correlations, probably because they are more complex and take more time to perform. for Future
work a resemblance analysis using the joint angles could be considered to study also this new derived
features and also in that way the motions could be analysed kinamtically. About the study of the joint
angles feature, these new features were compared with the theoretical joint angles of the knee and ankle.
The knee joint angle calculated bears resemblance with the theoretical one and the angular variation
is almost the same. Regarding the ankle joint angle, although the similarities in the pattern bears less
resemblance, the angular variation is comparable.

Once the new derived features were analysed, the classification system based on Hidden Markov
Models was evaluated with them. Considering the results in Beil et al. (2018) and in Patzer, Isabel
and Asfour, Tamim (2019) a sliding window approach using a window size of 300ms concatenated each
10ms was used as the data to train the HMMs. Each HMM was formed by 14 states fully connected and
Gaussian distributions were used to represent the observations. A 5-fold cross validation was used to test
the performance of the classifier. Different sets of derived features were tested alone and in combination
with the raw data, looking for the setup that achieves the best performance. Not only the features used
were changed, but also other characteristics of the classification system, like the data preprocessor or the
structure of the Hidden Markov Models (HMMs) used to represent each motion.

As a first step, a comparison of the performance of the classification using derived features and primary
features was carried out. As a single feature, the norm of the moment vector was the dynamic feature
that achieved the best classification with a 20.55% of accuracy. Using the whole moment vector of only
three features, an accuracy of 37.60 % was obtained. Considereing the joint angles, the ankle angle
got a better result of 24.22% than the knee angle with a 21.32%. As a combination, the two kinematic
derived features achieved a 41.92% while the knee moment vector’s accuracy was beyond 38%. These
results showed that joint angles perform better alone than the moment vector. Besides, when combining
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a derived features with the features from where they were calculated, the classification results do not
improve or even get worse in comparison with a setup where only the primary features are used. For
future studies this kind of combination is not recommendable since features are correlated and become
redundant, which increases the complexity of the models without adding new information.

To aim an improvement of the motion classification results, a filtering of the knee moment vectors
was considered. A digital low-pass filter was tuned in a way that singularities and noise were mitigated.
Results of evaluations on single subjects using data filtered achieved a 7% increment with regard to
evaluations using data not filtered. For the case of testing on all the subjects the increment was around
the 3%. Only tests with the knee moment feature were run, since the filter was not designed for the
other features. This preprocessor could be done on all the features since a notable improvement might
be obtained. A specific filter should be tuned for each kind of data in order to get the best performance.
The preprocessor compute time should be checked, if an on-line application of the classification system
is pursued.

The idea of improving the classification method by creating better models for the motions was also
studied. Hidden Markov Models with different number of states and topologies were evaluated looking
for a better performance of the classification method. Until now a fully-connected topology and 14
states were used to train the models. As each motion is formed by short movements that have always
a continuity on time, topologies that represent a successive set of actions were considered. Therefore,
evaluations were carried out using Left-Right and Cyclic topologies. The results shown a huge reduction
of the compute time of the no fully connected topologies of about one third part of the time needed when
in both configuration 14 states were used. The classification accuracy results using these new topologies
dropped in a range of 2-4%. The complexity reduction of the HMMs and consequently the compute
times that Left-Right and Cyclic topologies achieve, make these topologies a really suitable option if the
compute time is critical in the classification. For future work it would be interesting to try other types of
HMMs combined with different number of states in order to find the best configuration. Additionally, an
specific HMM structure for each motion could be studied. As it was proved in the resemblance analysis,
some motions are more complex than others causing more variability among the motion data. With that
idea in mind, complex motions could be represented by HMMs with more states and more complex
topologies, and the other way around could be appied for the simplest motions.

Different setups using derived features and raw data were tested looking for the best motion classifi-
cation results. About these evaluations we would like to highlight the performance of the norm of the
moment vector. This feature is a good representative of the force vectors if we consider that an accuracy
of 89% was obtained when combined with linear accelerations and Euler angles. Regarding the joint
angles combined with forces, the accuracy obtained was about the 88.2%, a good result if we consider
that the kinematic information of the motion is represented by only 2 features. If the usage of derived
features with raw data is compared with the best results of the configurations setups from Patzer, Isabel
and Asfour, Tamim (2019) (e.g. 90.73% of accuracy using 18 features and 4 sensors), not better accuracy
results are obtained. However, some results of setups using derived features, are comparable with the
best setups where only raw data was used (e.g. 89.39% of accuracy using |M| ans the IMUs). Although
the best classification results were not improved, the usage of derived features turned out to be a good
representation of their primary data. Continuing in this direction of improvement, new derived features
could be extracted and tested like the ankle moment vector, which was calculated but not evaluated in
this thesis because of a lack of time.

Table A.1 in the Appendix shows a proposal of derived features that could be used for the motion
classification. All the features on that table, except for the last one, should be calculated considering
a data window. All the features considered until now are time dependent and for each timestamp a set
of these features is obtained. If features calculated from the data of a set of values is considered the
current approach of the classification system should be changed. An option could be the use of a single
HMM with a number of states equal to the motions considered. In that case the classified data would be
sequences of data formed by different motions.

Another promising direction of improvement would be to carry out a dimensional reduction with all
the features now available, as it was done in Patzer, Isabel and Asfour, Tamim (2019), using the algorithm
N-Best Feature Subset Exploration from Mandery et al. (2016).
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A. Appendix

A.1. Derived Features

Suggestions of derived features for motion classification

Name Data used Dim. Reference

Maximum/Minimum IMUs + FSs 39 Feldhorst and Hompel (2013)
Arithmetic mean IMUs + FSs 39 Chen et al. (2016b)

Standard deviation IMUs + FSs 39 Chen et al. (2016b)
Variance IMUs + FSs 39 Óscar D. Lara and Labrador (2013)

Signal Magnitude Area IMUs + FSs 39 Óscar D. Lara and Labrador (2013)
Mean Absolute Deviation IMUs + FSs 39 Óscar D. Lara and Labrador (2013)
Interquartile range IQR IMUs + FSs 39 Óscar D. Lara and Labrador (2013)

Zero-accel crossings freq IMUs 9 Lin and Kulic (2014)
Accel peaks freq IMUs 9 Lin and Kulic (2014)

Zero-angle crossings freq IMUs 9
Angle peaks freq IMUs 9

Energie, Fourier transf IMUs + FSs 39 Óscar D. Lara and Labrador (2013)
Wavelet transform IMUs + FSs 39 Óscar D. Lara and Labrador (2013)

Inertias of the leg IMUs 1 or 3

Table A.1.: Set of derived features used for motion classification. Except for the last one, all the features
should be applied considering the data of a time window.

Description of the features suggested

Joint angles Using IMUs accelerations, compute the angle of the knee and ankle articulations. Only
relative angles could be calculated.

Maximum/Minimum Get the maximmum/minimum value for each set of data values contained in a
window (each window would be reduced into 39 values if all the raw data is used).

Arithmetic mean For each set of data values contained in a window, compute the Arithmetic mean
value (each window would be reduced into 39 values if all the raw data is used).

Standard deviation For each set of data values contained in a window, compute the Standard deviation
value (each window would be reduced into 39 values if all the raw data is used). First the arithmetic
mean should be calculated.

σ =

√√√√ n
∑

k=1
(xk−µ)2

n

Variance For each set of data values contained in a window, compute the Standard deviation value.
Each window would be reduced into 39 values if all the raw data is used. First the arithmetic mean
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should be calculated.

σ
2 =

n
∑

k=1
(xk−µ)2

n

Signal magnitude area (SMA) Statistical measure of the magnitude of a varying quantity. For each set
of data values contained in a window, compute the SMA. Each window would be reduced into 39
values if all the raw data is used.

xsma =
n

∑
i=1

xi

Mean Absolute Deviation Average of the absolute deviations or the positive difference of the given
data and the mean value of it. Each window would be reduced into 39 values if all the raw data is
used.

xsma =
1
n
·

n

∑
i=1
|xi−µ|

Interquartile range IQR Measure of statistical dispersion, being equal to the difference between 75th
and 25th percentiles, or between upper and lower quartiles. Each window would be reduced into
39 values if all the raw data is used.

IQR = Q3−Q1

Zero-acceleration crossings frequencies For each set of data from the linear acceleration (contained
in a window), compute the frequency of zero-acceleration values. Relative times (timestamps)
from the recorded data should be considered. Each window would be reduced into 9 values if all
the IMUs data is used.

(xt = 0 ‖ sign(xt−1) 6= sign(xt))

(e.g if the previous condition happens 10 times during a window of 300 milliseconds size, the
Zero-acceleration crossings frequencie of that window would be 30ms−1.

Acceleration peaks frequencies For each set of data from the linear acceleration (contained in a win-
dow), compute the frequency of acceleration peaks. Relative times (timestamps) from the recorded
data shlould be considered. Each window would be reduced into 9 values if all the IMUs data is
used.

[(xt−1 > xt)&(xt−1 > xt)] ‖ [(xt−1 > xt)&(xt−1 > xt)]

Zero-angle crossings frequencies For each set of data from the Euler angles (contained in a window),
compute the frequency of zero-angle values. Relative times (timestamps) from the recorded data
should be considered. Each window would be reduced into 9 values if all the IMUs data is used.

(xt = 0 ‖ sign(xt−1) 6= sign(xt))

Angle peaks frequencies For each set of data from the Euler angles (contained in a window), com-
pute the frequency of angle peaks. Relative times (timestamps) from the recorded data should be
considered. (each window would be reduced into 9 values if all the IMUs data is used).

[(xt−1 > xt)&(xt−1 > xt)] ‖ [(xt−1 > xt)&(xt−1 > xt)]

Energie, Fourier transformation Consideration of the frequency domain. Preprocessor may be neces-
sary. The scale of the data should be change to detect low frequencies (logarithmic scale). The
coefficients of the fourier transformation would be used as a new derived feature.
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Inertias of the leg Resistance of the thigh, shank and foot to change in motion. It could be calculated
for the knee and/or the ankle’s axis of rotation. The angular velocity w could be approximated as
the differences of consecutive accelerations divided by the sample time.

Ii =
Li

wi
Li = ri× pi

wi =
(at−at−1)

T
· 1

ri
pi = mi · vi

vi =
(at−at−1)

T
Ii: moment of inertia [Kg ·m2], Li: angular momentum [Kg ·m2 · s−1], wi: angular
velocity [rad/s], pi: momentum [Kg ·m/s], vi: linear velocity [m/s], ai: linear
acceleration [m/s2], T : sample time [s], ri: perpendicular distance of the Center of
Masses of i to the axis of rotation [m] and mi: mass of the inertia’s solid [Kg].

A.2. Correlation Analysis

In this section we can find more examples of correlation analyses of the knee moment features for differ-
ent motions. For each example of correlation analysis, the corresponding time series plot and scatter plot
are shown evaluating two repetitions of a specific subject. Always the Mx moment is displayed, which
is the one corresponding to the axis of rotation of the knee joint. The motions that will be shown are:
Walking Backward, Going Downstairs Backward, Going Upstairs and Stand Up.
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(a) Series plot

(b) Scatter plot. The correlation results are on the top

Figure A.1.: Samples of the subject 674, motion Walking Backward, knee moment Mx and repetitions 1
and 8.
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(a) Series plot

(b) Scatter plot. The correlation results are on the top

Figure A.2.: Samples of the subject 674, motion Going Downstairs Backward, knee moment Mx and
repetitions 4 and 8.
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(a) Series plot

(b) Scatter plot. The correlation results are on the top

Figure A.3.: Samples of the subject 1717 , motion Going Upstairs, knee moment Mx and repetitions 1
and 2.
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(a) Series plot

(b) Scatter plot. The correlation results are on the top

Figure A.4.: Samples of the subject 1718, motion Stand Up, knee moment Mx and repetitions 6 and 9.
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