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Abstract

An optimisation methodology based on neural networks was developed for use in 2D op-
timal shape design problems. Neural networks were used as a parameterisation scheme
to represent the shape function, and an edge-based high-resolution scheme for the solu-
tion of the compressible Euler equations was used to model the flow around the shape.
The global system incorporates neural networks and the Euler fluid solver into the C++
Flood optimisation framework containing a library of optimisation algorithms. The
optimisation scheme was applied to a minimal drag problem in an unconstrained op-
timisation case and a constrained case in hypersonic flow using evolutionary training
algorithms. The results indicate that the minimum drag problem is solved to a high
degree of accuracy but at high computational cost. For more complex shapes, parallel
computing methods are required to reduce computational time.
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Chapter 1

Introduction

Optimisation techniques are used in engineering design processes to enhance the perfor-
mance and properties of a product or component. This can be crucial in maintaining
competitiveness in world markets. The use of optimisation methods in aeronautical
applications has clear benefits and can be applied to much of the component design pro-
cess. Often the aim is to find the most optimal component shape that is able to deliver
the desired level of performance, subject to various constraints, e.g., total weight, size
or cost, which must be satisfied. However, as aircraft grow more advanced, components
must meet multiple objectives whilst satisfying more constraints. This need for multi-
disciplinary approaches to engineering design has lead to increasingly complex models,
for which finding an optimal can be very time-consuming. There is therefore a growing
need for flexible problem solving environments, that can work as ‘black-box’ optimisers
to integrate all the tools necessary in the optimisation process.

1.1 Background

The development of an advanced optimisation framework has been proposed by AIRBUS
Spain (project DRAGON) [1]. The overall objective of this project is to develop and
implement a global parametrisation scheme, an innovative optimisation software library,
and advanced algorithms and techniques for parallel objective function evaluation, and
to integrate them into an existing environment. The performance of the new system
will be demonstrated for transonic drag reduction using unstructured finite element
Euler and Navier-Stokes codes. Optimal shapes for minimum drag will be obtained
for one or multiple objectives. The work will concentrate on the application of the
methodology developed to the aerodynamic design of aircraft wings and more complex
systems proposed by AIRBUS.
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CHAPTER 1. INTRODUCTION 6

1.2 Objectives

This project is a preliminary study for the DRAGON project. It concentrates on the
development and application of the methodology to simple 2D cases to provide an ini-
tial evaluation of the global system. The objective of the project is to integrate and
to demonstrate the possibilities of an aerodynamic shape optimisation framework that
combines neural network theory, a two-dimensional Euler code solver and a library con-
taining optimisation algorithms. The neural network is used to represent the 2D shape
function, which is manipulated by the optimisation algorithms based on the analyses
performed by the finite element fluid solver. Along with integrating the system compo-
nents, steps are taken to compare and certify the algorithms’ behaviour, and to tune
the algorithm parameters to the problem at hand. The Flood library developed at
CIMNE containing the database of optimisation algorithms, implements the multilayer
perceptron in the C++ programming language [2]. This will be used as the hosting
environment for developing a comprehensive class library which will then be used to
solve an unconstrained and constrained shape optimisation problem.

1.3 Neural Networks and Optimal Shape Design

Due to their variational nature, optimal shape design problems are difficult to solve and
the only practical technique is to approximate the solution using direct methods. In [3],
an optimisation procedure was carried out using Bézier curves defined by several control
points to represent an aerofoil shape. Here, it was shown that Bézier curves are well
suited to representing smooth curves but have weaker approximation properties as the
order of the curve is increased. A similar study by Fung et al. involved varying three
design parameters in standard polynomial equations that characterise NACA aerofoils,
to validate evolutionary optimisation algorithms [4].

Conventionally, neural networks are used as non-linear data modeling tools to find solu-
tions to function regression problems or pattern recognition problems. These are inverse
problems where the multilayer perceptron is required to minimise the error function of
the free parameters to obtain a given target. In [5], however, the learning problem for
the multilayer perceptron is formulated in terms of objective functional rather than a
concept of error function, which provides a direct method for the solution of general
variational problems such as shape optimisation. Neural networks were shown to have
much better approximation properties than polynomials or Bézier curves, and can be
used to represent complex shape functions with a large number of parameters. In an
aeronautical application, this could be extremely beneficial in designing completely new
concepts as well as in modifying existing components.



Chapter 2

Neural Networks Theory

A neural network is a computing paradigm that is based on cortical structures of the
brain. It consists of interconnected processing elements (neurons) that work together
to produce an output function. Each neuron uses a set of inputs received from other
neurons to compute the output and the neurons act in parallel with each other. The be-
havior of the network is determined by the individual neurons, the network connectivity,
the weights associated with the interconnections between neurons, and the activation
function of each neuron. Neural networks are traditionally used as non-linear data
modeling tools to find solutions to function regression problems or pattern recognition
problems. However, in this project the neural networks are used to approximate the
shape function in the design space.

2.1 The Perceptron Neuron Model

A neuron is the basic information processing unit in a neural network [6]. The perceptron
is the characteristic neuron model in the multilayer perceptron. Figure 2.1 shows a
graphical representation of the perceptron which transforms the n inputs into a single
output signal y.

The perceptron is made up from three basic elements:

1. A set of free parameters α = (b,w)

2. The combination function h

3. The activation function g

7
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Figure 2.1: Perceptron Neuron model: The net input signal u is computed as a function h of the
input signals x and the free parameters (b,w). The input signals are received from neighbouring
neurons and each input has a weight, or gain, wi associated with it. Lastly, an activation function
g produces the output signal y from the net input signal.

The combination function h combines the input signals and free parameters to produce a
single net output signal u. It calculates the product of the input vector x = (x1, . . . , xn)
and the synaptic weight vector w = (w1, . . . , wn) to find u. The weight can be positive
or negative depending on the excitatory or inhibitory nature of the particular neuron.
A bias b is then added to this output signal and can be represented as a synaptic weight
connected to an input fixed to +1. The output signal of the neuron y is then determined
as a function of g of the net input u. Two of the most popular activation functions are
the sigmoid function, g(u) = tanh(u), and the linear function, g(u) = u [8].

The perceptron neuron model is extremely useful for accurately approximating functions.
It can be viewed, mathematically, as a parameterised function space V from an input
X ⊂ Rn to an output Y ⊂ R [5] (where R is a set of real numbers). The free parameters
of the neuron (b,w) determine a particular function within the function space V . Thus,
the dimension of V is n + 1 (where n is the number of inputs). The elements of the
function space which a perceptron can define are of the form,

y : Rn → R

x 7→ y(x; b,w),

where
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y(x; b,w) = g

(
b +

n∑
i=1

wixi

)
. (2.1)

Single neurons are able to perform simple tasks, but the power of the neuron comes from
its collective behavior in a network where all neurons are interconnected.

2.2 The Multilayer Perceptron Model

Although a single neuron can perform certain simple tasks, the power of neural com-
puting comes from connecting many neurons in a network architecture. Network archi-
tectures can vary in terms of the number of neurons, the arrangement of the neurons,
and the connectivity between them [9].

The multilayer perceptron has a network space architecture known as a feed-forward
architecture. This characteristically consists of several layers of neurons:

1. A set of sensorial nodes (which constitute the input layer)

2. One or more hidden layers of neurons

3. A set of neurons (which constitute the output layer)

Each neuron in one layer is directly connected to the neurons in the next layer. Informa-
tion is ‘fed-forward’ from one layer to the next, i.e. from the input layer via the hidden
layers to the output layer. Figure 2.2 shows a multilayer perceptron with n inputs, one
hidden layer with h1 neurons and m neurons in the output layer.

The multilayer perceptron, by the same token as with a single perceptron, covers a
parameterized function space V from an input X ⊂ Rn to an output Y ⊂ Rm [5].

Again the free parameters in the network define a particular function, or element of V .
The free parameters can be represented by a free parameter vector with s dimensions,
α = (α1, . . . , αs). The elements of the function space which the multilayer perceptron
in Figure 2 can define are of the form:

y : Rn → Rm

x 7→ y(x;α),
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Figure 2.2: A two-layer perceptron with n inputs, one hidden layer with h1 neurons and
m neurons in the output layer.

where

yk(x;α) = g(2)

b
(2)
k +

h1∑
j=1

w
(2)
kj · g

(1)

(
b
(1)
j +

n∑
i=1

w
(1)
ji xi

) , (2.2)

for k = 1, . . . ,m. It is also possible to modify this function to include lower and upper
bounds, boundary conditions, or independent parameters, for example.

Multilayer perceptron neural networks have universal approximation properties in that
they can approximate any continuous function spanning from one finite dimensional
space to another. This is possible to an arbitrary level of accuracy by a multilayer
perceptron with just one hidden layer of sigmoid neurons and an output layer of linear
neurons (providing there are a sufficient number of hidden neurons available).

2.3 The Objective Functional

Conventionally, the goal of design is to find an acceptable value for some functional,
whilst satisfying any other requirements or constraints associated with the problem.
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There is often more than one adequate solution, and the aim of optimisation is to find
the best of these solutions. The criterion used to compare different solutions (and enable
optimisation) is known as the objective functional. The optimal solution is one that
minimises (or maximises, if that is the goal) the objective functional of the function
space that the network spans. In other words, the objective functional defines the
task for the neural network and provides a reference for comparison which enables the
multilayer perceptron to learn. An objective functional for the multilayer perceptron is
of the form

F : V → R

y(x;α) → F [y(x;α)]

2.3.1 Unconstrained Variational Problems

Variational Problems for the multilayer perceptron in which the solution, y∗(x;α∗), has
no constraints imposed on it, can be formulated as follows [6]:

If all the functions, y(x;α), that the multilayer perceptron can define are within the s-
dimensional function space, V , then the aim here is to find a vector of free parameters,

α∗ ∈ Rs

that parameterize a function,

y∗(x;α∗) ∈ V

for which the functional defined on V ,

F [y(x;α)] (2.3)

is at a minimum or maximum value.

2.3.2 Constrained Variational Problems

In more complicated variational problems for the multilayer perceptron, the solution,
y∗(x;α∗), must satisfy a set of constraints, Ci[y∗(x;α∗)] = 0, for i = 1, ..., l (where l
is the number of constraints). However, this is not possible to find due to the inexact
nature of numerical methods. Instead, each constraint is represented in the objective
functional by a penalty term, reducing the constrained problem into an unconstrained
problem. If a solution does not satisfy a constraint to an acceptable degree of accuracy,
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then the penalty term adds a large positive or negative value to the objective functional,
so that the solution is recognized as infeasible. This problem can be formulated as follows
[6]:

Again assuming that all the functions y(x;α) that the multilayer perceptron can define
are within the s-dimensional function space, V , then now the aim is to find a vector of
free parameters,

α∗ ∈ Rs

that define a function,

y∗(x;α∗) ∈ V

for which the functional defined on V ,

F [y(x;α)] +
∑

ρi‖Ci[y(x;α)]‖2

for i = 1, . . . , l and ρi > 0, is at a minimum value.

In this way, the variational problem is reduced to a function optimisation problem. Note
that in order to maximize the objective functional, the sign is simply changed so that
the problem is converted into a minimization of −F [y(x;α)] +

∑
ρi‖Ci[y(x;α)]‖2).

The penalty term ratios, ρi, are parameters used to control the penalty terms. If ρi

is large then the solution is found when Ci[y(x;α)] is small. When the solution lies
well into the infeasible region this term is large, making the objective functional large
and therefore the solution is rejected. When Ci[y(x;α)] is sufficiently small, there is
a negligible value added by the penalty term and F [y(x;α)] can then be minimized.
Therefore as ρi → ∞, the solution to the reduced constrained problem will approach
the solution to the unconstrained problem given by Equation 2.3. The penalty term
ratios must be carefully chosen so that the constraints are met to a sufficient level of
accuracy and so the solution is found in an acceptable length of time.

2.4 The Training Algorithm

The training (or learning) algorithm is the method used by the multilayer perceptron to
find the solution to the optimisation problem. It involves continually adjusting the free
parameters in the network by small increments looking for a parameter vector within
the s-dimensional function space, V , that optimises the objective function. The free
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Init Free 
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Evaluate 
Performance

Improve Free 
Parameters

Stopping Criteria = true
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Figure 2.3: State diagram of the learning process in the multilayer perceptron

parameters can be randomly initialised and at each epoch (iteration step) they are
changed so that the objective function becomes smaller each time. That is,

α(τ+1) = α(τ) + ∆α(τ)

so that,

f(α(τ+1)) < f(α(τ))

where the epoch number is denoted by τ .

This can be summarized as in Figure 2.3. The stopping criterion could be a maximum
number of epochs or computational time, or when the objective function ceases to de-
crease by more than a specified value after each epoch (i.e. the optimum value has been
reached).

There are numerous algorithms available for training neural network models, each with
different advantages and disadvantages associated with them. The two used for the
purposes of this project were the quasi-Newton method and the evolutionary algorithm.
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2.4.1 The Quasi-Newton Training Algorithm

The quasi-Newton method is a first-order order training algorithm which means it uses
both the objective function and its gradient vector to find the optimum solution to a
problem. Quasi-Newton methods are based on Newton’s method except they do not need
to find the second derivatives (known as the Hessian matrix) of the objective function,
but instead approximate them using successive gradient vectors to reduce the amount
of computation per iteration [11].

Gradient-based training algorithms take the derivative of the objective function with
respect to the free parameters in the network and then adjust those parameters such
that the objective function is reduced (thus going downhill on the surface of the function
where the gradient is less steep). Therefore the method assumes that the function can be
locally approximated as a quadratic in the region around the optimum. However, there
is no guarantee that this value is the global optimum (the global minimum is the smallest
value over the entire function domain where as the local minimum of a function is the
smallest value within a given region). The advantages of gradient methods such as this
one, however, are that if they converge, they usually converge faster than non-gradient
methods [2].

When the desired output of the multilayer perceptron is known the objective function
gradient is usually found using backpropagation [2]. The network is trained by minimis-
ing the error between the actual output values and a target output values corresponding
to the given input values. The weights of each connection are then adjusted in order to
reduce the value of the error. In other words, backpropagation is used to calculate the
gradient of the error of the network with respect to the free parameters. However when
the target output is unknown as is the case in this project, direct methods are required
so the gradient of the objective function is determined numerically. The derivative of
the objective function f at a point αi can be approximated after an incremental change
in each parameter in turn by using the central difference approximation,

∂f

∂αi
=

f(αi + h)− f(αi − h)
2h

+O(h2), (2.4)

for i = 1, 2, . . . , s, when the step size h is small. It can be seen that the truncation error
of the central difference approximation is order of O(h2), hence the approximation is
sufficiently accurate when h is small.
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2.4.2 The Evolutionary Training Algorithm

Evolutionary algorithms are zero-order training algorithms which use the objective func-
tion only - gradient information of the objective function is not required. It is a stochastic
method which incorporates randomness, and is based on the biological evolution demon-
strated in nature (quasi-Newton is a deterministic algorithm which will produce the same
results if initiated at the same point of the search space). Evolutionary algorithms eval-

Create Initial Population

Number of Individuals:

Evaluate Objective Function

Generate New Population

Perform Fitness Assignment
Perform Selection

Perform Recombination
Perform Mutation

Selective Pressure:
Recombination Size:

Mutation Rate:
Mutation Size:

Choose Best Individual

Best Evaluation:

Stopping Criteria = true

Stopping Criteria = false

Figure 2.4: Solution Process in Evolutionary Algorithm Methods

uate a set of approximations to a solution (known as a population of individuals) and
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use the best ones to produce new, better approximations. They model natural processes,
such as selection, recombination, and mutation to carry out this optimisation task. The
solution process carried out in this method is shown in Figure 2.4. At the beginning of
the computation the first generation population is randomly initialized and the objective
function is evaluated for each individual. Each individual is then assessed and assigned
a fitness value based on their suitability to the problem. The selection operator then
determines which individuals will be used to create the new improved population based
on these fitness values. The recombination process models mating in the natural world,
and combines information from the parent population of chosen individuals to form the
new generation of offspring. In addition, parameters, or genes, can undergo some de-
gree of mutation to incorporate new information into the offspring generation. So by
applying the survival of the fittest concept what results is an evolutionary progression,
with each generation of individuals becoming closer to the optimum solution until the
optimisation criteria are met.

Evolutionary algorithms have several advantages compared to gradient based optimisa-
tion methods like the quasi-Newton method. Gradient methods may not converge to a
solution unless all parameters are carefully chosen, and calculating the gradient of the
objective function can be time consuming and unreliable in the presence of noise. Evo-
lutionary algorithms are extremely robust and much more straightforward to apply as
they need minimal guidance and only rely on the objective function. The evaluation of
several generations of many individuals means that a large search space can be explored
and that the global optimum will always be found if it exists (given enough individu-
als and generations). This use of populations of potential solutions that characterize
the method, also allows for the evaluation of individuals to be performed in a parallel
manner to reduce computational time.

The main drawback associated with this method, however, is the need for a large number
of calculations. Each individual is analysed to evaluate the objective function which
comes at the expense of high computational cost. Furthermore, although a very robust
method, poorly chosen operators and parameters can still be problematic and inhibit
convergence. Having said this, providing the parameters are correctly chosen, the choice
of operator schemes for selection, recombination and mutation becomes a matter of
preference as all methods will converge to the global solution. For a detailed explanation
on evolutionary algorithms and all operators see [12]. For this project the following
operators were chosen:
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Fitness Assignment Method: Linear Ranking

Linear ranking is a simple and reliable method to assign fitness values to individuals in
a population. The population is organised in order of a rank which is determined by
the objective function evaluation. The probability of one individual being chosen for
recombination is linearly proportional to their rank in the population. The fitness value
for an individual is calculated as follows [12]:

Let N represent the number of individuals in the population (i.e. population size), R
the rank or position of an individual in this population (with the least fit individual with
R = 1, and the fittest individual with R = N) and let the selective pressure be denoted
by SP .

Fitness(R) = 2− SP + 2(SP − 1)
(R− 1)
(N − 1)

(2.5)

where the selective pressure lies in the interval [1.0, 2.0]. Using a ranking system allows
for a uniform fitness scale across the population and is more robust than proportional
fitness assignment where the probability of any individual being chosen for recombination
is proportional to the objective function evaluation. The latter method can suffer from
stagnation (no convergence) or premature convergence (converges too fast) when the
fitness values are extreme.

In this work, SP = 1.5.

Selection Method: Stochastic Universal Sampling

In stochastic universal sampling each individual is assigned a segment of a continuous
line of unit length 1. The length of the segment is proportional to the fitness value of
the particular individual. A set of equally spaced markers are then spread out along
the whole line to select the individuals to be recombined. The individual is chosen if a
marker lies within the segment corresponding to that individual. Therefore if M is the
number of individuals to be selected, then there are M markers and the spacing between
each marker is 1/M . The position of the first marker is determined randomly within
the spacing 1/M . In this way is the fittest individual occupies the largest interval and
has a higher probability of being selected than the least fit individual whose segment
spans the shortest distance on the line [12].

In this work, M = N/2.
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Recombination Method: Intermediate

In intermediate recombination the free parameters of the offspring are chosen somewhere
around and between the free parameter values of the parents. The size of the area for
possible offspring is determined by the recombination size A. When A = 0 the area
spanned by the offspring is theoretically the same size as the hypercube defined by the
parents. In practice, this area is reduced with every generation due to the fact that
the offspring are rarely generated on the border of the hypercube. A value of A = 0.25
has been shown to create a hypercube the same size as the parent’s when taking this
shrinkage into account. Offspring are produced according to the rule:

αO
i = αP

i k + αP
i (1− k) (2.6)

for i = 1, 2, . . . , s where O denotes offspring, P denotes parent, and where k is a scaling
factor chosen uniformly at random over an interval [−A, 1 + A] for each i [12].

Mutation Method: Normal

Every offspring is subject to a mutation to introduce new information into the mating
pool just like in natural evolution. It is used as a way to generate individuals outside
of the range of the existing population to explore new regions of the search space and
help the algorithm escape local minima. In normal mutation, a random number with
normal distribution is added or subtracted from free parameters. The mutation range
determines the range of values in the distribution. The further outside the range, the
lower the probability is for a parameter to be generated there. The probability of a
free parameter undergoing mutation is known as the mutation rate and is inversely
proportional to the number of free parameters [12]. Here, the mutation rate is set so
that approximately one parameter per individual is mutated.

In this work, Mutation Rate = 1/No.of Parameters Mutation Range = 0.1



Chapter 3

Fluid Solver Theory

In order to model the flow over the shape and evaluate the objective functional, an
Euler solver developed at CIMNE, named PUMI, is used. This is an edge-based high
resolution scheme used to solve compressible Euler equations on an unstructured finite
element grid [13].

The general scheme involved in solving the Euler equations is characterised by the
following features [15]:

• An adequate discretisation of the solution space to ensure accuracy and conver-
gence

• A high-order interpolation scheme to determine the variables at the midpoint
between nodes.

• A Riemann Solver to stabalise the solution in the presence of discontinuities.

• a high-order time-integration method.

The basic theory behind the constituents applied in this work is presented in this section.

3.1 The Euler equations

The Euler equations express the conservation of mass, momentum and energy in a
compressible, inviscid and non-conducting fluid.

19
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That is, the rate of change of the conservative variable in a fixed control volume, Ω, plus
the net flux of flow out of the volume, F, is equal to zero.

∂

∂t

∫
Ω

φdΩ = −
∫
Γ

φV · n̂dΓ

where n̂ is the outer pointing normal vector to the boundary of Ω. In 2D, and neglecting
source terms, the general Euler equations can be reduced, in conservation vector form,
to [16],

∂U

∂t
+

∂F1

∂x1
+

∂F2

∂x2
= 0 (3.1)

where U is the vector of states and Fi is the inviscid flux vector and are defined by,

U =


ρ

ρu1

ρu2

ρEt

 F1 =


ρu1

ρu2
1 + p

ρu1u2 + p
(ρEt + p)u

 F2 =


ρux

ρu1u2 + p
ρu2

2 + p
(ρEt + p)u


where Et is the total specific energy of the fluid consisting of the specific internal energy,
and the kinetic energy,

Et = CvT + 1
2u2

The equation of state is required to close the equation system and relate the specific
internal energy e = CvT to p and ρ

p = RρT = Cp−Cv

Cv
ρe = ρ(γ − 1)

[
Et − 1

2u2
]

where γ = Cp/Cv is equal to the ratio of specific heats and is taken as γ = 1.4 in
this application. Initial and boundary conditions are assigned to solve the system of
equations over a closed domain with boundary for a given time. Considering the fluid
in a domain, Ω, with boundary, Γ = Γ0 ∪ Γn

U(x, 0) = U0(x) t = 0, x ∈ Ω
U(x, t) = Un(x) ≥ 0, x ∈ Γ0

Fn = F · n̂ = F̄n t ≥ 0, x ∈ Γn
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3.2 Roe’s Approximate Riemann Solver

The flow solver used in the PUMI application is Roe’s approximate Riemman solver
[13]. As the fluid is modeled as compressible, shocks can occur where there is an abrupt
change in the fluid variables. The idea behind this method is to solve what is known as
the Riemman problem, where a discontinuity in the state variables occurs at the interface
of two piecewise constant states UL and UR. The Riemman solver approximates the non-
linear interaction between UL and UR to reduce the computational cost with sufficiently
accurate results. This numerical dissipation ensures stability in the solutions and avoids
the formation of spurious numerical oscillations.

Figure 3.2 shows an edge between two nodes i and j with flux and states associated
with them. We need to approximate the flux between the nodes.

Fi Fj 

Ui Uj 

i j 

 
The first order flux is defined for each edge by,

F̃ij =
Fj + Fi

2
− |A(Ui, Uj)|

(Uj − Ui)
2

(3.2)

where Ui and Uj is the vector of conservative variables at the edge nodes i and j and
|A| is the absolute value of the Roe matrix used to approximate the flux between the
two states [13]. The quasi-linear form of the Euler equations is therefore given by,

∂U

∂t
+ A1

∂U

∂x1
+ A2

∂U

∂x2
(3.3)

Evaluating A can be very complicated, particularly in 2D and 3D. PUMI uses the
following concept to reduce computational time.

As the Euler equations are hyperbolic, exists a diagonal matrix Λij containing real
eigenvalues of the Jacobian matrix, A, and an associated matrix, Rij , made up from
linearly independent eigenvectors. Therefore the Roe matrix for the edge eij can be
expressed as,

A = R−1
ij ΛijRij
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where Λij = diag(λ1, λ1, λ2, λ3) With the definition,

Ũ = R−1U

Equation 3.3 gets the characteristic form,

∂Ũ

∂t
+ Λ

∂Ũ

∂x

This is now a set of independent equations,

∂Ũk

∂t
+ λk

∂Ũk

∂x

lll where k = 1 . . .m and m is the number of eigenvalues. Three distinct values for the
wave propagation speed are then obtained,

λ1 = λ1 = ûij

λ2 = ûij + ĉij

λ3 = ûij − ĉij

where ûij is the velocity along the edge and ĉij is the average speed of sound.

General expressions for the Jacobian, eigenvalues and eigenvectors matrices can be found
in [5].

Although this scheme has good properties of monotonicity, it suffers from severe inaccu-
racies because of the high level of truncation error, so a higher order scheme is needed
for when the flow does not contain discontinuities.

3.3 High-Resolution Scheme

In order to obtain high-order approximations between the nodes, a piecewise linear
reconstruction of the variables at neighbouring nodes is applied. To do this, the MUSCL
scheme was implemented.

Figure 3.1 represents the high order approximation. The gradient, ∇Ui at point i is
calculated using a central difference scheme,

∇Ui =
Uj − Ui−1

2lij
⇒ 2lij∇Ui = Uj − Ui−1 + Ui − Ui

⇒ 2lij∇Ui = ∆−
i + ∆ij
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   j – ½  = i + ½  
Uj

 

Ui-1

Uj
-

Ui
+

lij lij lij   i - 1 i j    j + 1 

Ui

∆i
-

  ∆ij

Figure 3.1: High-order approximation

Therefore the difference operator at node i can be expressed as,

∆−
i = 2lij∇Ui −∆ij

A similar process is used at node j to obtain,

∆+
j = Uj+1 − Uj = 2lij∇Uj −∆ij

The MUSCL scheme then approximates the interface value between all nodes using the
following,

U+
i = Ui +

1
4
[(1− k)∆−

i + (1− k)∆ij ] (3.4)

U−j = Uj −
1
4
[(1− k)∆−

j + (1− k)∆ij ] (3.5)

where k is used to determine the order of approximation. Here k = −1 was used for a
second order upwind scheme.

When U+
j ' U−i i.e. the flow is smooth, the dissipative term

|A(U−i , U+
j )|

(U+
j − U−i )

2
' 0

and can be omitted from Equation 3.2 so that,

F̃ij =
Fj + Fi

2
(3.6)

When U+
j is very different to U−i non-linear instabilities and oscillations occur across

the discontinuity, and Roe’s approximate Riemman solver must be used as outlined in
the previous section.
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Flux limiters, si and sj , based on the Van Albada model [18], are therefore included in
Equation 3.7 to ensure an oscillation-free solution is obtained across discontinuities and
higher order scheme is used in smooth flow for greater accuracy.

U+
i = Ui +

si

4
[(1− ksi)∆−

i + (1− ksi)∆ij ]

U−j = Uj −
sj

4
[(1− ksj)∆−

j + (1− ksj)∆ij ]

where

si = max

{
0,

2∆−
i ∆ij + ε

(∆−
i )2 + (∆ij)2 + ε

}

sj = max

{
0,

2∆−
j ∆ij + ε

(∆−
j )2 + (∆ij)2 + ε

}

The small constant, ε, is included to avoid divisions by zero and the minimum value of
the limiters is set to 0 as negative limiters would disrupt the solution.

Now, when calculating U+
i for example,

Smooth F low ⇒ ∆ij ' ∆−
i → si ' 1 → U+

i ' U+
i

Shock ⇒ ∆ij � ∆−
i → si ' 0 → U+

i ' Ui

Therefore, in the presence of a sharp gradient, the dissipative term must be evaluated
using Roe’s approximate Riemman solver, but when the flow is smooth, Equation 3.2
reduces to Equation3.6 giving a high order approximation.

The high-order approximations then replace the first order flux given in Equation 3.2
to give,

F̃ij =
Fj − Fi

2
− |A(U+

i , U−j )|
(U−j − U+

i )
2

(3.7)

3.4 Time Discretisation

An explicit multistage Runge-Kutta time-marching scheme is implemented. This acts
as a compromise between the explicit forward Euler scheme, where the time step, ∆t
must be small for stability (resulting in a large number of calculations), and an implicit
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backward Euler scheme which requires an iterative procedure (again resulting in high
computational cost). The scheme used is split into 3 stages.

Un+αi = Ux + αi∆t
∂U

∂t
|n (3.8)

with

α1 =
1
4
, α2 =

1
3
, α3 =

1
2

α4 = 1.0

Splitting up the space allows the time step, ∆t, to be larger.

3.5 Drag Calculation

Once the fluid properties have been determined, the drag can be calculated from the
pressure. The drag is defined as the component of the pressure distribution in the
freestream direction. It is found by integrating the pressure over the surface of the
shape function.

D = −
∫

p.nxdΓ

For a small section of the surface,

dD = −pnxdΓ

Figure 3.2 shows the pressure distribution over surface dΓ,

   j – ½  = i + ½  
Uj

 
 

pi

pi

nij

i 

j 

dΓ 

U∞

Ui-1

Uj
-

Ui
+

lij lij lij   i - 1 i j    j + 1 

Ui

∆i
-

  ∆ij = Uj - Ui

Figure 3.2: Pressure distribution between two nodes

Therefore the drag on cell edge ij on the surface of the shape is,

Dij = −pi + pj

2
· dΓijnx(ij) (3.9)



Chapter 4

Minimum Drag Problem

The minimum drag problem in this project is concerned with optimizing the 2D shape
between two points to minimise the drag under specified flow conditions. This problem
has obvious significance in the design of airfoils and other aeronautical applications.
The aim is to apply the neural networks theory to train the shape function based on
the continual analysis of the objective function using the fluid solver. This methodology
will be used firstly in an unconstrained problem and following this, a constraint will be
applied and the optimisation procedure will be repeated. Although a design problem
found in practice is unlikely to be unconstrained, it is important to use unconstrained
minimisation techniques before adding constraints to a design problem. These methods
are much more robust and provide the basis for the constrained problems.

The application of the neural networks theory to the minimum drag problem has al-
ready been investigated through the design of an axisymmetric body of minimum drag
with analytical solution [6], with encouraging results. In this study though, the objective
functional (drag) was defined by an integral and was evaluated using Simpson’s compos-
ite method. This numerical method uses several assumptions that reduce the accuracy
of the approximation. By integrating the fluid solver into the optimisation process to
evaluate the objective functional, the reliability and accuracy of the results will be in-
creased. The performance of the edge-based finite element methodology has been tested
on several academic simulations involving subsonic, transonic and supersonic flows [13].
All of them were solved with satisfactory accuracy.

26
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4.1 Problem Definition

The pre and post processing system used in the analysis is GiD. GiD provides the tools
for the definition of the geometry, condition assignment, mesh generation and visual-
ization of the numerical results (See Appendix B). The Euler code, PUMI, presented in
Chapter 3, is used for the flow analysis and is run within the GiD environment.

4.1.1 Geometry

The geometry consists of a semicircular control area. The aim is to find the shape joining
the two base lines so that the drag is minimised. Figure 4.1 shows the basic geometry
with a randomly generated shape function.

Initially, the shape was represented by 21 interconnected control points (as shown in the
figure). After the methodology was validated, the number of control points was increased
to 101 to obtain a smoother, more accurate shape. A fixed grid Eulerian approach
is taken, with the shape defined by a function on a rectangular space. The starting
shape function is defined by a randomly initialised neural network. The evolutionary
algorithm will then search the entire function space to find the function which minimises
the objective functional.

Figure 4.1: Problem Geometry and Conditions

No previous data is used when initialising the parameters. It is possible to use already
well performing aerofoils to limit the search space, which would reduce the computational
time significantly. However, this tends to result in very small modifications to known
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standard designs. By searching a large function space there is more scope to discover
completely new and novel designs which would otherwise not be considered.

In order to take decisions about the quality of each design it is necessary to compute
the corresponding values of the objective function and the restrictions. This is carried
out by performing a drag analysis for each individual, using a specific finite element
mesh. In the analysis of each different design the computational cost and the quality of
the solution are very much dependent on the quality of the finite element mesh used.
One important ingredient of the numerical analysis is the strategy for the generation
of a proper mesh for each design. Here, a three step approach was taken to make the
optimisation process as efficient as possible. In the first step, an approximate solution
is found using a relatively coarse mesh. This allows a quick and general search of the
entire function space for the optimum solution. In the second step the mesh is refined
to enable a more accurate evaluation of the objective function to be carried out. The
extra number of calculations is balanced by the reduced search space. The third step
involves a further improvement in the mesh to obtain a sufficiently accurate solution.

4.1.2 Conditions and Parameters

Modeled Flow

Infinity Boundary Roe condition is assigned to the boundary arc to the control area.
This allows the flow to escape the control volume without the reflection of any flow
properties at the boundary [14]. The baselines and the entire shape function are all
assigned to be Line Slip Wall Enforced condition to neglect skin frictional forces. This
means that the drag will only be measured on the shape function. In the flow model, the
freestream Mach number is M∞ = 2 therefore the flow is hypersonic. The full details
on the control variables used by the Euler solver can be found in the Appendix.

Evolutionary algorithm

Table 4.1.2 provides a summary of the operators and parameters chosen for the evolu-
tionary algorithm.

The operator parameters are chosen due to their statistically reliable performance [12].
The number of parameters determines the dimensions of the search space and is de-
termined by the multilayer perceptron architecture. More neurons in the multilayer
perceptron will have more parameters, which will be able to represent a greater number
of designs which may not necessarily comply with standard designs. However, as pre-
viously discussed this comes at the cost of computational time. The choice of number
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Training Operators

Fitness Assignment Method Linear ranking
Selection Method Stochastic universal sampling
Recombination Method Intermediate
Mutation Method Normal

Training Parameters

Population Size 60
No. of Free Parameters 10
Selective Pressure 1.5
Recombination Size 0.25
Mutation Rate 1/No. of Parameters
Mutation Range 0.1

Table 4.1: Evolutionary Algorithm Training Operators and Parameters

of individuals is a similar compromise. Each individual of the population describes one
complete aerofoil shape and must be evaluated using the fluid solver. But if there are
not enough individuals in a population, the algorithm may not explore enough of the
solution space to find the global optimum.

4.1.3 Network Architecture

The network architecture used to represent the shape function is a multilayer perceptron
with sigmoid hidden layer and linear output layer. The network must have one input and
one output neuron. Three neurons are used in the hidden layer, i.e. a 1:3:1 multilayer
perceptron layer is used as shown in Figure 4.2.

4.2 Procedure

An Application was created for both the unconstrained problem and the constrained
problem in the Flood neural networks library, which acted as a central command envi-
ronment for the entire optimisation procedure. The Flood library is a comprehensive
class library which implements the multilayer perceptron in the C++ programming
language [7]. Both applications were given access to the neural network classes, optimi-
sation algorithms, GiD, and PUMI. Any or all of the neural network and optimisation
parameters, can be modified from within these applications. A new object was also
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x y

Figure 4.2: A neural network with 1 input neuron, 3 hidden neurons and 1 output
neuron used to parameterize the shape function.

created in the Objective Functional class for both problem types. The basic procedure
for both the unconstrained and constrained problems is identical. Figure 4.3 illustrates
the optimisation process,

On running the Application within Flood, the multilayer perceptron object is called.
This creates a multilayer perceptron object with one hidden layer of sigmoid neurons
and an output layer of linear neurons. All the free parameters in the network are
initialised with random values chosen from a normal distribution with a set mean and
standard deviation. Initially, the entire search space is used. However, as the mesh is
refined the free parameters can be initialised randomly, but close to, the predetermined
shape obtained from the previous mesh to reduce the search space for a faster solution.
This could also apply in an application where small modifications to a known design are
required.

In order to take decisions about the quality of each design it is necessary to compute
the corresponding values of the objective functional. This is carried out by performing a
PUMI analysis for each individual, within the Objective Functional object. A batch file,
GiDBatchTemplate.bch, written in GiD command language and attached in Appendix
C, automatically generates the template geometry (excluding the shape function), mesh
and all flow and boundary conditions. The template is rewritten into GiDBatch.bch
where the individual shape function (determined by the current parameters) is inserted
into a flagged section to complete the geometry. A file batch.bat then executes the Euler
solver PUMI, pumi2d3.exe, which analyses the shape in the GiD environment and re-
turns an evaluation of the objective functional. The output is saved in a post-processing
file, pumi2d.post.res, so that the individual results can be represented visually.
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Define Function Space

multilayerPerceptron

Formulate Variational Problem

ObjectiveFunctional

Solve Reduced Function Optimization Problem

TrainingAlgorithm

Figure 4.3: NeuralNetworkActivityDiagram

The solution is then trained by calling the Evolutionary Algorithm object or Quasi-
Newton object from the Training Algorithm class. The stopping criterion for the Evo-
lutionary Algorithm is the number of generations and for Quasi-Newton, the number of
epochs.

The coordinates of the shape function are written into a Results.dat file with the vector
of parameters provided in MultilayerPerceptron.dat. The history of the optimisa-
tion procedure (results after each evolutionary algorithm generation or quasi-Newton
epoch) can also be viewed in the EvolutionaryAlgorithmTrainingHistory.dat and
TrainingHistory.dat files.
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4.3 Results

4.3.1 Unconstrained Problem

In the unconstrained problem the objective functional, which is to be minimised, is the
drag,

F [y(x;α)] = D (4.1)

Mesh 1 - Coarse Mesh

Initially a coarse mesh was used to obtain a fast, approximate solution in order to reduce
the size of the search space quickly. An unstructured 5264 triangular element mesh is
employed in the numerical simulation with a finer mesh on the boundary of the shape
function so that the objective functional is much more sensitive to small changes in the
shape. An evolutionary algorithm was used to train the multilayer perceptron for 10
generations. Quasi Newton was tested but did not always converge. Figure 4.4 shows
the initial mesh implemented in the first run of the optimisation process.

Figure 4.4: Initial Mesh

Mesh 2 - Intermediate Mesh

Initial results showed a region of high pressure at the ‘leading edge’ of the shape function
which contributed significantly to the drag (see Figure A.7, Appendix A). The mesh was
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therefore modified further so that it was more focused here where discontinuities in the
solution field are expected to improve the accuracy of the results. Figure 4.5 shows
the new mesh with 10118 triangular elements. The multilayer perceptron from the
previous run was loaded so the algorithm searches around the solution found previously
(parameters are initialised within a small distance from the previous solution)to ensure
an efficient search of the function space is carried out. The evolutionary algorithm is
now applied using 50 generations. Each generation consists of 60 individuals therefore
the total number of objective functional evaluations is 3000. With the refined mesh
the flow solver also has more calculations to carry out and due to the large number of
evaluations, the run required around 120 hours of time in a Pentium D 3.00GHz CPU
with 1.00GB RAM.

Figure 4.5: Intermediate Mesh

Mesh 3 - Refined Mesh

The mesh was made refined further around the shape function using a second surface
so that the analysis would be more accurate in the region of discontinuity. This allows
for a much more accurate evaluation of the objective function. The final unstructured
mesh is shown in Figure 4.6 and uses 16620 triangular elements. At first the faster
quasi-Newton algorithm was used to train the multilayer perceptron to focus on the
solution. However, the solution was a minimal modification of the shape function found
from the second run. The process was repeated using an evolutionary algorithm using
30 generations. There was a much greater improvement in the solution. This may have
been due to noise around the minimum which creates many local minima that could
‘trap’ the quasi-Newton method.
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Figure 4.6: Final Refined Mesh

The solution to the unconstrained problem is shown in Figure 4.7. The optimisation
methodology has worked well in optimising the shape from a completely random initial
starting shape function. Figure A.1 in Appendix A shows the progression of the solution
as the mesh was refined. The results here are good, as the initial mesh was able to
approximate the optimal shape well after only 10 generations.

4.3.2 Constrained problem

In this problem, we consider that the area beneath the shape function is fixed. Adding
a constraint increases the complexity of the problem. Now the objective functional is
formulated as,

F [y(x;α)] = D + ρA‖εA[y(x;α)]‖2 (4.2)

with

εA = A−Agoal

where ρA is the cross sectional area error term ratio, and εA is the error in the area
(difference between the actual area and the desired area).

The area goal underneath the shape function, Agoal, was fixed to 0.75. For a shape closer
to an aerofoil, a larger value for the area (between 1 and 2) would simply be used but
for the sake of interest a concave shape is investigated. Again the solution was gained
in three steps using the same meshes. Here though, the computational time is predicted
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Figure 4.7: Solution for the Unconstrained Problem

to be long due to the added constraint. Therefore 30 Generations of the evolutionary
algorithm were used with the initial run, followed by 10 Generations on both of the
following runs.

As discussed in Section 2.3.2, the penalty term ratio, ρA, is a parameter used to control
the penalty terms. The value for the penalty term ratio is determined through a process
of trial and error. The area error, εA, is included in the output at each generation to
see how accurately the constraint is adhered to. A value for ρA is assigned and the
optimisation process is run. The area under each individual solution is approximated
using the composite trapezoid rule with 1001 intervals. If εA in the final solution, is too
large then the this error term needs to be more heavily weighted so that there is a larger
penalty for the difference between the actual area and the target area. An error of the
order 0.001 was viewed as an acceptable error.

When ρA‖εA[y(x;α)]‖ is sufficiently small, there is a negligible value added by the
penalty term and the drag, D, can then be minimized. If ρA is too large however, the
drag term will not contribute to the objective functional and the solution will take an
impractical amount of time to obtain. Several iterations were run using different values
for ρA. When εA was clearly too high or low, then the process was stopped and restarted
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with another value for ρA. Table 4.3.2 shows the values for ρA that were used in the
three runs and the associated error, εA, in the cross sectional area.
The final solution to the constrained problem is shown in Figure 4.8.

Run Mesh ρA εA

1 Coarse Mesh 2 0.0277
2 Intermediate Mesh 5 0.0080
3 Refined Mesh 10 0.0001

Table 4.2: Tuning of the area ratio term
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Figure 4.8: Solution for the Constrained Problem

The solution for each mesh in the constrained problem is found in Figure A.2. It can
be seen that the solution found from the initial mesh has a high error in the area, given
numerically in Table 4.3.2. This indicates that the penalty term for error in the area
was not large enough. When ρA was increased for the 2nd run using the intermediate
mesh, the solution converged to the optimum solution well, with only a minor alteration
in the shape after the third run.



Chapter 5

Conclusions and Future Work

Shape optimisation with the use of neural networks has been proven as a potential
shape optimisation method for aeronautical applications. The integration of the PUMI
Euler solver and the optimisation library into Flood has created a more extensive class
library for shape optimisation procedures. In addition, it forms a basis for a black-
box optimising environment able to use different solvers and techniques depending on
the application. The performance of the evolutionary algorithm was shown to be more
reliable in the shape optimisation process than the quasi-Newton method, due to its
ability to cope well with noise present in the solution.

There is a lot of scope for further development of the optimisation system. The next
step would be to use a more complex neural network to represent the entire aerofoil
shape. Also, the optimisation process of the aerofoil would be even more demanding as
it would require adding further constraints to the problem such as maximising the Lift-
to-Drag ratio (minimising D/L). Due to the large number of computational evaluations
needed, this would only be possible using cluster computing facilities to perform parallel
evaluations.

However, the technology developed and implemented in this neural-network-based design
optimisation procedure offers a unique capability that can be used in other aerospace
applications such as external aerodynamics and multidisciplinary optimisation, and has
potential applications beyond aerospace design.

Further Work

Currently, the procedure is only suitable for the hypersonic case. For the optimisation
of a shape in subsonic flow, the control volume must be much larger. This is because

37
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the pressure will travel faster than the flow, so will propagate forwards as well as back
and will be acting in a much larger region of the control volume. Furthermore, the
optimisation methodology can eventually be extended to include full viscous effects in the
flow using a 3D Navier-Stokes solver available to CIMNE. With all these developments,
however, it is clear that the need for the cluster computing facilities is essential if the
computational time is to be kept within reasonable bounds.
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[6] Lopez R., Balsa-Canto E., Oñate E., Neural networks for variational problems in
engineering, CIMNE, 2006

[7] Lopez R., Flood A1 - An Open Source Neural Networks C++ Library for Modeling
Data, CIMNE, 2007

[8] Haykin S. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1994.
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Appendix A

Additional Figures

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Initial Shape
Coarse Mesh
Intermediate Mesh
Refined Mesh

Figure A.1: Shape Functions for the Unconstrained Problem

The solution obtained by each of the meshes in the unconstrained problem can be seen
in Figure A.1. The results are encouraging as it is clear that even with the coarse mesh
the shape quickly converged from the initial shape to a result close to the optimum. For
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Figure A.2: Shape Functions for the Constrained Problem

the constrained problem shown in Figure A.2, the initial solution has not performed as
well and there is high error visible in the cross sectional area. Through tuning of the
parameter, ρA, the optimum shape is found with the correct area.
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Figure A.3: Best Drag Evaluation for Constrained Problem in 2nd Run: An illustration
of the evolutionary training process over 30 generations
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Figure A.4: Mean Drag Evaluation for Constrained Problem in 2nd Run: Illustrating
the decreasing mean of the drag evaluation for each generation as the shape is optimised
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Figure A.5: Cp around the Unconstrained Shape Function with the Intermediate Mesh
refined around the area of discontinuity to improve the objective functional evaluation

Figure A.6: Cp around the Unconstrained Shape Function with the Refined Mesh
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Figure A.7: Cp Contour Lines for Unconstrained Problem using Initial Mesh: Shock is
clearly visible with a high pressure region at the front of the shape

Figure A.8: Cp Contour Lines for Unconstrained Problem using Intermediate Mesh
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Figure A.9: Cp Contour Lines for Unconstrained Problem using Refined Mesh: Here the
Cp is clearly lower at the front of the shape when compared to the previous Cp results

Figure A.10: Cp Contour Lines for Constrained Problem using Initial Mesh
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Figure A.11: Cp Contour Lines for Constrained Problem using Intermediate Mesh

Figure A.12: Cp Contour Lines for Constrained Problem using Refined Mesh



Appendix B

Software

GiD

GiD is an adaptive and user-friendly graphical user interface for pre and post model
processing. It can be used for creating model geometry, setting analysis parameters,
and allows results to be viewed visually for all types of numerical simulation programs.

GiD can be used for solid and structural mechanics problems, fluid dynamics, elec-
tromagnetics, heat transfer, geomechanics, etc. and uses finite element, finite volume,
boundary element, finite difference or point based (meshless) numerical procedures.

http://www.gidhome.com.

Flood: An Open Source Neural Networks C++ Library

Flood is a comprehensive implementation of the multilayer perceptron neural network in
the C++ programming language. It includes several objective functionals and training
algorithms, as well as different utilities for the solution of a wide range of problems. The
package comes with extensive documentation [7]. There are two versions of Flood:

• Flood A, for data modeling problems.

• Flood Z, for general variational problems.

The latter is used for the work carried out in this project. For more information visit
the http://www.cimne.com/flood/default.asp website.
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