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ABSTRACT. The planar (n + 1)-body problem models the motion of n + 1
bodies in the plane under their mutual Newtonian gravitational attraction
forces. When n = 3, the question about final motions, that is, what are the
possible limit motions in the planar (n + 1)-body problem when ¢ — 00, ceases
to be completely meaningful due to the existence of non-collision singularities.

In this paper we prove the existence of solutions of the planar (n + 1)-body
problem which are defined for all forward time and tend to a parabolic motion,
that is, that one of the bodies reaches infinity with zero velocity while the rest
perform a bounded motion.

These solutions are related to whiskered parabolic tori at infinity, that is,
parabolic tori with stable and unstable invariant manifolds which lie at infinity.
These parabolic tori appear in cylinders which can be considered “normally
parabolic”.

The existence of these whiskered parabolic tori is a consequence of a gen-
eral theorem on parabolic tori developed in this paper. Another application of
our theorem is a conjugation result for a class of skew product maps with
a parabolic torus with its normal form generalizing results of Takens and
Voronin [Tak73, Vorgl1].
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1. INTRODUCTION

In the study of the (n + 1)-body problem, in celestial mechanics, one important
question is about the possible final motions, i.e., the possible “limit states” of a so-
lution of the (n+1)-body problem as time goes to +00. In the case of the three body
problem, Chazy [Cha2?2] (see also [AKXN8S, Chap. 2]) gave a complete classification
of the possible final motions, with seven options: if all the bodies reach infinity,
their motion could be (i) hyperbolic, when all the bodies reach infinity with positive
velocity, (ii) hyperbolic-parabolic, when at least one of the bodies reaches infinity
with vanishing velocity and another does it with positive velocity, or (iii) parabolic,
when all the bodies reach infinity with zero velocity; (iv) parabolic-elliptic and (v)
hyperbolic-elliptic are the cases when one of the bodies reaches infinity with zero or
non-zero velocity, resp., while the others tend to an elliptic motion; (vi) bounded
and, finally, (vii) oscillatory, when at least one body goes closer and closer to infin-
ity while always returning to a fixed neighborhood of the other two. Chazy knew
examples of all these types of motion, except the oscillatory ones. The existence of
the latter, in the case of the restricted three body problem (a simplified model of
the three body problem where one of the masses is assumed to be zero) was first
proven for the Sitnikov problem by Sitnikov [Sit60] and, later, by Moser [Mos73].
The Sitnikov problem deals with a configuration of the restricted three body prob-
lem where the bodies with non-zero mass, the primaries, describe ellipses while the
third body moves in the line through their center of mass and orthogonal to the
plane where the motion of the primaries takes place. Alexeev, in [Ale69], extended
the result to the non-restricted Sitnikov problem with a third small mass. In the
restricted planar circular three body problem, oscillatory motions were obtained
first by Llibre and Simé in [[.S80]. More recently, in the restricted planar circular
three body problem, it was shown in [GMS15] that there are oscillatory motions
for all values of the mass parameter.

The existence of oscillatory motions in all these instances of the restricted or
full planar three body problem is strongly related to some invariant objects at “in-
finity with zero velocity”, either fixed points or periodic orbits, and their stable
and unstable invariant manifolds. It is important to remark that these invariant
objects, related to parabolic-elliptic motions, are also “parabolic” in the sense that
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the linearization of the vector field on them vanishes identically and thus all its
eigenvalues are 0. However, although these points or periodic orbits are not hy-
perbolic, they do have “whiskers” in the traditional sense of hyperbolic invariant
objects, that is, stable and unstable invariant manifolds which locally govern the
dynamics close to the invariant object and whose intersections are in the heart of
the global phenomena from which the oscillatory motions arise. McGehee proved
in [ | that the parabolic orbits form an analytic manifold in three instances
of the three body problem, the restricted circular planar three body problem, the
Sitnikov problem and the collinear three body problem. See also | , ]
In the restricted circular and elliptic planar three body problem, the “parabolic
infinity” is foliated by periodic orbits. In both cases, the union of these invariant
objects is a “whiskered parabolic cylinder”. In the planar restricted elliptic three
body problem, it is proven in | ] the existence of Arnold diffusion along
this cylinder. In [ ], oscillatory orbits related to these parabolic periodic or-
bits are found for small eccentricity and any value of the mass parameter. Moeckel
in [ ] uses orbits between near collisions and the parabolic infinity in the three
body problem to find symbolic dynamics. In | |, the authors consider para-
bolic motions in the n-body problem, that is, orbits in which the velocity of all the
bodies tends to 0 as time goes to infinity. They prove, using variational methods,
that given any initial configuration and final configuration at infinity, there exists a
parabolic orbit joining them. In | ], the authors consider the n-center prob-
lem and prove, also by variational methods, the existence of parabolic trajectories
having prescribed asymptotic forward and backward directions.

When one considers the (n+1)-body problem with n > 3, due to the existence of
non-collision singularities, the flow of the system is no longer complete. However,
for solutions which are defined for all forward time, the question about their final
motion is still of interest. Statements on final motions in the (n+ 1)-body problem,
for n > 3, are scarce. The most celebrated result in this situation is the existence
of bounded motions, by Arnold | ] in the planar case, later generalized to the
spatial case by Herman and Féjoz | ] and by Chierchia and Pinzari | ]
These bounded motions correspond to KAM tori of maximal dimension.

The purpose of this paper is to study the generalization of the invariant parabolic
points or periodic orbits at infinity and their stable and unstable manifolds to
the case of the planar (n 4+ 1)-body problem, n > 3. We consider “Diophantine
parabolic tori” at “infinity”, for any n > 3, and show that these tori do have
“whiskers” (see Theorem 3.3 for the precise statement), which are analytic away
from the invariant torus. We remark that these tori are not isolated. On the
contrary, they appear as one parameter families, thus creating parabolic cylinders
foliated by Diophantine tori. The invariant manifolds of the cylinders are the union
of the invariant manifolds of the parabolic tori. The importance of these structures
is twofold. On the one hand, it provides the following corollary related to final
motions in the (n + 1)-body problem.

Claim 1.1 (after Theorem 3.3). For anyn > 2, the planar (n+1)-body problem has
parabolic-bounded motions, that is, solutions such that the relative position of one
of the bodies to the center of mass of the others goes to infinity with zero velocity
while the relative positions of the rest of the bodies around their center of mass
evolve in a bounded motion.

In Section 3 we clarify the bounded motions the above solutions are related to.
Roughly speaking, these bounded motions are linked essentially (but not uniquely)
to the maximal KAM tori given by Arnold’s theorem and, hence one can only
assume their existence in the planetary case, that is, when all except one of the
masses are small. Féjoz | ] announced in 2014 that there are KAM tori for
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arbitrary masses if the semi-major axes are chosen appropriately, which would
then imply the existence of parabolic-bounded motions in the planar (n + 1)-body
problem for all values of the masses. See Remark 3.2. Other sources of maximal
KAM tori are those surrounding normally elliptic periodic orbits. For instance,

among the n-body choreographies | | (see also | ]), there is numerical
evidence that the figure eight orbit in the three body problem is normally elliptic
(see [ -

On the other hand, although it is outside the scope of this paper, the existence
and regularity we obtain here of these structures allows to quantitatively describe
the passage of an orbit close to infinity, which is a first step to obtain diffusion
or oscillatory orbits along them. It should be noted that in the (n + 1)-body
problem it is not possible to find diffusion orbits along the cylinders we obtain in this
paper because each torus lies in a different level of the full angular momentum (see
Remark 3.4). However, this is not an obstacle to obtain oscillatory orbits. Diffusion
would only be possible jumping among different cylinders. This obstruction is not
present in the restricted planar (n + 1)-body problem, where these tori are also
present (see Section 3.1 for the precise definition of the restricted planar (n + 1)-
body problem we consider in this paper). An interesting question is if in the latter
case it is possible to find Arnold diffusion or oscillatory orbits along the parabolic
cylinders (when n = 2 this was done in [ ] and | ], resp., for small
values of the eccentricity).

The proof of this result follows from a general statement on parabolic tori, which
can be applied to the restricted planar and full (n + 1)-body problem, in Section 3.
More concretely, the statement applies to analytic maps of the form

x z+ O(]|(z,y)|™)
Folyl= | y+od@nl™) |
0 0 +w+O(|(z, )| )

or analogous vector fields, where N, L > 1 are natural numbers, (z,y) belong to a
neighborhood of the origin in R x R™, § € T¢, the d-dimensional torus, and w € R¢
satisfies a Diophantine condition (condition (1), in the case of maps, (2), for flows).
We will assume that the map depends analytically on parameters. For this kind
of maps, the set 7 = { = 0, y = 0} is an invariant d-dimensional torus, and
JiT : 0 — 0 +wis arigid rotation. We will give conditions on the terms of degree N
and L of f under which 7 possesses “whiskers”, that is, (1 + d)-dimensional stable
and unstable manifolds which will parameterize the stable and unstable sets of T
in certain regions with 7 at their boundary. See (3) for the case of maps and (11),
for flows, for the whole set of hypotheses. With respect to their regularity, the
stable and unstable manifolds will be analytic in some complex domain, with the
invariant torus at its boundary, and C™ at 7.

The proof of the existence of the stable invariant manifold is performed in two

steps and is based on the parameterization method. See |

, ] an the references therein for the parameterization method See
also [ , | for the application of the parameter-
ization method in the case of parabolic fixed points.

The first step is presented as an a posteriori result in Theorem 2.1, that is,
assuming that one can find a “close to invariant” manifold satisfying certain hy-
potheses, then there is a true invariant manifold nearby. It is worth to remark that
this a posteriori result does not need the frequency of the rotation on the torus to
be Diophantine if some lowest order terms do not depend on 6, as it is the case
in many applications. Under these last assumptions, the existence of a “close to
invariant” manifold implies the existence of a true manifold even if the frequency
vector is resonant.
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The second step is devoted to the computation of a “close to invariant” manifold,
in Theorem 2.3. This approximation of the invariant manifold is a polynomial in a
one-dimensional variable with coefficients depending on 6. Of course, there is quite
a lot of freedom in the choice of the coefficients. The Diophantine condition on w
is used at this point, where a finite number or small divisor equations appear. It
should be noted that if w is resonant but the cohomological equations can be solved
up to a given order, then an approximation of the invariant manifold can be found
to that order. If this order is large enough, the a posteriori Theorem 2.1 applies
and a true manifold is obtained. However, the degree of regularity of this manifold
at the torus will be finite.

The computation of this approximation is simpler if a preliminary normal form
procedure is applied to the original map. Under the standing hypotheses, the map
can be assumed to have a much simpler form. However, we have chosen to deal with
the original map for two reasons. The first one concerns the size of the domains
of analyticity of the manifolds we obtain. They are essentially those of the map
to which one applies the procedure. Normal form procedures shrink this domain.
The second one is to present the algorithm of the computation of the approximate
manifold in its full generality, in a way that can be implemented numerically in
a given system. The algorithm can be useful in numerical explorations far from
perturbative settings and in computer assisted proofs.

As a consequence of our claims and techniques, we obtain the conjugation of a
class of skew product maps with a parabolic torus with its normal form, extending
some of the results by Takens | ] and Voronin | ] to parabolic tori (see
Corollary 2.7).

The paper is organized as follows. In Section 2 we state the notation and the
main results in this work in both settings, maps and quasiperiodic vector fields.
In Section 3 we apply our theory to the restricted and full planar (n + 1)-body
problem. Next, in Sections 4 and 5, we provide the proofs of our results for general
maps and quasiperiodic vector fields, respectively.

2. STATEMENT AND MAIN RESULTS

This section is devoted to enunciate properly the results in this work about the
existence of invariant manifold of normally parabolic invariant tori in a very general
setting. For the sake of completeness we deal with two scenarios: analytic maps in
Section 2.2 and analytic quasiperiodic differential equations in Section 2.3.

The results we are interested in can be split into two categories: the first one
is the so-called a posteriori results which, assuming good enough approximation of
the invariant object (in our case an invariant parabolic manifold) and certain non-
degeneracy conditions, provide a true invariant object close to the approximated
one, the second one deals with the obtaining of computable algorithms to find the
mentioned approximation.

Besides the existence of the invariant manifold, we are also interested in its
regularity with respect to both space variables and parameters. As it is usual in the
parabolic case, at the invariant object, we cannot guarantee analyticity generically.
However, we can prove analyticity on open “sectors” having the invariant object as
a vertex.

2.1. Notation. In this short section we present some common notation to both
settings: maps and flows.
First we introduce the sets we work with and the definition of Diophantine vector:

e Open ball: we represent by B, the open ball of center 0 and radius p. From
the context it will be clear in which space is contained.
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e Complex strip: for a given ¢ > 0, we introduce

Hy ={z€eC| [Imz| <o}
e Real and complex d-torus: the real torus is T¢ = (R/Z)%. Given o > 0 the

complex torus is
T = {0 = (61,...,04) € (C/Z)? | [Imb;| < o}.
e Given U € R*, we denote by Uc a complex neighbourhood of U.
e Open complex sector: given 8 > 0 and p > 0 we introduce
S=S(B.p) ={t=re¥*eC | 0<r<p, l¢| < B/2}.

Note that 0 ¢ S(3, p). We will omit the parameters 3, p and o in S and T¢
when they will be clear from the context.
e w e R? is Diophantine if,
(1) in the map context, there exist ¢ > 0 and 7 > d such that,

lw-k—1 =k, forall kez\{0},1€eZ, (1)
(2) in the flow context, there exist ¢ > 0 and 7 > d — 1 such that,
lw- k| = c|k|™T, for all k e Z4\{0}, (2)

where |k| = k1| + - - + |kq| and w - k denotes the scalar product.
Notice that w € R? is Diophantine in the sense of flows if and only if
(wg/wl, e ,wd/wl) is Diophantine in the sense of maps.
Concerning averages we introduce the following definition for maps:
e given U < R such that 0 e U, Ac R? and h: U x T¢ x A — R* we
define the average with respect to 6:

_ 1

h(z,\) = avg (h)(z,\) = ol (T er h(z,0,)db, (z,A)eU x A

and the oscillatory part
h(z,0,)) = h(z,0,)) — h(z,\).
With respect to the flow case, given U < R!*™ such that 0 € U, A < R? and
h:UxT¢xRxA— RF.

e We say that h is quasiperiodic with respect tot if there exist a vector of
frequencies v = (vq,--- ,vg) and a function h : U x T4 x T% x A — R¥
such that

h(z,0,t,\) = h(z,0,vt,\).
We will refer to v as the time frequencies of h.
e We denote the average of h by

_ 1

h(z, \) = avg (h)(z,\) = ] LM h(z,0,6",X)do do’

and the oscillatory part by
h(z,0,t,\) = h(z,0,t,\) — h(z,\).
Finally we introduce the following general notation and conventions.
o Let U c RExT%and V < RF x T4 . If A € A is a parameter, g : U x A — V
and h: V x A > R x T then f = ho g is defined by
F(GA) = Rh(g(¢, A), A).

When dealing with vector fields, sometimes, concerning compositions, ¢ will
be considered as a parameter.
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elet U c RH™ W c R™ and h : U x W — R, For I € Nu {0},
ke (Nu{oh)™,

1
hug(w)z'y® = —= 3L 08 h(0,0, w)z'y", (z,y) e UcR™™ weW,

kY
the corresponding monomial in its expansion around (z,y) = (0,0) using
the standard convention k! = kq!...k,,!.

o Let U c R™*™ W c R™ and h: UxW — Rf. We write h(z, w) = O(|z||")
if and only if h(z,w) = O(|z||') uniformly in w. We also write h = O(||z|').

o If Z = (x,9,0) e RxR™ xT? or Z is a function taking values in R!*™ x T,
we will write Z;, Z,, Zy, the projection over the subspaces generated by the
variables z,y, 6 respectively. Also we will use the notation Z, , = (Z,, Z,)
as well as the analogous notation for any other combination of the variables
(z,y,0). Analogously for functions Z(x,y, 0, 7).

¢ We will omit, to avoid cumbersome notation, the dependence of the func-
tions we will work with on some of the variables when there is no danger
of confusion.

e We also make the convention that if p > ¢, the sum Z?:p is void.

2.2. Results for maps. First we introduce the maps under consideration. Let
U c R x R™ be an open neighborhood of 0 = (0,0) € & and A ¢ RP. We consider
F:UxT4xA— R xR™ x T?, the maps defined by

€ — a(07>\)$N + fN(xvyaaa A) + f2N+1($ay507A)
= y+‘rN71B(03 A)y+gN(I7ya0a)‘) +92N+1(‘Tay707)‘) (3)
04w+ hP(mvyv 97 )‘) + hZPJrl(x,yv 97 )‘)

> o R

i) N, P are integer numbers,
(i) N>2, P>1,
iii)

)

the variables z, y with coefficients depending on (0, ) € T¢ x A. In the same
way, hp is a homogeneous polynomial of degree P in the variables x, y. We
also assume that fx(z,0,6,X) =0, gn(2,0,0,\) =0 and dygn(z,0,0, ) =
07

(v) fon+1 and g=n+1 have order N + 1 (the function and its derivatives with
respect to (z,y) vanish up to order N at (0,0,6,))) and hsp;1 has or-
der P + 1.

It is clear that the set
T:={(0,0,0) € U x T} (4)

is an invariant torus of F, i.e. forany A € A, F(7T%,\) € T, and all its normal direc-
tions are parabolic. In this work we want to study whether this parabolic torus has
an associated invariant manifold. To do so we will use the parameterization method,
see [ ’ ’ ’ ’ ’ ) ]
This method consists in looking for K(x,0,)), R(x,0,) such that K(0,0,)\) =
(0,0,0) e R x R™ x T?, R(0,6,)\) = 0 and satisfying the invariance equation
F(K(x,0,)),\) = K(R(z,0,)), A).

We will restrict ourselves to obtain one dimensional attracting manifolds so that
we will consider K, (z,6,\) = = + O(]z|?) where z is a one dimensional variable.

To obtain one dimensional repelling manifolds we have just to deal with the inverse
map.
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The first claim is an a posteriori result.

Theorem 2.1 (A posteriori result). Let F be a real analytic map having the
form (3) satisfying conditions (i)-(v). Assume that

(1) P> N,

(2) either w is Diophantine or the functions a, B do not depend on 6.

(8) a(X) >0 for Ae A,

(4) ReSpec B(\) > 0 for X € A.
Let Q@ > N and assume that, for some By, po,00 > 0 and Ac < CP, there exist
K< :5(Bo, po) x T x Ac — C1*™ x T2 and RS : S(Bo, po) x T, x Ac - Cx T4,
satisfying

|KS (2,00 —2| < Cla?, K7 (2,00 < Claf?, K5 (2,0,%) = 0] < Clz]
and
RS (2,0,)) =z —aN)z +O0(jz|N 1Y),  Ry(x,0,)\) =0 +w,
with C' > 0, and such that, in the complex domain S(Bo, po) % ng x Ac:
ES = (B5, By, By) i= FoK=—K=oR< = (O(|z|?*"), O(|x|%*Y), O(|x |2+ 1),

(We are implicitly assuming that By, po are small enough so that the analytic ex-
tension of F is well defined on K< (S(Bo,po) X ']I"g[J X A(c). In addition, as it is
proven in Remark 4.6, if Bo, po are small enough, the composition K< o RS is well
defined.)

Then, for any 0 < o < oy, there exist §,p > 0, an open set A, < Ac and a
unique analytic function A,

A:S(B,p) x T x Ap — CH™ x T2, A= (AL A, Ag),
satisfying
Dpy =0(2|%M),  Ag=0(z|?),
such that
Fo(KS+A)=(KS+A)oRS in S(B,p) x T x Af.
The proof of this result is postponed to Section 4.2.

Remark 2.2. For the sake of generality we have considered the case that a and
the matriz B depend on both, angles 8 and parameters A. However, in the celestial
mechanics examples we work with in Section 3, they are constants.

The following theorem is devoted to the computation of an approximation of a
solution of the semiconjugation condition F'o K = K o R when F' is of the form
(3). The solution is certainly not unique. We have chosen a structure for the
terms that appear in the approximation which makes it suitable for the application
of Theorem 2.1. There is a lot of freedom for obtaining the terms of K and R.
This freedom is seen when solving the cohomological equations at each order. Our
main motivation has been to show that such approximation actually exists and is
computable. We refer to the reader to Section 4.3 for the computation algorithm.
Next we state the result.

Theorem 2.3 (A computable approximation). Let F' be a real analytic map of the
form (3) satisfying conditions (i)-(v). Assume also

(1) w is Diophantine,

(2) a(\) # 0 for A e A,

(3) B(\) + ja(N)]Id is invertible for j =2 and A € A.
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Let Ue x T x Ac be a complex domain to which F can be analytically extended.
Then for any j 1 there exist real analytic functions K = (K§])7K§]), Kg])),
RU) = (jo), Ry ) of the form

J J
KW (2,0,0) =2+ Y Ky(Vz Z REN=1(g \)zltN-1, (5)
=2 =1
J
K{(2,0,)) = Z (Maz! + ZKHN L0, NN (6)
1=2 =2
} -1 j=1
K§(2,0,0) = 0 + Z Ky(Na! + 3 KFP=1(0, \al P, (7)
=1 =1
; —a(\)zV 1<j<N-1
RO (2,0,)) = x —a( ; ’
¢ (@ ) {9: —aN)zN + N2Vt =N,

) min{j—1,N—P}
R (2,0,0)=0+w+ > REPTY()altPL (8)
=1

such that BY) = (E,(Uj),El(,-) (J)) = Fo KW — KU) o RU) satisfies
B, = O(af™), B = O(ap ™ a TN, (9)

Notice that, as a consequence, KU — KU~ = O(|z}9).

Concerning the complex domain of these functions, for any o’ < o, there exists

an open set Az < Ac such that the functions b(x\),?l(/\),R““P_l()\) are analytic

on Ai and K'*N=1(9,\) can be analytically extended to T, x Af.

Remark 2.4. Assuming that F is a C"*' map and that for all I,k € N such that
I+ k <7, Fp(0,)) are real analytic with analytic continuation to T¢ x Ac, we
obtain the same result as the one stated in Theorem 2.3 for j < r. In this case the
hypothesis (3) is only needed for j < r.

When F is a C"*' map, the existence of K9 and RY) satisfying (9) is also
guaranteed up to some value j = r* < r. However, we lose reqularity with respect
to 6.

Remark 2.5. In Theorem 2.3 we need not to assume P = N, unlike what happens
in Theorem 2.1. The reason is that our proof of Theorem 2.1 is performed through a
suitable fized point scheme in a space of analytic functions, which is not well defined
if P < N. However, we believe that the same scheme may work in the differentiable
case, which is not included in this paper.

Combining Theorems 2.1 and 2.3 we obtain easily checkable conditions for the
existence of a stable invariant manifold associated to the invariant torus 7% defined
in (4). In Section 4.4 we provide the proof of the next corollary.

Corollary 2.6. Let F be a real analytic map, having the form (3) and satisfying
conditions (i)-(v). Assume that

(1) P>=N,

(2) w is Diophantine,

(8) a(\) >0 for all X € A,

(4) ReSpec B(A\) > 0 for all A € A.
Let U x T? x Ac be the complex set where F' can be analytically extended. Then,
for any o’ < o, there exist A < Ac, B, p > 0 and two real analytic functions

K :S(8,p) x T4 x Al — CH™ x TY,, R:S8(8,p) x T x Al — S(8,p) x T4,
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such that they satisfy the invariance equation F o K — K o R = 0.
In addition, they are of the form

K(2,0,)) = (2,0,0 + O(|z])) + O(|z[*),

R(z,0,)\) = (z —a(\)z +b(\)z*V 71 6 + w). (10)

Concerning regularity at x = 0, the parameterization K is C* on [0, p) x T x A.
Given X\ € A, the local stable invariant set

Wi(\) = {(z,y,0) e U x T? | F*(z,y,0,)) € (B, x T?) n {z > 0}, Vk > 0},

associated to the normally parabolic invariant torus T defined in (4), satisfies

W3(3) = K([0. p) x T4 x {}).

Applying the previous results in the case m = 0 (that is, the map does not
depend on the y-variable) we obtain the following conjugation theorem:

Corollary 2.7 (Conjugation result for maps). Let F' be a real analytic map of the
form (3), with m = 0, that is:

F(x,@,)\) = ('r _a(evA)JjN +f2N+1(x797A)76 +w +h>P($79,A))

being f>=n = fN+[fonN+1, h=p = hp+h=p1 satisfying the corresponding conditions
given (i)-(v). Assume that

(1) P> N,

(2) w is Diophantine,

(8) a(A) > 0 for A e A.
Let U x T x Ac be such that F can be analytically extended to it. Then for any
o' < o there exist 5,p > 0, an open set Az < Ac and a real analytic function
b: Az — C such that the map F' is analytically conjugated to

R(z,0,)\) = (x —a(\)z + b(N)z* V1 0 +w),

on S(B,p) x T, for any X € AL.
In addition the conjugation is C* on [0, p) x T x A.

This conjugation result extends some of the results by Takens | ] and
Voronin [ ] to parabolic tori.

2.3. Results for flows. We consider an autonomous vector field X(x,y,0,t,\)
depending quasiperiodically on time, having the form

T = _a(eat7A)xN + fN(x7ya97t7A) + f2N+l(xay797ta)‘)
y = $N713(97t7 A)y + gN(lZ?,y, eata A) + 92N+1(x’y7 eata A) (11)

0=w+hp(x,y,0,t,\) + hspi1(z,y,0,t,\),

with (z,y) € R*™ @ e T? and A € A. The functions involved in the definition
of the vector field X, i.e. a, B, fn,9n,hp, foN+1,9>N+1, h>p+1 and the numbers
N, P,w, satisfy the same conditions as the ones imposed to the functions involved
in the case of maps in Section 2.2 (see conditions (i)-(v) below (3)). The periodic
and autonomous cases are included as particular cases when d’ = 1 and d' =
0 respectively. We recall that d' is the number of frequencies associated to the
quasiperiodicity dependence with respect to ¢t. See Section 2.1.

As in the map case, the torus 7¢ = {0} x {0} x T¢ is an invariant object such
that all its normal directions are parabolic. Again, we look for invariant manifolds
associated to it by means of the parameterization method. We emphasize that, in
the flow case, we look for K(x,0,t,A) and a vector field Y (x,t, 6, ) such that they
satisfy the invariance condition

X(K(x,0,t,\),t, \)—DK(x,0,t, \)Y (x,t,0,\)—0; K (x,0,t, \) = 0, D = 0(5.9)-

)
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The following a posteriori result is proven in Section 5.2.

Theorem 2.8 (A posteriori result). Let X be a real analytic vector field, having
the form (11) and satisfying conditions (i)-(v).
Let v e RY be the time frequencies (see Section 2.1) of X. If X is an autonomous

vector field, d' = 0. Assume that

(1) P> N,

(2) either (w,v) = (w1, - ,wq, V1, ,Va) is Diophantine or the functions a, B

depend neither on 6 nor on t.
(8) a(X) >0 for Ae A,
(4) ReSpec B(\) > 0 for X € A.

Let Q = N and assume that, for some By, pg,00 > 0 and Ac < CP, there exist
K< :5(Bo, po) x T xHy, xAc — CHH™x T and Y'S : S(Bo, po) x T xHyy x Ac —
Cx Tgo depending quasiperiodically on t with the same frequencies as X, satisfying
|K§(x797t’)‘) _'r| < C|x|N’ HKyg(xvovta /\)H <C|JJ|2, ||K9$($797ta/\)—9|| < C|$|,
YS(2,0,t,)) = 2 —az™ + OV, Y5 (2,0,t,0) =w

for some constant C' and such that in the complex domain S(Bo, po) x TE x H, x Ac,
they satisfy

ES:= XoKS—DKSYS—§,K<S = (O(|z]|%*N), 0(|z|9*t ), O0(|z|9 TN 1)), (12)

Then, for any o < oy, there exist 3,p > 0, an open set Az © Ac and a unique
analytic function A

A:S(B,p) x T x H, x Al — CH™ x T¢, A= (Ag, Ay, Ag),

satisfying
Dpy = O(|2[h),  Ag=0O(|z]?)
and
Xo(KS+A)— (DEKS+A)YS—0,(KS+A) =0, in S(B, p) x T x Hy x Al

Writing K = K< + A the infinitesimal invariance equation is equivalent to
@(t7 S? K(xﬂ 0’ S’ A)? A) = K(,l/)(t; S’ x’ 0’ A)’ t’ )\)

with ®(t;s,2,y,0,\) and ¥(t; s,x,0,\) being the flows of X and Y'S respectively.
Finally, if the vector field X is autonomous, that is d' = 0, and the approrimated
parameterization K< does not depend on t, then A is also independent of t.

As we did for the case of real analytic maps, we provide an effective algorithm to
compute an approximation K< and a vector field Y'S satisfying (12). The following
result gives the form of these functions. In addition, an algorithm to compute them
is provided in Section 5.3.

Theorem 2.9 (A computable approximation). Let X be a real analytic vector
field of the form (11) satisfying conditions (i)-(v), with analytic continuation to
Ue % Tg x H, x Ac for some o > 0. Assume in addition that

(1) (w,v) is Diophantine,

(2) a(A) > 0 for A€ A,

(3) B(\) + ja(M\)Id is invertible for j =2 and A € A.

Let v € RY be the time frequencies.' Then, for any j = 1 there exist a real
analytic function K9 = (Kg(cj),Kg(f),Ké])), and a real analytic vector field Y9 =
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(Yx(j), G(j)), depending quasiperiodically on t with frequency v, of the form

J J
KW (2,0,6,0) =x + Y. Kool + Y KEN 10, 0)2! N1, (13)
=2 =1
. J —1 J ~
K@ (2,0,t,0) = > Kot + Y KN =H0,4)2 N, (14)
1=2 1=2
A izl i-1
K (2,0,6.0) =0+ Y. Kozl + > Ky P10, t)a'+771, (15)
=1 =1
, —a(\)zN 1<j<N-1
YO (.0.8,3) = 4 SIS ’ 16
= ) {—a()\)xN +b(N)x2N "1 >N, (16)
) min{j—1,N—P}
Yo (2,060 =w+ >, VP O)at (17)

=1
such that EY) = (E;E;j),El(,j),Eéj))T =X o KYW - DKUY — 3, KU satisfies
EY) = O(eP*™), B = (O(laf 1), 02l ). (18)

Notice that, as a consequence, KU) — KU1 = O(|z) and YU) does not depend
on (6,t).

Concerning the complex domain, for any 0 < o' < o there exists an open set
A < Ac such that for any o’ < o, all the functions can be analytically extended to
either AL or T¢, x Hyr x AL.

In addition, when the vector field X is autonomous, we can choose K9 inde-
pendent on t.

Remark 2.10. Assuming that X is a C™+! vector field of the form (11) and that for
I,k eN such that I +k < r, X;5(0,t,\) are real analytic with analytic continuation
to Tg x H, x Ac for some o > 0 the same result as the one stated in the previous
theorem can be proven.

Remark 2.11. We can consider (11) as an autonomous equation by adding new
d angles (p1, - ,pa) and the corresponding equations ¢; = v;, 1 < j < d'.
This means to deal with the frequency vector (w,v). However we maintain 6 and t
separate to find formulas directly applicable to the examples.

The existence of a parabolic stable manifold for a vector field having the form (11)
is a direct application of the previous results.

Corollary 2.12. Let X be a real analytic vector field, depending quasiperiodically
in time, having the form (11) and satisfying conditions (i)-(v). Let v € RY be the
time frequency vector. Assume that

(1) P> N,

(2) (w,v) is Diophantine,

(3) a(A) > 0 for Ae A,

(4) ReSpec B(\) > 0 for X € A.
Let Uc % Tg x H, x Ac be the complex set where X can be analytically extended.
Then, for any o' < o, there exist an open set A, < Ac, B,p > 0 and two real
analytic functions such that

K :S(8,p) x T x Hyr x Ap — CH™ x T4, Y : S(B,p) x Az — S(B, p) x T,

and they satisfy the invariance equation X(K,t,\) — DK -Y — 0;K = 0, with
D = 059. In the autonomous case, both K and'Y are independent of t.
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Moreover:
K(z,0,t,\) = (2,0,0 + O(|z])) + O(|z*), Y (z,A) = (=a(\)z" +b(\)z*N 1 w).

Concerning the reqularity at x = 0, the parameterization K is C* on [0, p) x
T¢ x R x A.
Let A€ A. The local stable invariant set

Wi(A) ={(z,y,0) e U x T : ®(t;s,2,9,0,\) € (B, x T%) n {z > 0}, Vt > s}

associate to the normally parabolic invariant torus {0} x {0} x T? satisfies Wi(\) =
K([0,0) x T4 x {A}).

The proof of this corollary is completely analogous to the proof of Corollary 2.6.
To finish we present a conjugation result analogous to Corollary 2.7.

Corollary 2.13 (Conjugation result for flows). Let X be a real analytic vector field
of the form (11) and satisfying conditions (i)-(v) with m = 0, that is we impose X
to be as:
X({E, 0,1, )‘) = (_a(aa t, )‘)xN + f>N+1(:L'7 0,1, /\)7 w+ h;p((ﬂ, 0,1, )‘))

being h=p = hp + hxpy1. Assume that

(1) P= N,

(2) (w,v) is Diophantine,

(8) a(\) >0 for e A.
Let Ue x T? x Hy x Ac be such that X can be analytically extended to it. Then for

any o’ < o there exist 3,p > 0, an open set A € Ac and a real analytic function
b: Az — C such that the vector field X is analytically conjugated to

Y (2, \) = (—a(\)z™ +b(\)x* N1 w), (x,\) € S(B,p) x Ai

with the conjugation map defined on S(B, p) x T, x Hyr x Af.
In addition the conjugation is C* on [0, p) x R x A.

3. INVARIANT MANIFOLDS OF INFINITY IN THE PLANAR (n + 1)-BODY PROBLEM

In this section we present two examples from celestial mechanics where it is
possible to apply our results to obtain whiskers of families of Diophantine parabolic
tori. These families lie in cylinders, and the invariant manifolds of the parabolic
tori give rise to the invariant manifolds of these “normally parabolic” cylinders.

3.1. The restricted planar (n +1)-body problem. The restricted (n+ 1)-body
problem models the motion of a massless body under the Newtonian gravitational
attraction of n bodies, the primaries, with masses m;, j = 1,...,n, which evolve
under their mutual gravitational attraction. It can be seen as the limit of the
(n + 1)-body problem when the mass of one the bodies is taken 0. The problem is
planar when the motion of all the bodies is confined in a plane.

Here we assume that the primaries move in a quasiperiodic motion, that is, their
positions in the plane in some inertial reference system are given by ¢;(wt) where

qj:TdﬁRz, j=1...,n.

We will assume that w € R? is Diophantine. Such motions do exist (see Section 3.2).
The functions ¢; are analytic in a complex strip. By the conservation of the linear
momentum, we can assume that

Z m;q;(wt) =0, teR.
j=1
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Let ¢ € R? be the position of the massless body in the current reference sys-
tem. Then, taking the unit of time in which the universal gravitational constant
becomes 1, the restricted planar (n + 1)-body problem is Hamiltonian with Hamil-
tonian function

1
H(qvpa t) = §||p||2 - U(qat)a (q7p) € R2 X RQa

where
my
lg — g;(wt)]”

Ulg:t) = ),

Jj=1

It has 2 + d degrees of freedom.
Taking polar coordinates in the plane, ¢ = re'?, with conjugate momenta p =
ye'? +iGe' /r, the Hamiltonian (we use the same letter to denote it) becomes

1 2
H(0..6.0) = 5 (4 5 ) = Vi)
where

. n m,
V(r,0,t) =U(re® t) =y ——2
2~ gy )|

If we assume that 7 » ¢; and use that miq; + -+ +m,gq, =0,

2?:1 mj 1
T 9 t Z —197«—1 (wt)| = , + O (7“3> 5

where the remainder O(r~2) depends on (r, 6,t), quasiperiodically on t.
Let M = my+---+m,. We consider new variables by setting r = 2/2? (McGehee
coordinates). This change of variables transforms the 2-form dr A dy +df A dG into

—4z73dx A dy + dO A dG.
This means that the equations of motion for the Hamiltonian in the new variables

H(z,0,y,G) = H(2/22,0,y,G) = y*/2 + G*a* /4 + Mz?/2 + O(z9)

are
go_@oH o oH\ o, o . o
“ T2y YT A\ -G BT
Since the term O(x%) is a function of (z,0,t), the equations of motion are
: 1 . M co 1 :
= —Zm?’y, Y= —Zx‘l + O(x9), 0= ti‘L, G = 0(2%). (19)

It is clear from the above equations that, for any (6, Go) € T x R, the set
Too.Go = 1 =0,y =0,0 = 0y,G = Gp} =T
is an invariant torus of the system with frequency vector w.

Proposition 3.1. For each (6y, Go) € TxR, Ty, ¢, s a Diophantine parabolic torus
of H with parabolic unstable and stable invariant manifolds W™* which admit C™
parametrizations

K" :[0,0) x T¢ —» R*,
analytic in a complexr domain of the form S(3,6) x T¢ > (0,6) x T<.
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Proof. Scaling x and y and introducing the new angle o = 6 + Gy, equations (19)
become
1 4 1

= %Y Y= —1x4 + O(a9), & = O0(x9), G = 0(z%). (20)

Notice that, if we disregard the (6, G) variables, y = +x are characteristic directions
of the system above. For this reason, we consider new variables v = (z — y)/2,
v = (z +y)/2. Now, defining z = (0, G), for any zy = (0p, Gp) € T x R, we consider
the new variables Z = (%,G) = (2 — 20)/(u +v). In order to apply Theorem 2.8, we
also introduce ¢ = wt. Summarizing, in these new variables, system (20) becomes

0= i(u +0)° (u+ O((u +v)))

0= —i(u +0)? (v + O((u+v)?)),

f= Lt 00— w2+ O(u+)°),

6 =w,

which satisfies the hypotheses of Corollary 2.12 with z = v, y = (u, 2), a = 1/4,
N =4, B a diagonal matrix with 1/4 as diagonal elements and any P. (]

3.2. The planar (n + 1)-body problem. Consider n + 1 point masses, m;,
i = 0,...,n, evolving in the plane under their mutual Newtonian gravitational
attraction. Let ¢; € R?, i = 0,...,n, be their coordinates in an inertial frame of
reference. Taking the unit of time in which the universal gravitational constant
becomes 1, the equations of motion are

. = q; — q; ou .
m;g; = Z mimj———— B = —(q0;---,qn), i=0,...,n, (21)
. . ] (2

Py laj —al® g
where o
U(go,---,qn) = Z %
0<i<j<gn 17 v
Introducing the momenta p; = m;¢;, i = 0,...,n, and the kinetic energy
T( Syl
POs -, Pn) = Z;) S o

system (21) is Hamiltonian with 2(n + 1) degrees of freedom and Hamiltonian
function H(q,p) = T'(p) — U(q), that is, (21) becomes

. oH . o0H — 0

ql_apia bi = aqz7 t=Y,...,N.

The (n + 1)-body problem has several well known first integrals besides the en-
ergy: the total linear momentum, pg + - -+ + p,, and the total angular momentum,
det(qo,po)+- - - +det(qn, pn). Here it will be convenient to reduce the linear momen-
tum. To do so, we consider the Jacobi coordinates, (¢,p). This set of coordinates
is defined as follows: the position of the j-th body is measured with respect to the
center of mass of the bodies 0 to j — 1. Since they are a linear combination of the
original variables, the momenta are also changed through a linear map. The new
coordinates satisfy

4o = qo

. 1 .
G=%=35 D omuean,  j=1,...,n,
J oge<i—1
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where M; = Eﬂ:é my, 7 = 1, with conjugate momenta

~ m; .
p]:pJ+Mj Z De, ]:0,...,TL—1,
I+l ii1<esn
Dn = Dn-
Once the transformation of the momenta is found, the inverse of the change is
determined?. It is given by

Now we make the reduction of the total linear momentum. In the new variables,
this first integral is pg, which implies that the Hamiltonian does not depend on ¢p.
We can assume pg = 0. Then, it is easy to check that?, in the new variables, the
Hamiltonian becomes

. I - 1 ~ .
H(Qla"'aqn7pl7"'7pn): Z 27||ij2_U(QI77Qn)a (22)

1<jsn “H

where 1/p; = 1/M; + 1/m; and

mom; mgm;

+ .
" . mye 3 - me 5
1<5<n ||G5 + Xicrgj1 JV[quEH 1<k<jsn |5 + Dp<o<jo1 T 0 qu

It has 2n-degrees of freedom.
In the following discussion it will be convenient to consider polar coordinates

in the plane for each of the bodies. Let (r;,0;) be defined by ¢; = rje'%, j =
1,...,n, (identifying R? with the complex plane in the usual way). Their conjugate
momenta, (y;,G;), are given by p; = y;e'% + i%ewi and satisfy
G2
=12 2
|pj| =y; + Tg
J

In these coordinates, denoting r = (r1,...,7,) and, analogously, 0, y, G, the Hamil-

tonian H in (22) becomes

A L G>
H(r,0,y,G) = )] o (yi + T;) —V(r,0),
? J

Jj=1

where
V(r,0) =U(r1e%, ... rpet)
mom;

1<j<n

0, _me .6
rjeili +21$Kj71 e’

mpm;
+ J

1<k<j<n ‘Tjew" + Dhcoajo1 T Tee 0 — rpeifs

ndeed, the linear change of variables (4,p) = (Ag, Bp) is symplectic if and only if AT B = Id.
2The kinetic energy part of the Hamiltonian, in the new variables, is

1~ 1. _ 1. 1. -
T(B™'p) = ipT(B WTMB 'p = EpTAMATp,

where M = diag (1/mo,...,1/my). When pg = 0, the above expression is diagonal.
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= Vo(r,0) + Vl(f,é) where (f,é)

We split this potential as follows, V(r,6)

(7‘1, s 7rn—1701a KRN 971—1) and
momMmay
V()(T,Q) = " e )
10, 4 7
Tnefn + 3 ren_1 e
mgmny
* i0 m i0 0|
Lsksn—1 M€ + X cpen g Tr g Tee"" — rpettn
~ A momj
V(7. 0) = - —
1<j<n—1 ‘rjel i +le£<j71 —Meilrgel ¢

mgm;

+

1<k<jgn—1

We emphasize that V; does not depend on the variables (7,,6,) (that is, does not

. i9j . mye 0 _ 0y
rje +2kg@71 Ty Tee TLE

depend on the last body).
We will assume that we are in a region of the phase space where 7, » r;, while

r; =0(1), s =1,...,n—1. Under this assumption, using that

1 1 0=k
— = — 12 12 ZC[Z ZCkZZZCngZZ,
1=z Q-2 / 20 k=0 £,k20
where ¢y =1 and ¢; = 1/2, and using the definition of M, we have that
mom
Vo(r,6) = —
My T oi(00—
i MMMy ‘
1<k<n—1Tn |1+ Xpcrcn1 IVZL:l :ﬁ e!(0e=0n) — %el(
_ma M, momy my e (ei(eﬁen) +67¢(aﬁen))
Th 2 <o Mg 72
B % Z - ( Z A;ne Lﬁ (ei(e,z—en) + e—z‘(@—%))
1<k<n—1 k<ben—1 LT
_Q; (ez’(ek—an) " e—i(%—%))) +0 <13>
r2 T
mp M, 1
_m, n+0<3>.
Tn r3

Since we will be interested in the behaviour of the system around r, = oo we

introduce the McGehee coordinates

'm = —& .
3

The canonical form Z?:1(drj A dyj + df; A dG;) becomes

4
— dxn A dyy +dOn A dG, (23)

nz:l(d’l"j A dyj + dﬁj AN dG]) —

j=1 n

that is, defining the potential
U(F, 20, 0,0,) = VI(7,2/22,0,0,),

0,,—1), and the Hamiltonian
2

~ | G« A
H(fvxnaaagﬁG) = H(f,Q/.’L‘i,H,y, Z T ( 7“2]> _u(’ﬁwxnveven))
j=1 J

where (f,é) =(r1y .y Tpn1,01,...,
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the equations of motion are

Lo G o
]_6yj’ yj_ aTj, j_an, 7 6t9j’
o TR (OHN M e OH
" T oy T T Ton, ) T aG, Tt ey
where j =1,...,n— 1.
Writing U = Uy + Uy, where
A A M
Uo (7,20, 0,0,) = Vo(7,2/22,0,0,) = "2 “an + 0 (2)),
Uy (#,0) = Vi(#,0),
then R R . R
H(f7xna970nay7G) = Ho(ﬁiﬂnﬁ,@n,y’G) + ’Hl(f,@,g),G), (24>

where (§,G) = (y1,---,Yn-1,G1,...,Gn—1) and

R 1 42 R
HO(faxnveagnayaG) = 7 (yz + & n) _UO(f7xn3030n)a

20hn 4
n—1 1 G2 (25)
7‘[1(7%0:2% G) = o y2 + J - Z/Il(?ﬁ,é)
S\
Once this notation has been introduced, the equations of motion are:
. O0H My . 0H My 6
1= oy;  Oy; <A or;  orj +0(zn),
: oH O0Hy - oH 0H1 6
0, = — = L= =
178G, T aG, Ci =%, = a9, Ol
; mi oM 1 3 . Ii oH my My, 4 6
Tn = _Z@ = _%xnyﬂn Yn = 1 (‘(%TL) =TT z, +O(x,),
0”1 4 . OH Uy, - . 6
en - aGn - 4Mn xﬂG”’ Gn - aen - aen (T7xna9a9n) - O(xn)a

where 1 < j <n-—1.

It is clear from the above equations that, for all (62,G%) € T x R, the set
Ago .o = {zn = 0,y, = 0,0, = 0°,G,, = GO} is invariant. The restriction of
the dynamics of the system to Ago go is given by the Hamiltonian H; in (25), of
2(n — 1) degrees of freedom.

Remark 3.2. Notice that Hamiltonian Hi, in view of (24), is precisely a n-body
problem in Jacobi coordinates. As a consequence, if n = 4, the flow on Ago go is not
complete due to the existence of non-collision singularities. However, by Arnold’s
theorem [ 1%, at least for an open set of the masses — those corresponding to
the planetary configuration, that is, with one mass much larger than the rest —,
there are initial conditions in Ago go corresponding to quasiperiodic motions. More
concretely, assuming the conditions on the masses required by Arnold’s theorem,
Hamiltonian Hy has Lagrangian (with respect to the form 25:11 (drj A dy; +db; A
dGj)) analytic invariant tori (which, consequently, have dimension 2(n — 1)) with
flow conjugated to a rigid rotation with Diophantine frequency vector. Féjoz | ]
announced that the same claim holds for any values of the masses, giving Tise to
the existence of KAM tori in regions of the phase space corresponding to motions
close to ellipses of increasingly large semi-axis.

3Although Arnold’s proof is not valid in the spatial case, due to the resonance discovered by
Herman | ], here we deal with the planar case. Another proof of Arnold’s theorem can be
found in | ].
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Next theorem applies to any analytic invariant maximal tori of H; carrying a
Diophantine rotation. Arnold’s theorem ensures that the set of such tori is non-
empty. Nevertheless H; may have other Diophantine invariant tori. For instance,
those around normally elliptic periodic orbits of H;.

Theorem 3.3. Let T be any analytic invariant 2(n — 1)-dimensional torus of H,
with Diophantine frequency vector w® € R2"=V " Then, for any (0°,G%) e T x R,
the set

%O,Go = {(ﬁﬂ«"méﬁn,y,G) | Tn = Yn =0, 0, = 02; Gn = G?u (T,é,@,é) € T}

is a parabolic 2(n — 1)-dimensional invariant torus of H with dynamics conjugated
to a rigid rotation with frequency vector w® and with parabolic stable and unstable
manifolds, W;O’SGO, which depend analytically on (6°,GY). The stable manifold
admits a pammetemzatwn of the form
(u, p,0p,G})
(1 M)A + (’)*( 2)
9(%@,90 G)
0 *
Kgo GY : (Z;) € [O,UO) X T2n71 — 0” -’:O ( ) )(

+ O(u?)

u?)
9(u, 0,05, Gy,  (26)
(mnMn)’l/Azunu + O*(u?) + O(u?)
G(u, ¢,0,G5)
GY + O*(u?) + O(u?)

where O*(u*) denotes a function of order u* independent of 0%, G% and ¢, such
that

‘I)t(Kgo GO (’LL (p)) K@O Go (<I)t(u GH,GO) "2 + wt), t = 0,

n? n?

where ®, is the flow of Hamiltonian H and ®; is the flow of
1
i = —Zu4 +b(602, G2)u”

for some analytic function b(6%,GY).
Furthermore, the set

no

Too = | Tonco

00T
is a parabolic (2n—1)-dimensional invariant torus of H. It has parabolic Lagrangian
invariant stable and unstable manifolds, go = UGOET WGUOSGO The stable mani-

fold has a parameterization I?G% (u, 09, ) = Kgo co (u, @) satisfying
(I)t([?GO (u enagp)) = [}Gg(ét(uaevaO) 590+w0t)7 t=0.
The analogous claim holds for the unstable manifold.
Remark 3.4. From Theorem 3.3, we obtain one parameter families of tori, Gy —
'TGO, which depend analytically on G2, with stable and unstable Lagrangian invari-
ant manifolds. It should be noted that in these families W*Tgo does not intersect
W“'?\'Ggf, if GO # G%/. Indeed, Hamiltonian H has an additional conserved quan-
tity, the total angular momentum, given by G = 37, G;j. But G = Z;:ll Gj is a
conserved quantity of H1, which, since Gn|xn=yn=0 = 0, implies that
_é 0
gli—cg = g\T + Gn
and the same happens on the stable and unstable manifolds of ’?\'Ggl, Hence, the

imwvariant manifolds of different tori in a family lie on different level sets of the
total angular momentum.
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Proof of Theorem 3.3. Since 7T is analytic, invariant and its dynamics is conju-
gated to a rigid rotation of frequency vector w®, it is Lagrangian for ;. Then,
by Weinstein’s theorem, there exist analytic symplectic action-angle coordinates
(6, p) € T2(»=1) x R2»=1) in which T = {p = 0}, or, equivalently, H; in these
variables becomes

Hi(o,p) = W, p) + O(p?).

The change of variables

(s Ty Oy 0y Yy G) > (F(D, 9)s Ty O(, 0)s Oy T(D, 9), Yy G, ), G

is symplectic (preserves the form (23)). We will denote by # the Hamiltonian in
the new variables. Let Hy and H; be

ﬁ0(¢7xn;9nap7yn7Gn):,HO(f(qb )-rnv (¢7 )7 ns
H1(6,p) = Hi(7(,0),0(6,0),5(, ),

We have that H = 7—70 + ’}-71.

§(8,0), yn: G(9, ), Gn),
G(o,p)) =<’ py + O(p).

Lemma 3.5. There exists a canonical change of variables (with respect to the
form (23)) such that in the new variables (which we denote with the same letters
as the old ones) the new Hamiltonian satisfies

oH

¢
Proof. The change of variables is obtained by successive steps of averaging. To do
so, we use generating functions in the following way. Given a function

= 0(p") + O(,?).

2
S(®, 0, Yny Xn, On, Gn) = p + 0,Gp + “an t S(®@, p, Yn, Xn),

Xn
if the equations
0S 0S
d):q)—i_i(q)apﬂl/n?XnL R = p+ ((D7p7yn7Xn)7
op 0P
2 2 0S 4 4 oS
+ 7(¢ap7 yann)7 = ((I) P,yn,Xn), (27)

YV =
X3 T X3 T ox,

n

22 X2 Oy

®n = ona én = Gn,
define a close to the identity map T : (¢, p, n, Yn, On, Gn) — (P, R, X, Vi, O, én),
then T preserves the 2-form

2(n—1)

4
> de; A dp; - — Ao A dyp + df A G, (28)
— 3

Indeed, T preserves Q2 if and only if Q — T*Q = 0. Since Q) —T*Q = do, where

2
0 =¢dp+ R+ — dy, —

n

X3Y dX, + 6, dG, + G, dO,,

one has that o = dS. N .
Now, assume that the Hamiltonian H has a monomial of the form a(¢)x!y o*,
where k = (K1, .., kymn_1)). Taking S as

S(@, PsYn,s Xn) = A((I))X:Ly%pk,
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equations (27) do define a close to the identity map. Indeed, equations (27) become
¢ =+ kA(D) Xyl 0" R=p+VA@)X 0",
= s HIADXIT Y= g A@X
O = Oy, Gy = Gn.
They define a close to the identity map near z,, = y, = 0, p, = 0. Hence,
¢ =P+ FA(P)X, VIR + O jyn,
n = Xn iA(q))XZHYTf_IRk + Oitjtkl+35
0, = O,,
p=R—VA®)X VIR + O i1,
Yn =Yn + iA(¢)X’:.L+2Y7{Rk + Oigjit|k|+35
Gy =G,
where O; ;15 = O(|(R, Xn, Yy) [T/ IM) is symplectic with respect to to €. Ap-
plying this transformation to H, the coefficient of the monomial X’ YJR¥ is
WOVA(D) + a(®).

Since w? is Diophantine, we can choose A such that this monomial does not depend
on ®. Since the dependence on ¢ starts at order at least 3, one can proceed
recursively. O

After the change of variables given by Lemma 3.5, the equations of motion of H
become

_ @ _ 0 6 _ @ _ 12 12
=% = +0(p) + O(zy,), 26 =0(p") + O(zy),
. x3 67'7 1 4 . z3 aﬁ mp My, 4 6
| e el 29
Tn 4 oy, 4Mnxnyna Yn 4 oz, 4 17n+(9(93n), ( )
C0H 1, 0H
0, TR 4unxn s G, = 20, O(z,).

In the following, we will perform some changes of variables to the system (29) in
order to transform it into a system satisfying the hypotheses of Theorem 2.8. In
this way, we will obtain the stable manifold of the tori. In order to obtain the
unstable manifold, first we change the sign of time and then apply the analogous
changes of variables. We start by rescaling the variables x,,, y, and G,, by defining

&= (m,Mp) Y,  §=m. M) u e, G = G

Then, we introduce a = 6,, + ég} and we define
1 1

q=§(9~3+§)7 p=5(T—7).

Then, denoting z = (o, G), equations (29) become

i=—1a+p @+ OWa+p)), b= 1(a+p)P (p+0a+p)),

2=0((qg+p)°p°, p=0((q+p)"? p"),
¢ =w’ +O((q+p)°, p).
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U and, then, a® = 69,
G° = pu;1GY), define 20 = (o', G%) and introduce for ¢ + p > 0 (equivalently, for
Zpn > 0)

Finally, we choose a® and G° (or equivalently, 6° and G°

Z= ! (z—2Y), ﬁz%.
q+p 6(q +p)
After this last change, denoting w = (2, p), equations (29) become
. 1 . .1 .
¢=—1(a+p)’(a+0((a+p)"), p=1a+p)* (p+0(a+p)?), 0
30
o1 .

w=2(q+p)*(a=p)Cw+0((q+p)), ¢=w"+0((q+p)°),

where C is a diagonal matrix with diagonal (6,...,6). This system satisfies the

hypotheses of Corollary 2.12 with A = (a°,G%), N = 4, a(¢,\) = 1/4, B(¢$,\) the
diagonal matrix with diagonal (1/4,6/4,...,6/4) and P = 6. Hence, the invariant
torus {¢ = p = 0, w = 0} has parabolic stable invariant manifolds parametrized
by some embedding K*(u, ¢, A), analytic with respect to (u, ¢, A) in some complex
domain containing (0,d0) x T x {(a®, G}, C* at {u = 0}, with K%(0,¢,\) =
(0,0,0,0), 0.K°(0,4,\) = (0,1,0,0)T. Moreover, taking into account that the
dependence of the (g, p) components of the vector field defined by (30) on (w, ¢, \)
starts at order 6, while N = 4, we have that the parameterization of the stable
manifold has the form
O*(u?) + O(u?
s u+ O*(u?) + O(u? e
(Q7p7wa¢) = K (’UﬂSO) A) = Eo(,32) ( ) I (U, ¢) € [O,UQ) X TQ 1a
o+ O(u)

where O*(u?) denotes a function of order u? independent of ¢ and A. Going back
to the variables (¢, x,, 05, p, yn, Grn) in which (29) is written, we have that

¢+ O(u)
(M M) Au + O* (u?) + O(u®)
0% + O(u?)
O(u8) )
(M M) ™2 i + O*(u?) + O(u®)
GY + O(u?)

where (09, G¥) are parameters. The embedding K¢ satisfies the invariance equation

Wy 0 K*(u,0,0°,G%) = K°(Wy(u,0°,G2), o +w’t,6°,GY), (32)

n?

K*(u,,0,,G) = (31)

where W, is the flow of (29) and W, is the flow of the equation
1
= —ut +b(0, Go)u’,

obtained by applying Theorem 2.9 to (30). Going back to the original variables,
we obtain expression (26).
It only remains to check that, for each G, the parameterization

K« (u,0,,9) = K*(u, 0,0, Gy)
of the stable manifold of ’7A'G% defines a Lagrangian manifold, that is, that the 2-form
) in (28) vanishes identically on %G%' We will check that
Q0uK, 0go K) = Q(0uK, 0, K) = Q0p0 K, 0, K) = Q(0y, K, 0, K) = 0,

where 1 < 4,5 < 2(n —1). We check the equality for (0, K, dgo K), being the
argument for the rest identical.
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First we remark that, since GV is fixed and 60 € T, for any a_ < 1/4 < a, and
any 0 < a < 1, there exists ug > 0 such that for all u € [0,ug) and ¢ > 0,

u
(1+ 3a,udt)l/3 =

1 ~ 1
<0V (u, 02,0 < —
(14 3a;udt)/ B ot 0, Gn) < (14 3a_udt)e/3’

Since UFQ = Q, taking derivatives at (32) and (31), we have that, for all t = 0
|Q(6UK(uv 927 ‘p)v 603K(U7 927 30))|
=10, K (T (u), 05, ¢ + )0, Wy (u, 05, GY), 890 K (T (u), 09, ¢ + w 1))

T 0
<C(auxpt(ua GO)

Elt(u 90 GO)
Hence, by (33), we have that
Q0uK (u, 0y, ), Oy K (u, 0y, ) = lim W0, K (u, 0, 0), 09 K (u, 0, ) = 0.

u

< (u, 0,60 < — L
(u n) (1 + 3a_u3t)l/3

rvno

(33)

rvno

| (uaevaON+|{I\}t(u5027G0)|2+|\I’t(u70naG0)| >

O

4. PROOFS OF THE RESULTS. MAP CASE

Here we prove the results stated in Section 2. We first need to introduce some
technical notation and preliminary considerations. This is done in Section 4.1 below.
With respect to the proofs of results, in Section 4.2 we prove the existence and
regularity results of invariant parabolic manifolds associated to normally parabolic
tori for analytic maps, Theorem 2.1. Then, in Section 4.3, we deal with obtaining
formal (or approximated) manifolds, Theorem 2.3. Finally, in Section 4.4 we prove
Corollary 2.6.

4.1. Notation and the small divisors equation. In the proofs of the main
results, when doing steps of averaging and when solving cohomological equations
we will encounter the so-called small divisors equation. In the setting of maps the
equation we find is

o(0 +w) — ¢(0) = h(0),
with A : T - R* and w € R?. When k = 1 this is a scalar equation but we can
also consider vector or matrix equations choosing ¢ accordingly.

We will find this equation depending on parameters. We are mainly interested
in the analytic case, but this equation can also be considered for differentiable
functions. To be concrete we consider h : T¢ x Ac — CF and we want to find a
solution ¢(0, A) of

w0 +w, ) — (0, \) = h(0, ), (34)

in a suitable domain. We develop h in Fourier series
A) = Z hk()\)e%rik'g, k-0 ="Fk0,+ -+ kq0q4.
kezd
If h has zero average and k-w ¢ Z for all k # 0, equation (34) has a formal solution

i hi(A)
= 2 e (V) = [ — ik F#O

kezd

All coefficients ¢}, are uniquely determined except g which is free.
We quote the well-known result
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Theorem 4.1 (Small divisors lemma). Let h: T x Ac — C* be analytic with zero
average and w Diophantine with T = d (see the notation in Section 2.1).

Then there ezists a unique analytic solution ¢ : T x Ac — CF of (34) with zero
average and

sup  [lp(0,\)[ <C677  sup  [[a(0, )],  0<é <o,
(Q,A)ETg_SXAC (Q,A)ETgXAC

where C' depends on 7 and d but not on 9.

Two analytic soluctions of (34) differ by a function of A. The proof with close
to optimal estimates is due to Russmann | ]. See also de la Llave | ]
and Figueras et al | ] for a proof with explicit and very sharp estimates for
applications in Computer Assisted Proofs. For the proof in presence of parameters
one only has to take into account that

hi(X) = f h(6,\)e= 20 dp
']I‘d

and proceed as in the usual proof.
We will denote by SD(h) the unique solution of equation (34) with zero average.
To finish this introductory section, we set the Banach spaces we will work with.
Given ke N, 8,p,0 > 0 and A¢ a complex extension of A, we introduce for ¢ € R,

Az, 0, A
Xy =<A:8(8,p) x T x Ac — C* | analytic, sup M < o0
(2,0,\)eS xT4 x Ag ||
endowed with the norm
|A(2,0,)]
IAl,= sup q
(2,0,\)eSxT4 x Ac ||

We recall that, as we pointed out in Section 2.1, we omit the parameters 3, p in
S. In addition, from now on we will omit the dependence on A of our notation.

4.2. Existence of a stable manifold. Proof of Theorem 2.1. In this section
we assume that F is analytic in a neighbourhood of the origin having the form (3)
with P = N. The case P > N is also included since hy = 0 fits in our set-
ting. We will prove that, given an approximated parameterization of an invariant
manifold up to some order Q = N, there is a parameterization of a true invari-
ant manifold whose expansion coincides with that of the approximation until order
(O(12]Q), O(|2]2), O(J[@1)).

More concretely, we assume that there exists K< = (K35, K5, K;) and RS =
(RS, Ry) such that

ES:=FoKS - KSoRS (35)
satisfies
ES = (B, By, By) = (0(|2]27Y), O(|2|2*Y), 0|2 @V 1)).

We assume that the domain of K< and RS is S(Bo,po) x T¢ x Ac for some
Bo, po, o’ > 0.

According to the parameterization method, to obtain the invariant manifold and
the other conclusions of Theorem 2.1, we look for A = (A,, Ay, Ap) € Xg41 X
Xg+1 x Xg such that, for some 3, p > 0 and A € Ac a complex extension of A (to
be determined along the proof), we have that:

Fo(KS+A)=(KS+A)oRS, in S(8,p) x T x AL (36)

That is, we slightly modify K while maintaining the same reparametrization R<.
We cannot guarantee that the domain of A is the same as the one for K, however
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we maintain the same width in the complex strip for # and the same parameter set
Ac.

4.2.1. Preliminary reductions. To determine the existence of A, it is convenient to
perform some changes of variables to F' to put it in a more suitable form to deal with
the estimates. These changes are two steps of averaging to kill the dependence on
6 of the coefficients a(0), B(#), one scaling to make @(\) independent of A, a linear
change of the variable y to transform B to a close to diagonal matrix and a rescaling
of the y variables. Since the dependence on A is a local property, we will work with
some Af that will be a small neighborhood of a fixed value A = A\g. However, we
will put no conditions on Ag, apart from being real.

Lemma 4.2. Let F be a map of the form (3) satisfying the conditions (i)-(v) in
Section 2.2 having an analytic extension to Ug x T, N\g € A and 0 < § < 1.
Then, there exists a real analytic change of variables T(x,y,0), depending on ¢,
T :CH™ x T, x Af » CH™ x T, such that F, in the new variables, has the form

T m—xN+fﬁ,(x,y,t9)+f§N+1(x,y,9)
Y —> Yy + xN_lJy +g§s\](£vy79) + 96>N+1(33ay,9) (37)
0 9+w+h‘;\,(x,y,9)+h;N+1(va/79)

with

(1) J = J(X) is close to the Jordan form of B(\o) with arbitrary small terms
off the diagonal.

(2) 3, 9%, h%& are homogeneous polynomials of order N with f3 (z,0,6) = 0,
g?\f(x70’9) =0, %g?v(x,(),@) =0, and f§N+1’ h;NJrl = O(||(x7y)HN+l)

(8) The monomial f]‘i,fl’l(H)a:N_ly of f§ has the form §fn—1.1(0)xN "1y, with
fn—1.1(0) independent of §.

(4) The terms g% (x,y,0) and giNH(x,y,G) behave as

g (@,y,0) = dlyPO(l(z, »)|¥ ),

38
Pn i1 (2,,0) = 67102 NH) + [y O(j|™) + 80 (z, y) V). )

Proof. Let 0 < o’ < 0. A change of the form Ty (z,y,0) = (z + c1(8)2",y,0) with
c1: T4 — C, applied to F preserves the terms of order N of F,, F, and the ones
of order P = N of Fy except the monomial —a(#)z" of F, which becomes

[c1(0) — c1(0 + w) — a(0)]z™.

We kill the oscillating part @ of a by applying the small divisors lemma (Theo-
rem 4.1). We choose ¢; = SD(@), hence the corresponding term becomes —ax™.
In the same way, the change Ty (z,y, 0) = (z,y + Co(0)zN "1y, ) transforms the

term 2V "1 B(0)y of F, to
N Co(0) — C2(0 + w) + B(8)]y

while keeping unchanged the other terms of order N (of Fy, F,) and order P = N
(of Fy). We choose Cy = SD(B) defined on T¢,, so that the mentioned term
becomes 2V 1 By.

To simplify the proof, we make @ independent of the parameter A. For that we
scale the z-variable by T5(z,y,0) = (uz,y,0) with p = (@(A)) " and a = 1/(N—1).
We obtain the new constant @ = 1. We emphasize that, when A € A < R?, a(\) > 0,
therefore, for a suitable complex extension Ai of A, Re (@(\)) > 0 if X € A and
the rescaling is well defined. Note that the change T3 transforms B to [a(\)] !B
which also satisfies that the real part of the spectrum is positive. We denote this
new matrix again by B.
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Next, let D € L(R™,R™) and the change Ty(z,y,0) = (x,Dy,0). The trans-
formed map is

z I_EN+fN(I7Dy39)+f2N+1('T7Dy30)
y |~ | y+2" 'D'BDy+ D 'gn(z,Dy,0) + D 'g=ni1(x, Dy,0)
0 9+W+hN(x7Dya9)+h>N+1($7Dy79)

We choose D as the linear change that transforms B()g) to its Jordan form, J(\o),
with arbitrarily small terms off the diagonal. Therefore, taking Ay as a small
complex neighborhood of \g, J(A) = D71 B(A)D will be close to J(\g).

Finally we make the change T5(z,y,0) = (z,dy, 6). The transformed map is

€ $—$N+fN($75Dya9)+f>N+1(1775Dya9)
y | = | y+2¥Jy+6 "D gn(2,6Dy,0) + 6D gon i1 (2, 6Dy, 6)
0 0+ w+ hp(x,0Dy,0) + h=pi1(x,0Dy, 6)

To finish, recalling that fx(z,0,6) =0, gn(2,0,0) = 0 and dygn(2,0,0) = 0, we
obtain the conclusions for f]‘i,, gjsv. The expression for g‘; 41 follows immediately.
The claimed change of variable is the composition T = Ts0Ty0T30T50Ty. O

Remark 4.3. The first two terms of 96;N+1 in (38) will be controlled by working

in a small sector such that |z| < p and §~1pN+1 is small.

Let us denote by F; the transformed map: F; = T~ ' o F oT. Assume that K<
and RS satisfy the conditions of Theorem 2.1. From
T 'oFoToT 'oKS=T"10(KSoRS+ES),
we write
FioKy = Ky o RS + EY,
where
KS=T"1oKS, Ef=T"'0(KSoRS+ES)—T'0oKSoRS.
Since B = DT YKS o RS)ES + O(||ES|?) we have that the components of
E5 have the same order as the ones of ES. However, the first component of K
is =tz + O(|z)?) instead of x + O(|z|?). For that reason we define K5 (x,0) =
K5 (pz,0) and
R3S (z,0) = ' RS (ux, )
=z —a\pN 2N + O(|z)V ) = 2 — 2N + O(Jz|N )
and we observe that
Fy o K5 (x,0) — K5 o RS (2,0) = Fi o Kf (0, 0) — K 0 R=(2,0) = Ef (i, 0)
which again has the same orders as the ones of ES. Also notice that the y-
component of E; has a factor 6.

We notice that, if F, K<, RS are under the conditions of Theorem 2.1, the same
happens for Fy, K5 and R5. Then if we can find Ay € Xo,1 x Xg41 x Xg such
that

Fy O(I(2g +A2) = (K; +A2)OR§,
defining Ay (z,0) = Ax(u~tx,0), the condition
FoTo(TT' o KS + A (px,0) =T o (T o KS + Ay) o RS (ux, )

would imply that the pair T o (T~! o K< + Ay), RS is a solution of the semiconju-
gation equation F'o K = K o R. The map
A:=To(T 'oKS+A)—KS=DT(T 'oKS)A; +0(|A%)

belongs to Xgi1 x Xg41 x Xg and provides the correction to K< that makes
Fo(KS+A)=(KS+A)oRS.



PARABOLIC TORI 27

This justifies that from now on we assume that F has the form (37).

Remark 4.4. As we pointed out along the proof of Lemma 4.2, the parameter
w=(a(N)~% is well defined if we choose the complex extension of A to be a small
neighborhood of A\g. Moreover, the scaling ux of the independent variable x implies
a change of the parameters 8 and p of the complex sector S(3, p) where the function
A is defined.

To finish this section, we present a result which is a rewording of Lemma 7.1
of | ].
Lemma 4.5. Let R be an analytic map in a neighbourhood of the origin of the
form R(z) =z — az™ + O(|z|N+1) with a > 0. For 0 <n < a, let R, : [0,00) = R
be defined by

s 1
o= —-"

[1+ (a=n)(N —1)sV-1]e’

Ry(s) = o1
Then, for any 0 < n < a, there exists 8,p > 0 such that R maps S(8, p) into itself
and its k-th iterate satisfies

||
[1+ k(e —n)(N = D)fz|¥-1]
Remark 4.6. If a is a real analytic function on A € A, being A relatively compact

and satisfying that a(\) > 0 on A, it can be proven thatl there exists an open set
A © CP such that

|R¥(z)] <R§,(|$|) = zeS(B,p), k=0.

]
[T+ E(la(N)] = n) (N = Dz

|R ()| < Ry(|=]) = zeS(B,p), k=0.

Indeed, to prove this remark, we only need to apply Lemma 4.5 to ﬁ(x) =
p R(px) with p= (a(X))™*.

4.2.2. Invertibility of an auziliary linear operator. Let

1 0 0
M(z,0)={ 0 Id+(KS(z,0)"1'J 0
0 0 Id

We introduce the linear operator
LA =MA — Ao RS
and we rewrite the condition (36) as:
LA=—(FoKS—KSoRS)—(Fo(KS+A)—FoKS—MA).
We introduce the operator £
E(A)=Fo(KS+A)—FoKS—-MA (39)

and we recall the definition of ES = F o KS — KS o RS in (35). To solve the
invariance condition (36), we will deal with the equivalent fixed point equation

A=G(A) = —L7'ES - L7IE(A). (40)

For that we have to study the invertibility of £ and to obtain bounds of |£7!].
We have

(LA)ap = Dsp—Dzpo RS, (LA)y = (1d + (K5 (2,0)" 1 T)A, — Ay o RS

The estimates for £ and £~! will follow from the next lemma applied to each
component of £ working in the appropriate space &} with either J = 0 or J # 0.
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Lemma 4.7. Let ¢ > N 22, m > 1,a > 0, w € RY, R : S(Bo,po) x T, x
& — S(Bo,po) x T, of the form R(z,0) = (Ry(z,0),0 + w) with Ry(z,0) =
z—az™ +O(|z|N 1) uniformly in (0, A) and £ : S(Bo, po) x T, x Af. — C satisfying
|k(z,0) — x| < C|z|* for some constant C.
Let B : A = L(R™,R™) be real analytic such that either Re Spec (B) > 0 or
B =0 and L: X, — X, be the operator defined by

LA = (Id++x""'B)A - AoR.

Then,

(1) L is a bounded operator and |L| < 2+ C'pN~=1 for some C' > 0.

(2) If B is close enough to a diagonal matriz, then given 0 < n < a there
exist B,p > 0 such that L has a right inverse S : Xy n—1 — & acting on
functions with domain S(B, p) x Ter x Ag, and

1 N-1
X ;7 + p .
|51 @—mq
Proof. (1) follows directly from the definition of L. To prove (2) we first note that
an expression for S is given by
o e)
SH =Y [ld+#N"1B] " [ld+ (ko RN 1B] "HoR.

j=0
By Lemma 4.5, the images of the iterates R’ belong to the domain of x. When
B # 0, the eigenvalues of Id + (ko R)N 1B are 1 + (ko RY)N !y with u € Spec B.
The quantity (ko R7)N~! belongs to x(S(8,p)) < S(B, p') with 8’ = 8+ O(p) and
o =p+ O(p?). Since Rep > 0 and B is as close as we need to a diagonal matrix,
for all v € R™, |[Id + (k o RY)N =1 B]u| > |v| which implies

I[1d + (v 0o RHN='B] ™| < j=0.
Then in both cases, B = 0 and B # 0, under our hypotheses,
|SH (z,0)] Z (R (2,0))| < [Hllgsn—1 Y, Ry (2, 0)]" N
j=0 j=0
|2+ V-1
<|Hllg+n-1 Z

o (1+jla—n)(N - 1)|x|N—1)f¥(ZI+N—1)

o ds
<ol (1 -
a 0 (14 s(a—n)(N = 1)[z[N-1)* @D

* du
< Hlgon ]|V (1 a J
[H g+ N—1]z] + (a—n)]z|N=1 )y (1 + u)eletN-1)

_ 1
Uttty (Jo¥ 4 )

and hence

_ 1
sl < (54 ) Wl
O

4.2.3. Estimates for the operator G in (40). Now we introduce the product space
X=Xy x Xy x X1, ¢ = 2, with the product norm

|G = max {| Kz lg. [ Ky g | Kollg—1},
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and we denote by qu (0,7) the centered at the origin closed ball of radius r in X*.
Consider £(A) defined in (39) as an operator acting on A and let &,;,&, and &
be its components. Notice that this operator depends, among other things, on the
scaling parameter §. Henceforth C' will denote a generic constant.

Lemma 4.8. Let r > 0. Given &,6 > 0 there exist p > 0 small and C > 0
such that the Lipschitz constants of the operators £;,E, : Engl(O,T) — Xo+n~ and

Ep :EgH(O,r) — Xg4+n-1 are bounded by

Lip&, < N(1+=2)+C(p+4), Lip& <Cps~*,  Lip& < Cp.
Proof. We take A, A e Engl(O,T). Since |Ag(z,0)| < |x|Q+1ﬂA||Q+1 and analo-
gous bounds for the other components of A and the ones of A, if p is small, all

compositions involved in (39) make sense.
We decompose

(EA)—EQR),, =20, + 720, + 7 (E(A)—EA)), =25+ 73

Y2
with
Zr = —(KS+ AN + (KS +
7} =R (BS+A) = fR(ES+R),  Z} = [y (KBS +A) = iy 1 (KS +A),
A)) = (K5 + A)NLI(KS +A)
A) = gy (ES + A), ZS = 96>N+1(K< +A) - ggN+1(K<
A) = hy(KS+A), Z2=hly(KS+A)—hdy, (KS

1
22 = =N [ [+ s s - Bo]" (AL - By ds
0
and, since |[KS 4+ A, +5(Ay —A,)| < |2|(14Cy p+Cap@r) with Cy, Cy independent
of 6,
N-1 x
|Z] < N[l2|(1+ Cp)] " A0 = Agflgualz]9*!
SN+ 2)|As = Agflgrala] @

if p < &/C. Concerning Z2,

1
Z2 = f [02 1% (Az — Ay) + 0y f (Ay — Ay) + af (Do — Ag)] ds,
0

where the partial derivatives are evaluated at K< + A + s(A — A). Then
122 <Clal™ |8y = Bullguala| " + Ol 1 Ag — Bgola]?
+ (1R @Oz + 02 ™)] - 1Ay = Ay llgea 2|9
By Lemma 4.2, the term fﬁ,fl’l(Q) is of order of the rescaling parameter 6. Then,
1Z3lo+n < CplAs — Agllgrr + COJA, = Ayfgr1 + CpllAg = Agllg
if p « 9. We have
Zy =[(K5 + 2V = (KX)M (A - Ay)
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Then

12, SC(N = D)2l V2| As @ 2T T[1Ay — Ay Q]|

+ C(N = D[ ?[As = Agllgala] ¥ J|Clarf?
and hence
1Zyllo+n < Co2l11A N1l Ay = Ayllorr + ColT[1Az — Axllgs1.
The remaining terms are bounded in the same way as for Z2. We obtain
1221+ n: 125l gen—1 < Cp[ Az = Aullgrr + 14y = Ayllger + A9 — Agllg].
125 lq+n < Cpi[plAs — Axllger + Ay = Ayllo+1 + £l 20 — Aollo],
|Z8lQ+n-1 < Co*[[|An = Axllger + |2y — Ayllger + |20 — Apllo]-

However, ZS is a little bit special as we pointed out in Remark 4.3. For it we have
1Z3lg+n < Cpd H[|1Az — Aullgr + 61y — Bylgr1 + 20 — Aole]-
O

The proof of Theorem 2.1 follows immediately from the next lemma and the
fixed point theorem.

Lemma 4.9. There exists v > 0 such that G defined in (40) sends the closed ball
§g+1(0,?") c XQXH into itself and is a contraction on it.

Proof. Let ro = |[L7'E=|5,,. Recall that @ +1 > N. Let e > 0 and > 0 such

that %?fﬁ < 1 and v > 0 such that

N 1+e

—_— < < 1.
Q+11-—n i

We choose r such that rg +vr < r. Let A, Ae §5+1(077’). We apply Lemma 4.8

with these values of r, @ and 7 to estimate each component of L71E(A)—L7E(A).
We have
1

1221 (ED) = ER))allgnr < (MW . pNH)
x [N(1+&)+C(p+0)]]A— 5”5“,

16 E8) - eEDlen < (=057

127 (E(A) = £@))sllg < ((1_177)62 + pN) Cola = KJ%, .

#o0) Cop A = Kl

If p,6 > 0 are small enough and pé—! is small we get

127 (EA) = QNS4 <A = A5, (41)
Finally, since G(0) = L71ES,
1G(A)1&51 S NLTES[S4q + 1£7HEQ) = EO)[S41 <70 +7[A =084,
<ro+ar<m,

which proves that G sends the ball Eg +1(0,7) into itself. Moreover, (41) implies
that G is a contraction. d
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4.3. Formal parabolic manifold. Proof of Theorem 2.3. This section is de-
voted to the computation of a formal approximation of a solution of the semi-
conjugation condition F' o K = K o R when F is of the form (3). The solution
certainly is not unique. We have chosen a structure for the terms which appear in
the approximation. There is a lot of freedom for obtaining the terms of K and R.
This freedom is seen when solving the cohomological equations at each order. Our
main motivation has been to show that such approximation actually exists and is
computable. In this section we admit P > 1.

We prove by induction over j that there exist K¢/} and RY). Assuming the
form (5), (6), (7) for KY, K}(,j)7 Ke(,j) respectively, the form jo)(x,ﬂ) = x4+

7_y REPNTH(0)2 N1 and the form (8) for Ré]), we will prove that at step j we
are able to determine the quantities ?i,y’ Fi)il, IN(gj/N_l, I?g“j_g, RI*N=1(9)
and Rg+P_2 () so that the order condition (9) for the remainder EU) is fullfilled.

Let us first assume that P < N. We deal with the first step of the induction
procedure, j = 1. We write

KM (2,0) =2+ KN @)z,  KD(z,0)=0, K" (x,0) =8,
R (x,0) =2+ RN ()2, RV (2,0) =0 +w,

and we compute B = Fo K1) — K1) o R, From the form (3) of F' we obtain

ED (x,0) =[K(0) = K (0 +w) = RY (0) — a(0)]z™ + O(|z|N*),
EyM (2, 0) =0(|z|N*),

ES) (x,0) =0(|x|7).
To have ESY(2,0) = O(Jz|N+1) we take

R, =-a, RY@) =0, KN =-8D(@@)(0).

For j > 2, assuming the induction hypothesis, we write K7) = KU1 + KU) and

RO = RU-D 4 RO with EU-Y = Fo KU1 — KU1 o RU—1 gatisfying
EU=D = (BI+N=1(g)pd +N=1| Bi+N=1(g)gd+N=1 pI+P=2(g)yi+P=2)

y , .y , ’ 42

+(O(|xP ), O(JaP ), O(jaP 1) 2

and K@, R of the form:

) = F;xj +I}§+N71(9)xj+N71 , RO = ( L P2

Kl i+ IN(jJ’N_l(H):ij’N_l , ,
T T RiJerl(@)xJJerl

, - R 0 J’+P—2> ‘
K;_lxj*l + K§+P72(9)mJ+P*2 0 (6)

The error term at the step j, EV) = Fo KU) — K o RO is decomposed as
EW —pU-1 4 [F o KU _ pogG-1 _ (DF o K(J’*l))lc(j)]
+ (DF o KU=DW) — i) o RU-Y)
_ [K(j) o RU)Y — g OR(j—l)]_

We first compute the terms in Eéjg), that are of order less than O(|z|’*") and the
terms in Eéj) of order less than O(|z|[7*F~1). By (42) we are done with the term
EU=1_ To proceed with the other terms we use Taylor’s theorem, that K U—1) (z) =
(2,0,0 + O(|z])) + O(||?), RY™V(2,0) = & — az™ + O(jz|¥*1), RY ™ = 0 +w +
O(|z|) and that F has the form (3) together with the forms of K@) and R\).
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By Taylor’s theorem we have that
[FoK(j)—FoK(jfl)—(DFoK(J’*l));C(J')] = (O(|zJ ™), 02PN, 0|z 1)).

The computations have to be done carefully, considering the cases P = 1 and P > 2

separately.
Concerning (DF o KU=D)KU),

' _ 1—Na(@)zV 1 fno11(0)zN 1 —dga(0)aN '
(DF o KU=KU) = 0 Id + 2N -1 B(0) 0 KW 48,
0 0 Id

with & = (O(|lz+N), O(jx*N), O(Jz[i+F=1)). Then, since K} = O(|jaitN-1),
(DF o K(j—l))]c(j) — KW =
~Na(@®)zV K + fy 11(0)2¥ 1KY — dpa(0)aV K
N 1BOK +e1
0
with e; = (O(|zP ), O(|z[P+), O(|zP TP~ 1)). In addition, by Taylor’s theorem,
K9 o RU-D = KO (2,0 + w) — az™ 0,k (z) + e
with ex = (O(|z[+Y), O(Jz[+7), O(|z+ 1)),
Concerning n) := —[K¥) o RU) — KU o RU=V], we write it as

1 .
—L (0, K9 - R () + 05 K1) - R)(0)) ds,
where 0, K, 0, K9} are evaluated at RV~ 4 sRU). The computation gives
RJZI’:Jerl(e)ijerl + 69.7?;\’(9 +w)R§+P*2x]’+N+P72
) =~ ' 0 +e3
Ré+P—2(9)xj+P—2

with ez = (O(|z[/*N), O(|z[T+™), O(|zP 1)),

From these computations we obtain

EY)(x,0) =[KIN1(0) — KITN1(0 + w) + (ja — Na(0)) K. — RITN-1(6)

— 0a(O)K) "+ fn-1.1(O)K + EIFNTL(0) |2 N1 4 0| )

— [00KY (0 +w)RYTT ™ 4+ dpa(0) K) 2|0l tNHP 2] (43)
ED (,0) =[Ki*N=1(0) — RI*N=1(0 + w) + (B(6) + jald) K,

+ By NTHO)]2T T 4 O (|2, (44)
B (x,0) =[K37772(0) = K720 + w) — RYTTT2(0) + BT 2(0) a0 TP

+(j — D)aky et N2 4 O(jzp TP, (45)

The condition on the order EU), namely (42) for j, provides the so-called coho-
mological equations in this setting. Next we solve them distinguishing cases when
necessary and trying to keep R as simple as possible, namely, taking the value 0
for RU) if it is possible.

We start with (44). We take

K = —[B+jald B, KN = SD(B-K + EINY).
Then from (45), when P < N

j+P—2  HitP—2  =j+P-2 7 ~Ni+P-2 ~j+P—2
Ry =Ry =FE, , Ky = free, K, = SD(E(9 )
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andif P=N

=i
j+P—2 —i—1 Ey ~j+P—2 P2
R 2=0, Ky =--%—— KPP =SD(E;T 7).

Finally, we deal with (43). For that we introduce the already known functions

D (0) = — 09a(OKy ' + fno11(OK + EIFN1(0)

1/,(1‘)(9) — ‘P(J:)(g)’ - _ . P#1,
e () — 0p KN (0 + w)R)T T2 — 0pa(9) K TP 2(0), P =1,

and we notice that we have to solve
RIHN=1(0) — KI*N=Y(0 +w) + (ja — Na(0)) K, — RIFN=1(0) = v (0).
If j = N we take

RN RN =Y K e, RITNT = SD(Y) - NAKY)

and when j # N,

, —(5) _
RN o0, KL= Y RN =S - NGKD).
(J—Na ( )
In this way we have proven that we can always obtain £) and RU) such that (9)
is satisfied.
It only remains to discuss about the case P > N. In this case we simply notice
that we always can take P = N and hp = 0. Notice that when P > N, we can

take R‘gj) =0 +w forany j e N.

4.4. The stable manifold of the invariant torus. Proof of Corollary 2.6.
The existence of K and R satisfying the invariance condition F o K — K o R =0
and (10) is straightforwardly guaranteed by Theorems 2.1 and 2.3.

To check that K is C* on [0, p) x T¢ x A, we first note that, if h is an analytic
function in the sector S such that h = O(|z|M), then, for t € R n S, we have that
its I-derivative satisfies 0Lh = O(|z|*~!). This property is a direct consequence of
the geometry of the set S and Cauchy’s theorem.

Take j = N and let K) and R™Y) be given by Theorem 2.3. Let Uc x TZ x Ac
be a complex domain to which F' has an analytic extension. Applying Theorem 2.1
we obtain that there exists a sector SV) = S(By,px) and an analytic function
AWN) = O(|z|N*1) defined in S™Y) x T? x A¢ and satisfying F(N) o (K(V) + AN)) —
(KN 4+ A o RY) = 0. Then, we have that for z € R n SJ

aiA(N) _ O(|x|N+1fl)'

As a consequence the parameterization KV) + AW is ¢V on [0, pn) x T¢ x A.
Now we consider 7 > N and, applying again Theorems 2.3 and 2.1 in the same
way as before, we obtain K@) + AU is €7 on [0, p;) % T¢ x A. Here we also use
R=RWM).

As we pointed out in Theorem 2.3, K@) — K(V) = O(|z|N+1). Then, by the
uniqueness of AU we have that AN) = KU — K(N) + AU Therefore K :=
KM + AN = KO + AU is €7 on [0, p;) x T? x A and CV at [0, py) x T x A.
If pv < p;j we are done. Assume then that py > p;. Since a(A) > 0, there exists
k > 0 such that RF([0, pn),0,A) < [0, p;). Then, from the invariance equation, we
have that

K =F%*oKoRF,
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and therefore we can extend the domain of K from [0, p;) x T?x A to [0, pn) x T¢ x A.
We conclude then that for all j, K is C7 in the domain [0, py) x T¢ x A and the
result is proven.

The property W = K([0, p)) can be proven using the same geometric arguments
as the ones in | ]. We omit the proof.

5. PROOF OF THE RESULTS. FLOW CASE

We will deduce the a posteriori result about the parabolic stable manifold (The-
orem 2.8) from the corresponding result for maps by means of an adequate strobo-
scopic map. However, the result about the approximation of the parabolic manifold
(Theorem 2.9) will be proven directly. The reason is to provide an algorithm to com-
pute such approximation avoiding the calculation of the stroboscopic map, which
would involve the Taylor expansions of the flow around the origin.

We begin in Section 5.1 reminding key facts on the small divisors equation we
will encounter in the vector field setting. In Section 5.2 and 5.3 we will prove
Theorems 2.8 and 2.9 respectively.

As we did in Section 4.1 we omit the parameters 3, p in S and the dependence
on A of our notation.

5.1. Small divisors equation. In the setting of differential equations, the small
divisors equation is

6990(97 )‘) W= h’(ea )‘)7 (46>
with b : T x A — R* and w € R If h(0,)\) = Dkezd, k0 hi(N)e? 0 has zero
average and k- w # 0 for all & # 0, equation (46) has a formal solution

: hi(N)
— 2mik-6 _ k
PO = keZZ:d pr(X)e ’ or(A) o2mik - w’ ke # 0.

Here po(A) is free. In this case the analytical result reads as Theorem 4.1, using
the definition of Diophantine vector for vector fields in Section 2.1.

As a consequence, if h : T x H, x Ac — C* is quasiperiodic in ¢ with frequency
vector v € R?, (w,v) € R¥*? is Diophantine and has zero average, then, the
equation

(Gop(8,,X), 0p(0,t, X)) - (w, 1) = h(6,1,A) (47)
has a unique solution with zero average defined on T¢ x H, x Ac and bounded
in T¢, x H,» x Ac for any 0 < o' < 0. Indeed, since h(0,t,\) = h(6,vt,\) with
h: Tifrdl x A¢ — CF¥, equation (47) is equivalent to

(20(8,7,0),0-3(6,7, 1)) - (w, ) = h(6, 7, \). (48)

Now, for the convenience of the reader, we state the vector field version of the small
divisors lemma (analogous to Theorem 4.1).

Theorem 5.1. Let h : T™ x Ac — C* be analytic with zero average and w € R™
Diophantine with 7 = m — 1 (see the notation in Section 2.1).
Then, there exists a unique analytic solution o : T™ x Ac — C* of the equation

6990(07 )‘) Tw = h(97 >‘)
with zero average. Moreover

sup  [p(@, N <C67T  sup [R(6,N)],  0<d<o,
(6,0)€T™_; x Ac (0,M)€TT x Ac

where C depends on T and m but not in 9.
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Applying Theorem 5.1 to equation (48) with frequency vector (6, \) we obtain
a unique solution ¢ : Tfﬁd’ x Ac — CF with zero average. Then, ¢(6,t,)\) =
®(0,vt, \) is the unique solution of equation (47) with zero average. We will denote
it by SD(h).

5.2. Parabolic manifolds for vector fields depending quasiperiodically on
time. The proof of Theorem 2.8 is split into three main parts, the first one contains
preliminary reductions, the second one consists in applying Theorem 2.1 to the
time-1 map obtaining a parabolic stable manifold for this map, finally the third
part concludes the proof of Theorem 2.8 by seeking the parabolic stable manifold
for the vector field X. This strategy is developed in Sections 5.2.1, 5.2.2 and 5.2.3
below. It was also used in | .

From now on we consider a vector field X (z,y,0,t) depending quasiperiodically
on time, having the form given in (11) and assume that all the hypotheses in
Theorem 2.8 hold true. From now on we will assume P = N since hy = 0 satisfies
our conditions.

5.2.1. Preliminary reductions and notation. First, we rewrite the vector field as an
autonomous skew product vector field

& = —a(0, )" + Fn(2,9,0,7) + Fons1(x,9,0,7)

= mN—lﬁ(Gm)y + §N($7y, 0) T) + /g\ZNJrl(xvyvavT) (49)

ST SRR
Il

w + ?I’N(x7y7977—) +’I’;‘2N+1(x7ya9a7—)
v,

where @ : T¢ x T — C, a(0,t) = @(f,vt) and similarly for the other quantities
with hat. 5
We denote by X the new vector field:

X(x,y,eﬂ') — < X(%?Jﬂﬂ') )

14

We also introduce

o < o V<
K$(1'797T) — ( K (Z‘,H,T) >’ Yg(I,G,T) — ( Y (xaeaT) >

T 14

A straightforward computation shows that with this notation, condition (12) on
E< reads

ES = X o K5 = DESYS = (O(j2|#*7), 0(|z|™N), 0(j2|#* Y1), 0),  (50)
where D = 0g0,7.
Next we average to transform a(6, 7) to @ and B(6,7) to B. This is accomplished
with two successive elementary changes of variables:
Ti(z,y,0,7) = (z +c1(8,7)z",y,0,7),
T2($7 Y, 9a T) = ($7 xN_102(07 T)yv 9, T)'
The first one transforms the monomial —a(#,t)z™ of the first component of the
vector field into
[—a+9961 -w—i-(?Tcl-V]xN
while keeps all other monomials of order N invariant. Recall that we have intro-
duced the notation (Section 2.1) of h = h — h to denote the oscillatory part of a
function on a torus. Then, using the small divisors lemma, we can choose ¢; such

that
Ogc1 w+0rc1 v =0
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and hence the monomial becomes —az® .

In an analogous way we choose C5 to transform the monomial 2 -1 (0,7)y of
the second component of the vector field into =¥~ By.

5.2.2. From flows to maps. Let o(t;x,y,0,7) be the solution of the vector field X
and ¥(t; 2,0, 7) the one of the vector field Y'S. We define the maps

F(:'E7 y? 9’ T) = SD(]‘; x’ y’ 97 T)? R(x’ 0’ T) = 1/}(1’ x, 97 T)'

Lemma 5.2. We have that
(1) F is analytic in U x T4 x Ac where Ue is a neighbourhood of (0,0) €
CHm™ (0,7) € Tg“ll and Ac € CP a complex extension of A.
(2) F has the form

v—axN + fx(z,y,0,7) + fonii(z,y,0,7)
y+xN71§?\J/+ .\g/N(xayvgaTl'i_ §>N+1(x7y3037)
0+w+ hN(xa y,977') + hZNJrl(xvy? 077—)
T+UVv

(51)

!
S
|

(8) R has the form
R(z,0,7) = (x —az™ + O(|z|V*1),0 + w, 7 +v).
Proof. Let z = (2,9,0,7), nan = Iy + hsn41 and o(t; 2) := @(t; 2) — v(t) where
v(t) = (z,y,0 +wt, T +vt)T.
Then, denoting by Lip)\z the Lipschitz constant of X in the domain Uc,

||¢(t;z)||<H [ Gt 6 mn6).0)] ds+ [ LipX fots 2] ds

By Gronwall’s lemma we get ||¢(¢; 2)| < C|(=, y)HNetLipX and hence

¢(t;2) = (1) + O (z, y)I™). (52)
On the other hand, by Taylor’s theorem
¢
o(t; 2) = ¢(0; 2) + (0; 2)t + J (t —s)@(s; 2) ds
0
. (53)

=2+ X(2)t + L (t — s)DX (¢(s;2)) X (p(s; 2)) ds.

By (52)
IDX (p(s;2)) < Cl, )V X (e(s;2)) = (0,0,0,0) 7| < C|(z, )|V
and then
0
DX (p(s:2) X (e(s:2)) = DX (els:2) | |+ Ol PN ) =se.

Since the derivatives 69)2' and é’T}Z’ are of order N the first component of e in
the right hand side contains terms of order N. However, since after the averaging
procedure @ depends neither on # nor on ¢, there is not a monomial related to x™v
in the first component of e. Analogously, there is not a monomial related to 2V =1y
in the second component of e.

Taking ¢t =1 in (53) we get the form (51).

The proof of the third item follows exactly in the same way, just taking into
account that ¥'< has no Yy component. O
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Lemma 5.3. Let e(t,z,0,7) 1= o(t; K<(z,0,7)) — K<(¢(t;2,0,7)). We have
e(t,z,0,7) = (O(|2|%*), 0(|z|9N), O(|2|**+ 1, 0)
uniformly fort € [0,1] and (6, 7) € T4+,

Proof. Let v = (x,0, 7). From (50) we have that

Given v = (z,6, 7) fixed, we introduce
X(s) = || TN ey (s, 0)] + 2]V [ley (s, ) + || @V eq (s, )]

On the one hand, by the estimates in the proof of Lemma 5.2 and (52), | K5, (¥(s;v))] <
Klz|, [|¢z,y(s;v)| < klz| and |, (s;v)| < k|z| uniformly in s and v. On the other
hand, | DX (u,y,0,7)| < Ci|ulN~" for (u,y) € B, ¢ C**™ uniform with respect to

o and 6, 7. Using these facts and (50) we have that

t t
(0 <lel @ [ |EEsio|ds + 1ol @ [ E5 (wision)] ds
0 0
t
+al @D [ ES (i) ds
0

t
+ Cila (@0 L |21V lea (s, 0)] + lley (s, v)| + |z |ea (s, v)[] ds

¢ ¢
<C + Cy|x[N ! J Xx(s)ds < C + Cy f x(s) ds,
0 0
where we have used that |z| is small enough. By Gronwall’s lemma, x(t) < Ce®??,
for 0 < ¢ < 1, and from this inequality we obtain the statement. O

Remark 5.4. Note that Lemmas 5.2 and 5.3 provide the hypotheses stated in The-
orem 2.1 for both F' and R.

5.2.3. From maps to flows. Putting t = 1 in Lemma 5.3 we have
F(K=(2,6,7) = K=(R(x,6,7)) = O(ja| ¥+ o] OV || 9T,
Then by Theorem 2.1, there exists A € Xg41 x Xg41 x X such that

P(RS +8) = (K< +8)oR=0,  in S(8,p) x T

for some parameters 3, p,o’.

angles (0, 7). Let

Notice that we have applied Theorem 2.1 with the

K=KS+A and  K%z,0,7) = p(—s; K(¢(s;2,0,7))).

Lemma 5.5. Given z, 0,7 belonging to S(8,p) x Ti,*d' :
(1) Ar(z,0,7) =0, K.(x,0,7) =T.
(2) K* — K= = O(|z|9*, 2|97, 2], 0).
(8) FoK® = K®oR and as a consequence, by the uniqueness statement of
Theorem 2.1, K® = K for all s.



38 INMACULADA BALDOMA, ERNEST FONTICH AND PAU MARTIN

Proof. We start with the first item. Since F-(z,y,0,7) = ¢, (1;2,y,0,7), integrat-
ing equation (49) we obtain F.(x,y,0,7) = 7 + v. In the same way R, (z,0,7) =
7+ v. Also

0=F,o(KS+A)—(KS+A,)oR=KS+A.+v—R,—A,oR
=A;,—A;oR.

From this we have A, = A, o R = A, o R for all j > 0. Since A, = O(]z|971)
and (R7), goes to zero as j — o0 (see Lemma 4.5) we obtain A, = O.
To prove the second item, we decompose

’CS(.’E,G,T) = 90(_55—’?(1/1(53%9,7))) =e; + €2,

where

€1 = SO(_87 I\{'S (1/)(87 Zz, 97 T)))
and

eg = fl Dep(— 5 K=(1(s;.2,0,7)) + EA( (s 2,0,7))) A (s; 2,0, 7)) dE.
By Lemma 5.3 we have
er = K=(¢(=s; ¥(s:2,0,7))) + e(—s, ¥(s;7,6,7))
= K5(x,0,7) + O(|z|9FN, |29+ 2] @+N =1 0).
Since Gppx, 0o Py, Or Pz, Orpy are O(|x|N), Op@r, Oyr, Optpr = 0 and A € Xgy1 X
Xg+1 x Xg x {0}, we have that
ez = O(|Ja| %, ]9, ]9, 0).
To prove the third item, we compute
F(K*(2,0,7)) = ¢(—s + L; K(v(s; 2,0, 7)) = o(—s; F(K(1b(s; 2,0, 7))
= o(=s5 K(R((s;2,0,7))) = p(—s; K(¥(s + 1;2,0,7)))
= p(=s; K(¢(s; R(x,0,7))) = K*(R(x,6,7))
and the result is proven. O

Finally, we define K(x,0,t) = I?z,.g(x,ﬁ,ut) and we prove below that it satis-
fies the semiconjugation condition for flows, thus providing the parameterization
claimed in Theorem 2.8.

Lemma 5.6. We have
(1) @(s; K (x,0,vt)) = K((s;2,0,vt)).
(2) X(K(z,0,t),vt) = DK (x,0,t)Y (x,0,t) + 0: K (z,0,1).
Proof. (1) follows immediately from the definition of £*® and the equality K® = K

For (2) we take derivatives with respect to s on both sides of the equality in (1)
and obtain

X(p(s; K (x,0,01))) =Dy oK (thg.0(s; 2,0, v1), ¥r (55 2, 0, 11))
X Yz,O(wm,G(s; z, 97 Vt)a VI/JT(S; z, 07 Vt))
+ 0, K((s;x,0,vt)) - v

where we have used that ¢, (s;z,0,vt) = v(s +t).
Taking s = 0, keeping the components w1th respect to z,y and 6 and taking into
account the definitions of X,¥, K and that K, (x,0,7) = 7, we finally obtain

X(K(z,0,t),t) = DK(z,0,t)Y (z,0,t) + 0, K(x,0,t).
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Remark 5.7. In the autonomous case, the map F is independent of 7. Then, if
K< does not depend on t, the parameterization K is also independent of t.

5.3. Formal parabolic manifold, vector field case. Proof of Theorem 2.9.
We will not write the dependence of the different objects that appear in this section
with respect to A, but we assume all depend analytically on A.

We prove by induction over j that there exist K) and Y). Assuming the form

(13), (14), (15), (16) and (17) for KV, Kg(ﬂ), Kéj), Y and Ye(j) respectively, we

. . . -] ——Jj—1
will prove that at the step j we are able to determine the quantities K ;’y, Ké ,

I?gEN_l, K32 yi+N=1 and YJ*P7? so that the order condition (18) for the
remainder FU) is fulfilled.
As for maps, the only case we need to take into consideration is P < IV, since the

conclusions for the case P > N can be deduced from the former by taking hy = 0.
We first deal with j = 1. We write

KM (,0,t) =2+ KN (0,62, KU(x,0,t) =0, K (z,0.t) =0,
YO (z,0,t) = YN0, 02", Y (2,0,t) =w,

and we compute E) = X o K — DKWY M — 9, K Recall here that D = 05,0
From the form (11) we obtain

EM(x,0,t) =[—a(0,t) = YN(0,t) — 0 KN (0,8)w — 0. KN (6, )]z + O(|z|N 1),
EM(2,0,0) =0(l2|N*Y), B (,0,1) = O(|z|").

To have E;Scl)(ac,H,t) = O(|z|N*1) we take

Yi-—a ¥N=0  KYN=-SD@).

x

For j > 2, assuming the induction hypothesis, we write K() = KU—1) 4 ()
and YU = YU-1 4 YU) with

=i i ieN— N
() Eixj +[f%+N 1(0,t)$-7+N 1 () Y1?+N_1(9,t)x‘]+N_1
KV = 7[(7’?{%] + K;ilyfl(ovt)xJJerl y Yy J) = <Y,0j+P—2(9’t)xj+P_2>
Ké zi=1 4+ Kg+P_2(9,t)xj+P_2
Using the induction hypothesis
BUTD =(BJPNTH0, )27t BN 0,027 N ), BT (0, 627 ?)
+ (Ol ), O(JaP ), O(jaP 1)
and proceeding as in Section 4.3 we conclude that
B9 (x,0,t) =[ — 09KIN 10, t)w — 0, KN 10, ¢) + (ja — Na(6,1)) K,
o i .
—ij+N 1(9,t) — 09@(9,75)[(; +fN_171(9,t)K;
+E%+N71(9,t)]xj+N71 +O(|l’|j+N)
— [0 KN (0,)Y]YP72(8, 1) + da(0, 1) KT 2(0, 1) |27+ NP2,
ED)(2,0,t) =[ — 09 KIN=1(0, t)w — 0, KIHN1(0, ) + (B(0, ) + jald) K,
+EZ+N71(9,t)]xj+N71 +O(|x|j+N),
EP (,0,t) =[ = 0K 7720, )0 — 0, K5 772(0,0) = Y20, )

+ BIPT2(0,0]07 P2 4 (G — DaKy @t 4 O(jaf Y.
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We notice that the above formulae correspond to the ones in (43), (44) and (45)
for maps substituting R by the vector field Y and the operator K(0 + w) — K(0)
by the corresponding infinitesimal version for flows

00K - w+ 0K

mentioned in Section 5.1. We recall that the notation SD has different meanings
whether it is used in the map or the flow settings, see Sections 4.1 and 5.1 where
the main features of the small divisors equation in these contexts are exposed. As
a consequence, the same formulae given along Section 4.3 apply in this case. We
have indeed:

—=j+N-1

K) = —[B+jald "B, KNI = SD(B-K + BTN
When P < N
YejJrP72 _ ?g+P—2 _ FZ+P—27 E‘l free, IN{g+P72 _ SD(E;#PJ)
and if P = N
- Ej+P_2
j+P=2 _ -1 _ Lo f(j+P—2 D Ej-‘rP—Q
}/9 O, Kg (] — 1)6, 6 N ( )
Defining
. ——1 J— . _
e9(0) = — 0pa(®)Ky  + fv-1,1(0)K; + EITN=1(0)
. (4)(p P#1
1/)(])(9) = v i ( )7 ~N j+P—2 i+ P—2 o
e (0) — 0p KN (0 + w)Yy — dpa(0) K3 0), P=1,
if j = N we take
yirN-t oy g9 KD free,  KIYNTL = SD(0V) — NGKY)

and when j # N,

_ —(4)

vitN-l=0, K, = A
(J—N)a

Moreover all terms depend analytically on A.

KI+N=1 = SD(JY) - NaKY).
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