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1. INTRODUCTION 

Numerical simulation came into the focus of interest of applied sciences and engineering in 

the last decades. As a result, the development of numerical techniques for solving partial 

differential equations (PDEs) has been growing continuously, mainly stimulated by increasing 

computational resources and ever-challenging demands for practical and theoretical 

applications. Basically, these numerical techniques reduce the original governing differential 

equation, or a mathematically equivalent form, into an algebraic system of equations, which is 

easily solved with a computer. A numerical technique for solving PDEs is set apart from 

another by the way in which the unknown function and its derivatives are approximated, and 

this is intimately related to the discretization of the physical domain. Regarding domain 

discretization, most numerical techniques for solving PDEs could be roughly classified into 

mesh-based methods or meshless methods. The domain discretization in mesh-based methods 

consists of a list of points or nodes properly ordered by the definition of connectivities 

between them. These connectivities originate the cells or elements which compose the mesh. 

Mesh-based methods like Finite Differences (FD), Finite Volumes (FV) and Finite Elements 

(FE) are usually employed in practice due to their robustness, efficiency and high confidence 

gained through years and years of continuous use and enhance. In meshless methods, the 

domain discretization is based on a list of points but an ordered connectivity between them is 

not required. This fact turns meshless techniques conceptually attractive but their practical 

implementations are not likely to be so, which explains the relatively little interest that has 

been devoted to these methods. However, over the last ten years, some difficulties in mesh-

based or conventional methods when performing particular applications, have brought 

meshless methods into focus.  

The first meshless methods appeared in the mid-seventies and numerous formulations have 

been proposed since then. A retrospective view of the evolution of the most relevant meshless 

methods as well as their connections is presented by Belytschko et al. [1]. In their work, the 

main features of some typical meshless methods, their implementation issues and practical 

applications are offered. Another interesting work by Fries and Matthies [2] classifies and 

analyzes the most important meshless methods. For each, the authors highlight the main 

characteristics and implementation details as well as the advantages and disadvantages. Other 

helpful reviews on meshless methods, also considered here, can be found in the literature; see 

for instance Li and Liu [3] and Duarte [4].  
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The present work deals with a meshless technique called Finite Point Method (FPM) which 

was introduced by Oñate et al. [5]. In this method, the numerical approximation to the 

unknown function and its derivatives is based on a Weighted Least-Squares (WLSQ) 

procedure known as Fixed Least Squares (FLS). The strong form of the governing PDEs is 

sampled at each point by replacing the continuous variables with their approximated 

counterparts. Finally, the resulting system of algebraic equations is obtained by means of a 

collocation technique. 

Next, a review of the development of the FPM, aimed at providing a framework for the 

present research work and its motivations, is given. Then, by the end of this section, the 

objectives of this research and the organization of the contents are presented. 

1.1 Preliminary remarks on the Finite Point method. 

Since the Finite Point Method appeared in the literature towards the mid-nineties, it has been 

successfully applied to solve convective-diffusive problems, incompressible and compressible 

fluid flow problems [6, 7, 8, 9, 10, 11] and solid mechanics problems [12] among others. 

As regards fluid flow problems, the first application of the FPM to the solution of the bi-

dimensional compressible flow equations has been presented by Oñate et al. in [5, 6] and 

Fischer in [9]. In these works, certain topics such as the construction of local clouds of points 

and the effects of weighting functions on the numerical approximation have been studied 

using first and second-order approximation bases. Later, Sacco [10] presented a detailed 

analysis of the Finite Point (FP) approximation in conjunction with a multi-dimensional 

application for solving the incompressible flow equations. Outstanding achievements from 

that work, for instance, a definition of local and normalized approximation bases, a procedure 

for constructing local clouds of points and a criterion for evaluating their quality have given 

FPM a more solid base. In relation to the solution of the incompressible flow equations, a 

fractional step algorithm stabilized through a technique known as Finite Increment Calculus 

(FIC) [13] has also been successfully employed. 

The FP solution of the three-dimensional compressible flow equations has been presented in a 

pioneer work by Löhner et al. [11]. Here, two remarkable contributions are worth of mention: 

a reliable procedure for constructing the local clouds (based on a Delaunay technique) and a 

well-suited scheme for solving the flow equations. This scheme is based on a ‘symmetrized’ 

discrete expression of the advective flux-divergence vector, which is composed of a central 

difference-like expression plus a corrective term. Then, the central difference-like flux term is 
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replaced by an upwind numerical flux obtained through an approximate Riemann solver. In 

the meshless context, this approach is best suited than artificial dissipation methods because it 

is not necessary to define any kind of geometrical measure in the cloud of points. 

All the works listed above have made different but remarkable contributions to enhance the 

performance of the FPM, not only giving evidence of its potential but also revealing some of 

its weaknesses. Nowadays, most meshless methods, and in particular the WLSQ-based 

methods, present a lack of solid theoretical and practical arguments regarding local cloud 

construction, approximation bases selection and weighting function setting among other 

important issues. In addition, methods like the FPM, which work with the strong form of the 

differential governing equations must face some other well-known problems arising from the 

collocation procedure. Unfortunately, the accuracy of the numerical approximation in the 

cloud of points is absolutely dependent on the features just mentioned. From another point of 

view, competitive meshless methods are in need of a considerable reduction of computational 

cost, which requires developing more efficient algorithms and data structures. All these 

considerations become crucial when it is necessary to deal with real three-dimensional 

problems of practical application in engineering. Consequently, robustness and efficiency 

seem to be the key to the success of any meshless method. 

As regards robustness, some modifications to the FPM have been proposed by Boroomand et 

al. [14] with the aim of reducing instabilities in the minimization procedure, especially those 

arising from non-appropriate local clouds of points. In addition to that, but from another 

perspective, we have recently presented an alternative approach towards robustness [15]. This 

ad hoc procedure, which is based on a QR factorization in conjunction with an iterative 

adjustment of the local approximation parameters, allows obtaining a satisfactory 

minimization problem solution and avoids modifying the local geometrical support where the 

approximation is based on. This QR-based procedure has demonstrated that it can reduce the 

approximation dependence on both, the spatial distribution of points and the shape of the 

weighting function significantly. 

The most salient remarks on the FPM have been set forth. Even though this brief review 

refers only to the FPM, most meshless techniques share this situation and much work is still 

to be done to make them competitive. This fact it what motivates the present research. 

1.2 Objectives 
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The present work is intended to contribute to a major investigation into the capabilities of the 

Finite Point method to deal with three-dimensional applications concerning compressible 

fluid flow problems. Consequently, as a first step towards this ultimate aim, the development 

of a suitable Finite Point formulation for this kind of analysis is the main objective of the 

present research. In addition, an adaptive procedure for FP calculations is presented in the last 

part of this work. Even though this is not one of the main objectives, we think that starting to 

exploit the full potential of the FPM is also worth of consideration. 

1.3 Organization of the present work 

The contents of the present research work are organized as follows. In Section 2 the FP 

approximation procedure is carefully examined emphasizing the effects of the weighting 

function setting on the numerical approximation. As a result, an alternative procedure aimed 

at obtaining a satisfactory WLSQ problem solution where the usual approach fails is proposed 

in Sections 3 and 4. Section 5 is concerned with domain discretization and the construction of 

local clouds of points. Next, the behaviour of high-order FP approximations is explored by 

means of some numerical examples in Section 6. Concerning the solution of the three-

dimensional compressible flow equations, an upwind biased scheme is developed in Section 

7. Then, in Section 8, several numerical calculations are provided to show the performance of 

the flow solver. Section 9 proposes an h-adaptive technique for compressible flow 

calculations and, by the end of this section, the performance of the proposed adaptive 

methodology is evaluated by means of some numerical examples. After that, in Section 10, 

the conclusions we have reached and some investigation lines to be followed are presented.  

2. APPROXIMATION IN THE FINITE POINT METHOD 

An approximation to an unknown function u(x) defined in a closed domain Ω ∈ ℜd (d=1, 2 or 

3) which is discretized by a set of points xi, 1,i n=  is developed. In order to obtain a local 

approximation for function u(x), the domain Ω is divided into subdomains Ωi (henceforth 

clouds of points) so that ΣΩi represents a covering for Ω. Each cloud of points consists of a 

point xi called star point and a set of points xj, 2,3,...,j np=  surrounding xi, which complete 

the cloud Ωi. Assuming that the function u(x) is smooth enough in Ωi, it is possible to state 

the following approximation 

 T

1

ˆ( ) ( ) ( ) ( )
m

l l
l

u u p α
=

≅ = =∑x x x p x α  (1) 
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where p(x) is a vector whose m-components are the terms of a complete polynomial base in 

ℜd and α is a vector which must be determined. These vectors are given by 

 
1 2

1 2

( ) ( ) ( ) (1 )

( 1)

T m
j j j j

Tm

p p p m

mα α α

×

×

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

…

…

p x x x

α
 (2) 

Next, at each point xj ∈ Ωi the unknown function is obtained as follows 

 

11 1

22 2

ˆ
ˆ

ˆ

h T

h T
h

h T
npnp np

uu
uu

uu

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ≅ = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

P
## #

p
p

u

p

α α  (3) 

where ( )h h
j ju u= x  is the value of the unknown function u(x) at x = xj, ˆ ˆ( )j ju u= x  is the 

approximated value at that point and  

 

1 2
1 1 1 1

1 2

( ) ( ) ( )
( )

( ) ( ) ( )

T m

T m
np np np np

p p p
np m

p p p
×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

P
…

# #
…

p x x x

p x x x
 (4) 

In order to solve the equation system (3) the condition np m=  must be fulfilled. This 

penalizes the approximation flexibility and does not suit a meshless methodology. Thus, 

np m≥  is adopted and the equation system becomes overdetermined. Consequently, an 

approximate solution is sought by means of a WLSQ technique. This solution minimizes a 

discrete L2 error norm in the approximation to u(x) in Ωi. 

The WLSQ approximation features depend on the shape of the chosen weighting function and 

the manner in which the latter is applied. In the FPM a fixed weighting function, centred on 

the star point of the cloud, is chosen so that it satisfies the following conditions  

 

( ) 0

( ) 0
( ) 1

i j j i

i i

i i

ϕ

ϕ
ϕ

> ∀ ∈ Ω

= ∀ ∉ Ω
=

x x

x x
x

 (5) 

This kind of approximation, known as Fixed Least-Squares method (FLS), can be considered 

as a particular case of the Moving Least-Squares Method (MLS) introduced by Lancaster and 

Salkauskas in the context of interpolation and data fitting [16]. When the FLS procedure is 

applied, the approximation methodology is considerably simplified and its computational cost 
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reduced. It should be noticed, though, that the approximation functions obtained are 

discontinuous and this fact imposes certain restrictions on the local approximation.  

Going back to the minimization procedure, the following weighted discrete functional J(xi)=Ji 

is defined 

 
2 2

1 1

ˆJ ( ) ( )
np np

h T h
i i j j j i j j j

j j

u u uϕ ϕ
= =

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦∑ ∑x x p α  (6) 

in which ϕi(xj)=ϕ(xj-xi) is a compact support weighting function. Eq. (6) can be rewritten as 

 ( ) ( )T
( )h h= − −J P Pα αu x uφ  (7) 

 
where φ(x) = diag(ϕ(xj-xi)). The minimization of Eq. (7) with respect to α leads to the 

following equation system 

 ( ) ( )T T( ) ( ) h− =P P P 0x x uφ φα  (8) 

known as normal equations in the Least-Squares (LSQ) literature. Introducing the matrices 

 
( )
( )

T
1

T

( ) , A ( ) ( ) ( ) ( )

( ) , B ( ) ( ) ( )

np
kl i j k j l jj

lj l j i j

p p m m

p m np

ϕ

ϕ
=

×

×

= =

= =

∑A P P

B P

x x x x

x x x

φ

φ
 (9) 

it is possible to express the normal equations (8) as follows 

 h=A B uα  (10) 

Due to the fact that a fixed weighting function is chosen, the unknown coefficients αj are 

constant in Ωi. These coefficients can be found by 

 -1 h= A Bα u  (11) 

If the columns of matrix P are linearly independent, matrix A is positive-definite and, 

consequently, non-singular. Then, the unknown coefficients αj are uniquely determined by 

Eq. (11). However, depending on the spatial distribution of the cloud of points (and especially 

in 2-D and 3-D problems) matrix A can become ill-conditioned, making it very difficult to 

invert the matrix with accuracy. For cases like this, an alternative procedure for solving the 

LSQ problem is presented later in Section 3. Finally, replacing the unknown coefficients (11) 

in Eq. (1), the approximation to the unknown function at the star point is obtained as follows 

 
T
i

T -1

( ) (1 )

ˆ ( ) ( ) h
i i

np

u
×

=
N

A B���	��

x

x p x u  (12) 



7 

where T
i ,1 ,2 ,( ) , ,...,i i i npN N N⎡ ⎤= ⎣ ⎦N x  is the shape function vector of the point xi in Ωi. The 

adoption of an FLS scheme, where matrices A and B are constant in Ωi, simplifies the 

calculation of the shape functions derivatives. Consequently, 

 
TT

1i ( )( ) ll
i

l l
k k

−∂∂
=

∂ ∂
N A Bp xx

x x
 (13) 

and the approximation to the unknown function derivatives at xi are given by 

 
T

1iˆ( ) ( )( )l l Tl
h hi i

l l l
k k k

u −∂ ∂∂
= =

∂ ∂ ∂
N A Bx p xx u u

x x x
 (14) 

2.1 Consistency of the approximation 

It is a usual practice in meshless methods to associate (despite its mathematical meaning) the 

term consistency with the ability a numerical method has to reproduce a given polynomial of 

order p and its derivatives in an exact way. In other words, the ability to reproduce p-order 

polynomials is equivalent to p-order consistency [1]. Following this approach, it is considered 

that a set of functions N(x) has p-order consistency if the following conditions are satisfied 

 

T

T

( ) ( ) ( )

( ) ( )( )

i j i

l l
i i

j il l
k k

p

p

=

∂ ∂
= ∇ ∈Ω

∂ ∂

N

N

x p x x

x xp x x
x x

 (15) 

where p(x) is a complete polynomial base of order p [2]. For the MLS approximation it was 

found that if the base is complete of order p, then consistency of order p is obtained. It can 

also be demonstrated that any function in the base can be exactly reproduced [2]. 

Due to the fact that, in the FLS scheme adopted here the shape function and its derivatives are 

discontinuous, it is only possible to satisfy the consistency requirements (15) in the cloud’s 

star point xi where the weighting function is located. 

2.2 The approximation bases 

In this work the following complete polynomial bases in ℜd are used: 

• 2nd order approximation bases 

 
2 2

2 2 2

2 - D : ( ) 1, , , , , 6

3- D : ( ) 1, , , , , , , , , 10

T

T

x y xy x y m

x y z xy xz yz x y z m

⎡ ⎤= =⎣ ⎦
⎡ ⎤= =⎣ ⎦

p x

p x
 (16) 
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• 3rd order approximation base, three-dimensional case ( 20m = ) 

 2 2 2 3 2 2 2 2 3 2 2 3( ) 1, , , , , , , , , , , , , , , , , , ,T x y z x xy xz y yz z x x y x z xy xyz xz y y z yz z⎡ ⎤= ⎣ ⎦p x  (17) 

• 4th order approximation base, three-dimensional case ( 35m = ) 

 
2 2 2 3 2 2 2 2 3 2 2 3

4 3 3 2 2 2 2 2 3 2 2 3 4 3 2 2 3 4

( ) 1, , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

T x y z x xy xz y yz z x x y x z xy xyz xz y y z yz z

x x y x z x y x yz x z xy xy z xyz xz y y z y z yz z

⎡= ⎣
⎤⎦

p x
 (18) 

With the aim of alleviating ill-conditioning problems arising from the matrix P, local and 

normalized bases are defined [6] by means of 

 
max max max

, ,j i j i j ix x y y z z
x y z

d d d
− − −

= = =  (19) 

where dmax = max(||xj-xi||) is the distance between the star point and the furthest point in Ωi. 

The introduction of the local and normalized approximation bases defined by Eq. (19) 

simplifies the computation of the shape function vector and their derivatives at the star point 

xi significantly. Note that the terms x, y and z given by Eq. (19) vanish when they are 

evaluated at the star point of the cloud. Consequently, the approximation bases (16)-(18) and 

their derivatives become 

 

[ ]

max

( ) 1,0,0,...,0

( ) 10, ,0,...,0 , ...

T
i

T
i

x d

=

⎡ ⎤∂
= ⎢ ⎥∂ ⎣ ⎦

p x

p x  (20) 

and, it is possible to obtain a similar result for the other spatial directions and the higher-order 

derivatives of the approximation base. This simplification leads to the following expressions 

 

( )

T
i 1,

T
i

( 1),
max

( )

( ) !

j

k

k jkk

k
d +

=

∂
=

∂

N C

N C

x

x
x

 (21) 

where 1−=C A B  is a x(m np)  matrix and index 1,j np= . 

2.3 The weighting function 

The introduction of a compact support weighting function into the minimization problem 

allows focusing on the information in the close neighbourhood of the star point and, 

consequently, enhancing the local character of the approximation. There exist many 
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possibilities for choosing the functional form of a weighting function that satisfies the 

conditions given in (5). In the Finite Point method the following normalized Gaussian 

weighting function is adopted 

 
( )

( )
( )

1

k kj

k

d

i j
e e

e

β
α α

β
α

ϕ

⎛ ⎞− −⎜ ⎟
⎝ ⎠

−

−
=

−

x  (22) 

where dj = ||xj-xi||, α = β/w and β = γ dmax (γ>1.0). The support of this function is isotropic, 

circular in 2-D and spherical in 3-D. The parameters w, k and γ govern the functional shape of 

the weighting function. These are free parameters that should be properly set because the final 

approximation characteristics are highly dependent on these parameters.  

It is very difficult to define a combination of parameters which allows getting an optimal 

global approximation for a given problem. Due to this fact, the freedom to locally set and 

modify the approximation properties through a variation of the functional form of the 

weighting function is a helpful tool to deal with the numerical discretization of complete 

geometries. Next, a brief analysis of the free parameters involved in the weighting function 

(22) and their relation with the numerical approximation is outlined with the aim of 

identifying the capabilities of these parameters to improve the local approximation. 

Parameter γ gives more or less weight to the boundary points of the cloud by increasing or 

decreasing the size of the weighting function’s support. Numerical experiments show that the 

variation of parameter γ has a minor effect on the local approximation when np m≈  and this 

effect becomes negligible when the number of points in the cloud is increased. The error in 

the approximation to the unknown function tends to become higher when γ is increased while 

the error in the approximation to the derivatives of the unknown function becomes smaller. 

Anyway, in general, these effects are not relevant when appropriate clouds of points are 

considered and the parameter γ can be set to a constant value, e.g. γ = 1.01, in the whole 

domain Ω. Note, however, that parameter γ determines the size of the weighting function’s 

support and, in consequence, an increase in the parameter γ could be interpreted as an 

enlargement of the overlapping zone between neighbouring clouds of points. This provides a 

mechanism to improve the approximation quality when sudden changes in the distance 

between neighbouring points happen in the analysis domain. In these cases, good results are 

obtained setting 1 < γ ≤ 1.25. 
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b) a) 

Figure 1 shows the effect of the parameter γ on the approximation when appropriate clouds of 

points are considered. The test problem is a Poisson’s problem 2 ( , , )f x y zφ∇ =  solved in a 

cubic domain and the numerical results correspond to an isolated cloud centered on the 

domain. A complete description of this problem will be presented later in Section 6. 

 

 

 

 

 

 

 

 

 

Figure 1: Effect of the parameter γ on the L2-norm of the approximation error for clouds with a different number 

of points (np); w=3.5 and 2nd order approximation bases: a) the variable φ, b) the first derivatives (average)  

The next free parameter in expression (22) is the exponent k. This parameter changes the 

shape of the weighting function and increases the weight in the close neighbourhood of the 

star point at the same time that it decreases the weight of the boundary points or viceversa; 

see Figure 2(b). The effect of the parameter k on the numerical approximation is significant 

and could be interesting for particular discretization cases. However, since we want to 

introduce small adjusts in the approximation through minimum variations of the weighting 

function, the parameter k is not suitable for this purpose. Therefore, the parameter is set to a 

constant value k = 2 in the whole domain Ω. 

Finally, the only parameter taken into account in order to locally adjust the weighting function 

is the parameter w. It allows changing the weight of the points in the minimization problem 

and modifies the local character of the latter. The effect of parameter w on the functional form 

of the weighting function is presented in Figure 2(a). 

 

 

 

 

 



11 

b) a) 
 

 

 

 

 

 

 

 
 

 

Figure 2: Effects of the parameters w and k on the weighting function shape: a) Effect of parameter w, γ = 1.01 

and k = 2; b) Effect of  parameter k, γ = 1.01 and w = 3.5 

For large values of w, the shape function tends to the Dirac’s delta function (see Figure 2 (a)) 

and the approximation procedure tends to interpolate nodal data. When w is increased, the 

values of Nj(x)→ 0, except at the star point where Nj(x)→ 1, i.e. the shape function also tends 

to the Dirac’s delta function. This causes the error in the approximation to the unknown 

function to decrease and the condition number of matrix A (κ(A)) to increase. As a result, 

while w increases the problem becomes more and more ill-conditioned. Beyond a given 

threshold it is not possible to invert matrix A with accuracy, the approximation quality 

deteriorates quickly and numerical instabilities appear. In Figure 3 the effect of w on the 

numerical approximation and the condition number of matrix A is shown for the same 

Poisson’s test problem presented in Figure 1. The results displayed belong to an isolated 

homogeneous cloud centered on the analysis domain. 

 

 

 

 

 

 

 

Figure 3: a) effect of parameter w on the L2-norm of the error in the approximation to the variable φ, b) effect of 

w on the condition number of matrix A; np = 35 and 2nd order approximation bases. 

a) b) 
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Figure 3 above shows that when w increases, the error in the approximation of the unknown 

function decreases while the approximation tends to interpolate the nodal values. For a value 

of parameter w ≈ 5, ill-conditioning of matrix A becomes relevant and the approximation 

error rises slowly. Finally, the process diverges because it is not possible to invert matrix A 

accurately enough. 

Taking into account some numerical experiments, an admissible range for parameter w given 

by 3.0 ≤ wmax ≤ 4.5 is found for three-dimensional computation cases. Note, however, that this 

range must be defined for each particular problem. In this work, a value wmax = 3.5 is adopted 

in the whole domain and then it is reduced in a local manner, i.e. for each cloud of points, 

whenever necessary, in order to obtain a given accuracy in the approximation to the unknown 

function and its derivatives. We will go back to this point later in Section 3. 

2.4 Discretization of the equations 

In the FLS method the weighting function is fixed at the star point of the cloud and this fact 

leads to multivalued shape functions depending on the cloud in which the approximation is 

calculated, i.e. n m( ) ( )j j≠N Nx x  (where indices m and n indicate neighbouring clouds of 

points). Therefore, the numerical approximation is globally and locally discontinuous and 

must be only considered as valid in the star point of the cloud xi where the weighting function 

is located. Hence, a collocation technique becomes the natural choice in the FPM. 

Collocation procedures are simple and easy to implement; however, special care must be 

taken of the resultant global equation systems since they are likely to suffer numerical 

instabilities. There is evidence in the literature that the robustness of collocation methods can 

be enhanced working on the local approximation properties; for example, enforcing certain 

conditions such as positivity by means of a biased selection of the cloud’s points or through a 

local manipulation of the weighting function [17]. Robustness of the collocation procedure 

can be also improved introducing stabilization terms into the governing equations, in 

particular for Neumann boundary points. See for instance [5, 7] and a similar approach 

presented in [14]. 

Following the lines given by [5] and [7], numerical instabilities in the calculations presented 

in Section 4 are avoided by solving a modified set of governing equations obtained via the so-

called Finite Calculus technique (see [13] for details). Concerning compressible flow 

problems, no special care is taken of the collocation procedure. Due to the fact that the 
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proposed scheme is fully explicit, the only system of equations to be solved is a well-

conditioned system similar to the mass-consistent systems arising from FE discretizations. 

3. COMPUTATION OF THE SHAPE FUNCTIONS PARAMETERS 

According to the FPM approximation methodology presented before, in order to get the 

unknown coefficients αj and, consequently, the shape functions and their derivatives for a 

given cloud of points, the following linear system must be solved 

 h= Bα uA  (23) 

It should be noticed that this system must be solved via the inversion of matrix A because the 

vector uh is not known in advance. This methodology is not the most accurate for solving 

LSQ problems, especially when the condition number of matrix A is large. If we observe the 

structure of this matrix, we can see that it is composed of a Vandermonde type matrix 

multiplied by a diagonal matrix, which is, in turn, multiplied by another Vandermonde type 

matrix. Consequently, the final characteristics of matrix A are similar to Vandermonde type 

matrices causing matrix A to be naturally ill-conditioned. Obtaining an accurate solution of 

the system (23) is a key task in most meshless methods based on LSQ approximations. 

Introducing matrices A and B defined by (9) in (23), the normal equations are recovered 

 ( ) ( )T T( ) ( ) h=P P Px x uφ φα  (24) 

Thus, the vector of the unknown coefficients is obtained as follows 

 ( ) ( )1T T( ) ( ) h−
= P P Pα x x uφ φ  (25) 

It is possible to prove that if matrix P has rank m, i.e. all their columns are linearly 

independent, matrix T ( )A P P= xφ  is positive-definite and, consequently, non-singular (note 

that matrix ( )φ x  is positive-definite by definition (5)). Then, the inverse matrix exists and the 

unknown coefficients are uniquely determined. 

The solution of the equations (25) by direct inversion of matrix A must be restricted to cases 

when the condition number of matrix A is moderate. Generally, when the condition number of 

matrix A is large, its inverse is not appropriate to calculate the shape function and its 

derivatives, even for cases when it is still numerically possible to obtain one. 

In this work, the procedure adopted to calculate the shape function and its derivatives is the 

following. Given a certain cloud of points, first, the direct inversion of matrix A is attempted. 
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If the condition number of A is smaller than a given maximum admissible value, and if the 

calculated shape functions satisfy some quality tests; then, the shape functions are accepted. If 

some of the preceding requirements are not met, the normal equations (24) are solved by an 

alternative procedure based on QR factorization. 

3.1 Solution of the normal equations via QR factorization 

QR factorization is a more stable and accurate method for solving the WLSQ problem when 

matrix A is ill-conditioned. The aim of using a QR factorization technique is to get an 

acceptable solution in cases where the other procedure fails without having to modify the 

geometrical structure of the cloud. The computational cost of the WLSQ problem solution via 

QR factorization may cost, in terms of time, up to twice as much as the solution via matrix A 

inversion if np m�  [18]. However, this extra amount of time is not important in the overall 

time because the alternative QR-based procedure is only applied to problematic clouds of 

points, which represent only a small percentage of the whole clouds in the domain. 

If matrix P has rank m and np m> , it can be uniquely factored as 

 =P Q R  (26) 

where matrix Q ∈ ℜnpxm is orthogonal ( QTQ = I ) and matrix R ∈ ℜmxm is upper triangular 

with positive diagonal elements R 0ii > . A similar procedure, based on columns pivoting, can 

be applied for cases in which matrix P is rank deficient or near rank deficient. 

In order to apply the QR factorization for solving the WLSQ problem (24), it is necessary to 

obtain an equivalent unweighted problem for which the next factorization is proposed 

 ( ) ( ) such that Τ=� � �φ φ φ φ = φx x  (27) 

and also the following modification of matrix P 

 � �= φP P  (28) 

After that, it is possible to write an equation system equivalent to the one given by Eq. (24) as  

 ( ) ( )T T h=P P P �� � � uα φ  (29) 

and the equivalence between Eq. (29) and (24) is verified by 



15 

 

T T

T T

T T T

T T

h

h

T h

h

=

=

=

=

P P P

P P P

P P P

P P P

�� � �

� � � �

� � � �

α

α

α

α

φ

(φ φ (φ φ

(φ φ) (φ φ)

(φ) (φ)

u

) ) u

u

u

 

Then, the modified matrix (28) is factorized, i.e. P QR� = , and replaced in the equivalent 

unweighted problem (29). This leads to 
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where T =Q Q I  due to the orthogonality property. Multiplying both sides by (RT)-1, we get 

 T h=R Q �α φ u  (31) 

from which the unknown coefficients αj can be finally obtained  

 ( )-1 T h= R Q �α uφ  (32) 

Here matrix R is generally well-conditioned and its inverse is easy to obtain with accuracy, 

even for the cases when matrix P is near rank-deficient. 

The described procedure allows getting shape functions of acceptable quality in cases where 

these can not be obtained via direct inversion of matrix A. This fact reduces the dependence 

of the approximation on the spatial distribution of points and on the functional shape of the 

weighting function significantly, giving robustness to the Finite Point methodology. 

4. AN ITERATIVE PROCEDURE FOR CALCULATING THE SHAPE FUNCTIONS 

With the aim of obtaining an appropriate approximation in a given cloud of points, the 

following iterative procedure is proposed. First, a maximum value of the parameter w in the 

weighting function is set according to w = wmax ≈ 3.5 and the WLSQ problem is solved via 

matrix A inversion (11). Then, the shape function and their derivatives are obtained by Eq. 

(21). The resulting approximation is accepted if it satisfies the following requirements: 

r1. κ(A) ≤ κmax(A) 

r2. 
( )

( ) 1.0 and i j
i j

j j

N x
N x ε ε

∂
− ≤ ≤

∂∑ ∑ x
 

r3. Consistency 
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The first requirement (r1) imposes a limit to the condition number of matrix A in order to 

guarantee that the latter is correctly inverted. The second requirement (r2) implies that the 

shape functions and their derivatives must build a partition of unity (PU) and a partition of 

nullities (PNs) respectively. The fulfilment of the second condition is essential for the 

implementation of the flow solver that we propose later. The last requirement (r3) enables the 

verification of the approximation accuracy by checking the consistency requirements (15) at 

cloud’s star point xi. To achieve this, it is also possible to replace the approximation base by a 

known function and assess the approximated values deviation from the exact values [11]. The 

values adopted for setting κmax(A), the parameter ε and the admissible error in the consistency 

check depend on the problem under consideration. In this work a value κmax(A)=1.E6 based 

on the infinite norm of matrix A and the parameter ε = 1.E-10 are adopted. In order to check 

consistency requirements we follow the procedure suggested in [11]. 

In the case that one of the preceding requirements is not satisfied, the approximation is 

rejected and the solver changes to the QR factorization-based methodology (32) keeping all 

the approximation parameters constant. In general, the QR factorization allows obtaining a 

suitable approximation where the matrix A inversion procedure fails. However, in particular 

cases where highly distorted clouds of points are to be dealt with, it is possible that the local 

approximation obtained via QR factorization also fails and does not meet the requirements set 

by r1, r2 and r3. In this case, the approximation is improved iteratively. In each iteration the 

parameter w is decreased setting w = wi = αwi-1 (α ≈ 0.75, w0 = wmax, i: iteration counter) and 

the numerical approximation is calculated again via the QR factorization technique. This 

procedure continues until all the requirements are satisfied or w reaches a minimum 

admissible value wmin. Numerical experiments have shown that two or three iterations are 

enough to improve the approximation in highly distorted clouds of points (if wmax is large). 

Finally, if a local cloud of points does not permit to obtain an appropriate numerical 

approximation, new points are inserted in the cloud and the described procedure starts again. 

It could be also possible to decrease the local order of approximation in the cloud of points 

but this option is not taken into consideration for the numerical calculations presented in this 

work. 

5. DISCRETIZATION OF THE DOMAIN AND LOCAL CLOUDS CONSTRUCTION 

An adequate support of points is essential for setting a good local approximation for each 

cloud. The quality of the local approximation highly depends on the number of points in the 

cloud and their spatial position in relation to the star point. Even though the shape functions 
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calculation technique presented above attempts to reduce this dependence, the 

approximation’s spatial support continues playing a major role. 

At present, there is not a unique reliable criterion that allows determining the size, shape and 

spatial structure of the local spatial support. Some numerical techniques applied in this order 

belong to geometrical intuitive considerations such as symmetry, cloud’s centre of gravity 

position, etc. Other techniques introduce mathematical considerations based on the structure 

of the matrices involved in the shape function’s calculation procedure focusing, for example, 

on conditioning and invertibility features [19, 20]. Mixed geometrical-mathematical 

considerations are also employed. Among them, enough overlap within approximation 

subdomains criteria and other techniques related, for instance, to Point Collocation 

procedure’s stability and the so called positivity conditions can be mentioned [17, 14, 21]. All 

these criteria, often aimed at obtaining an a priori acceptable local support for the numerical 

approximation, lead to methods for the construction of the required point’s connectivity. 

Concerning the FPM, a reliable methodology for constructing local clouds of points based on 

a Delaunay technique has been proposed by Löhner et al. [11]. In the present work we follow 

the general criteria proposed there. 

5.1 Domain discretization 

The point discretization of the analysis domain is obtained by means of a modification of the 

algorithm presented in [22]. It starts from a Delaunay triangulation that bounds the 

computational domain and inserts new points in the centre of empty spheres covering the 

domain. This extremely fast procedure originates an incremental quality triangulation known 

as optimization driven point insertion avoiding any subsequent smoothing of the 

discretization.  

5.2 Local clouds construction 

The local clouds of points are constructed as follows. Given a point discretization of the 

computational domain and a set of normal vectors belonging to the triangulation that bounds 

this domain, a maximum (npmax) and minimum (npmin) allowable number of points in the 

cloud and an initial search radius are set. Then, for each star point xi, all neighbours within the 

search radius (rs) are found through an octree technique. Any local cloud of points inside the 

computational domain is constructed taking the closest neighbouring points of the star point. 

However, if a star point xi is located either over or close enough to a solid boundary, the 
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points included in its cloud (admissible points) must also satisfy the conditions described 

below.  

Case 1: star point located over a solid boundary 

In this particular case (sketched in Figure 4(a)), every point xj located within the search radius 

is admissible if it meets the following conditions 

 ( ) ( ) ( )cos cos ; cos2
i j

i j

π δ
⋅

θ ≥ + θ =
n r
n r

 (33) 

 t
j searchrα<r  (34) 

Condition (33) defines an acceptation area around the start point which is defined in the 

normal direction to the surface and δ is a small angle dependent on the surface curvature. The 

second condition (34) imposes a certain aspect ratio in the cloud, given by the parameter α≠0. 

Case 2: cloud of points intercepting a solid boundary 

In this case the point xj located over a surface (
neajx ), nearest to the star point xi, must be 

sought (see Figure 4(b)). Then, every point within the search radius is admissible if  

 ( ) ( ) ( )cos cos ; cos2
nea

nea

j j

j j

π δ
⋅

θ ≥ + θ =
n r

n r
 (35) 

and no restriction is imposed to the aspect ratio of the cloud of points.  

 

 

 

 

 

 

 

 
 

Figure 4: The construction of local clouds near the boundaries: a) The star point located over a solid boundary; 

b) A cloud of points intercepting a solid boundary. 
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If the number of admissible points found within the search radius is not enough, the latter is 

increased until condition npmin ≤ np ≤ npmax is satisfied. Otherwise, if the number of 

admissible points goes beyond npmax, only the points nearest to xi are added to the cloud. 

It is very helpful to force the first layer of nearest neighbours of xi into the local cloud of 

points when sudden variations in the distance between neighbouring points occur inside the 

analysis domain. For each star point this is accomplished by performing a local Delaunay grid 

with all the points falling within the octree search area. Only the first layer of nearest 

neighbours is retained and used to initialize the local cloud of points. Finally, admissible 

nearest points are added until the condition npmin ≤ np ≤ npmax is fulfilled. This procedure, 

which follows the lines proposed in [11], avoids non-overlapping neighbouring clouds of 

points and improves the quality of the local discretization. Furthermore, the information 

concerning the first layer of neighbouring points for each star point is very useful to improve 

several computational procedures. In the present work such information is needed for the 

adaptive procedure that is presented in Section 9. 

6. HIGH-ORDER APPROXIMATIONS. SOME PRELIMINARY RESULTS 

In this Section some numerical examples are presented in order to assess the behaviour of 

high-order FP approximations. The first and second examples attempt to investigate h and p-

convergence characteristics of the method using second, third and fourth-order approximation 

bases. In the last example the performance of the proposed methodology is shown in a more 

realistic calculation case using second-order approximation bases.  

6.1 Poisson’s problem in a cubic domain 

This example concerns a Poisson’s problem 
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D
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 (36) 

set in a unit length sides cubic domain Ω with Dirichlet boundary Γ = ΓD. The source term 

f(x,y,z) is given by 
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where k = 200. The former problem has the following analytical solution 
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which is used to assess the accuracy of the numerical solution. The error in the numerical 

calculations is evaluated by means of a discrete average quadratic norm given by 
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where ϕ is any variable for which the error is evaluated and ( )e and ( )n refer to the exact 

solution and the numerical FP solution respectively. 

The domain is discretized by unstructured and homogeneous distributions of 650, 2013, 4468, 

8647 and 19850 points. Clouds of 21, 40 and 75 points are used with second, third and fourth-

order approximation respectively. The initial parameter w = wmax = 3.5 is set for all cases and 

it is locally adjusted when the requirements in Section 4 are not satisfied by the local 

approximation. It must be noticed that it is not allowed to both, increase the number of points 

in a cloud and decrease the local order of approximation during the shape functions 

calculation procedure. The equation system is solved iteratively by a Bi-Conjugate Gradient 

Method (BiCGM) and the stopping criterion employed is 
∞ ∞

≤res RHS1.E -12 . Figure 5 

shows the FPM solution for the variable φ and the test case n=4468. 

 

 

 

 

 

 

 

 

 
Figure 5: a) Iso-φ lines on a surface cut in the domain. b) Problem discretization displaying φ-results 

a) b) 
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Next, the spatial convergence characteristics of the numerical solution for the Laplacian of the 

unknown function φ are investigated. The error norm used is 2

2
e = ∇ φ  and h is taken as an 

average point spacing of the spatial discretization. 

 

 

 

   

 

 

 

 

Figure 6: Poisson’s problem in a cubic domain: h-convergence for ∇ φ2   

Good convergence rates (indicated with r in the figure above) can be observed for the present 

problem. Figure 6 shows that high-order approximations do not improve the accuracy when 

very coarse discretizations are employed. This is an expected behaviour because an increase 

in the approximation order implies an increase in the support size. This fact brings about 

extensive clouds of points which cover the problem domain causing the computed unknown 

function, and specially its derivatives, to be considerably smoothed. This behaviour can be 

improved using an appropriate domain discretization in such a way that the solution lies 

within the asymptotic range of convergence. 

It should be noticed that the convergence characteristics of FPM solutions are very dependent 

on local approximation parameters such as np and w and the geometrical distribution of 

points. Consequently, particular settings could originate a non-expected behaviour of the 

convergence rates in some variables for which observed and theoretical orders of convergence 

do not agree.  

The convergence of the error norm vs. CPU-time is examined in Figure 7. All the cases were 

computed on a Pentium IV 3.0 GHz processor based machine. For the problem we are dealing 

with, it is possible to note that high-order approximations allow getting a better accuracy 

saving CPU-time and storage depending on the spatial discretization employed. As regards 

the CPU-times, the most accurate solution is not always the fastest one, but in some cases 

high-order accurate solutions involve a significant storage saving. From the point of view of 
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||∇2φ||2 ||∇2φ||2

the conditioning of the global equation system, Figure 8 shows that high-order 

approximations do not necessarily imply ill-conditioning due to the increase in the band-width 

of the system. The relation between the error and the number of BiCG solver iterations 

necessary to achieve a given residual seems to be only proportional to the size of the system 

to be solved. Here the fourth-order approximations present the best rate. 

 

 

 

 

 

 

 

 

 
Figure 7: error vs. CPU run time  Figure 8: error vs. iterations of BiCG solver 

6.2 Potential flow around a sphere 

In this numerical example an ideal, irrotational and incompressible fluid past around a 

stationary sphere is solved in a closed domain Ω with boundary Γ = ΓD∪ΓN. These 

assumptions lead to the following Laplace’s problem 
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where ΓD and ΓN are Dirichlet and Neumann boundaries respectively and n̂  is the unitary 

outward normal vector to ΓN. Appropriate boundary conditions are set in such a manner that 

originate an unperturbed velocity field given by ( , , ) (1,0,0)u v w = . Furthermore, in this example 

a modified form of the Neumann’s boundary condition derived through Finite Calculus 

technique [13] is adopted with the aim of overcoming numerical instabilities in the numerical 

solution. 

Due to geometry and flow symmetry, only a half-sphere is computed. The computational 

domain is discretized by a homogeneous unstructured distribution of 7763 points and p-

convergence is examined. The surface of the half-sphere is covered by a coarse distribution of 

253 unstructured points. Clouds of 25 ≤ np≤ 35, 40 ≤ np ≤ 55 and 80 ≤ np ≤ 90 are used with 
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second, third and fourth-order approximations respectively. The parameter w = 3.0 is kept 

fixed in all the test cases and the QR solution of the WLSQ problem is employed when the 

requirements given in Section 4 are not satisfied by the local approximation. Similar to the 

numerical example solved in Section 6.1, the order of the local approximation and the number 

of points in the clouds are not allowed to change during the shape functions calculation 

procedure. The global equation system is solved by an iterative BiCG solver and the stopping 

criterion is the same as for that example.  

Numerical results of the pressure coefficient (Cp) and the velocity field calculated for the 

fourth-order approximation case are shown in Figure 9. 

 

 

 

 

 

Figure 9: Potential flow around a sphere. Fourth-order calculation case, n=7763 and 80 ≤ np ≤ 90: a) iso-lines of 

Cp, b) modulus of velocity. 

A comparison between the analytical Cp distribution along a cross section of the sphere and 

numerical results obtained using second, third and fourth-order approximations is presented in 

Figure 10. The discrete L2-norms of the error in the numerical approximations obtained by 

second, third and fourth-order approximation bases are 1.7E-2, 1.3E-2 and 8.8E-3 

respectively. These results show that an increase in the order of approximation leads to 

slightly better numerical results. Note that the spatial discretization is the same in the three 

calculation cases. 
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Figure 10: Cp distributions on the sphere using 2nd, 3rd and 4th order approximation bases 

Spatial convergence of the solution around the given cross section is examined for three 

different unstructured and non-homogeneous distributions of points on the sphere using 

second-order approximation bases. The surface of the half-sphere is discretized by 221, 359 

and 1167 points which present higher density around the cross section where the 

approximation error is computed. Each of these half-sphere surface discretizations belong to 

an unstructured discretization of the whole domain with 7657, 8151 and 10683 points. The 

local approximation is built on 25 ≤ np ≤ 35 clouds of points with the parameter w = 3.0. This 

setting is kept fixed for the three cases analyzed here. The surface point discretizations on the 

symmetry plane of the problem are shown in Figure 11. 

 

 

 

 

 

 

Figure 11: Symmetry plane of the problem. From left to right, half-sphere surface discretization with 221, 359 

and 1167 points respectively. 

The convergence behaviour with the number of points and the Cp distribution on the sphere 

for the finest surface discretization (ns = 1167) are shown in Figure 12. Spatial convergence of 

the solution in a localized area of the domain is obtained using second-order approximation 

bases. A similar behaviour is observed using higher-order approximations. It should be 
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noticed that, in these cases, parameters such as w and the number of points in the cloud must 

be adjusted according to the local discretization so as to get the best results. This evidences 

the susceptibility of high-order approximations to the spatial distribution of the points, which 

claims for an individual setting of the approximation’s parameters in each cloud.  

 

 

 

 

 

 

 

 

 
 

Figure 12: Comparison between calculated and analytical results, n = 10683 and nsurface = 1167. a) L2-norm error 

vs. number of half-sphere surface points, O(2) with 25 ≤ np ≤ 35. b) Cp distribution on the sphere.  

6.3 Potential flow around a semispan wing 

The last numerical example is the three-dimensional solution of an ideal irrotational and 

incompressible fluid past around a semispan wing. The system of equation (40) is solved in a 

closed domain Ω with boundary Γ = ΓD ∪ ΓN and proper boundary conditions are imposed in 

such a manner that originate an unperturbed velocity field given by ( , , ) (1,0,0)u v w = . In this 

example, a modified form of the Neumann’s boundary condition derived through the Finite 

Calculus technique [13] is also adopted in order to avoid numerical instabilities. 

The semispan wing is set to zero incidence angle and has an aspect ratio A = 8, taper ratio λ = 

0.5 and zero sweep-angle with respect to the quarter-chord line. The airfoil section is a 

NACA-0012 constant along the semispan. 

The computational domain is discretized by an unstructured and non-homogeneous 

distribution of 43335 points. Second-order approximation bases are used with clouds of 50 ≤ 

np ≤ 70 and the shape functions calculation procedure is allowed to self-adjust according to 

the iterative procedure presented in Section 4. As in the previous examples, the global 

equation system is solved by a BiCG method. 
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Figure 13 shows the surface discretization over the wing (4689 points) and the symmetry 

plane (837 points); the coloured points display the computed pressure coefficient values. The 

velocity field around the semispan wing is shown in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Surface discretization over the semispan wing and the symmetry plane showing surface Cp results. 
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Figure 14: Numerical surface results for non-dimensional modulus of velocity. 

The Cp distribution obtained with the present methodology along the root section of the wing 

is compared with accurate two-dimensional results in Figure 15. A reasonable agreement can 

be observed. 
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Figure 15: Comparison of Cp distributions along the root section of the semispan wing. 

With the aim of demonstrating the performance of the proposed methodology, the CPU-time 

for each of the stages of the calculation is presented in Table 1. This numerical example was 

computed on a Pentium IV 3.0 GHz processor based machine. 

 CPU-time 
(secs.) 

% Overall 
time  

Local cloud construction 4.65 6.59 

Shape functions calculation 6.1 8.64 

Assembly of the equation system 0.3 0.42 

Equation system solution (BiCGM) 50.6 71.67 

Others… 8.95 12.68 

Total: 70.6 100 

 

Table 1: CPU-times for semispan wing test case (n = 43335, 50 ≤ np ≤ 70 and 2nd order approximation bases) 

As it has been mentioned before, the iterative shape functions calculation procedure has been 

employed and the time involved in this task is 6.1 seconds. If direct inversion of matrix A 

procedure (11) is used for the shape functions calculation, the time needed is about 5.1 

seconds; while if the alternative QR factorization based procedure (32) is used for all the 

points in the domain, the CPU-time is 11.5 seconds. These facts demonstrate that the iterative 

procedure needs just a little more time than the usual procedure, and takes around twice more 

as much in the worst case, when all shape functions in the domain must be recalculated. It 

should be noticed that the computational code employed for the calculations presented in 

Table 1 is not optimized for speed. For this reason, the reported CPU-times must only be 

considered as a comparison between the different tasks performed but must not be taken as 
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indicators of the time requirements of the FPM. Evidently, the reported CPU-times can be 

noticeably improved. 

Several numerical experiments, not reported here due to space limits, confirm that the 

iterative shape function calculation procedure has a noticeably positive impact on the 

accuracy of the numerical solution, the stability of the collocation procedure and the iterative 

convergence of the BiCGM. The results obtained are encouraging. However, certain non-

expected features, springing from the high-order approximations and related, in general, to 

particular settings of the approximation parameters, should be studied in more detail. 

7. SOLVING THE COMPRESSIBLE FLOW EQUATIONS 

In this Section, a Finite Point methodology for solving the three-dimensional Euler equations 

is presented. The flow solver we propose is based on a modified expression for the calculation 

of the discrete flux divergence at each point, which allows us to introduce an unknown 

numerical flux into the formulation. Following the ideas given by the so-called Godunov-type 

methods, this numerical flux is calculated by means of an approximate Riemann solver. 

Consequently, this upwind numerical flux provides stabilization to the numerical scheme and 

also improves their wave capture capabilities. This choice leads to a monotone low-order 

semi-discrete scheme whose spatial accuracy is improved through a MUSCL reconstruction 

of the variables. In addition, non-linear limiters are introduced in the formulation in order to 

preserve the non-oscillatory behaviour of the scheme near discontinuities in the solution field. 

Finally, the time integration of the semi-discrete scheme is performed by an explicit Runge-

Kutta multi-stage scheme. 

Next, a detailed description of the methodology above described is presented. Additionally, 

the procedure employed for applying boundary conditions is described with the aim to round 

off the description of the flow solver.      

7.1 The Euler equations 

The first-order hyperbolic system of Euler equations can be written in several equivalent 

forms. Their conservative differential form is given by 

 
k

kt x
∂ ∂

+ =
∂ ∂
U F 0  (41) 
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where k=1,d and d denotes the number of spatial dimensions of the problem. U is the 

conservative variables vector and Fk is the advective flux vector in the spatial direction xk. 

These vectors are given by  

 
( )

,
k

k
i i k ik

t t k

u
u u u p
e e p u

ρ ρ
ρ ρ δ
ρ ρ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

U F  (42) 

where ρ, p and et denote, respectively, the density, pressure and total energy of the fluid; ui is 

the i-component of the velocity vector, δik is the Kronecker delta and indices i,k = 1,d. The 

following state relation for a perfect gas closes the system of equations 

 ( ) 11 2t i ip e u uρ γ ⎡ ⎤= − −⎣ ⎦  (43) 

in which γ = Cp/Cv is the specific heats ratio (in the present work we adopt γ = 1.4). The 

solution of Eq. (41) in a closed domain Ω ∈ ℜd with boundaries Γ = Γ∞ ∪ Γw requires 

additional proper initial and boundary conditions, which will be considered later on. 

7.1.1 Quasi-linear form of the Euler equations 

The system of Euler equations (41) could be written in an equivalent form taking advantage 

of the fact that the flux vectors Fk only depends on the conservative variables vector U. It 

allows applying the chain rule to the spatial derivative of the flux vectors and get 

 
k k

k

k k kx x x
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂
F F U UA

U
 (44) 

where Ak ∈ ℜ(d+2)×(d+2) is the Jacobian matrix of the flux vector Fk.  Introducing Eq. (44) in 

Eq. (41) the following form of the Euler equations is obtained 

 k

kt x
∂ ∂

+ =
∂ ∂
U UA 0  (45) 

which represents a quasi-linear system of equations if Ak = A(U,xk,t) and a linear system if 

matrix Ak is constant. 

The hyperbolic nature of the Euler equations allows a complete description of the problem in 

terms of propagating waves. In addition, an important property of this hyperbolic system is 

that the matrix A has real eigenvalues and it is diagonalizable, i.e. it has a complete set of 

linearly independent eigenvectors. This property allows the following factorization 
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 1−=A R RΛ  (46) 

where R ∈ ℜ(d+2)×(d+2) is a matrix whose columns are the right eigenvectors of the matrix A, 

the rows of R-1 are their left eigenvectors and Λ ∈ ℜ(d+2)×(d+2) is a diagonal matrix whose 

entries are the eigenvalues of A. Even though it is not possible to diagonalize the Jacobian 

matrices Ak simultaneously, we can diagonalize any linear combination of these matrices. 

Therefore, given an arbitrary vector n ∈ ℜd we could state 

 -1k kn= =A A R Rn n n nΛ  (47) 

in which the matrices of eigenvectors and eigenvalues are calculated for the Jacobian matrix 

in the direction of the arbitrary vector n, i.e. An. 

The Jacobian matrices Ak and their associated eigenvectors and eigenvalues matrices can be 

calculated analytically if the fluid constitutive relations are specified. Explicit expressions for 

these matrices can be found in the literature; see for instance [24]. 

7.2. The low-order scheme 

In the present work, the conservative variables vector U and the advective flux vectors Fk are 

approximated by the same set of shape functions. Therefore, for each star point xi ∈ Ω we 

have the following numerical approximations 

 
( )

( ) ( )

ˆ ˆ

ˆ ˆ
i

i

h
i í ij j

j
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i í ij j

j

N

N

∈Ω

∈Ω

= =

= =

∑

∑

U U U

F F F

x

x
 (48) 

in which ( )ij i jN N= x  is the shape function of the star point xi evaluated at the cloud’s point 

xj and ( ) ( )k h k h
j j=F F U . Then, the one-dimensional semidiscrete counterpart of Eq. (41) could 

be stated for each star point xi by 

 
ˆ ˆ

i i

ij h hi i
j ij j

j j
b

t x x∈Ω ∈Ω

∂∂ ∂
= − = − = −

∂ ∂ ∂∑ ∑U F F F
N

 (49) 

where h
jF  is the advective flux vector calculated at a point xj ∈ Ωi and the coefficient ijb  

stands for the shape function derivative of xi evaluated at the same point xj. 

It is important to note that the (h) parameters do not coincide with the approximated ones (^) 

because in the Finite Point method the shape functions do not interpolate nodal data. These 
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values are related by Eq. (48), which implies that a linear system must be solved in order to 

get the (h) parameters. Fortunately, this equation system has excellent properties and can be 

solved by a few iterations of a Gauss-Seidel method or similar. Henceforth, the markers (^) 

and (h) will be omitted for the sake of simplicity. 

Taking advantage of the PNs property of the shape function derivatives, it is possible to infer 

 0
i

ij ii ij ii ij
j j i j i

b b b b b
∈Ω ≠ ≠

= + = → = −∑ ∑ ∑  (50) 

and replacing (50) in Eq. (49) the following semidiscrete expression is obtained 

 ( )i
ij j i

j i

b
t ≠

∂
= − −

∂ ∑U F F  (51) 

Eq. (51) is unstable and needs to be stabilized. For that purpose, a more suitable equivalent 

form is sought scaling by a factor of 1/2 the stencil of points [23] used for its calculation. In 

this way, we obtain a totally equivalent semi-discrete expression which is given by 

 ( )2i
ij ij i

j i

b
t ≠

∂
= − −

∂ ∑U F F  (52) 

where Fij is an a priori unknown numerical flux vector at the midpoint of the line segment 

connecting the star point xi to another point xj ∈ Ωi. Then, this numerical flux Fij is calculated 

by an approximate Riemann solver which naturally provides the required dissipation for the 

semi-discrete expression. Moreover, the approximate Riemann solver introduces information 

concerning the exact solution of the problem, giving robustness and excellent shock capturing 

properties to the numerical scheme. The stencil of points used in the calculation of Eq. (52) is 

presented in Figure 16. 

 

 

 
Figure 16: The one-dimensional stencil of points. 

7.2.1 Solution of the approximate Riemann problem 

The solution of the Riemann problem is one of the few existing analytical solutions for the 

non-stationary one-dimensional Euler equations. The Riemann problem, centered on the 

midpoint of the line segment connecting any pair of points xi and xj, is set by the following 

initial conditions 
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 L
0

R

( , ) i ij

j ij

x x
x t

x x
= ≤⎧

= ⎨ = >⎩

U U
U

U U
 (53) 

where UL and UR are constant vectors and an infinite length domain is considered. Next, the 

interaction between the initial states gives rise to the three basic types of flow discontinuities: 

a shock wave, an expansion fan and a contact discontinuity. For any instant of time t > t0, the 

ratio of the variables through the discontinuity lines, their exact spatial position and their 

speed of propagation can be analytically calculated. The initial set up for the Riemann 

problem is sketched in Figure 17. 

 

 

 

 
Figure 17: Piecewise constant initial condition for the Riemann problem centered at xij. 

Unfortunately, the exact solution of the Riemann problem involves a non-linear algebraic 

system of equations whose solution is computationally expensive. Notice that, in order to 

calculate the semi-discrete expression (52) at each cloud, the Riemann problem must be 

solved as many times as points there are in the cloud and this penalizes the performance of the 

numerical technique. Consequently, most techniques based on the Riemann problem do not 

use its exact solution. These numerical techniques employ the solution of an approximate 

Riemann problem which replaces the real non-linear flux function F(U) by a locally linearized 

approximation. In other words, an approximate Riemann solver calculates the exact solution 

of a linearized problem where the Jacobian matrix A is considered to be constant. The 

solution of this linearized problem is trivial and can be written in several equivalent forms, for 

example, using conservative variables, characteristic variables or in terms of fluxes. The last 

choice is appropriate for our problem because we need to calculate the unknown flux function 

at point xij. Thus, a straightforward calculation [25] for the unknown numerical flux 

ij ij=F AU  leads to 

 ( ) ( )ij
1 1

2 2R L R L= + − −F F F A U U  (54) 

where |A|=R|Λ|R-1 is the absolute value of the Jacobian matrix and |Λ| is a diagonal matrix 

whose entries |λi| are the absolute value of the eigenvalues of A. Notice that, by self-similarity 

of the Riemann problem solution, the flux function (54) is constant along a line xij = const. 
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The solution of the approximate Riemann problem provides an expression for the unknown 

numerical flux (54) supposing a locally linearized problem between the points xi and xj. Now, 

it is necessary to calculate an appropriate linear approximation to the real flux function; i.e. 

we need to define the constant Jacobian matrix A.  

There are several possibilities for the linearization of the flux function F(U). In this work we 

adopt a secant plane approximation [25], i.e. we connect the states UL and UR, which define 

the linearized Riemann problem, with a plane. The secant plane approximation to the flux 

function around UL could be expressed by  

 ( )L LR L( ) ( )≈ + −F U F U A U U  (55) 

where the matrix ALR satisfies 

 ( )R LR R L( ) ( )L− = −F U F U A U U  (56) 

Eq. (56) involves (d+2) equations concerning the components of the flux vector F(U) and 

(d+2)2 unknowns which are the components of the matrix ALR. As it was expected, this fact 

shows that there exist an infinite number of secant planes which contains the line connecting 

the states UL and UR. With the aim of circumventing this problem, we make use of a result 

derived from the mean value theorem which states that exists, in the scalar case, an aRL = a(ξ) 

where ξ is a value between uL and uR. In the vector case, it means that exists a matrix 

 ( ) ( )LR L R LR= =A A U , U A U  (57) 

in which URL is an intermediate state between UL and UR. Then, replacing (57) in Eq. (56), the 

unknowns of the problem are reduced to the (d+2) components of the intermediate state URL; 

hence, a well-posed system is obtained. Moreover, statement (57) has another important 

advantage because any expression based on A(U) remains true for A(ULR). This fact allows 

utilizing, in the linearized problem, the expressions of the Jacobian matrix and their 

associated eigenvectors and eigenvalues matrices, but evaluated at the new state ULR. 

In spite of this progress, the intermediate state vector ULR has not been obtained yet. 

Numerous alternatives can be found in the literature; in the present work we adopt the 

solution developed by Roe [26], which leads to the most popular and less dissipative of the 

so-called flux difference splitting methods. 

7.2.2 The Roe average variables 
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Roe derives an intermediate state vector ULR which is defined by the following set of average 

weighted density variables 
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 (58) 

where th e p ρ= +  is the specific total enthalpy of the fluid. As a consequence, the average 

speed of the sound is given by 

 ( )( )2
LR

11 2RL RLc h uγ= − −�� �  (59) 

Using the average variables given by expressions (58) and (59), it is possible to define the 

intermediate state ULR and, consequently, calculate the constant matrix ALR through Eq. (57). 

Then, replacing the matrix ALR (henceforth Roe matrix) in Eq. (54), the unknown numerical 

flux Fij is completely defined by 

 ( ) ( ) ( )ij
1 1 ,2 2i j i j j i= + − −F F F A U U U U  (60) 

in which Ui and Uj  have been used instead of UL and UR. With the aim of calculating the 

absolute value of the Roe matrix, the factorization given by Eq. (46) is employed. We will go 

back to this point later on. 

Due to the fact that a secant plane approximation to the non-linear flux function has been 

adopted, the Roe solver is able to reproduce the exact solution of the Riemann problem for a 

single shock or a single contact discontinuity. However, in the particular case of a flow 

expansion with a sonic transition, the Roe solver allows the appearance of an expansion 

shock, which violates the second principle of thermodynamics. In order to correct this 

behaviour, several techniques known as entropy corrections have been proposed in the 

literature. Some of them will be presented later on. 

7.2.3 Multi-dimensional extension of the flow solver 

The multi-dimensional extension of the scheme presented above is straightforward. For each 

pair of points (xi,xj), a one-dimensional problem is solved in the direction of the vector 
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ji j i= −l x x  to obtain the midpoint numerical flux Fij. Then, Fij is projected onto the 

Cartesian axis and the semi-discrete scheme (52) results in 

 2 k k ki
ij ij i

j i
b

t ≠

∂ ⎡ ⎤= − −⎣ ⎦∂ ∑U F F  (61) 

where 1,dk = , being d the number of spatial dimensions of the problem. The Cartesian 

components of the midpoint numerical flux are obtained by 

 ( ) ( )ˆ
1 1 ˆ( , )2 2

k k k k
ij j i n i j j i+ − − ⋅F = F F A U U U U n  (62) 

where n̂  is a versor in the direction of the vector lji and | ˆ ( , )n i jA U U | denotes the absolute 

value of the Roe matrix calculated in the same direction. The stencil of points employed in the 

derivation of expression (61) is presented in Figure 18. 

 

 
 

 

 

 

 

Figure 18: The multi-dimensional stencil of points. 

In the multi-dimensional case, the density averaged Roe variables are obtained by means of 

the following expressions 
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in which uk denotes the component of the velocity vector in the cartesian direction xk. The 

average Roe variables could be calculated in a more computationally efficient way [24] with 

the help of a parameter j ir ρ ρ= . Introducing this parameter into Eq. (63) we obtain 
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Then, the average speed of the sound is given by 

 ( ) ( )11 2
k k

ij ij ij ijc h u uγ ⎡ ⎤= − −⎣ ⎦
�� � �  (65) 

As it was mentioned before, the absolute value of the Roe matrix is obtained by factorization 

(46) in the one-dimensional case and factorization (47) in the multi-dimensional case. Note 

that the calculation of the dissipation terms, given by Eq. (62) or Eq. (60), requires matrix-

matrix and matrix-vector multiplications, which demands a considerable computational effort. 

In order to carry out these calculations efficiently, Turkel has developed [27] an explicit 

expression which is presented below.  

7.2.4 A practical calculation of the dissipation terms 

Section 7.1 states that any linear combination of the Jacobian matrices (in the present case the 

Roe matrices projected onto the vector linking the points xi and xj) allows the following 

factorization 

 1
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )n i j n i j n i j n i j

−=A U U R U U U U R U UΛ  (66) 

 Thus, the absolute value of this matrix is given by 

 1
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )n i j n i j n i j n i j

−=A U U R U U U U R U UΛ  (67) 

where, in the three-dimensional case, the diagonal matrix of eigenvalues is |Λn(Ui,Uj)| = 

diag{|λ1|,|λ2|,|λ3|,|λ3|,|λ3|} and 
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In the expressions above, all the variables correspond with the density averaged Roe variables 

calculated for (Ui,Uj) and ˆ ˆk k
ij iju u n= � . Notice that the multiplicity of the eigenvalue λ3 is 

identical to the number of spatial dimensions of the problem under consideration. Then, the 

dissipation terms can be expressed by 
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 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )n ij j i n ij n ij n ij

−= − = ⋅D A U U U R U U R U UΛ Δ  (69) 

in which the difference vector ΔU = (Uj - Ui). According to the procedure suggested by Turkel 

[27], the dissipation terms (69) are calculated as follows 
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where 
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and 
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Eq. (70) gives us an expression for evaluating the dissipation terms in the general three-

dimensional calculation case. In the one-dimensional and two-dimensional case, the 

dissipation terms are obtained cancelling (in Eq. (70) and Eq. (71)) all the variables in the 

proper Cartesian components. 

7.2.5 On the entropy correction 

As it was mentioned before, in the particular case that a transition through a sonic point 

occurs in a flow expansion, the Roe solver will allow the appearance of an expansion shock 

(pressure and density decrease across the shock). This solution, which is valid in the context 

of the locally linearized Riemann problem solved by Roe, does not comply with the second 

principle of thermodynamics because an expansion shock involves entropy reduction. Hence, 

several techniques have been proposed in order to overcome this unphysical behaviour. In 

general, all these techniques consist in locating the sonic transition within the computational 

domain and diffusing the shock expansion into expansion fans. The latter is achieved by 

fixing a minimum allowable value for the wave speed, i.e. limiting the eigenvalues to a 

constant value min 0λ > . Concerning the dissipation terms behaviour, while the acoustic 
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eigenvalues λ1 and λ2 vanish at sonic points, the eigenvalue λ3 goes to zero at stagnation 

points. In addition to the possible appearance of expansion shocks, vanishing eigenvalues 

could cause misbehaviour of the dissipation terms and, consequently, lead to numerical 

instabilities for particular flow conditions. 

A simple way to overcome all these problems is limiting the minimum value of the wave 

speeds to a fraction of the Jacobian matrix spectral radius ρ(A). This is achieved [27] re-

defining the eigenvalues according to 
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where α1 ≈ 0.1, α2 ≈ 0.2 and ( ) ˆij iju cρ = +A � . A more accurate correction, proposed by 

Harten and Hymann [28], is given by 
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where λk corresponds to the eigenvalues (68) calculated for the Roe average state between Ui 

and Uj and L
kλ , R

kλ  are the eigenvalues calculated at the points xi and xj (which define the left 

and right constant state of the Riemann problem). Additional corrections can be found in the 

literature, see for instance a comparative study among some of them in [29].   

7.3 The high-order scheme 

The low-order scheme developed in the preceding section is useless in practice. In order to 

make this scheme able to capture the features of the flow with precision, it is necessary to 

increase its spatial order of accuracy. This is accomplished by replacing the zero-order 

extrapolation of the variables (UL=Ui and UR=Uj) at the midpoint xij by a higher-order 

extrapolation. The MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) 

methodology [30] allows achieving second and third-order accurate schemes using linear and 

quadratic reconstruction of the variables respectively. Leftward-biased reconstructions of the 

variables defining the left state of the Riemann problem at the midpoint xij are sketched in 

Figure 19. A similar rightward-biased extrapolation is possible for the right state.  
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Figure 19: Leftward-biased extrapolations of the variables at the point xij (Ui

+): a) zero-order extrapolation 

(leading to a first-order accurate scheme); b) linear extrapolation (leading to a second-order accurate scheme); c) 

quadratic extrapolation (leading to a third-order accurate scheme). 

The proposed high-order methodology does not guarantee an oscillation free solution. 

Therefore, in the present work, the monotonicity of the solution is enforced by introducing 

non-linear limiters into the reconstruction process. Basically, these limiters recognize any 

local extrema of the solution field and automatically switch the high-order extrapolation to a 

zero-order extrapolation. This mechanism results in a low-order monotone scheme around 

extrema of the solution field. 

Next, the extrapolation procedure is briefly described and some possibilities to calculate the 

limiters are presented. 

7.3.1 Second and third-order accurate schemes 

Assuming that U(x) is a function smooth enough in the neighbourhood of the point xij, we can 

state the following leftward-biased approximations [25]  

Second-order approximation (linear centered reconstruction)  

 ( )( ) j i
i ix x - x

x
−

≈ +
Δ

U U
U U  (75) 

Second-order approximation (linear leftward-biased reconstruction) 

 ( )( ) i i-1
i ix x - x

x
−

≈ +
Δ

U UU U  (76) 

Third-order approximation (quadratic leftward-biased reconstruction) 
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Then, defining j ix x xΔ = −  and taking 2ij ix x x x= = + Δ , it is possible to combine the 

approximations (75), (76) and (77) into the following expression 

 ( )( ) ( )( )1
1 1 1
4i i i i j iη η+

−
⎡ ⎤= + − − + + −⎣ ⎦U U U U U U  (78) 

where Ui
+ is the leftward approximation to U(xij). The parameter 1η = −  leads to a second-

order leftward-biased approximation for Ui
+ and choosing 1η =  or 1 3η = , a second-order 

centered approximation or a third-order approximation is obtained respectively. 

Following the same reasoning line, rightward-biased approximations are obtained by  

Second-order approximation (linear centered reconstruction)  

 ( )( ) j i
j jx x - x

x
−

≈ +
Δ

U U
U U  (79) 

Second-order approximation (linear rightward-biased reconstruction) 

 ( )( ) j+1 j
j jx x - x

x
−

≈ +
Δ

U U
U U  (80) 

Third-order approximation (quadratic rightward-biased reconstruction) 
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Then, defining j ix x xΔ = −  and taking 2ij ix x x x= = + Δ , it is possible to combine the 

approximations (79), (80) and (81) into the following expression 

 ( )( ) ( )( )1
1 1 1
4j j j j j iη η−

+
⎡ ⎤= − − − + + −⎣ ⎦U U U U U U  (82) 

where Uj
- is the rightward approximation to U(xij). Similar to the previous case, the parameter 

1η = −  leads to a second-order rightward-biased approximation for U(xij) and choosing 1η =  

or 1 3η = , a second-order centered approximation or a third-order approximation is obtained 

respectively. 

Notice that the high-order approximations to the variables U(xij) require an enlargement of the 

stencil of points. The calculation of the Eq. (78) and Eq. (82) needs the variables vectors 

evaluated at certain points xi-1 and xj+1 which, in general, do not coincide with any discrete 
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points in the discretization. When we are dealing with unstructured discretizations in the 

multi-dimensional context, obtaining the variables at these fictitious points is not a trivial task 

and several techniques to deal with this can be found in the literature; see for instance [31, 

32]. Following the ideas presented in [11], in the present work the variables Ui-1 and Uj+1 are 

obtained by a centered approximation to the ∇U at the points xi and xj. This procedure leads 

to the following expressions 
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in which ji j i= −l x x  is the vector linking the points xi and xj. 

 

 

 

 

 

 

 

 
 

Figure 20: Multi-dimensional reconstruction of the variables 

As it was mentioned before, the reconstruction process described above does not guarantee an 

oscillation free solution near discontinuities. The appearance of spurious oscillations in the 

solution field depends upon the relation between the difference vectors (Uj-Ui), (Ui-Ui-1) and 

(Uj+1-Uj) which give information about the local gradient of the solution. Thus, the non-linear 

limiters check and correct these quantities following several criteria derived from TVD (Total 

Variation Diminishing) schemes or similar, which mathematically define the properties of 

non-oscillatory schemes.   

7.3.2 Limiters 

Limiting is still an area of active research and numerous approaches can be found in the 

literature; see for instance [24, 25, 32]. In the following, two approaches for limiting the 

slopes of the solution in the MUSCL extrapolation technique are proposed. The first approach 
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adopts the minmod limiter [25] and the second one uses the Van Albada limiter [31], which is 

less restrictive than the former limiter. 

7.3.2.1 The minmod limiter 

It is possible to demonstrate [25] that the high-order extrapolations given by Eq. (78) and Eq. 

(82) do not generate oscillations when Ui ≤ Ui
+ ≤ Uj, the differences (Ui-Ui-1) and (Uj-Ui) have 

the same sign and the following relation holds true 

 1
3
1i i j i

η
η−

−
− ≤ −

−
U U U U  (84) 

In addition, it is necessary that Ui ≤ Uj
- ≤ Uj, the differences (Uj+1-Uj) and (Uj-Ui) have the 

same sign and also 
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With the aim of ensuring all these conditions, the reconstruction of the variables is performed 

in the following manner 
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where b is called compression parameter and is calculated according to 1 ≤ b ≤ (3-η)/(1-η); 

the choice of 1b =  leads to a more dissipative scheme. The minmod function could be 

calculated for given arguments x and y by means of the following expression 

 ( )( , ) sgn( ) max 0 , min , sgn( )minmod x y x x x y⎡ ⎤= ⋅ ⋅⎣ ⎦  (87) 

which gives as a result the smallest argument in absolute value if the arguments x and y have 

the same sign and; otherwise, it gives zero. 

7.3.2.2 The Van Albada limiter 

Following the ideas presented in [31], the Van Albada limiter at points xi and xj is given by 
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where ε is a very small positive constant which avoids possible divisions by zero when the 

surrounding flow field is smooth. The limiters si and sj could be calculated using primitive, 

conservative or characteristic variables. The latter lead to the best results at the expense of a 

higher computational cost. In the present work the limiters are calculated using the 

conservative variables vector. 

Once the limiters given by Eq. (88) have been calculated, the reconstruction scheme is 

modified according to the next 
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Notice that the limiters (88) take values between 0 ≤ s ≤ 1. When the limiters are equal to the 

unity, Eq. (89) leads to a high-order extrapolation to the variables Ui
+ and Uj

- and, 

consequently, a high-order accurate scheme is obtained. When the limiters are equal to zero, 

the zero-order extrapolation is recovered and it leads to the low-order accurate scheme.  

The choice of the minmod limiter leads to a more dissipative scheme than the Van Albada 

limiter choice. In some particular cases in which the Van Albada limiter allows that 

oscillations appear in the solution field, the adoption of the minmod limiter could be 

advantageous. 

7.3.3 Obtaining the high-order accurate scheme 

Eq. (86) and Eq. (89) give a high-order approximation to the left and right states, defining the 

approximate Riemann problem centered at the point xij. Then, according to Eq. (62) the high-

order approximation to the numerical flux is given by 

 ( ) ( )ˆ
1 1 ˆ(2 2

k k + k - + - - + k
ij i j n i j j i= + − − ⋅F F (U ) F (U ) A U ,U ) U U n  (90) 

Finally, replacing Eq. (90) in Eq. (61), the semidiscrete expression of the high-order accurate 

scheme is obtained.  
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7.4 Time discretization 

The temporal discretization of Eq. (61) is done in a fully explicit manner by means of a multi-

stage method that is a subset of the Runge-Kutta family of schemes. Assuming that the vector 

of conservative variables Uh is known at time nt t= , the right hand side of Eq. (61) is 

calculated for each point (RHSi). Then, it is possible to advance the solution in time from nt   

to 1nt +   by means of the following s-stage scheme 
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where Δti is the time step evaluated at the star point xi and αs are integration coefficients that 

depend on the number of stages employed (smax). For two, three and four-stages schemes these 

parameters are set as follows: 

2 stages → α1 = 1/2 and α2 = 1.0 

3 stages → α1 = 3/5 , α2 = 3/5 and α3 = 1.0 

4 stages → α1 = 1/4 , α2 = 1/3 , α3 = 1/2 and α4 = 1.0 

Previously, the difference between the (h) parameters and the approximated ones (^) has been 

pointed out. Taking into account that RHSi = f (Uj
h) ∇xj ∈ Ωi , the following linear system has 

to be solved at the end of each integration stage 

 ˆh =M U U  (92) 

where M ∈ ℜn×n is the mass matrix of the system, which results from the assembly of the Nij 

vectors (see Eq.(48)). Fortunately, as it was said before, this equation system has excellent 

properties and can be solved by a few iterations of a Gauss-Seidel method or similar. 

7.4.1 The time step calculation and stability requirements 

It is known that the time step employed in explicit integration schemes must be bounded by 

some stability criterion. Also, the numerical computation of conservation laws, like the Euler 

equations, requires satisfying an additional condition called CFL (Courant-Friedrichs-Lewys) 

condition. In short, the latter states that the numerical domain of dependence (the stencil of 

points involved in the RHSi) must contain the physical domain of dependence (bounded by 
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the waves of the system in the x-t characteristics plane). It is possible to show [25] that this 

statement simply translates into an inequality restricting the maximum distance that any wave 

can travel in a single time step. In other words, the CFL condition states that none of the 

waves can travel faster than the maximum wave speed of the system, i.e. the spectral radius of 

the Jacobian matrix. The exact inequality which bounds the time step for a given 

discretization scheme could be obtained performing a linear stability analysis (e.g. von 

Neumann analysis) and, in many cases, the linear stability condition is the same as the CFL 

condition. 

In conventional discretization techniques, linear stability conditions are usually enforced 

taking a time step which is equal to a constant 1C < , called Courant number, multiplied by a 

typical distance of the stencil of points and divided by the spectral radius of the Jacobian 

matrix. Unfortunately, for Finite Point discretizations, stability analysis are very difficult to 

perform and their results are not valid for arbitrary point discretizations, especially in the 

multidimensional case. This happens because the distribution of points in the FPM is highly 

random and the shape functions and their derivatives depend not only on the position of the 

points but also on other factors like the order of approximation and the weighting function 

parameters. All these factors, which change from a cloud to another, make it very difficult to 

devise a general stability criterion. 

In the present work, introducing some heuristics, the time step calculation for each star point 

xi is obtained as follows 
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where lji = xj-xi is the vector linking the points xi and xj (see Figure 20) and 
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are the maximum wave speeds in the direction of lji. In Eq. (94) n̂  is a versor in the direction 

of lji, uk are the components of the velocity vectors at points xi and xj and c is the speed of the 

sound at the same points. Even though the Courant number C could take values above the 

unity in multi-stages integration schemes, in the present work we restrict this parameter to 

1C <  in order to reinforce the fulfilment of the stability requirements. The adoption of a local 

time step Δti in Eq. (91) increases the speed of convergence to the steady state for stationary 
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problems. If the solution of the problem is time dependent, a global time step must be 

adopted. This global time step is obtained by 

 ( )ming i ii
t tΔ = Δ ∇ ∈Ωx  (95) 

7.5 Boundary conditions 

As it was mentioned in Section 7.1, the system of Euler equations (41) requires the definition 

of additional initial and boundary conditions in order to complete the description of the 

problem to be solved. The initial conditions only start the explicit calculation (91) and they 

are simple to implement. In general, they could be taken from the far-field state U∞. On the 

contrary, the specification of boundary conditions for a given problem is not a trivial matter. 

For each point, the boundary conditions should be applied observing the mathematical 

behaviour of the equations. In general terms, variables entering the computational domain 

must be prescribed according to the far-field state U∞ and the variables leaving the 

computational domain must be able to move freely. The characteristic formulation of the 

Euler equations can manage boundary conditions in a natural way. Several studies based on 

characteristics give us some guidelines for applying boundary conditions in agreement with 

the behaviour of the equations [24, 25]. If the mathematical properties of the equations are not 

taken into account when applying boundary conditions, the appearance of wave reflections 

and numerical instabilities at the boundaries is quite common. This misbehaviour could 

seriously affect the convergence and the accuracy of the numerical solution. 

In the present work two kinds of boundary conditions are employed. The first one is 

concerned with far-field conditions applied on outer boundaries (Γ∞) and the second one is 

concerned with slip wall conditions applied on solid boundaries (Γw) (notice that 

w∞Γ = Γ ∪ Γ ). In the case of far-field boundary conditions, the prescribed fluxes at each 

boundary point are obtained by solving an approximate Riemann problem in the normal 

direction to the boundary, between the boundary point state Ui and the far-field state U∞. 

Solving this problem automatically gives us the appropriate flux vectors which have to be 

imposed, in accordance with the propagation of waves across the boundary. Over inner or 

outer solid boundaries, slip wall conditions are applied. This conditions force the fluxes to 

remain tangent to the boundaries, cancelling their components in the normal direction. Below, 

the procedure for applying boundary conditions adopted in the present work is briefly 

described. 
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7.5.1 Far-field boundary conditions 

The procedure for applying far-field boundary conditions is presented for the multi-

dimensional case. For each boundary point xi ∈ Γ∞ we need its normal (outward) versor ˆin  

and a set of tangent versors given by 1̂t  and 2̂t . Then, it is possible to calculate the flux 

vectors in the normal-tangent system as follows 

 
1 21 2

ˆ ˆˆ ; ;k k k k k k
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Due to the fact that the exchange of information between the computational domain and the 

far-field is done in the boundary normal direction, the normal flux Fn must be modified 

according to the far-field state. The new normal flux vector is obtained by the solution of the 

Roe’s approximate Riemann problem between the states Ui and U∞ 

 ( ) ( )ˆ ˆ,
1 1 (2 2

*
n n n n i i∞ ∞ ∞= + − −F F F A U ,U ) U U  (97) 

where the Roe matrix |An(U∞,Ui)| is calculated in the direction of the normal versor ˆin  and the 

far-field normal flux vector is given by ˆ, ˆ( )k kn∞∞ =F F Un . Then, the updated flux vectors at 

point xi are obtained, in the Cartesian axes, by 
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1 2
ˆ ˆˆk k k k
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The flux vectors given by Eq. (98) are forced in the solution of the problem in each time step. 

7.5.2 Slip wall boundary conditions 

The slip wall condition on solid boundaries implies the cancellation of the normal fluxes at 

each point xi ∈ Γw. This is accomplished by setting 

 ˆ 0i i⋅ =u n  (99) 

where ˆin  is the normal outward versor to the boundary at point xi. In particular problems, due 

to the fact that condition (99) is not compatible with the initial conditions, some numerical 

instability could happen during the initial time steps. It is possible to avoid this numerical 

instability by means of the relaxation of Eq. (99) [32] according to  

 ( )(n) (n-1)ˆ ˆ 1i i i i κ⎡ ⎤⋅ = ⋅ −⎣ ⎦u n u n  (100) 



48 

where indices (n) and (n-1) refer to the solution at two contiguous time steps. This weaker slip 

wall condition allows the fluid to penetrate the solid boundaries during the initial time steps 

and tends to condition (99) as the solution of the problem advances in time. The parameter κ 

≤ 1 controls the fluid penetration during the initial time steps and a value κ=0.8 is adopted. 

Notice that, as a consequence of the enforcement of condition (99), all the convective flux 

components through the solid wall vanish and only the pressure contribution remains at the 

flux vector in the normal direction to the solid wall, i.e. 
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In the present work both slip wall boundary conditions were studied but no important 

differences between the enforcement of Eq. (99) or Eq. (101) have been observed. Similar to 

the far-field boundary conditions, the slip wall boundary conditions are applied to the solution 

of the problem in each time step. 

7.5.3 A remark on trailing edge points treatment 

According to the previous comments, fluid particles are not allowed to penetrate solid 

boundaries in inviscid calculations. Hence, slip wall boundary conditions are applied at these 

points; therefore, the surface normal and tangent vectors are needed. Sharp edges, like the 

trailing edge of airfoils and wings, present a problematic situation because the normal vectors 

are geometrically indefinite at these points. Thus, the direction in which the advective flux 

must be forced to zero is not well-determined. Another problem arises from the clouds 

construction for trailing edge points, where the procedure presented in Section 5.2, leads to 

distorted asymmetrical clouds of points. These clouds could violate the CFL condition 

because it is quite possible that, in such cases, the physical domain of dependence is not 

totally included in the cloud of points. As a consequence, numerical instabilities may appear 

in the solution field. 

In order to fix the problems described above, in the present work we adopt a heuristic 

approach. In relation to clouds construction at trailing edge points, we do not apply 

restrictions to the points in these clouds. As a result, the resulting cloud structure, which in 

general is symmetrical, only depends upon the distribution of neighbouring points. 
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Concerning boundary conditions, slip wall conditions are not applied to trailing edge points, 

i.e. the variables at trailing edge points are allowed to move freely. In short, any point located 

at the trailing edge is considered as a point in the interior domain. Several numerical 

experiments show that this treatment allows trailing edge points to automatically adapt their 

behaviour according to the neighbouring points. Moreover, although this approach does not 

permit the appearance of rear stagnation points, it allows smooth fluid at the trailing edge 

avoiding any kind of numerical instabilities to appear in the numerical solution. 

   

 

 

 

     
 

Figure 21: Cloud of points constructed for a star point located at the trailing edge of a wing 

8. NUMERICAL EXAMPLES 

In this section, some compressible flow calculations are presented with the aim of illustrating 

the performance of the methodology described in this work. We begin with two examples that 

solve one-dimensional shock tube problems. Then, some two-dimensional numerical 

examples are presented. Firstly, a two-dimensional version of the shock tube problem and, 

secondly, two computations involving subsonic and transonic flow around airfoils. All these 

examples are aimed at verifying the behaviour of the numerical scheme by checking 

numerical computations against analytical and numerical sources (verification assessment). 

Next, some three-dimensional calculations are presented. The first example concerns a 

subsonic flow over a sphere. Although this example has no practical interest, it allows 

assessing the low Mach number behaviour of the scheme as well as evaluating its intrinsic 

dissipation. Then, a transonic flow around the ONERA M6-wing is solved. This example, 

which is a classic CFD validation test for external flows, allows demonstrating the 

applicability of the present methodology for practical calculations. With the same objective in 

mind, by the end of this section another transonic flow calculation concerning a NACA wing-

body configuration is presented. 

8.1 One-dimensional examples 

8.1.1 The sock tube problem: pL/pR = 10 
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The shock tube problem is a one-dimensional, transonic and non-stationary Riemann problem 

proposed by Sod in 1978. The fact that this problem has both analytical and experimental 

solution, has turned it into one of the most popular benchmarks for numerical schemes. In 

brief, this problem consists of a closed tube divided by a diaphragm into two compartments 

(left and right). Each compartment contains a gas at rest with a given pressure and density. 

The simulation begins when the diaphragm is suddenly removed. After that, a shock wave, a 

contact discontinuity and an expansion fan are brought about by the interaction between the 

left and right states. These discontinuities propagate within the tube. 

In this example we solve a shock tube problem in a close domain Ω = (0,1). The problem is 

defined by the following initial conditions 
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which give a pressure ratio across the diaphragm pL/pR = 10. According to these initial 

conditions, the intensity of the shock is moderate and the flow regime after the expansion is 

subsonic. The computational domain is discretized by a homogeneous distribution of 100 

points and second-order spatial approximation is obtained using five-points clouds. A third-

order MUSCL extrapolation, in conjunction with the Van Albada limiter, is adopted for 

performing the high-order computations. Moreover, a four-stage scheme is employed in order 

to advance the solution in time. Next, the numerical results are computed for a time t = 0.2 

seconds after the rupture of the diaphragm. The solution given by the low and high-order 

scheme is shown in Figure 22 and Figure 23 respectively.  

8.1.2 The sock tube problem: pL/pR = 100 

In this case, the initial pressure ratio across the diaphragm is pL/pR = 100 and a supersonic 

flow is obtained after the expansion. The initial conditions are given by 
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The analysis domain is discretized by a homogeneous distribution of 200 points and, similar 

to the previous test case, second-order spatial approximations in clouds of 5 points are 

employed. Numerical high-order results are obtained using a third-order MUSCL 

extrapolation scheme in conjunction with the minmod limiter. The time integration is 
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Figure 22: The one-dimensional shock tube problem (pL/pR=10). Left: low-order results for the density and 

pressure variables; Right: high-order results for the same variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: The one-dimensional shock tube problem (pL/pR=10). Left: low-order results for the velocity and 

Mach number variables; Right: high-order results for the same variables. 
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a) b)

performed using a four-stage scheme. In Figure 24 below, the numerical results are shown for 

a time t = 0.15 seconds after the rupture of the diaphragm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: The one-dimensional shock tube problem (pL/pR=100). High-order results for the density, pressure, 

velocity and Mach number. 

For this example, numerical computations have shown that the high-order scheme leads to 

small instabilities in the flow variables when the Van Albada limiter is chosen. Conversely, 

the minmod limiter gives a smooth solution without affecting the accuracy of the results. A 

comparison between Van Albada and minmod limiters is presented in Figure 25.  

 

 

 

 

 

 

 

 

Figure 25: The one-dimensional shock tube problem (pL/pR=100): a) Van Albada limiter, b) Minmod limiter 
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8.2 Two-dimensional examples 

8.2.1 The two-dimensional sock tube problem: pL/pR = 10 

In this example, the Riemann problem, set by the initial conditions (102), is solved in a two-

dimensional domain ( ) ( )0,1 0,1Ω = ×  where slip wall conditions are applied on the 

boundaries. The domain discretization consists of a structured distribution of 100 points in 

each spatial direction. A second-order approximation is employed in order to calculate the 

shape functions and their derivatives and 15 points per cloud are used. The time integration is 

performed by a four-stage scheme and a third-order MUSCL extrapolation with the Van 

Albada limiter is chosen. The numerical results are presented below in Figures 26 and 27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 26: Two-dimensional shock tube problem (pL/pR=100). Left: a comparison between calculated and 

analytical results for density and pressure distribution across the tube; Right: isolines graphs for the same 

variables. 

 



54 

 

 

 

 

 

 

 

 

 

 

Figure 27: Two-dimensional shock tube problem (pL/pR=100). Left: a comparison between calculated and 

analytical results for the Mach number distribution across the tube; Right: Mach number isolines. 

As with one-dimensional examples, a good agreement between analytical and numerical 

results can be observed in Figure 26 and Figure 27. Note also that the two-dimensional 

computations preserve the one-dimensional nature of the problem. 

8.2.2 Subsonic flow around a NACA 0012 airfoil 

The flow around a NACA 0012 airfoil set at zero incident angle (α = 0º) is computed for a 

freestream Mach number M∞ = 0.2. The computational domain, whose outer boundary has a 

radius about twenty times the airfoil chord, is discretized by a non-structured distribution of 

3328 points. Second-order approximation bases are used for calculating shape functions and 

their derivatives in clouds where 13≤ np ≤19. Moreover, a third-order MUSCL extrapolation, 

in conjunction with the Van Albada limiter and a three-stage time integration scheme, is 

adopted for the flow solver. Next, the spatial discretization of the problem in the proximity of 

the airfoil is presented in Figure 28. Cp isolines around the airfoil are shown in Figure 29 and 

a comparison between the calculated Cp distribution on the airfoil and reference potential 

flow results is presented in Figure 30.  
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Figure 28: Spatial discretization of the problem in the proximity of the airfoil NACA 0012 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 29: Cp isolines in the near field of the NACA 0012 airfoil, M∞=0.2 and α=0º. 
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Figure 30: Cp distribution on the airfoil NACA 0012, M∞=0.2 and α=0º. A comparison between Finite Point and 

potential flow results. 

8.2.3 Transonic flow around a RAE 2822 airfoil 

This numerical example involves a calculation of the flow field around a RAE 2822 airfoil. 

The latter is set at an incidence angle α = 3º and the freestream Mach number is M∞ = 0.75. 

The computational domain is discretized by a non-structured distribution of 4207 points and a 

higher density of points is placed both at the airfoil leading edge area and on the upper side of 

the airfoil, where the shock wave is expected to be located. Second-order spatial 

approximations are calculated in clouds where 15 ≤ np ≤ 20. Moreover, a third-order MUSCL 

extrapolation, in conjunction with the Van Albada limiter and a three-stage time integration 

scheme, is adopted for solving this test case. In the following, the domain discretization in the 

proximity of the airfoil is presented in Figure 31 and Cp and Mach number isolines around the 

airfoil are shown in Figure 32 and Figure 33 respectively. Finally, the Cp distribution 

obtained on the airfoil by the present methodology is compared with a reference numerical 

computation [33] in Figure 34. This result was obtained using an unstructured mesh with 

5071 points and a WENO reconstruction FV method. Despite of some small amplitude 
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oscillations in the suction side of the airfoil for the Finite Point calculations, a good agreement 

between the Cp distributions can be observed. 

 

 

 

 

 

 

 

 

 

 

Figure 31: Spatial discretization in the near-field of the RAE 2822 airfoil.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Cp isolines in the proximity of the RAE 2822 airfoil, M∞=0.75 and α=3º. 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Mach number isolines in the near-field of the RAE 2822 airfoil, M∞=0.75 and α=3º. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Cp distribution on the airfoil RAE 2822. A comparison between the FP calculation and the numerical 

results [33]. M∞=0.75 and α=3º. 
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8.3 Three-dimensional examples 

8.3.1 Subsonic flow around a sphere 

In this example, subsonic flow around a sphere is solved for a freestream Mach number M∞ = 

0.2. The computational domain is discretized by a non-structured distribution of 30013 points 

and second-order spatial approximations are calculated in clouds of points where 30 ≤ np ≤ 

40. A third-order MUSCL scheme with the Van Albada limiter and a three-stage time 

integration scheme are chosen for computing this numerical example. Next, the Cp and Mach 

number isolines on the sphere are shown in Figure 35. 

 

 

 

 

 

 

 

 

 
Figure 35: Cp and Mach number isolines on the sphere, M∞ = 0.2. 

The calculated Cp distribution, along a cut in the streamwise direction on the sphere, is 

compared with analytical results in Figure 36. 

  

 

 

 

 

 

 

Figure 36: Cp distribution on the sphere along a cut in the streamwise direction. A comparison between the FP 

results and the analytical solution, M∞ = 0.2 
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In Figure 36 a reasonable agreement between the computed and reference results can be 

observed. Only a small discrepancy is detected at the sphere suction points due to the 

differences existing between the computational models here compared. Note that the 

separation point on the sphere, obtained by the FP calculation, is almost coincident with the 

analytical rear stagnation point. This fact gives a cue of the low inherent dissipation of the 

proposed numerical scheme. 

 

 

 

 

 

 

 

 

Figure 37: The symmetry plane of the problem. Left: points displaying Mach number results; Right: Mach 

number isolines. M∞ = 0.2 

8.3.2 Transonic flow over the ONERA M6 wing 

This validation test [34] was developed by the ONERA Aerodynamics Department in 1972 

with the objective of providing experimental support for studies concerning transonic flows at 

high-Reynolds number. Since then, these experimental results, which cover a wide range of 

subsonic and transonic flows, have become in classical reference data for code validation 

assessments. In this example we solve the test case # 2308 presented in [34]. This case 

concerns transonic flow over the ONERA M6 wing set at an incidence angle α = 3.06º. The 

freestream Mach number is M∞ = 0.84 and the Reynolds number is Re = 11.7E6. The most 

relevant data about this test case can be found in [35]. 

Due to the fact that in the present work we are solving the Euler equations, our simulation 

assumes the fluid to be inviscid. The computational domain is discretized by an unstructured 

distribution of 512141 points and second-order approximation bases are employed for 

calculating the shape functions and their derivatives in clouds where 30 45np< < . The flow 
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solver uses a third-order MUSCL extrapolation scheme in conjunction with the Van Albada 

limiter and a three-stage time integration scheme is employed for advancing the solution in 

time. Next, the Cp and the Mach number fields on the wing and the symmetry plane are 

shown in Figure 37 and Figure 38 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Cp isolines on the upper surface of the ONERA M6 wing and the symmetry plane. M∞ = 0.84 and α = 

3.06º. 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Surface discretization of the ONERA M6 wing. Coloured points display Mach number values. 

M∞=0.84 and α=3.06º. 
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The discretization in an x-z plane at the 44 percent of the semispan is presented in Figure 39. 

Then, a comparison between computed and experimental Cp distributions along a cross-

section of the wing, located at the same spanwise station, is shown in Figure 40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: The x-z plane passing through a spanwise station 2 y/b = 0.44 (coloured points display Cp values). 

ONERA M6 wing, M∞=0.84 and α=3.06º. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: A comparison between computed and experimental Cp distribution along a cross-section located at 

the spanwise station 2 y/b = 0.44. ONERA M6 wing, M∞=0.84 and α=3.06º. 



63 

Similarly, the discretization in an x-z plane located at the 95 percent of the semispan and the 

comparison of Cp distributions along a cross-section at the same spanwise station are shown 

in Figure 41 and Figure 42 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: An x-z plane passing through a spanwise station located at 2y/b = 0.95. The coloured points display 

Cp values. ONERA M6 wing, M∞=0.84 and α=3.06º. 

 

 

 

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
Figure 42: A comparison between computed and experimental Cp distribution along a cross-section located at 

the spanwise station 2 y/b = 0.95. ONERA M6 wing, M∞=0.84 and α=3.06º. 
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A good agreement between computed and experimental results can be observed in Figures 40 

and 42. As it was expected, the inviscid computation gives a shock wave which is slightly 

stronger than the true shock wave and is located close behind the latter. 

8.3.3 Transonic flow over a NACA wing-body configuration 

This example concerns the computation of a transonic flow over a wing-body configuration 

[36]. The wing has a sweepback  Λ = 45º measured with respect to the 25-percent chord line, 

an aspect ratio A = 4, a taper ratio λ = 0.6 and it has not geometric twist. The airfoil section is 

a NACA 65A006 constant along the wing span. The body has a circular cross section and a 

fineness ratio of 10. Moreover, its rear part is attached to a sting which supports the model in 

the wind tunnel test chamber. In the numerical computation presented here, the freestream 

Mach number is M∞ = 0.7 and the model is set at an incidence angle α = 2º. The discretization 

of the computational domain consists of an unstructured distribution of 336042 points and 

second-order approximations are built on clouds with 35 45np≤ ≤ . The flow solver uses a 

third-order MUSCL extrapolation, in conjunction with the Van Albada limiter, and a three-

stage time integration scheme is employed to advance the solution in time. Next, the surface 

discretization over the model and the symmetry plane is shown in Figure 43. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 43: Surface discretization for the NACA wing-body and the symmetry plane. 
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Next, the Cp and Mach number isolines computed on the model and the symmetry plane are 

presented in Figure 44 and Figure 45 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Cp isolines on the NACA wing-body and the symmetry plane. M∞ = 0.70 and α = 2.0º. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Mach number isolines on the NACA wing-body and the symmetry plane. M∞ = 0.70 and α = 2.0º. 
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The Cp distribution on the wing, calculated along two streamwise stations located at 2y/b = 

0.4 and 2y/b = 0.8, are compared with reference experimental results [37] in Figure 46 and 

Figure 47. Also here, a good agreement between numerical and experimental results can be 

observed. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 46: A comparison between computed and experimental Cp distribution along a cross-section located at 

the spanwise station 2 y/b = 0.40. NACA wing body [37], M∞ = 0.70 and α = 2.0º. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 47: A comparison between computed and experimental Cp distribution along a cross-section located at 

the spanwise station 2 y/b = 0.80. NACA wing body [37], M∞ = 0.70 and α = 2.0º. 
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9. AN h-ADAPTIVE PROCEDURE FOR FINITE POINT CALCULATIONS 

There are several reasons that explain the appeal of adaptive strategies in the different fields 

of numerical simulation. Adaptivity reduces the effort needed to obtain a proper discretization 

for numerical calculations as regards man-hours, CPU-time and memory requirements 

significantly. Also, adaptive procedures make the accurate computation of local features of 

the flow easier, especially when we do not have a priori information concerning the solution, 

and become essential for non-stationary problems involving moving discontinuities. The fact 

that meshless methods do not need to keep a conforming mesh makes them well-suited for 

adaptive procedures. Next, an FP adaptive procedure, which works in the same way for two 

and three-dimensional problems, is presented. Its bases are summarized in the following.  

9.1 The indicator 

In this work the solution at a previous time-step is employed with the aim of identifying local 

clouds of points where new points should be inserted or existing points could be removed 

from the computational domain. This is accomplished by the following normalized indicator 

that evaluates, in an approximate manner, the curvature of the solution at each point 

 ( ) ( )
1

1 ; max 1,
ns

i ji j i m i
jm

i nϕ ρ ρ ϕ ϕ
ϕ =

= ⋅ − = =∑ l ∇ ∇   (104) 

In the expression above ns is the number of points in the first layer of nearest neighbours 

(already obtained in the local cloud construction stage) and ji j i= −l x x  is the vector linking 

each pair of points (xi,xj). In particular cases, the proposed normalization causes a lack of 

sensitivity to relative small gradients in the flow field. When this happens, it could be useful 

to avoid the normalization setting 1mϕ =  or take another local maximum for normalizing the 

indicator. Based on the indicator (104); new points are inserted around xi when ϕi > ϕmax. 

Conversely, the point xi is removed from the computational domain if ϕi < ϕmin. The limits 

ϕmax and ϕmin depend on the problem under consideration; in the numerical example presented 

here ϕmax ≈ 0.1 and ϕmin ≈ 0.005 are chosen. 

9.2 The strategy 

The adaptive procedure that we propose can be reduced to three main steps: the insertion of 

new points, the removal of existing points and an update. The latter makes reference to the 

construction of the data associated to each new point and the re-construction of the data 

associated to an affected existing point respectively. We consider that an existing point is 
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affected when a new point falls inside its cloud or the spatial position of any point in its cloud 

changes due to smoothing. 

9.2.1 Insertion of new points 

When a point xi is marked to refine (ϕi > ϕmax), its Delaunay grid of nearest neighbours is 

used to calculate the Voronoi vertices surrounding xi. Next, new candidate points xc are set at 

these vertices. Each of them is accepted if it meets the following requirements: 

r1. The candidate point falls inside the triangle/tetrahedron (2-D/3-D), which generates the 

empty circumcircle/circumsphere centred on xc. 

r2. The radius of the circumcircle/circumsphere rc complies with rc < rmin being rmin a user-

defined parameter which stands for the minimum admissible distance between two points. 

r3. The distance from the candidate point xc to another new point previously accepted is 

greater than the max(rmin,αde), where de is the minimum edge of the triangle/tetrahedron 

which originates the circumcircle/circumsphere and α ≈ 0.75 is a user-defined parameter. 

If any of the edges/triangles of the local Delaunay grid of nearest neighbours lies on the 

boundaries, a new candidate boundary point is obtained as an average of the position of the 

points defining this edge/triangle. The candidate boundary point is accepted if the distance to 

the nearest point is greater than rmin. In our algorithm we perform the boundary refinement 

first and then we refine the discretization into the domain. Note that when the initial boundary 

discretization is very coarse, the straightforward procedure proposed for boundary refinement 

could deteriorate the boundaries, resulting in a lack of reliability on the computational model. 

In such cases, the position of new boundary points could be obtained using a higher-order 

interpolation of the underlying existing boundary points. Figure 48 sketches the refinement 

procedure for a bi-dimensional cloud of points. 

9.2.2 Removal of existing points 

The removal of points is restricted only to existing points that have been inserted in previous 

refinement levels. In other words, the initial set of points (coarse discretization) is conserved 

through the calculation, although the spatial position of these points could change due to 

smoothing. This criterion avoids several time-consuming verifications and guarantees a 

minimum appropriate geometrical support for the calculation.  
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Figure 48: Refinement of a bi-dimensional cloud of points. The filled points xc satisfy the requirements r1-r3 and, 

in consequence, are inserted around the star point xi. 

9.2.3 Update 

Once the insertion and removal of points is finished, a few steps of a Laplacian smoothing 

[31] are carried out on the affected area. This is particularly helpful when points have been 

removed in large quantities. Next, the clouds of points and shape functions concerning the 

new points are constructed. In addition, the data concerning existing clouds of points affected 

by the insertion of new points or smoothing is re-constructed. Finally, the flow variables at 

new points are calculated as an average of the variables at their existing nearest neighbours. 

9.3 A numerical example: adaptive calculation of a transonic flow around an airfoil 

This numerical example concerns the computation of a transonic inviscid flow around a 

NACA 0012 airfoil. The freestream Mach number is M∞ = 0.8 and the incidence angle is α = 

1.25º. Second-order spatial approximations are calculated in clouds where 15 ≤ np ≤ 20 and a 

third-order MUSCL extrapolation, in conjunction with the Van Albada limiter, is adopted for 

the flow solver. The time integration is performed by means of a three-stage scheme. 

The initial spatial discretization consists of an unstructured distribution of 976 points and a 

distribution of 4938 points is obtained after 15 refinement levels. The initial and final 

discretizations are shown in Figures 49 and 50 respectively. Note that the adaptive procedure 

captures all the flow features with precision. In spite of the normalization adopted for the 

refinement indicator (104), our adaptive strategy solves the strong shock wave located on the 
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upper side of the airfoil as well as the weak shock on its lower side and the leading and 

trailing edge regions appropriately.   

 

 

 

 

 

 

 

 

Figure 49: A view of the initial discretization in the proximity of the NACA 0012 airfoil  (976 points) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: A view of the final adapted discretization in the proximity of the NACA 0012 airfoil obtained after 15 

refinement levels (4938 points). 
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Next, the Cp and Mach number isolines around the airfoil, calculated with the final adapted 

discretization, are shown in Figures 51 and 52.  

 

 

 

 

 

 

 

 

 

Figure 51: Cp isolines in the near-field of the NACA 0012 airfoil obtained with the final adapted discretization. 

M∞=0.80 and α=1.25º 

 

 

 

 

 

 

 

 

Figure 52: Mach number isolines in the near-field of the NACA 0012 airfoil obtained with the final adapted 

discretization. Only supersonic flow areas on the lower and upper side of the airfoil are shown. M∞=0.8 and 

α=1.25º 
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Figure 53 below shows the computed Cp distribution on the airfoil compared to the numerical 

reference results [37], where a good agreement is observed. Finally, the convergence history 

of the present calculation case is presented in Figure 54. 

 

 

 

 

 

 

 

 

Figure 53: Cp distribution on the NACA 0012 airfoil obtained with the final adapted discretization. A 

comparison between computed and numerical reference results [37]. M∞=0.80 and α=1.25º. 

  

 

 

 

 

 

 

 

Figure 54: Convergence history of the NACA 0012 airfoil calculation (15 refinement levels). M∞=0.80 and 

α=1.25º 
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Figure 54 above shows the complete process of the adaptive numerical computation. When 

the simulation starts, 50 time steps are performed using the low-order scheme in order to 

initialize the flow field around the airfoil. Then, the flow solver switches to the high-order 

scheme and, even though it affects the convergence, this is recovered after a few time steps. 

For a value of the density residual of 0.5E-5 the first refinement level is performed. Then, 

consecutive refinement levels are carried out every 200 time steps. Note that the peaks in the 

convergence curve correspond to each refinement level performed during the computation.  

10. CONCLUSIONS 

This work has been intended to contribute to a major investigation into the capabilities of the 

Finite Point method to deal with three-dimensional applications concerning compressible 

fluid flow problems. As a first step towards this ultimate aim, we have developed a suitable 

Finite Point formulation for this kind of analysis, which has been the main goal of the present 

research work.  

In the introduction we have talked about robustness and efficiency. Later, we made reference 

to certain topics in numerical simulation which represent good ‘opportunities’ for the 

development and promotion of meshless methods. The spatial approximation procedure and 

the flow solver here presented tend towards robustness and several numerical experiments, 

some of them reported in Section 8, confirm that. Probably, it is very difficult to achieve a 

meshless technique which offers the robustness and stability of a mesh-based low-order 

method. However, in some particular cases, the advantages of using high-order 

approximations with a minimum computational cost could compensate for that. 

Regarding high-order Finite Point approximations, some three-dimensional potential flow 

calculations have been carried out in Section 6. In spite of the fact that the preliminary results 

are hopeful, certain non-expected features, which are generally related to particular settings of 

the approximation parameters, should be carefully studied. Moreover, high-order 

approximations were tested on three-dimensional compressible flow problems. Even though 

third and fourth-order approximations give good results, they also involve a substantial 

increase of the computational requirements (mainly CPU-time) because extensive clouds of 

points are needed. This fact makes third and fourth-order approximations non-appropriate for 

large explicit computations. Linear approximations were also tested and, although they 

involve a minimum computational cost, the accuracy of the results is not good enough. 

Numerical experiments show that second-order approximations give the best accuracy-cost 
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ratio and, consequently, they were used in all the numerical examples presented in this 

research work. Notice, however, that the previous comments about high-order approximations 

are preliminary and further specific tests should be carried out. 

In Section 9, and with the aim of exploiting the ‘opportunities’ that meshless methods have, a 

reliable adaptive technique which has a very low computational cost has been developed. The 

three-dimensional extension of this technique is straightforward and we hope to report its 

success in the near future.  

So far, nothing has been said about efficiency. At present we still lack precise comparisons 

between the performance of our FP methodology and conventional discretizations techniques. 

However, we estimate that the computational cost of a three-dimensional Finite Point 

computation would exceed a similar FE-based computation, in the best of the cases, by a cost 

factor of 3. As it can be seen, efficiency is another pending matter. However, notice that the 

comparative estimation we just mentioned concerns only the time needed in order to solve the 

equations starting from complete discrete data and excludes all the pre-process stages 

(computational model discretization). Even though the computational requirements of the 

overall simulation process are difficult to compare, undoubtedly, meshless approaches have 

some advantages over mesh-based approaches when performing the pre-process stages. 

Consequently, if all the computational processes involved in the numerical simulation are 

considered, the previously estimated cost factor would be reduced. 

The paragraphs above suggest some important investigation lines which call for our 

immediate attention. Advantages and disadvantages of using high-order approximations are 

not clear yet and specific tests will have to be performed in order to extract conclusions about 

this subject. In addition, the proposed adaptive technique should be coded for three-

dimensional problems and its performance should be evaluated. As it was mentioned before, 

it is possible that high-order approximations and adaptivity could compensate for a higher 

computational cost but, at any rate, an improvement of the computational efficiency of the 

present methodology is still essential. Last but not least, we will also to carry out need 

performance comparisons between our meshless methodology and similar mesh-based 

formulations (also including geometry pre-process stages). 

All in all, we can say that the present research work has allowed us to see that the Finite Point 

method has a high potential that needs to be exploited and, so far, the results obtained are 

much encouraging. However, we also need to say that, as it was revealed, the FPM has certain 
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weaknesses which need to be dealt with in order to turn this method into a suitable tool for the 

analysis of compressible fluid flows. 
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