
Proceedings of the 11th International Conference on Requirements Engineering:

Foundations for Software Quality (REFSQ’05).

A Goal-Based Round-Trip Method for

System Development

Gemma Grau
1
, Xavier Franch

1
, Neil A.M. Maiden

2

1 Universitat Politècnica de Catalunya (UPC).

c/ Jordi Girona 1-3, Barcelona E-08034, Spain.

{ggrau, franch}@lsi.upc.edu
2 Centre for HCI Design, City University.

Northampton Square, London EC1V OHB, UK.

n.a.m.maiden@city.ac.uk

Abstract. In most cases information system development can be seen as an

exercise of business process reengineering, either because it automates some

human-based processes or because a legacy system is going to be replaced.

From this point of view, we can say that the specification of the system-to-be
goes from the observation and analysis of the current system to the specification

of the system-to-be, going through the construction and evaluation of

alternatives. Goal-oriented models are a valuable formalism to support the

strategic analysis of the current process. In this paper, we propose a method

supporting that round-trip engineering process, focusing in the prescriptive
construction of strategic i* models and the systematic generation of

alternatives. Several requirements engineering techniques are used in order to

model the existing process, which allow a reliable generation and evaluation of

alternatives as well as the reuse of strategic knowledge for information system

development.

1 Introduction

Development of information systems is an activity that seldom takes place from

scratch. A new information system may automate some tasks that are undertaken by

humans in an organization, or may substitute a system that is becoming obsolete from

the organizational point of view. Therefore, most of the times we can say that

information systems development and business process reengineering are two views

of the same activity and therefore we can reconcile them.

From the business process reengineering perspective, the specification of the

system-to-be starts from the observation of the current system and the synthesis of its

model, the understanding of its rationale, the formulation of new processes or possible

ways to enhance the existing ones, the generation and evaluation of alternatives and

finally the construction of the detailed target specification itself. We have thus a

round-trip from current to ongoing system prescriptive specification, and during this

trip we need some support for the intermediate stages: for supporting the strategic

analysis of the current system, its weaknesses and strengths, and its alternatives.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/237678317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

The use of the i* framework in business process reengineering [23] provides an

appropriate context where the current process rationale is modelled by means of

intentional concepts. The resulting i* model is the basis for searching and evaluating

process alternatives and for obtaining the specification of a new system. Although

there already exist several proposals that obtain detailed system specifications from i*

models [3, 13, 22], the problem of creating an i* model in a prescriptive way is not so

often addressed and then, the whole process is at risk because of the lack of reliability

in the search and evaluation of process alternatives.

The methodology we propose addresses system development as an exercise of

process reengineering and makes a round-trip from the detailed specification of the

current system to the detailed specification of the system-to-be, focusing on how to

build prescriptive i* models and generate several alternatives in a systematic manner.

Several requirements engineering techniques and artefacts are used in the

methodology for obtaining requirements in a systematic way, for describing

knowledge, for studying the current processes and so on, with the ultimate goal of

supporting i* modelling and obtaining the models in a more predictable way than

usual in order to rely in the application of systematic patterns of evaluation of

alternatives. The result of our proposal is a five phases methodology that we have

applied to the Meeting Scheduler problem for illustrating the approach.

2 The i* Language

The i* framework proposes the use of two types of models for modelling systems,

each one corresponding to a different abstraction level: a Strategic Dependency (SD)

model represents the intentional level and the Strategic Rationale (SR) model

represents the rational level.

A SD model consists of a set of nodes that represent actors and a set of

dependencies that represent the relationships among them. Dependencies expresses

that an actor (depender) depends on some other (dependee) in order to obtain some

objective (dependum). Thus, the depender depends on the dependee to bring about a

certain state in the world (goal dependency), to attain a goal in a particular way (task

dependency), for the availability of a physical or informational entity (resource

dependency) or to meet some non-functional requirement (softgoal dependency).

A SR model allows visualizing the intentional elements into the boundary of an

actor in order to refine the SD model with reasoning capabilities. The dependencies of

the SD model are linked to intentional elements inside the actor boundary. The

elements inside the SR model are decomposed accordingly to two types of links:

• Means-end links establish that one or more intentional elements are the means that

contribute to the achievement of an end. The “end” can be a goal, task, resource, or

softgoal, whereas the “means” is usually a task. There is a relation OR when there

are many means, which indicate the different ways to obtain the end.

• Task-decomposition links state the decomposition of a task into different

intentional elements. There is a relation AND when a task is decomposed into

more than one intentional element.

For more details about i*, we refer to [23].

3 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

3 Overview of the Methodology

The methodology we propose is related to the business process reengineering context

as presented in Eric Yu’s thesis [23], which provides an i*-based framework

consisting of four different phases: a model of the process based on intentional

concepts, a systematic search for process alternatives, a systematic evaluation of

process alternatives with respect to stakeholder interests and, finally, the possibility of

connecting strategic reasoning with information system development.

From this starting framework, our methodology makes the following enrichments:

a) we add a preliminary phase for domain information gathering (current system

specification); b) we focus on how to build a starting i* model from this information;

c) we provide some rationale for the discovering of new strategic needs; d) we drive

the systematic generation of strategic alternatives; e) we propose well-defined

frameworks to drive the evaluation of alternatives.

All of these contributions have a similar aim, namely to consider business process

reengineering as a prescriptive process and reduce therefore the inherent

uncertainness that i*-based reasoning has. Prescriptiveness is supported by means of

the formulation of rules, guidelines, patterns and questions which articulate altogether

to form a well-defined path. Our final objective is to generate the specification of the

system-to-be in a highly reliable and effective way.

In Fig. 1 we present an overview of the methodology, which is composed of the

above mentioned five phases. In the first phase, the current process is analysed by

using several requirements engineering techniques and a descriptive model of the

process is built by observation. In the second phase, an i* model is constructed to

obtain the rationale of the current system. The systematic generation of process

alternatives is done in the third phase by means of the addition of new actors and/or

the reallocation of responsibilities between them. Those different alternatives are

Fig. 1. Overview of the process, showing which process takes place inside each of the phases

Current

System

Generation of

Alternatives

Generation of

Alternatives
Evaluation of

Alternatives and

Selection of the

Best Option

Evaluation of

Alternatives and

Selection of the

Best Option
Specificationof

the New System

New SystemNew System

Phase 1
Current Process

Analysis Phase 2 Phase 3

Phase 4
Phase 5

Building the i*

model of the

current process

4 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

evaluated in the fourth phase and one of them selected as solution. Finally, the

specification of the new system is generated based on the chosen process alternative.

In the rest of the paper, we explain the steps of each of those phases. As phases 1

and 5 are widely explored in the literature and several proposals exist for phase 4, we

focus our attention in phases 2 and 3. We apply the methodology to an example based

on the Meeting Scheduler problem statement of Lamsweerde et al. [18], which has

been chosen because it is well-known on the community and very representative of

the kind of problem we are addressing.

4 Phase 1: Analysing the Current Process

The first phase of the methodology consists of capturing and recording information

about the different elements of the current process in order to inform further phases.

The approach we adopt here comes from the RESCUE method [13, 14], where

techniques from both the HCI and RE fields are used to data gathering and human

activity modelling from all the components of the current process.

Human activity modelling is centred on the human users involved in the process.

Thus, the domain where the process occurs (the individual cognitive and non-

cognitive components and social and co-operative of the process) needs to be

analysed in order to understand the current process. Data gathering techniques include

observation of the current system use; informal scenario walkthroughs; interviews

with representative human users; and other similar techniques.

Once the domain of the process is analysed, the process has to be documented.

Context models provide a simple approach for modelling system boundaries. They

use a basic data flow diagram notation, where a number of concentric circles

represent different ‘levels’ of involvement and interacting with the system. Once

system actors are identified, flows of data are represented to or from the different

circles depending on the direction of the data flow.

Human activity models (HAM) collect the data from the current process. This data

can be documented in several models, being one of them activity descriptions which

are structured in several fields providing, among others, the human actors involved in

the system, their goals, triggering events, preconditions, assumptions, constraints,

normal and alternative courses of actions and resources involved.

In our example, we use the domain theory of the Meeting Scheduler problem

statement as if it where the result of that domain analysis phase. We observe that, in

that first process, there is no software system to support the scheduling of meetings.

5 Phase 2: Building the i* Model of the Current Process

The reliable generation and evaluation of alternatives requires that the i* model of the

current process must be developed in a systematic and prescriptive way, otherwise

decisions can be made upon incomplete or ill-constructed knowledge. In other words,

different people modelling the same process in the same organization should obtain

similar results. However, the same process on different organizations could be

5 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

modelled in different ways, since the strategic reasons of every organization may

change. This is due to the fact that, despite the process that is undertaken, the

organizational context plays an important role. This is mentioned in [16], where there

is evidence that ignoring this difference between organizational realities and process

logistics often causes a mismatch in the process analysis. Thus, two different kinds of

goals can be semantically distinguished [1]: descriptive goals, appearing on current

processes analysis, and prescriptive goals, coming from strategic management.

Taking into account those differences, we propose to build the i* Strategic

Dependency (SD) model in two differentiated steps in order to distinguish the

functionality performed by the stakeholders (dealing with descriptive goals) from

their strategic intentionality (prescriptive goals). The result is an i* model with two

different parts: an operational i* model (mainly composed of resources, tasks and

some goals) and its associated intentional i* model (which adds goals and softgoals to

the operational one). In order to support this construction method and add rationale to

further analysis of the current process, both SD and SR i* models are developed. The

resulting i* model can be checked for consistency, as proposed in the RESCUE

process [13].

5.1 Step 1: Actor Identification and Modelling

The first step for i* modelling is the identification of the actors and their

intentionality. The actors arise from the current process documentation obtained in the

previous phase, with one i* actor for each stakeholder and a single actor for the

software system if it exists. If the system is considered to be too large or has well-

differentiated parts, we may decompose it using the <<is-part-of>> construct

provided by the i* framework. Other aggregation and also specialization relationships

between actors can be identified and included in the model. Due to the unavoidably

iterative nature of the process, if new actors appear in later steps, a further iteration of

phase 1 is needed in order to take them into account.

Some of the actors identified for the Meeting Scheduler example and their main

process goals are: Meeting Initiator (Schedule the Meeting), Address Provider

(Provide Addresses) and Meeting Attendee (Attend the Meeting). The Meeting

Attendee has two specializations: Active Participant (Gives a Talk in the Meeting) and

Important Participant (Must Attend the Meeting).

5.2 Step 2: Building the Operational i* Model

In order to be prescriptive when building the i* model at the operational level, we use

both the SD model and the SR models. For obtaining the dependencies we need to

explore each of the activities identified in phase 1 (see section 3) by analysing its

different actions. An effective way of doing that is to enumerate chronologically all of

the actions that need to be executed until completing the activity, making explicit both

the actions that the actor performs by itself and the actions that the actors requires

from other actors, as mentioned in [16].

6 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

Scenarios analysis has proven to be an effective technique for requirements

engineering and process analysis. There are several ways of writing scenarios [21]

but, as we are only interesting in the i* model, we propose to use a simplified notation

for process scenarios that we call Detailed Interaction Script (DIS). As the scenario

information has already been obtained in phase 1, DIS are just intermediate models

that organize scenario information in order to facilitate further i* model construction.

A DIS includes goals, actors, preconditions, triggering events and postconditions,

which are obtained from the phase 1 HAM. Actions are the atomic actions of human

activity diagrams written in a structured way. For each action we state: the actor who

initiates the action, a short description of the action, and the resources involved in

case that the action produces or consumes a certain resource. If the action requires an

interaction with another actor, the actor addressee and the interacted resource are also

stated.

In table 1 we can see the DIS of the activity Invite Meeting Attendees. We can

observe that the decisions taken by the Meeting Initiator such as Decide Participant

List or Decide Meeting Data Range are made explicit. Once the Meeting Initiator has

the participant addresses and the initial data range, he sends the invitations to the

meeting attendee.

The benefit of using DIS for analysing the scenarios is twofold. On the one hand,

the analysis of a piece of process in a chronological way can be easy to perform and

tends to yield similar results even if performed by different people. On the other hand,

it is possible to translate the information of the table to the i* model we are building,

by following the rules:

• Rule 1. Every activity in which an actor is involved is modelled as a task in its SR.

This task (hereafter, activity-task) is related to its main goal (already identified in

step 1) using a Means-Ends link. Activity-tasks are named after the activity they

Table 1. Detailed Interaction Script (DIS) for the activity Invite Meeting Attendees

 DIS1: Invite Meeting Attendees

Source HAM1: Invite Meeting Attendees

Actors Meeting Initiator, Address Provider, Meeting Attendee

Precondition -

Triggering

Event
-

Action

Initiator
Action

Consumed

Resources
Produced

Resources

Action

Addressee

Provided

Resources

Meeting
Initiator

Decide

Participant

List

Participant
List

Meeting

Initiator

Get

Participant
Addresses

Address

Provider

Participant

List

Address

Provider

Send

Participant

Addresses

Meeting

Initiator

Participant

Addresses

Meeting

Initiator

Decide Initial

Data Range

Initial Data

Range

Actions

Meeting

Initiator

Send

Invitation

Meeting

Attendee

Initial
Data

Range

Postcondition Meeting Invitation Send to all potential participants

7 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

are related to. Once all the activity-tasks are modelled, we obtain a first level of

decomposition on the SR model of each actor. In Fig. 2 both Meeting Initiator and

Address Provider, the two actors involved in the activity Invite Meeting Attendees,

have an activity-task with that name in their SR decomposition.

• Rule 2. Every activity-task is decomposed into the actions of the DIS

corresponding to its activity. This is done by translating each action into a task

(hereafter, action-task) and relating this action-task with a task-decomposition link

to the corresponding activity-task of the action initiator. In Fig. 2 the activity-task

Invite Meeting Attendees is decomposed into four action-tasks: Decide Participant

List, Get Participant Addresses, Decide Initial Data Range and Send Meeting

Invitations.

• Rule 3. If the action on the DIS produces a resource, this resource becomes a

resource dependency where the action addressee is the depender and the action

initiator, the dependee. In the SR model, the dependency is linked to action-task

that produces the resource. In Fig. 2 the Address Provided depends on the Meeting

Initiator for the produced resource Participant List, and is the dependee for the

consumed resource Participant Addresses. The Meeting Attendee depends on the

Meeting Initiator for the produced resource Initial Data Range, but we do not

know the action which consumes it.

Fig. 2. Piece of the i* SD model, concerning the dependencies derived from the Use Case Invite

Meeting Attendees

• Rule 4. If the action on the DIS consumes a resource, this resource has to be

produced by some other action. Thus, we look for those dependencies produced by

other actions and assigned to the actor. If the resource has already been produced,

we link it to the specific action-task. If not, we link it when the dependency arises.

In Fig. 3 we observe that the action-task Check Meeting Data Range consumes the

resource Data Range.

• Rule 5. Every precondition, trigger event and postcondition of the activity has to

be explicitly modelled. As they represent the achievement of a certain state, they

are modelled as goals in the i* model. Preconditions and postconditions are added

as task-decomposition elements of the activity-task. Trigger events are modelled as

goal dependencies where the actor who initiates the activity-task is the depender

and the one that undertakes the triggering task is the dependee. In Fig. 3 the

postcondition of the activity Invite Meeting Attendees is modelled as the goal

Meeting Invitation Sent. The task Send Meeting Invitation triggers the activity

Provide Data Sets, and thus, the Meeting Attendee has a goal dependency on

Meeting Invitations Received.

8 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

Fig. 3. Piece of the i* SD model, concerning the dependencies derived from the Use Case

Provide Data Sets, which is linked with Invite Meeting Attendees

All the proposed rules can be performed systematically, and there is only one

aspect in which the process is not prescriptive. Rules translate resources to resources

dependencies but, sometimes, task dependencies are more suitable. To differentiate

among them we should think about what it is more important for the dependee, the

resource sent within the parameter (resource dependency) or the way that resource is

obtained (task dependency).

In [19] a methodology for building i* models based on activities theory is

presented. This proposal builds SD models before SR ones, whilst we build it in

parallel but, as it also analyse activities and their actions to construct the model, the

approach may seem similar to the one we present (rules 1 and 2). Nevertheless, there

are some differences in the way the actions are analysed, as [19] does not provide any

specific analysis of the resources involved in the actions (rules 3 and 4) and neither

consider preconditions, nor postconditions nor triggering events (rule 5). Also [19]

does not present any methodology for building the intentional model, as we do in the

next step.

5.3 Step 3: Building the Intentional i* Model

The intentional i* model complements the operational i* model and contains the

intentionality behind the analysed process. Its construction entails more uncertainty

but it can also be performed in a systematic way.

First, an initial set of prescriptive goals is obtained directly from the current

process. Assuming that each of the studied activities represents the achievement of a

goal, strategic goals are obtained as a response to the following question:

• Which is the final state to achieve by executing the activity?

The dependee and the depender of that goal arise by asking respectively:

• Which is the actor that needs to attain the goal?

• From which actor it depends to obtain the goal?

In the Meeting Scheduler example, the execution of the activity Find agreeable

date leads to achieve the final state Maximum number of Attendees in the Meeting

where is the Meeting Initiator who depends of the Meeting Attendee to achieve it. We

remark that this goal is not the postcondition of the activity, which is the goal

Agreeable Date Found. Actually, we consider Find Agreable Date as a means of

obtaining the Maximum number of attendees in the meeting and we state a means-end

relationship between these two elements. In Fig. 4 we can observe that we reorganize

the hierarchy of the SR model in order to represent this insertion in the i* SR model

9 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

of the Meeting Initiator. Thus, Maximum number of attendees in the meeting become

a means of the goal Schedule Meeting. Moreover, the task Invite Meeting Attendees is

also a means of having a Maximum number of attendees in the meeting and a means-

end is also stated between the two.

Second, this initial set of descriptive goals and the already existing i* operational

model are the basis for obtaining new goals. Stakeholders shall participate in this

process by providing information needed to apply existing techniques. Those goals

can be decomposed and operationalized into constraints [5]. Thus, the goal Maximum

number of Attendees in the Meeting can be means-ends related to the goal Respect

Attendee Data Range and the softgoal Meeting Details Announced promptly. The

dependee of those goals is the Meeting Attendee (see Fig. 4).

Also a directed inquire analysis of the process helps us determine that goals [20]

and stakeholders interview techniques can also be applied [11]. We propose to apply

those techniques by analyzing the operational i* model with the stakeholders and

formulate the questions on the i* dependums and intentional elements. In the KAOS

methodology [5], goals are classified into satisfaction, information, robustness,

consistency, safety and privacy goals. Likewise classifications made in the NFR

framework [4] are applicable. Following these ideas, we propose the use of a quality

attributes catalogue like the ISO/IEC 9126-1 [12] to generate questions automatically

and retrieve answers easily. Quality attributes may be related to the type of intentional

element, for instance if the analysed element is a resource we can ask about data

security or data accuracy whilst if it is a task, questions about efficiency or usability

are more appropriate.

Most of the quality attributes refer to important goals and softgoals, but we are

only interested in the most crucial ones. Thus the questions are formulated in terms of

how critical is the attribute for the element of the process. For instance, in the

operational i* model for the Meeting Scheduler, the resource Participant Addresses

can be analyzed by asking the questions:

• If Participant Address data privacy is violated, can someone get hurt or

damaged? Which actors will be affected?

• If Participant Address is not accurate enough, will the process fail? Which

actors will be affected?

The concrete writing of questions can be associated with the catalogue itself, therefore

providing a systematic way to generate goals and softgoals. In Fig. 4 we state that

Fig. 4. Piece of operational and intentional i* model for the Meeting Scheduler

10 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

the address privacy of the Meeting Attendee is crucial and therefore introduce a

softgoal Keep Participant Address Confidential. The attendee depends on both

Address Provider and Meeting Initiator for ensuring this. However accuracy is not so

critical in general, the Meeting Attendee has not any dependency about that (we

consider that in case of being inaccurate, probably he will notice about the meeting

somehow –chatting, by chance, etc.- and even if not so, his absence would not

compromise the occurrence of the meeting). However there is an exception. Important

participants must attend the meeting or else the process fails, thus the softgoal

dependency Participant Address Be Accurate appears for this actor.

Questions can also be applied on the SR model in a similar manner. In Fig. 4, the

task Find Agreeable Date is further decomposed into the softgoal Agreeable Date

found as Soon as Possible, as an answer to the question:

• If Find Agreeable Date is not performed efficiently in time, can the process fail?

Finally, the resulting set of goals and softgoals can be analyzed in order to identify

contributions and conflicts between the different intentional elements by means of the

i* contribution links. This analysis can be done as proposed in the NFR framework

[4] or considering the relationships between quality attributes already stated in the

quality model [8]. In Fig. 4, the softgoal Agreeable Date found as Soon as Possible

contributes positively to the softgoal Meeting Details Announced promptly.

5.4 Step 4: Checking the i* Model

The intentional elements and dependums of the intentional i* model can be checked

for consistency on the application of the provided rules and guidelines. Fig. 5 presents

a meta-model with the simplified concepts of the three models used: HAM, DIS and

i* models. The baseline concepts mappings across those models are defined with

thicker horizontal lines. Thus, meta-model maps actor goals in human activity model

to conditions in DIS and i* goals and soft goals. As the DIS are a structured version

of HAM, there is a direct mapping between the concepts of activities, actions and

actors between both models, whilst the resources in DIS can be of three types:

produced (p), consumed (c) or provided (pv). DIS activities are modelled into i* tasks

and actions are mapped into resources or tasks in the i* operational model.

Fig. 5. Concept meta-model as a UML class diagram showing mappings between constructs in

the 3 model types

11 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

The checking is done in two stages. The first stage ensures correspondence

between HAM and DIS with the following checks:

Check 1.1 Every activity on the HAM should correspond to one or more activities in the DIS.

Check 1.2
Every human activity goal should correspond to one or more conditions (goals or

postconditions) in the DIS.

Check 1.3
Every preconditions and assumptions on the HAM, should correspond to preconditions

in the DIS. Triggering events appear to be the same in both diagrams.

Check 1.4 Every actor of the HAM is mapped into one ore more actors in the DIS.

Check 1.5
All actions on the HAM normal course and alternatives courses, should correspond to

actions in DIS detailing the action initiator and, if required, also the action addressee.

Check 1.6
All resources appearing in the HAM actions, should be detailed as produced, consumed

or parameter resources in the DIS.

At the second stage, cross checking is done in order to ensure the correspondence

between the DIS and the resulting i* models. Checks are:

Check 2.1 Every DIS activity is modeled as a task, called activity-task.

Check 2.2
Every main goal of an actor is means-end decomposed into those activity-tasks where
the actor performs an action.

Check 2.3
Every action inside an activity is modeled as a task, which decomposes the

corresponding activity-task on the SR model of the actor that initiates the action.

Check 2.4

Every provided resource involved in an interactive action, appears as an SD resource
dependency or task dependency between the actors involved in the interaction, where

the depender produces the resource and the dependee consumes it.

Check 2.5
Conditions of the activity are modeled as SR-goals (for preconditions and
postconditions) and goal dependencies (for trigger events).

Check 2.6
Each activity-task is means-end decomposed into its main intentional goal, which can be

refined into other goals.

Check 2.7
Some non-functional constraints are stated over the resources and the task, leading to
softgoals both in the SR and the SD model.

6 Phase 3: Generation of Alternatives

One of the main strengths of goal-oriented modelling is its adequacy for exploring

different ways to achieve strategic aims. This can be seen in many proposals. The i*

framework itself [23] seeks systematic searches for process alternatives by using

means-end reasoning and hierarchical decomposition of tasks into their intentional

elements. The TROPOS project [3] defines the architectural organization of the

system by exploring alternatives whilst introducing new actors. Those actors are

defined according to the choice of a specific architectural style and the benefits that

they provide for the fulfilment of some specific functional and non-functional

requirement. In the KAOS approach [5] the identification of alternative

responsibilities and the assignation of actions to responsible agents is faced in the

lasts phases of their goal-directed acquisition strategy.

Taking those concepts as a starting point, we propose to use the i* model obtained

in phase 2 as a basis for obtaining new alternatives, also modelled in i*. Each of the

alternative process is constructed from the same model, which is the one

corresponding to the current process (generated in the previous phase) plus changes

coming from the improvements that arise during the strategic analysis made in the

context of process reengineering. In other words, new goals and softgoals can be

12 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

added to the i* model of the current system before beginning the exploration of

alternatives. Alternatives are generated by adding new actors to the system and

reallocating responsibilities between them.

6.1 Step 1: Reengineering the current system

As the final purpose of the method is to achieve process reengineering, stakeholders

may want to improve some aspects of the current process and some new goals and

softgoals may arise, disappear or change. KAOS [5] proposes to drive this process by

applying patterns that have an impact on the system behaviour: Achieve and Cease

goals generate behaviours, Maintain and Avoid goals restrict behaviours, whilst

Optimize goals compare behaviours. We use these patterns for analysing the SD i*

model with the stakeholders in the following way:

1. First we restrict the behaviour of the current process by analysing the intentional

goals and softgoals. We classify them into two groups: the ones we want to

Maintain and the ones we want to Avoid. If a goal has to be avoided, new goals and

softgoals arise in order to state that.

2. This new set of goals is analysed in order to generate new behaviour. Thus, we

search for new goals that we want to Achieve or old ones we want to Cease. If the

new goals to Achieve involve the addition of new activities to the process, a DIS is

created for the analysis of the system and the i* model is completed with new SD

dependencies and SR intentional elements by applying the steps on phase 2. A goal

can only be Ceased if it does not affect the achievement of another goal. In terms

of activities, this means that if some of the actions it involves are preconditions or

trigger events of another activity, it cannot be removed unless the other activities

are also removed.

3. Finally, Optimize goals are added in order to compare the behaviour. Questions

such as the ones we proposed in the step 3 of phase 2, have to be applied.

All the alternatives must be generated from the same starting model. Thus, no other

dependencies can arise during the following steps. In the case that some new

dependencies need to be added, they should be consistent with the patterns above and

the process of generating alternatives has to be started again.

6.2 Step 2: Adding New Actors to the System

The addition of actors to the system is done by means of exploring new roles to fulfil

in the process. This exploration is done by means of analysing current solutions to

similar processes such as organization structures or software solutions. Thus, new

actors do not arise from combinatorial explosion, but from a rationale analysis.

One possibility is to apply organizational patterns in order to explore the

application of well-known solutions. There exist some proposals of social patterns

and organizational styles defined in terms of configurations of i* concepts [17]. As

the intention is to obtain a new process, software roles are also likely to arise. For

finding which software roles are more convenient we recommend using components

catalogues or, even better, taxonomies of COTS components [2].

13 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

For each added actor, we need to decide its main goal. New actors are added in

both operational and intentional i* models. In Fig. 6 we have added a Meeting

Scheduler actor. Its main goal is Meeting Be Scheduled and, thus, the Meeting

Initiator main goal has changed to Meeting Scheduler Ordered.

6.3 Step 3: Reallocating Responsibilities

Once the new actors have been discovered, the existing dependencies must be

reallocated. We use the activity-tasks in a similar way as done in [6] restricted to tasks

and resources, where some guidelines are provided to guide the insertion of an actor

system into a business model.

Each activity task is analysed independently by asking the questions: Do we want

this actor to keep satisfying the dependencies of the activity task? Is there any other

actor that can take that responsibility? Human capabilities may be checked and

software components functionalities may be matched [7] to answer that question, and

depending on this answeer, one of the following two patterns are applied:

Pattern 1. We consider that the responsibility of the tasks still falls onto the

current actor and, thus, every dependency related to their activity-task remains

unchanged. In Fig. 6 we leave the responsibility of Provide Data Sets to the Meeting

Attendee and none of the dependencies related to that task changes.

Pattern 2. We delegate the responsibility of a task. Thus, if actor A was

performing an activity and we want actor B to do it, we delegate the responsibility of

the corresponding activity-task to actor B taking into account the following aspects:

• A new activity-task with that name is added to the Means-End decomposition of

the main goal of the actor B and all the dependencies related to their action-tasks

are moved into the other actor. For instance, in Fig. 6 the responsibility of the task

Find Agreeable Date goes to the Meeting Scheduler actor, who handles the

dependencies going to/stemming from the part of the SR model for the Meeting

Initiator of the previous model (see Fig. 3).

• The action-tasks of the reallocated activity-task are checked in order to ensure that

actor B has all the knowledge and capabilities to undertake them. If actor B cannot

Fig. 5. Piece of i* model showing responsibility reallocation into the Meeting Scheduler actor

14 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

fulfil them, we add a dependency to the actor who can better provide it, which is

usually actor A. In Fig. 6, we observe that the responsibility of Send Meeting

Invitation is now going to the Meeting Scheduler. As he needs the Participant List

and the Data Range to perform that task, we add two task dependencies to the

Meeting Initiator who is the actor who knows this information.

• Finally, a goal dependency arises to model that actor A depends on actor B to

achieve its intentional goals on the activity. Thus, in the example, the Meeting

Initiator depends on the Meeting Scheduler for accomplish the goal postconditions

of the activities Attendee Acknowledged of Meeting and Maximum number of

Attendees in the Meeting (see Fig. 6).

6.4 Step 3: Checking consistency between alternatives

Consistency checks can also be applied to ensure certain equivalence between the

original i* model and the i* model for the generated alternative:

Check 3.1 Every activity-task on the original model is also considered in the alternative model.

Check 3.2

In the alternative, every actor that is responsible for an activity-task has all the
knowledge to perform all the actions (by itself or by means of a dependency to another

actor)

Check 3.3

The intentional goals and softgoals of an actor in the original model, still being satisfied

by means of dependencies to the actor that performs the activity-task in the alternative
model.

7 Phases 4 and 5: Evaluating Alternatives and Defining the New

System

The systematic evaluation of process alternatives with respect to stakeholder interests

and the connection of the provided strategic reasoning with information system

development are already addressed issues in literature. In consequence, as already

mentioned for phase 1, these two last phases do not enforce the adoption of any

specific methods. Instead, the most adequate to each situation should be chosen.

The systematic evaluation of process alternatives is already addressed in Yu's work

[23]. In the origin of the i* framework, the SD model supports the systematic

identification of stakeholders and their interests and concerns, whilst the SR model

supports the systematic evaluation of alternatives through the concepts of ability,

workability, viability, and believability. Also, the AGORA method [15] provides

techniques for estimating the quality of requirements specifications in a goal-oriented

setting. In [9, 10] structural analysis of actor-dependency models is performed by

defining metrics over the models with respect some properties considered of interest

for the modelled system. (such as security, accuracy or efficiency). Dependencies are

used to analyse the behaviour of the system.

The link between strategic reasoning and information system development has

been widely addressed. Several proposals exist providing guidelines for mapping an

i* model to an UML use cases and classes specification, among them we remark [3,

13, 22].

15 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

8 Conclusions

We have proposed a methodology that addresses system development as an exercise

in process reengineering that makes a round-trip through five different phases:

domain information gathering, specification of the current system in i*, systematic

search for process alternatives, evaluation of the modelled alternatives and, finally, a

prescriptive specification of the system-to-be.

We think that the main contributions are the following. First, we give a well-

defined method for system development which is more prescriptive and has more

level of detail than usual for so comprehensive methods. Other proposals that have

this level of detail are more local than ours. Detail and prescription is achieved by

means of rules, guidelines, checks, patterns and answer-questions.

Second, we use existing requirement engineering techniques when possible. We

are putting together concepts from goal-oriented modelling (e.g., KAOS patterns, i*

language, organizational patterns, etc.), specification (human activity models),

knowledge gathering (inquiry cycle, …) and others. In addition we are providing

innovations as needed. Distinguishing among operational and organizational i*

models when analysing the current systems helps in making the process more guided.

The use of a quality attributes catalogue as the ISO/IEC 9126-1 for driving softgoal

identification and the clear cut-criteria to discern if they are needed are helpful to add

rationale to the model. Our treatment of resources elements is very precise. The

ordering of the KAOS pattern, although yet to be thoroughly validated, is another

example of how necessary we find it is to identify efficient ways to build i* models.

Acknowledgements

This work has been partially supported by the CICYT programme, project TIN2004-

07461-C02-01. G. Grau work is supported by an UPC research scholarship.

References

1. Antón, A.I., McCracken, W.M., Potts., C.: “Goal Decomposition and Scenario Analysis in

Business Process Reengineering”. In Proceedings of the 6th International Conference on

Advanced Information Systems Engineering, 1994. pp. 94-104.

2. Ayala, C.P., Botella, P., Franch, X.: “On Goal-Oriented COTS Taxonomies Construction”.

In Proceedings of the 4th International Conference on COTS Based Software Systems,
2005. Springer-Verlag, LNCS 3412. pp. 90-100.

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: “Tropos: An Agent-

Oriented Software Development Methodology”. In Journal of Autonomous Agents and

Multi-Agent Systems. Kluwer Academic Publishers, Vol 8, Issue 3, 2004. pp. 203-236.

4. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Kluwer Academic Publishers, 2000.
5. Dardenne, A., van Lamsweerde, A., Fickas, S.: “Goal-directed Requirements Acquisition”,

Science of Computer Programming, 20, 1993, pp. 3-50.

16 Gemma Grau1, Xavier Franch1, Neil A.M. Maiden2

6. Estrada, H., A. Martínez, A., Pastor, O.: “Goal-based business modeling oriented towards

late requirements generation”. In Proceedings of the 22nd International Conference on

Conceptual Modeling, 2003. Springer-Verlag, LNCS 2813. pp. 277-290.

7. Franch, X.: “On the Lightweight Use of Goal-Oriented Models for Software Package

Selection”. In Proceedings of the 17th International Conference on Advanced Information

Systems Engineering. 2005. Springer-Verlag, LNCS 3520. pp. 551-566.

8. Franch, X., Carvallo, J.P.: “Using Quality Models in Software Package Selection”. IEEE

Software, 20(1), 2003, pp. 34-41.

9. Franch, X., Grau, G., Quer, C.: "A Framework for the Definition of Metrics for Actor-

Dependency Models". In Proceedings of the 12th IEEE International Conference on
Requirements Engineering, 2004. pp. 348-349.

10. Franch, X., Maiden, N.A.M.: “Modeling Component Dependencies to Inform their

Selection”, In Proceedings of the 2nd International Conference on COTS Based Software

Systems, 2003. Springer-Verlag, LNCS 2580. pp. 81-91.

11. Goetz, R., Rupp, C.: “Psychotherapy for System Requirements”. In Proceedings of the 2nd

IEEE International Conference on Cognitive Informatics, 2003. pp. 75-80.
12. ISO/IEC Standard 9126-1 Software Engineering – Part 1: Quality Model, 2001.

13. Jones, S., Maiden, N.A.M.: “RESCUE: An Integrated Method for Specifying Requirements

for Complex Socio-Technical Systems”. Book chapter in Requirements Engineering for

Sociotechnical Systems, Idea Group Inc., 2004.

14. Jones, S., Maiden, N.A.M., Manning, S., Greenwood, J.: “Human Activity Modelling in the

Specification of Operational Requirements: Work in Progress”. In Proceedings of the

Workshop Bridging the Gaps between Software Engineering and Human-Computer

Interaction, 2004.

15. Kaiya, H., Horai, H., Saeki, M.: “AGORA: Attributed Goal-Oriented Requirements

Analysis Method”. In Proceedings of the 10th IEEE International Conference on

Requirements Engineering, 2002. pp. 13-22.

16. Katzenstein, G., Lerch, F.J.: “Beneath the Surface of Organizational Processes: A Social
Representation Framework for Business Process Redesign”. ACM Transactions on

Information Systems, Vol.18, No. 4, 2000. pp. 383-422.

17. Kolp, M., Giorgini, P., Mylopoulos, J.: “Organizational Patterns for Early Requirements

Analysis”. In Proceedings of the 15th International Conference on Advanced Information

Systems Engineering, 2003. Springer-Verlag, LNCS 2681. pp. 617-632.

18. van Lamsweerde, A., Darimont, R., Massonet, P.: “The Meeting Scheduler Sytem –

Problem Statement”. 1992.

http://www.lore.ua.ac.be/Teaching/SSPEC2LIC/MeetingScheduler.pdf.

19. Neto, G.C., Gomes, A.S., Castro, J.B.: “Mapeando Diagramas da Teoria da Atividade em

Modelos Organizacionais Baseados em i*”. In Proceedings of the 7th Workshop em

Engenharia de Requisitos, 2004, pp 39-50.
20. Potts, C., Takahashi, K., Antón, A.I.: “Inquiry-Based Requirements Analysis”. IEEE

Software, 11(2), 1994. pp. 21-32.

21. Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N.A.M., Jarke,

M., Haumer, P., Pohl, K., Dubois, E., Heymans, P.: “A Proposal for a Scenario

Classification Framework”. Requirements Engineering Journal. Vol 3.No 1. 1998. pp.23-

47.
22. Santander, V.F.A., Castro, J.F.B.: “Deriving Use Cases from Organizational Modeling”. In

Proceedings of the 10th IEEE Requirements Engineering Conference, 2002. pp 32-39.

23. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD. thesis,

University of Toronto, 1995.

