

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: A study of Kotlin's: conciseness, safety and
interoperability

TITULACIÓ: Grau en Enginyeria Telemàtica

AUTOR: Andreas Luca Crisan

DIRECTOR: Roc Meseguer Pallarès

DATA: 23 d’ octubre del 2019

Títol: A study of Kotlin's: conciseness, safety and interoperability

Autor: Andreas Luca Crisan

Director: Roc Meseguer Pallarès

Data: 23 d’ octubre del 2019

Resum

En l’últim esdeveniment del Google I/O, la conferencia més important del mon
Android, que va tenir lloc al Maig del 2019, es van donar dos anuncis
importants. El primer anunci va ser que hi ha més de 2.5 bilions de dispositius
Android actius. I el segon indicava un canvi en quant al llenguatge preferit per
desenvolupar aplicacions per als dispositius Android. Passa de ser Java, el
llenguatge per defecte des del llançament del sistema operatiu Android al
2008, a ser Kotlin, un nou llenguatge de programació desenvolupat per
JetBrains. Els dos anuncis criden molt l’atenció, perquè canviaria Google el
llenguatge preferit per desenvolupar aplicacions Android quan tenen tants
milions d’usuaris als quals els hi funciona perfectament?

L’objectiu principal d’aquest treball de fi de grau es donar una resposta a
aquest pregunta avaluant Kotlin. Començarem examinant les característiques
que ofereix, que van des de escriure codi concís a revolucionar el món de la
programació asíncrona. També mirarem quin tipus de projectes es podem fer
amb Kotlin, com per exemple aplicacions mòbils, servidores o fins i tot pagines
web.

La primera avaluació serà teòrica, mirant que problemes pràctics resolen les
característiques de Kotlin. Després escollirem una sèrie d’aquestes
característiques i experimentarem amb elles, avaluant si aquestes compleixen
la teoria i proposarem alguna millora a aquestes.

Una vegada familiaritzats amb Kotlin construirem una aplicació Android
sencerament amb Kotlin. L’aplicació es connectarà amb un servidor per agafa
dades de bitllets d’avió per a un determinat numero de persones amb diferents
aeroports de sortida a un mateix aeroport d’arribada. D’aquesta manera
podrem crear grups de viatge i buscar vols per a cadascun.

Per últim, tenint tot el que s’ha après durant el projecte, es validarà tant
teòricament com pràcticament l’afirmació, trobada a la pàgina web oficial de
Kotlin, que descriu Kotlin com a un llenguatge concís, segur i interoperable
amb codi existent.

Title: A study of Kotlin's: conciseness, safety and interoperability

Author: Andreas Luca Crisan

Director: Roc Meseguer Pallarès

Date: October 23rd, 2019

Overview

In the latest Google I/O, Google’s major conference on the Android world, that
took place in May 2019, they stated two huge announcements. The first one is
that there are already more than 2.5 billion active Android devices worldwide.
And the second one is that since the launch of Android in late 2008 the
preferred programming language for developing Android application has been
Java, but this year, 2019, this changed. Kotlin, a new programming language
developed by JetBrains, took its place. Both statements are huge, why would
Google change its preferred programming language for Android development
when they have that impressive number of active devices?

The goal of this project is to answer that question by evaluating Kotlin. We will
first deep dive into its main features which go from writing concise code to
revolutionizing asynchronous programming. We will also look at what can we
build with Kotlin, which goes from mobile applications to servers or browser
applications.

The first approach will be theoretical by researching what problem do Kotlin’s
features solve and how to use them. Then, we will move to select the most
relevant features and we will experiment with them. In the experiment we will
see if what the theory promises is true and at the end of evaluating these
features, we will give some analysis or proposals for improving it.

Once we are more familiar with Kotlin we will build an actual Android application
fully in Kotlin. The application will connect to a server and look for flights for a
given group of people from different departure cities to a single destination.
Therefore, we will have the possibility of creating travel groups of people and
the possibility to look for flights for each of those.

Finally, we will take everything into consideration, and we will validate Kotlin’s
self-claim of being a concise, safe and interoperable language from both the
theoretical and the practical points of view.

INDEX

INTRODUCTION ... 8

Motivation of the project .. 8

Objectives .. 9

Project structure ... 10

CHAPTER 1. KOTLIN ... 11

1.1. What is Kotlin? .. 11

1.2. Compilation targets .. 12
1.2.1. Java bytecode .. 13
1.2.2. JavaScript .. 14
1.2.3. Native ... 16
1.2.4. Multiplatform ... 16

1.3. Conclusion ... 18

CHAPTER 2. WHY KOTLIN? – KOTLIN FEATURES FOR ANDROID APP
DEVELOPMENT ... 20

2.1. Java Interoperability ... 20
2.1.1. Advantages .. 21
2.1.2. Disadvantages ... 22

2.2. Null Safety .. 23

2.3. Kotlin extensions .. 24

2.4. Kotlin standard library .. 25

2.5. Coroutines ... 27

2.6. Anko ... 29

2.7. Multiplatform ... 30

2.8. Conciseness .. 31

2.9. Modern language .. 33

2.10. Tool Friendly .. 34

2.13 Conclusion ... 35

CHAPTER 3. HANDS ON THE KOTLIN FEATURES 36

3.1 Kotlin Multiplatform in action .. 36

3.2 Java interoperability in action ... 38
3.2.1 Calling Kotlin from Java ... 38
3.2.2 Calling Java from Kotlin ... 41

3.3 Asynchronous programming with Kotlin Coroutines ... 44

3.4 Conclusions ... 46

CHAPTER 4. BUILDING AN ANDROID APPLICATION WITH KOTLIN 47

4.1 Application flow .. 48

4.2 Technical considerations ... 50
4.2.1 Retrieving flights information .. 50
4.2.2 Android application architecture ... 51

4.3 Conclusions ... 56

CONCLUSIONS .. 57

Objectives .. 57

Inconveniences ... 58

Personal conclusions ... 58

Future work ... 59

BIBLIOGRAPHY ... 60

8 A study of Kotlin's: conciseness, safety and interoperability.

INTRODUCTION

This paper aims to analyze Kotlin, a new general-purpose programming
language, and evaluate its features and performance in Android application
development. In Kotlin’s official webpage, found in [1], Kotlin, is described as a
programming language that is concise, safe, interoperable and tool-friendly,
consequently in this paper we will focus on verifying these claims.

The Kotlin project started in 2011 but the first version wasn’t release until 2016.
Kotlin is open source and the Kotlin Foundation, composed by JetBrains and
Google, supports its development. Kotlin is fully interoperable with Java, which
means you can call Kotlin code from Java and vice versa. Kotlin has some great
headlines. One year after its first major release, in 2017, it was added to Android
Studio as a new language to build Android applications with. Two years later it
was selected as the default language to build Android applications in Android
Studio, the program in which developers use to write Android applications.

Kotlin, also claims to offer lots of new features and a modern language that made
the Android team change Java which has been in the Android application world
for 10 years. With Kotlin, Android application development is easier, faster and
more robust.

The love that the development community has given to Kotlin and the amount of
active Android devices, 2.5 billion, as stated in the last Google I/O, the major
Android event that took place in May 2019 made me wonder why would they
move from a language they are fluent as far as coding is concerned to a new
language.

Motivation of the project

We are in the mobile-first era. When you launch your business you first think on
attracting clients. This leads to thinking what the most likely device in which
people will see their product is. According to the Guardian1 we spend more than
3 hours and 15 minutes with our smartphones. For that reason, marketers centre
their offered service in mobile application solutions. If a website is built, the first
developed view frame is the one for smartphones and then the one for computer
displays. Speaking about smartphones, Android is the operating system that
owns most of the smartphone market. Therefor if you want your business, game,
solution, whatever to be visible to most of the people, you need an Android
application.

An Android application needs to be coded with a programming language. Almost
every few months a new programming language appears, there are specific
programming languages for a certain platform, or a certain task, but there are
also general-purpose programming languages. Most of this programming

1 The Guardian’s article: https://www.theguardian.com/lifeandstyle/2019/aug/21/cellphone-
screen-time-average-habits

Kotlin for Android applications 9

languages vanish after some months or years. The reasons behind the failure of
this programming languages normally are:

• The lack of documentation or sample code, the learning curve is bad.
• There already exists a better programming language for that purpose.
• The language is not maintained regularly, either because it is too complex,

and it lacks people to work on and that leads in having a not robust
programming language.

Therefore, how could Kotlin, a general-purpose programming language that is not
mainly focused in just the mobile application world, officially take Java’s place in
Android development2?

Objectives

If we had to sum up the main goal of this project, it would be to evaluate in a
theoretical and in a practical way the performance of Kotlin for application
development. In other words, to validate if Kotlin is a safe, concise and
interoperable language.

In order to achieve the global goal, we will set specific objectives that will guide
the process of evaluating Kotlin for application development:

• Get a general overview on what is Kotlin, how is it build, how does it
compile the code and its purposes.

• Research the features that Kotlin offers and analyse them in a theoretical
way to see what problem they solve.

• Be fluent in writing and understanding Kotlin code. Also, being able to have
the researched features in mind when starting a Kotlin project in order to
make it with the best matching features available by doing proofs of
concept with some of the researched features to see their actual benefit in
a practical example.

• Learn about application architectures in general so that our code is more
professional and for getting the feeling on how production applications are
built.

• Build an entire Android application with Kotlin, so that we put everything
learned together in one place, from the Kotlin features to application
architecture. The Android application that we will build will consist in
creating groups of people and finding flights for each member of the group
for a given flight information.

Consequently, to achieving all the specific goals we will get the background of
developing a full application in Kotlin so we will be able to extract a conclusion on
why using Kotlin for Android development is a good idea.

2 Google I/O 2019 it was announced Kotlin as the preferred Android application development
language: https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-
android-app-development/

10 A study of Kotlin's: conciseness, safety and interoperability.

Project structure

This thesis will be divided into four main chapters. The first chapter will introduce
Kotlin, we will look in a general scale what does it offer and what can we build
with Kotlin. Then we will move to how does Kotlin code get compiled as there is
not just one compilation target but more. This chapter is key for understanding
the basics through a behind the scene of the compilation process for each
compilation target. Then, we will end the chapter by giving several arguments on
each compilation target and an explanation on why we will focus on Kotlin for
Android development.

By narrowing the use case of Kotlin, in the second chapter we will research in a
theoretical way the most remarkable features that Kotlin has to offer in Android
development. For each feature an introduction will be given and then it will be
followed by an explanation on what problem does this feature solve. The chapter
will end by giving a series of key concepts that summarize the main benefits of
using Kotlin for Android application development.

Once we have a theorical idea of what Kotlin is, what can we build with it and
which are its main features, in chapter 3 we will get hands on the most relevant
and attracting features for seeing their practical and real benefits. We will start
with a small demonstration of Kotlin code that we will keep growing within each
newly test feature. For each examined feature we will end up concluding some of
their practical benefits and some proposal for enhancing these features, or a list
of things to keep in mind when putting that certain feature into practice.

In the last, we will build a real-world Android application. We will study the most
used Android application architectural patterns and choose the one that best fits
our needs. We will also connect to a production server in order to retrieve real
data and give the application a practical use. The chapter will end with a
conclusion of the issues found during the development of the application and
some proposals for improving the application.

After having gone through all the chapter we will close the thesis by giving an
answer to the initial question, which can also be asked as: why choosing Kotlin
for Android development? And we will also give some recommendations for
starting Android applications with Kotlin.

Kotlin for Android applications 11

CHAPTER 1. KOTLIN

1.1. What is Kotlin?

You may have or may have not heard about Kotlin, but according to
StackOverflow’s annual survey3 it is the second most wanted and loved language
in 2018, which means that if you sneak into a conversation between two android
developers “Kotlin” is a word you will hear for sure.

Kotlin is a new programming language created by the JetBrains team, known by
developing some of the most popular Integrated Development Environments
(IDE), basically the computer programs used to write code, such as IntelliJ IDEA,
Android Studio.... Everything started in 2011 but it was not very known before two
events that made it really popular. The first one had place in 2016 when the first
major version was released. And the second one was on May 2017 at Google’s
I/O, the biggest android event worldwide, where Kotlin was said to be the
preferred Android development language.

Kotlin is popular, it is already being used by big tech companies such as Google,
Netflix, Trello, Amazon or Uber. Kotlin’s growth since the beginning is
exponential, in the last Kotlin conference (KotlinConf) that took place in October
2018 they stated that Kotlin has more than 100 million lines of code in GitHub
(multiplying by four lasts year’s 25 million lines of code), which is a pretty
outstanding stat taking in consideration that it was launched in late 2013, but as
mentioned before only started to be popular in 2016. Even though, until Kotlin 1.3
was released in the middle of 2019, it was not that robust yet.

As you can deduct from the previous comment there are already a lot of Kotlin
conferences and if you attend an Android Conference such as DroidCon most of
the talks, not to say all, will be focused on Kotlin for Android development.

Let’s define what Kotlin is more technically and describe some of its features.
Kotlin is an open sourced, statically typed general-purpose programming
language created not to be cross platform but multiplatform, which basically
means that it’s a programming language meant to be used in everything for
everything. From developing a mobile app or a server to a script and even for
creating domain-specific language (DSL) projects.

As all programming language, Kotlin needs to be compiled or interpreted. As
mentioned before, it’s cross platform so it compiles in different ways depending
on what do we want to use it for. It can be compiled into Java bytecode which will
run in the JVM or it either can be compiled it as a native binary, that can be
executed in an iOS device for example, or it can even be transcompiled into
JavaScript.

Each of the mentioned compilation ways has its purpose, as you can see in
Figure 1.1, a different compilation environment and procedure which will be
described in the next section in more detail.

3 2018 StackOverflow’s annual survey: https://insights.stackoverflow.com/survey/2018

12 A study of Kotlin's: conciseness, safety and interoperability.

Fig. 1.1 Kotlin can be used anywhere

1.2. Compilation targets

Kotlin’s long-term aim is not to be “the next Java” or what people thinks when
they hear about it for the first time: “Yet another cross-platform framework” (such
as: React Native, Flutter, Cordova...). It’s much more than that, as said in the
beginning its aim is to be on every platform, from servers, apps, desktop apps,
executables to web browsers, that means everywhere. This means Kotlin is not
only to be intercompatible with Java, but also with JavaScript and C/C++, see
Figure 1.2.

Fig. 1.2 Common compilation process

In order to go deeper in the compilation process of the different targets we will
analyse the following quote from Kotlin’s official FAQ when asked what does
Kotlin compile down to:

“When targeting the JVM, Kotlin produces Java compatible bytecode. When
targeting JavaScript, Kotlin transpiles to ES5.1 and generates code which is

Kotlin for Android applications 13

compatible with module systems including AMD and CommonJS. When targeting
native, Kotlin will produce platform-specific code (via LLVM).”

1.2.1. Java bytecode

Let’s start with the most popular compilation target: Java bytecode that runs on
the Java Virtual Machine (JVM).

In order to understand how Kotlin code is compiled into Java bytecode we need
to review the basis on how Java code is compiled into Java bytecode, see [3].
The process is straight forward, we have the Java classes of our application with
their variables and methods. Then we call the Java compiler (javac that can be
found in the JDK, Java Development Kit) which for each Java class will create a
class file (javaClassName.class) that contains the Java bytecode, as you can see
in Figure 1.3, usually this .class files are put together in a Java Archive known as
a jar file, it also includes metadata files. Now that we have the jar that contains
the Java bytecode of our application, we just have to execute it in the JVM.

Although the process is simple, we need to keep in mind that this jar that contains
our code has dependencies on the core Java libraries. All Java applications have
these dependencies, so they are put all together in the JVM, so we don’t have to
worry about adding them. In our computer when we install Java, we concretely
install the Java Runtime Environment (JRE), which includes the JVM, Java core
libraries, etc...

Fig. 1.3 Java code compilation process

14 A study of Kotlin's: conciseness, safety and interoperability.

When we compile out Kotlin application into the Java bytecode the process is
very similar. We write our Kotlin classes with its respective variables and methods
and then we call the Kotlin compiler (kotlinc) that produces the .class files
containing Java bytecode that are put together in a jar file. Up until here it’s the
process is identical (except for the fact that now we are using the Kotlin compiler)
as you can see in Figure 1.4. The problem is that unlike the Java runtime
decencies are included in the JVM, currently the Kotlin standard libraries are not
included, so whenever we call the JVM to execute Java bytecode (coming from
the Kotlin compiler) we need to specify this Kotlin dependencies.

Fig. 1.4 Kotlin code compilation process

Therefore, as Kotlin is compiled into Java bytecode it can be used in a large
variety of places where java is the main development language such as Android
apps, Java servers using Spring Boot to build RESTful web services, scripts, or
even for building Serverless Architectures in Amazon Web Services (AWS)
lambdas.

1.2.2. JavaScript

When it comes to Kotlin JavaScript the word used instead of compilation is
transpilation, which is a shortening of transcompilation. Transcompilation is the
art of translating the source code written in a specific programming language into
another programming language.

You can transpile your Kotlin code into JavaScript either by using a build system
such as gradle or maven, command line or even from IntelliJ, which enables you
to debug.

Whenever Kotlin is transpiled into JavaScript the outcome of the operation are
three files. The first file is kotlin.js, this file will always be the same for a certain
Kotlin version, it contains the standard library and the runtime library, the second
file is basically your Kotlin source code transpiled into JavaScript as you can see

Kotlin for Android applications 15

in Figure1.5. This transpilation of your main code is human-readable and you can
understand it easily. And the last file is the one containing metadata.

When building code that interacts with the DOM, the JavaScript files need to be
included in the html code. The first one to be included is the Kotlin standard library
and then your module file.

Fig. 1.5 KotlinJS transpilation process

JavaScript can be used in client-side application and server-side applications.
Due to JavaScript’s growth some modularization was needed to handle injection
and encapsulation. Kotlin JavaScript is can be transpiled with Asynchronous
Module Definition (AMD) for client-side development (which would be similar to
how jQuery is used) and also with CommonJS for server-side development
(which would be similar to how node_modules are used in node servers). But
also, it can be transpiled with Universal Model Definition (UMD), which is the one
by default with the command line compiler, allowing support for both client and
server side. If you are transpiling your code with gradle or maven, you can set up
what module to enable.

A cool feature that IntelliJ offers is the possibility to debug your Kotlin code in
browsers. This is huge as normally when writing JavaScript for client applications
you would be writing a lot of logs in order to debug it. The debugging itself is in
the Kotlin code not in the transpiled JavaScript, so if you don’t understand
JavaScript you don’t have to worry about it.

16 A study of Kotlin's: conciseness, safety and interoperability.

1.2.3. Native

The last but not least is the Kotlin/Native. It compiles Kotlin code into platform
specific binaries that do not have the dependency of a virtual machine (as for the
Java bytecode) or an interpreter (as for JavaScript).

Kotlin/Native is still in beta phase and it was announced in Kotlin 1.3 release. It
currently supports quite some targets: iOS, Android (it obviously supports Java
bytecode, but in this case we are referring to writing a native library that can be
imported in an Android application), MacOS, Windows, Linux (there is an
emphasis on RaspberryPis) and even WebAssembly.

One of the coolest features of Kotlin/Native is interoperability. There is quite some
work here from the Kotlin team as for example in the Apple world, Kotlin/Native
is interoperable with iOS and macOS main programming languages, Swift and
Objective-C, but also with any native library you have (that can be written in C or
C++), and it even gives you a wrapper for accessing platform POSIX for example.
To simplify this concept, Kotlin/Native offers you the possibility to “talk” to your
existing native libraries, and it also offers you the possibility to your actual native
project to “talk” to your new Kotlin code. We’ll see examples about a practical
approach to that in the next section.

Now let’s have a look at how the compilation of your Kotlin code to native works.
Kotlin/Native is basically a project that holds two main items the Kotlin native
standard library and a LLVM backend.

The native standard library would be the equivalent to kotlin.js in the Kotlin
JavaScript world and the runtime standard library in the Java bytecode world.
This is basically a native implementation of the main Kotlin core functionalities.
Currently the native standard library is statically linked to the final compilation
binary.

LLVM is a popular compiler toolchain, it is widely used. It started compiling
C/C++, but nowadays it also compiles Objective-C, Java bytecode, Python, and
a huge list.

The output of the compilation of the Kotlin code can be a Kotlin generic library
klib that contains LLVM bitcode and Kotlin metadata, so that can be reused in
any other Kotlin/Native project, or it can output binaries that are platform specific.
The klibs are not platform specific, so it is a clean way to deliver a Kotlin/Native
library that when integrated in a specific project will end up being compiled into
the desired platform binary.

1.2.4. Multiplatform

As seen in the sections above, Kotlin offers a large broad of targets. Realising
the size of targets, they supported and the possible solutions that Kotlin can offer
to the development community, multiplatform projects appeared.

Kotlin for Android applications 17

Multiplatform is not the same as cross-platform in the way that such frameworks
as Ionic or React are known. Ionic is a popular JavaScript framework used to
build Android and iOS applications, the problem is that when creating an Ionic
application this idea of hybrid code comes into play. An Ionic application when
deployed into a device it does not run the code natively, but in a container that
interprets this JavaScript code. This makes the application slow and over-headed
with unnecessary files, even though this kind of applications are used when you
need a quick and static application. But when it comes to creating a secure,
reliable, fast and responsive application (most cases scenario) you would build a
native application.

Kotlin offers this possibility of writing code once for multiple platforms without
losing this performance, reliability, security and responsiveness. This is possible
due to the fact that Kotlin code it’s either compiled into Java byte code (for Android
and sever applications) and into Native code when needed (for iOS or Windows
applications).

Most business that of Software as a Service (SaaS) that have an Android app,
an iOS app and a website, have business logic repeated in the three platforms.
Kotlin Multiplatform comes to the rescue. As Kotlin offers that large broad of
supported platforms it ended up bringing a solution for the shared business logic.

Kotlin Multiplatform is still in an experimental phase, but it has evolved a lot since
Kotlin 1.2 to Kotlin 1.3. The idea behind it is that the shared logic that will be in all
your platforms can be written in a common place and then each platform includes
that common logic. For example if you have an application that looks for flights,
for sure in all your platforms Android, iOS and web you will have a data object
containing the city from which the airplane will launch, the destination city, the
departure time, the arrival time and the price. Why writing this code three times if
you can write it just once and it will run as native code in each application? This
will bring lots of benefits to your app. One of them is that you will have all your
business logic in one place, which saves a lot of time and puts the accent on
having a clean architecture, as you can see in Figure 1.6.

18 A study of Kotlin's: conciseness, safety and interoperability.

Fig. 1.6 Shared code between platforms

We will deep dive more into Kotlin Multiplatform in the next chapter.

1.3. Conclusion

After having a clearer view on what is Kotlin and seeing what Kotlin can be used
for, in this paper will focus on Kotlin for Android development. The reason behind
this decision is due to several factors. First of all, Kotlin is Android Studio’s
preferred language. Android development has a very big community and almost
everybody is hyped with Kotlin. Building a curriculum on Android development
using Kotlin is a safe bet. The selection of Kotlin as the preferred Android
development language is very recent, is that recent that it was announced during
the time that this paper was written, May 2019.

KotlinJS by its own I personally don’t think it will have a lot of future, the state of
Kotlin in 2019 already shows it is the least used compilation target. There are
already very powerful JavaScript frameworks for web development, such as
Angular, React and many more.

Kotlin/Native, in my honest opinion will have a good future too. After having
investigated I came up with an interesting idea that I will try out in the development
of this project. The idea is to try to get rid of the JNI layer in Android, which I will
cover later in detail. Although the concept behind Kotlin/Native is super interesting
it is still in a beta or experimental phase. This means it has an unstable API that
may lead to huge refactors within the next Kotlin releases.

Kotlin Multiplatform also has a lot of use cases that can succeed, especially for
developing Android and iOS apps. The idea is to have the business logic
developed in just one place and then for each platform do the specifics. The

Kotlin for Android applications 19

problem behind is that this is still in an experimental phase too, so future releases
may lead to big code refactors.

So, during the next chapter we will try to have look at some of the features that
Kotlin offers, but specially looking for the ones that have an effect in the Android
development part.

20 A study of Kotlin's: conciseness, safety and interoperability.

CHAPTER 2. WHY KOTLIN? – KOTLIN FEATURES FOR
ANDROID APP DEVELOPMENT

During this chapter the main goal is to see what features does Kotlin offer to
Android development but also with the question: “Why Kotlin?” in mind.

Actually, the question “Why Kotlin?” comes from their official webpage4 where the
answer they give is because Kotlin is:

• Concise, it drastically reduces the amount of boilerplate code.
• Safe, it avoids entire classes of errors such as null pointer exceptions.
• Interoperability, it leverages existing libraries for the Java Virtual Machine

(JVM), Android and the browser.
• Tool-friendly, you can choose any Java Integrated Development

Environment (IDE) or build from command line.

Therefore, we will go through the most relevant features in a theoretical way,
trying to understand what problem they solve and how they work.

At the end of the chapter we will conclude if the answers to why using Kotlin that
their creators give in their webpage makes sense from the theoretical point of
view.

2.1. Java Interoperability

We will start with the main feature, which is Java interoperability. Most Android
apps are written in Java, which need to run in a JVM. The Android Operating
System does not have a JVM, but it has something similar that makes possible
Android apps to be written in Java. This is called Dalvik Virtual Machine (DVM)
for Android OS lower than 4.4 and Android Runtime (ART) for higher.

Therefor a very smart move from JetBrain’s for Kotlin was to make it interoperable
with Java. But, what does interoperability mean? Interoperability as far as
programming languages are concerned is the possibility of using more than one
programming language in the same project, in this case, Java in Kotlin without
having any problem.

After having studied how Java and Kotlin get compiled and how it runs in the JVM
in Chapter 1 this concept of interoperability between Java and Kotlin is easier to
understand, both Java and Kotlin files are compiled into Java byte code and they
can run together.

4 Kotlin’s official webpage: https://kotlinlang.org/

Kotlin 21

Fig. 2.1 Java and Kotlin interoperability in Android applications

But why would I want to start writing my Android apps in Kotlin if I am fluent in
Java? This is a good question, and in order to answer it during this chapter we
will look at some features that Kotlin offers that would make you want to use it
instead of Java.

Even though Java and Kotlin can perfectly coexist together for Java developers
there are some default issues that they need to keep in mind when starting to
code in Kotlin for the first time (apart from the language itself).

Let’s go through the most notorious differences between the defaults of both
programming languages.

One of the most significant one is that you can forget about semicolons, if you
are used to using semicolons, the first day will be a little annoying, but definitely
after that day you won’t want to go back using semicolons. Another significant
detail is that objects can’t be NULL, that means that for each existing object there
will be an optional one. For example, String is different than String?, the first one
can’t be NULL but the second one yes (we will cover more about this in the next
section). Also, in Kotlin there is no such thing as the static keyword for a method
or property, which is broadly used in the Java world, you need to define it with a
Java annotation. And the last main difference is that classes are final by default
instead of being open as in Java, that means that if you want to extend a Kotlin
class it will throw a compilation error if the class is not open.

When writing intercompatible code for Android applications, the Android
documentation offers a best practice guide5 that should be followed for writing
better intercompatible code between Java and Kotlin for Android development. It
even gives a tool that will run code checks for informing the user how
intercompatible its code is.

2.1.1. Advantages

At the start of this chapter it was stated that making Kotlin interoperable with Java
was a very smart move from the JetBrain’s team, the practical meaning of this
statement is that you don’t have to recode your entire application in order to

5 Android’s Java-Kotlin interoperability guide: https://developer.android.com/kotlin/interop

22 A study of Kotlin's: conciseness, safety and interoperability.

migrate it to Kotlin. You could follow a smooth migration plan, for example, all
new features can be written in Kotlin and then migrate little by little your Java
classes into Kotlin. That’s how popular applications started to introduce Kotlin into
theirs. After having written your first Kotlin lines you can then decide to migrate
all the application to Kotlin or not.

This interoperability also offers the possibility, of using existing Java libraries
(JAR) or Android libraries (AAR), in the Android world, in Kotlin projects or vice
versa. So, you don’t have to worry of not having a library migrated into Kotlin in
order to use it.

Another advantage is that as Kotlin and Java are compiled into Java bytecode
the devices that are currently using a JVM or the Android OS, which in the newest
devices uses ART to execute this Java bytecode, don’t need any extra updates
to run or execute the applications that use Kotlin, all the dependencies are
included in the application.

The last advantage to be commented is that by having full Java interoperability,
developers or application owners don’t have to worry about thinking that if the
application is built with a modern language such as Kotlin won’t work on old
devices. As Kotlin is a JVM language Kotlin application will work as always in old
Android devices.

2.1.2. Disadvantages

Even though the advantages of Java interoperability are great there are few
disadvantages depending on what you are building.

In case of building security frameworks or applications, Kotlin it’s not the best
language to use, as with Java, you wouldn’t build a very secure application.
Android applications are very easy to reverse engineer with apktool (a very well-
known tool in the Android reverse engineering community) for example. Apktool6
takes the Android application (APK) and decompiles the archive that contains the
Java bytecode (actually Dalvik bytecode in Android applications) into smali files
which are easier to read and understand. And from smali files you can easily go
to Java. Therefor all existing reverse engineering tools, at binary level, for Android
applications will be able to decompile, inject, debug and hook Kotlin code.

Also, security by obscurity in Kotlin code is not the best option, even if some
papers claim so, see [8], Kotlin produces a lot of metadata code where store its
obfuscated strings, which are quite easy to deobfuscate7.

The security issue can be addressed by either using a third-party security
framework written in C/C++ or writing your own C code for sensitive operations.

6 Apktool is a tool for reverse engineering 3rd party, closed, binary Android apps. You can find
more information in their webpage: https://ibotpeaches.github.io/Apktool/.
7 Security by obscurity is not the best for protecting an Android app. For more information read
this article: https://www.nowsecure.com/blog/2019/07/11/think-twice-before-adopting-security-
by-obscurity-in-kotlin-android-apps

Kotlin 23

Although, not all applications in the market need that level of security. For
example, in the case of a bank it would need secure code and mechanisms for
protecting very sensitive information and transactions, but an app that just sets
an alarm does not have to worry about that. Most Android application attacks
need physical access to the device in order to be compromised, so it’s not a big
issue. But for Android application developers they should not store sensitive keys
in Kotlin code.

Another small disadvantage is that when you write an Android Archive (AAR), an
android library, in Kotlin, the applications that integrates it apart from including
this library it also has to include the Kotlin runtime libraries. Which may lead to
add some extra size to the application.

2.2. Null Safety

Speaking about Java, NullPointerException is by far the most common thrown
exception in all applications developed in Java. You know this is big when even
the creator of the Null Reference concept even apologies for creating it8. The
issue is caused when a member of a null reference is called, which happens more
often than expected. This exception is produced at runtime so there is no way to
catch it at compile time. In practical terminology the exception is thrown when we
expect a variable to be initialized (and it is not) and we use one of its members.

JetBrain’s decided to avoid the Null Reference issue in Kotlin. They did that by
not allowing a variable to be nullable by default. As we described in the section
before, for each object type in Kotlin there exists a second object type that can
be null, this is also known as an optional type. So, nulls don’t exist in pure Kotlin
unless you want.

Fig. 2.2 Kotlin object type declaration and optional declaration

Kotlin will check at compile time that a type is never initialized to null or ends up
returning a null value. That sounds great, but then, if you can use optional types
in Kotlin how is it still null safe? That is a good question, optional types will also
be treated and examined by the compiler. If you declare an optional type value
and later want to invoke one of its members you will either have to check if it is a
none null value and then use it, or you could just use safe call operators, which
will only be invoked when the object reference is not null or will return null if the

8 In the QCon London software conference, Tony Hoare, the creator of the null reference
apologizes for inventing it. Find more information here: https://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-Hoare/

24 A study of Kotlin's: conciseness, safety and interoperability.

object is null. The last option is to use the member with the assertion operator,
which will escape the null check and will be executed even if the value is null.
This last option may lead to NullPointerExceptions even in Kotlin, therefor you
should avoid using it.

Fig 2.2 Different calls on a nullable object

In case you want to use the safe call operator but not return a null value if the
object itself is null you can you the elvis operator, which is implemented in Kotlin,
and return whatever you want.

Fig. 2.3 Elvis operator

Not only when speaking objects Kotlin is null safe but also when casting, if we
want to cast an object into another but this is not the expect type of object with
the smart cast operator, we can avoid the ClassNotFoundException. And also,
when treating with arrays or collections Kotlin will always offer the option to filter
all the null values of itself.

Kotlin also offers the possibility to handle nullables with Kotlin Extensions which
we will cover in the next section.

Definitely Kotlin being null safe by default in every possible place is an awesome
feature that can reduce around most of the 70% of all Android exceptions errors
and it might be one of the most important factors on the reason why Kotlin has a
great learning curve.

2.3. Kotlin extensions

Kotlin extensions is a great feature that, as its name says, lets you extend
functions or properties for any class. Normally in Java when you want to extend
an existing class with a function you would create a new Java class and then
extend that class with the new function. One problem with this approach is that

Kotlin 25

you would need a new class for each extended class just for implementing one
custom method, another problem is that instead of using the provided class you
need to use the extended one, which may lead to errors and headaches. Since
this was a problem Kotlin extensions provide the perfect solution: it lets you
extend a method or parameter for any class without having to extend the class
you want to add the extended function. This might sound overrated, but when
programming this is a very powerful tool to avoid writing the same code snippet
for a certain class method. It is also very useful to extend functionalities from a
third-party library that might be missing some methods that we need, so we can
modify it without touching it. If we extend an already existing method the original
method will always be executed instead of the extended.

In order to extend a functionality to a class, we need to start the declaration with
the type of the class we are extending (this is called the receiver type) followed
by the extended method name with its arguments if needed. Basically, it means
adding the class name you are extending before the method you just
implemented separated by a dot. This is something easy to do but it can save a
lot of repeated coding, or missing functionalities.

When developing Android applications, there is always a code snippet that is
repeated when you want to get the view identifier of a certain element on the
application view, and this is findViewById, as you can see in [4]. Using Kotlin
extensions we can get rid of it by simply extending the View class. But you don’t
have to do this by your own, there is already an official Android Extensions gradle
plugin9 that will do the trick for you, it will let you bind views, set listeners to
elements and work with fragments, custom views and view holders in an easier
way. This ends up in a clearer and easier way of working with views in this case.

Kotlin’s extensions is one of the most loved features by developers as it allows
your interfaces to be as minimal as possible and that means having an
understandable interface when implementing it. For example, a String is a
collection of index characters, offering a method to return this same String in
capital case would be an extension function as it is not an essential aspect of a
String.

2.4. Kotlin standard library

The Java standard library is pretty powerful because it does a lot of stuff for you,
but when the Kotlin standard library appeared it certainly surpassed Java’s.

A standard library is a library for a programming language that offers you tools,
APIs and components you can use all around your code that will cover low level
details of the programming language so that you can just focus on writing what
you want your application to do.

9 More information about the Kotlin Android Extensions plugin can be found here:
https://kotlinlang.org/docs/tutorials/android-plugin.html

26 A study of Kotlin's: conciseness, safety and interoperability.

Being honest, Kotlin’s standard library is so powerful because it is a mix of Java’s
standard library and extension functions, as you can see in Figure 2.4. Java’s
standard library is very large and offers a lot of features, contrary to C’s standard
library, which is minimal, both have their benefits, one is hard to maintain and the
other one not that much. One gives the developer a lot of features and the other
requires writing their own code or using a third party for certain tasks. A good
standard library can have a big influence on the success of a programming
language, therefor Kotlin’s currently in a good position as it’s extending Java’s.

The fact that Kotlin’s standard library is an extension of Java’s also helps a lot
the Java interoperability and makes it super easy to call Java from Kotlin and vice
versa.

Fig. 2.4 Kotlin Standard Library

There are many functionalities in the Kotlin standard library, we will look at some
of them. One of the most notorious, or used, are the extensions on the collections.
The collections offer a set of extended function in order to filter, map and reduce.
It is also very easy to initialize collections; you don’t have to do all the declarations
in order to initialize it in your Java code. And other example, as mentioned before,
the String class has the main functionalities and has extension functions that
perform very common tasks, such as lower casing it, uppercasing it, split it… and
many more.

Kotlin standard library also offers a set of standard functions which are meant to
help the developer work easier with any object while solving common or repeated
issues that they face. These functions let you change the scope of a given object
and even apply multiple functions on the same object. Standard functions are
also extension functions, as we mentioned before for the Kotlin standard library.
An example of the usefulness of a standard function would be to do null-checks
and executing a certain code only if a variable is not null with the let standard
function. This is very attractive because we can get rid of a lot of if-else code in
order to check if a variable is null. Another example is the apply standard function
which is very useful when you want to call several methods for the same instance.
More examples of standard functions can be seen in Figure 2.5.

Kotlin 27

Fig. 2.5 Kotlin standard function practical use cases by Jose Alcérreca

2.5. Coroutines

Coroutines is one of Kotlin’s most envied features. Threading in Java and more
specifically in Android app development has always been an issue.

In a first approach, we have learned to program synchronously, one line of code
is executed when the above one has finished its execution. This normally worked
fine for the majority of code we would write but it is also true that lately this
approach has changed, especially in application development, now we tend to
write code that waits for something. For example, we wait for a network call to be
performed, we wait for a database query response, we wait for another player to
move, basically we just wait for some action to be completed. We can’t just
execute all this code in the main thread and block the user until we received an
event, this is completely inefficient and does not lead to a good user experience.

But then, how do we manage this problem? The solution was obviously using
asynchronous programming. This meant using different threads for certain
operations and then informing the main thread about the result of this certain
operation. Writing this kind of code, is quite difficult and also too complex to
maintain, which leads to a lot of overhead for doing a simple network call.

Then callbacks appeared which in Android development would work for making
asynchronous programming a little easier. Callbacks are just functions passed as
an argument to the asynchronous function that will be called when the
asynchronous operation has finished. Coding wise, there is a problem that comes
up when coding with callbacks known as the “callback hell” that can be visualized
in the figure below.

28 A study of Kotlin's: conciseness, safety and interoperability.

Fig. 2.6 Callback Hell

This is because normally in all programming languages the declaration and
implementation of a function follows this schema: first we define the function
name, then between brackets we specify the arguments taken by this function
and finally, between curly brackets we implement the function. Therefore, as
when writing asynchronous code with callbacks, a function is an argument of
another function ends up with the above shown piece of art.

The proposed solution by JetBrains for all this complex asynchronous
programming is called Kotlin Coroutines. Kotlin Coroutines is a library (that is not
in the Kotlin Standard library) that offers a clean an easy API for doing all this
asynchronous programming. Coroutines are not threads, and this is a major
concept to keep in mind, they are like tasks or jobs that are executed in threads,
the Kotlin team defines them as lightweight threads. Coroutines can be executed
in any thread depending on the specified context for the coroutine but they can
even change from on thread to another. This means that you forget about creating
threads and maintaining them, which is complex and can lead to bugs and
security flaws.

In Kotlin coroutines a new concept of functions appears; they are known as
suspend functions. The main difference between a function and a suspendable
function is that this first can be suspended, and it can only be executed in the
context of a coroutine, as you can see in Figure 2.7. Suspended functions can be
suspended and resumed in any thread.

Kotlin 29

Fig. 2.7 Coroutine use case and timeline

2.6. Anko

Anko is an official Kotlin library, which means it is maintained by JetBrains that
claims to make Android app development easier, faster and smarter. Anko is built
by defining Kotlin extensions that do the repetitive Android tasks for you. This
way you just focus on building the essential parts of your app. Its name, Anko is
the combination of Android and Kotlin first two letters.

Anko offers four main modules for creating Android applications:

• Anko commons is the module that offers a lot of helpers for basic Android
functions such as: starting new activities, simplifying the common Android
callbacks like onClickListener, any communication event like sending
emails or making calls and many more.

• Anko layouts is the module that you create UIs in its Domain Specific
Language (DSL). In order to create UI in Android you either write the XML
code or drag and drop items from the menu bar. With Anko’s layout DSL
you can create they UI and set all the callbacks for a certain item in the
same place, which results in easy understand and less code. It is also
compatible with existing UIs.

• Anko SQLite simplifies a lot the communication with the database. It does
all the boiler plate for accessing the database and it also manages the
cursors, threads and models.

• Anko coroutines, which gives you a pool that manages and executes all
your coroutines and prevents leaks.

It seems that JetBrains does not only want to take over Java as the preferred
language to code Android applications but also to redefine Android applications
development.

30 A study of Kotlin's: conciseness, safety and interoperability.

2.7. Multiplatform

In the first chapter, we have seen Kotlin Multiplatform and its capabilities. And
even if Kotlin is a general-purpose programming tool a much more important
premise for the Kotlin team is code sharing between these platforms10. Not all
programming languages have the ability to be built for as many platforms, therefor
they plan no only saving time by using Kotlin because it is a modern language
and because it is way more intuitive, but also by avoiding the developers to
duplicate the same code twice or even three times for each platform.

In order to build multiplatform projects Kotlin defines the concept of an expected
class or function and an actual class or function. A simple comparison can be a
header for a C file, normally when we create a C project, we have two files a
header file that defines the public methods and a C file that implements those
methods. The expected/actual concept works in a similar way, see Figure 2.8 and
2.9.

Fig. 2.8 Common logic for all platforms

Fig. 2.9 Platform specific implementation of the expected method

If we create a multiplatform project, we will have the common logic, where we
implement business logic and we also declare what does each platform need to
implement. And we will also have the specific logic for each platform, that as said
before will have to implement the requirements that the common logic sets.

The most practical use case is for sharing the business logic in mobile
applications. As usually, these, have the same logic duplicated, because usually
the application has to do the same in the iOS application as in the Android
application.

10 More information on the Kotlin Multiplatform feature can be found here:
https://kotlinlang.org/docs/reference/multiplatform.html

Kotlin 31

2.8. Conciseness

After having seen Kotlin’s Standard library you can guess that by having Kotlin
wrapping and extending a lot of functionalities for us our code will reduce its size
quite a lot. But you haven’t seen it all yet. We are going to have look at other
features that Kotlin offers that will drastically reduce the size of our app.

Kotlin is a type inferred language. This means that when declaring a variable,
noted as var in Kotlin, you don’t have to specify its type if you initialize it right
away. If you do so the compiler will deduce the type of the variable by the
initialization. But if you don’t initialize it when you declare it you have to specify
its type.

Kotlin also does smart casting, if it can determine the type of a variable from a
previous verification it will automatically cast it for you.

When we learn about Object Oriented Programming (OOP) we introduce objects
that have their constructors, their setters and their getters. And when more
advanced we also override the hash and equals methods for our objects. This
are known as Plain Java Objects or POJO, Figure 2.10. They are usually not
complex but when you start a project and you have to create some of them it
consumes some time and a lot of lines of code. Kotlin has introduced data
classes, Figure 2.11, which in one-line declaration will create a POJO. So, you
can forget about having to write all this repetitive but important lines of code.

package com.andreas.fly.demo;

import java.util.Date;
import java.util.Objects;

public class Flight {

 private String from;
 private String to;
 private Date departure;
 private Date arrival;

 public Flight(String from, String to, Date departure, Date arrival) {
 this.from = from;
 this.to = to;
 this.departure = departure;
 this.arrival = arrival;
 }

 public String getFrom() {
 return from;
 }

 public void setFrom(String from) {
 this.from = from;
 }

 public String getTo() {
 return to;
 }

32 A study of Kotlin's: conciseness, safety and interoperability.

 public void setTo(String to) {
 this.to = to;
 }

 public Date getDeparture() {
 return departure;
 }

 public void setDeparture(Date departure) {
 this.departure = departure;
 }

 public Date getArrival() {
 return arrival;
 }

 public void setArrival(Date arrival) {
 this.arrival = arrival;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Flight flight = (Flight) o;
 return from.equals(flight.from) &&
 to.equals(flight.to) &&
 departure.equals(flight.departure) &&
 arrival.equals(flight.arrival);
 }

 @Override
 public int hashCode() {
 return Objects.hash(from, to, departure, arrival);
 }
}

Fig. 2.10 Plain Java Object

package com.andreas.fly.demo

import java.util.*

data class Flight (
 var from: String,
 var to: String,
 var departure: Date,
 var arrival: Date
)

Fig. 2.11 Kotlin data class

A very broadly used pattern in Java is the Singleton pattern, which consists in
having a shared instance for any declaration of this certain object. The Singleton
pattern in Java needs to be implemented and managed by the developer but in
Kotlin you can create a singleton by just declaring the object keyword before the
body or functions of itself.

Kotlin 33

Kotlin classes can have a primary constructor and secondary constructors, but
the primary has to be declared in the class declaration. The constructor’s
parameters or any function parameters can have a default assigned value that
can be skipped in the invocation of the method if you don’t want to override it.

Taking everything into consideration, if we take a Java application and migrate it
to Kotlin for sure we can reduce the size of coded lines between a 20% and 50%.
Writing less code means less code to test and less probability of introducing bugs,
less code to read and understand. And furthermore, having less code leads to
less code to be compromised, therefore we have more secure applications.

2.9. Modern language

All the mentioned features in the previous chapters in combination and some
others not mentioned such as string interpolation, which allows you to
concatenate strings very easily, the fact that there are not checked exceptions,
which means that you are not enforced to catch all thrown exceptions, an easy
object destruction into its constituent parts and many more features make Kotlin
a modern language.

Nowadays we hear too often that a new programming language appeared, but
there are several significant differences between Kotlin and all these new
languages. One of them is the fact that the language comes from a very strong
industry in the programming world, JetBrains. JetBrains is a software
development company that has built some of the most used Integrated
Development Environments (IDE) such as CLion, IntelliJ IDEA, AppCode,
GoLang, PyCharm… These gives them a lot of feedback form software engineers
so they could start the Kotlin project. Another key aspect is that even if Kotlin
appeared few years ago they started working on it many years ago earlier 2011
so actually, even if the release is new the actual product has been in progress for
a while.

On the other hand, Java makes you write a lot of boilerplate code, and all the new
programming languages don’t have that issue. An example of a modern
programming language that does not have this problem is swift. Swift is
developed by Apple and it’s used mainly to develop iOS and macOS applications,
but it also can be used for server-side applications. Swift is clean and concise
and even though for iOS developer’s it has been a pain to migrate every time
Swift had a major release (as it was breaking blackguard’s compatibility) it is still
very popular. Kotlin’s syntax is very similar to Swift’s, if you see a code snippet in
each of those languages you can confuse them, for example look at Figure 2.12.
But this is good from the point of view of mobile app developers, as normally, if
you develop apps for iOS you also develop apps for Android, therefor it’s easier
to change the context of developing for a specific platform.

34 A study of Kotlin's: conciseness, safety and interoperability.

Fig. 2.12 Swift and Kotlin comparison

So, basically, we can tell Kotlin is a modern language currently because of its
conciseness, its clear syntax, all its built-in extensions that do a lot of work for
you and its low risk adoption.

2.10. Tool Friendly

Apart from being a modern language, JetBrains has made a lot of effort on
making Kotlin tool friendly, mainly because Kotlin support is integrated in all its
in-house IDEs that can make us of Kotlin, but the main ones are Android Studio
and IntelliJ IDEA, even though it also offers a plugin for using Kotlin in Eclipse.

It is very easy to start a Kotlin project in the mentioned IDEs, when creating a
new IntelliJ or Android Studio project you can checkmark the support Kotlin box.
But not only that, the IDEs provide you a lot of sample or starter projects for
specific Kotlin project purposes such as a multiplatform project. In the case of a
multiplatform project it will create you the project structure, divided by platforms:
JVM, macOS and JavaScript and also the common part of the project, not to
forget that it will also add the dependency for each platform and some sample
code that for each platform interacts with the base common code. It makes it so
easy to start so that you don’t have to lose a lot of time in searching what you
need to set it up.

Not only that, but IntelliJ and Android Studio also detect special Kotlin notations,
such as the suspend functions and that way it highlights you that you are treating
with a coroutine which helps a lot when debugging.

Another cool feature of the IDEs that support Kotlin is that it offers you the
possibility to translate Java code into Kotlin code automatically! This sounds very
cool but after a conversion you still need to review the converted code in order to
see if something is mess up, which probably is. Also, whenever you copy Java
code from a StackOverflow answer or from wherever and you paste it in a Kotlin
file it will automatically translate it into Kotlin, but you also have to review this
conversion in order to check that nothing is messed.

For KotlinJS, IntelliJ offers the possibility for you to debug web applications in the
browser with IntelliJ’s Chrome plugin.

All of these makes starting to work with Kotlin super easy and this is very
important as normally if you start something new and it takes a lot of time to set
up and configure properly it makes you not wanting to continue working with it.

Kotlin 35

2.13 Conclusion

Taking all the theoretical features into consideration we can conclude the
following about Kotlin:

1. It is the Java replacement. The compatibility with Java is one of the things

in which they have but most of the effort. It is very easy to call Java code from
Kotlin and vice versa. This not only permits the developer to use existing Java
code in Kotlin projects but also to do smooth migrations from Java code to
Kotlin code. It also offers all the features offered by Java but in an enhanced
manner.

2. It is a modern easy to learn language. Even if there are some other modern

languages that run on the Java Virtual Machine such as Scala, Kotlin is very
easy to learn as it is very intuitive as it removes all the boilerplate that other
languages have. Antonio Leiva, one of the pioneers in Android development
with Kotlin stated in his webinar11 that a person that has the programming
fundamentals can learn basic Kotlin in two hours. Kotlin’s documentation, that
you can find in [2], is also way easier to read than Scala’s for example, and
this gives extra confidence to the developer, that doesn’t get as scary when
starting coding Kotlin.

3. It revolutionizes asynchronous programming. Asynchronous

programming in Java has been a pain either because it was too complex or
because it was very difficult to maintain. Kotlin coroutines is one of the most
loved features from the Android development community as it makes
asynchronous very easy to code and also maintainable as it is written as if it
was synchronous.

4. You build more robust applications with less code. Not only you write less

code because Kotlin avoids you writing boilerplate code but if you choose to
create multiplatform projects you only write your business logic once and then
build it for all your platforms. Also, by removing the null reference concept
your code is less likely to have runtime crashes. And writing less code means,
less entry points for bugs, more maintainable code and easier to read code.

Answering the question stated at the beginning: “Why Kotlin?” we can agree in
the theoretical point of view agree with the answers that Kotlin gives, Kotlin is
more concise and safer than Java, but it also allows you to migrate slowly by
making it intercompatible with Java and with the help of the Integrated
Development Environment (IDE). Now that we have a theoretical starting point in
the next chapter, we will code some Kotlin with the accent on some of the studied
features.

11 Antonio Leiva’s webinar on Kotlin development for Android applications:
https://devexperto.com/training-gratis/

36 A study of Kotlin's: conciseness, safety and interoperability.

CHAPTER 3. HANDS ON THE KOTLIN FEATURES

In this chapter we will take a closer look to the features offered by Kotlin. We will
try to analyse in a practical way how they work and how easy is to use them.

The main goals of this chapter are to build a multiplatform project for an Android
and iOS, to see how does Kotlin and Java interoperability work together, the
migration process of a Java Android application to a Kotlin Android application
and how coroutines help to program asynchronous code.

During the development of proposed exercises some of the generic features
described in the above chapter such as how modern o how tool friendly Kotlin is
will also be analysed as these features will be tested by the simple fact of creating
Kotlin projects.

3.1 Kotlin Multiplatform in action

Now that we know what Kotlin multiplatform is and which are its possibilities we
are going to have a practical look on how it works. To develop a multiplatform
project the recommended IDE is IntelliJ IDEA.

The first thing that the IDE asks us when creating a multiplatform project, as you
can see in Figure 3.1, is what type of project do we want to start.

Fig. 3.1 IntelliJ options for a Kotlin project

As the focus of this paper is Android development the idea of this exercise is to
create a Kotlin library that can be imported and used in either an Android
application or in an iOS application12. When creating an application for your
business, you duplicate your business logic in the Android application and in the

12 You can find all the source code of the experiments in GitHub:
https://github.com/andreasluca/TFG-KotlinSharedLibrary.

Kotlin 37

iOS application, with Kotlin multiplatform the possibility of writing this business
logic and then using it in both platforms appears.

To create this shared library, you just need to create a new project and select the
Mobile Shared Library option from Figure 3.1. The IDE will create for you lots of
folders as you can see in Figure 3.2.

Fig. 3.2 Kotlin Mobile Shared Library project structure

The project structure contains some key folders:

• The commonMain folder is the folder that contains the declaration of the
classes that both Android and iOS need to implement and the
implementation of the shared logic.

• The iosMain folder contains the implementation of the declared classes for
the iOS framework.

• The jvmMain folder contains the implementation of the declared classes
for the java library.

38 A study of Kotlin's: conciseness, safety and interoperability.

• The tests folder: commonTest, iosTest and jvmTest. These folders give
you the possibility of unit testing your common logic and then your platform
specific logic.

The structure created it is very clear and it already adds all the dependencies
required for each platform. There is a platform specific folder for iOS and for
Android because there will be some components that are only available in the
Android platform and some other that are only available in the iOS platform. For
example, in the Android folder we are able to use the Java object types as it will
be executed in a Java Virtual Machine. The project structure also includes some
sample code that is easy to understand and gives you some headlines on how to
proceed to implement your own code.

With the structure created, we will develop a library that for a given flight
information it will calculate the price of the flight and the departure and arrival
time. Therefor in the common logic we will declare that a Flight class is expected
which has the parameters of a flight and we will also implement the function that
returns an object of this Flight type with the price and the departure and arrival
times. Then, in the platform specific folders we will implement the class that the
common code expects and that’s it. We hit the “Build” button and we have our
Java library, a Java Archive file (JAR) and an iOS Framework that can be included
in our application.

After having implemented the first Kotlin multiplatform library the main thing to
highlight is that IntelliJ, the IDE used, helps a lot. JetBrains, the company under
Kotlin and under IntelliJ, made a great job ensuring that creating projects with
their new programming language using their IDE is very easy. Honesty, it saves
a lot of set up time and having a big variety of multiplatform options makes you
feel comfortable when building one. Also, the fact that it provides sample code
for the common and each specific platform helps a lot to start, as you have
something already that builds, runs and can be tested.

Something I didn’t expect is the fact that the output of the build Android library is
a Java Archive (JAR) instead of an Android Archive (AAR). Because normally
when you build a library specifically for Android you create an Android Artifcat
even if the Java Archive are also supported. But I guess as Kotlin multiplatform
is divided in Java Virtual Machine, JavaScript and Native, it might build Java
Archive by default. So, something to improve from their side is that when building
a Mobile Shared Library to output an actual mobile library in the Android case, as
for iOS frameworks are used and it is what the IDE builds.

3.2 Java interoperability in action

3.2.1 Calling Kotlin from Java

In order to see how Kotlin and Java are interoperable we will use the library
created in the above subchapter. The idea is to create an Android application in

Kotlin 39

Java and import the library create before, which gives flight information for a given
queried flight. Therefor we will have a Java application invoking Kotlin code13.

The first thing is to create an Android application, so we will use Android Studio.
When creating a new project in Android Studio we are asked what language we
want build the project with either Kotlin or Java, Kotlin is the preselected one, we
will select Java for the sake of seeing how they interact together.

After importing the flights library in the application, we try to invoke it, a curious
thing is that the Flights class that we created in the library now has the name of
FlightsKt and in order to invoke it form Java we just type the name of the class
and the static method we created to retrieve a flight as you can see in the below
code.

Flight flight = FlightsKt.getFlightFor(”BCN”, “MAD”, “6-11-2019”, “19-11-2019)

After running the application, we get an exception in the logcat, the tool we have
to view the logs of an Android application in a device. As you can see in Figure
3.3, we get an exception that a class is not found.

Fig. 3.3 Kotlin class not found crash log

This was unexpected but after thinking what the problem could be, the fact that
we are executing Kotlin code in a Java Android application that gets executed in
the Dalvik Virtual Machine (DVM), which executes dalvik code (compiled Java
code for the DVM) made sense, we are missing the Kotlin standard library for the
Kotlin code. So, after adding the Kotlin standard library to the application
dependencies the application worked as expected as you can see in Figure 3.4.

13 You can find all the source code of the experiments in GitHub:
https://github.com/andreasluca/TFG-JavaKotlinInteroperability.

40 A study of Kotlin's: conciseness, safety and interoperability.

Fig. 3.4 Screenshot of the application that retrieves flight information

Using Kotlin code in a Java application is very easy but there are few things to
keep in mind. The first is that if you don’t specify the name of your Kotlin classes,
when using them in a Java application the compiler will name them with the name
of the file and it will add the “Kt” keyword at the end, so if your IDE does not help
you when invoking the Kotlin class this is an important issue to keep in mind and
not turn crazy because you can’t find your file because the Kotlin class does not
have the name you wrote. Nevertheless, you can add an annotation in the Kotlin
code to tell the compiler what name to put to the class when compiled. Another
issue to keep in mind is that if your application is in Java and you integrate Kotlin
code you have to add the Kotlin standard library if you don’t want it to crash, this
is a problem because you get this error at runtime and not at compile, so you
make think everything is working as expected until the application executes the
Kotlin code and it does not find the standard library. Android Studio could help
the developer by checking if there is any Kotlin library used in the project at
compile time and throw a warning indicating that the Kotlin standard library is not
included. Apart from the commented issues, the interaction between Java and

Kotlin 41

Kotlin is very fluid, so there isn’t any problem in calling Kotlin code from Java and
vice versa.

3.2.2 Calling Java from Kotlin

We have already called a Kotlin code from a Java application, now we are going
to experiment, the Kotlin-Java interpolation the other way around, we are going
to call Java code from Kotlin14.

The experiment will consist in using a stable Android library such as GSON, a
library developed by Google widely used to serialize JSON strings into Java
objects, to serialize data.

We will first create an Android application project in Android Studio, selecting
Kotlin as the main language. Then, we will add the GSON dependency to the
gradle file as shown in Figure 3.5.

dependencies {
…
 implementation "com.google.code.gson:gson:2.8.5"
…
}

Fig. 3.5 Gradle file showing the dependencies section

Now we can parse JSON strings into Kotlin objects. We will create some data
classes that will be parsed from the JSON. For the example we will create a
“Group” object that has a name, which is a string, and an array of “Members”,
which is another object that is defined by a name, which is a string, a departure
airport, which is also a string, and a “DNI” object, which contains the DNI number
in a string format and a boolean saying if it is expired. You can see the created
objects in Figure 3.6.

data class Group(
 val name: String,
 val members: Array<Member>
) {
 fun getDepartureAirports(): Array<String> {
 return members.map { member ->
 member.departureAirport
 }.toTypedArray()
 }
}

data class Member(
 val name: String,

14 You can find all the source code of the experiments in GitHub:
https://github.com/andreasluca/TFG-KotlinPoCs.

42 A study of Kotlin's: conciseness, safety and interoperability.

 val departureAirport: String,
 val dni: DNI
)

data class DNI(
 val number: String,
 val isExpired: Boolean = false
)

Fig. 3.6 Kotlin data classes

Now, we can parse a JSON string into these objects by writing the code shown
in Figure 3.7.

val json = "{\n" +
 " \"members\": [\n" +
 " {\n" +
 " \"name\": \"Marc\",\n" +
 " \"departureAirport\": \"NYC\",\n" +
 " \"dni\": {\n" +
 " \"number\": \"AABBCC\",\n" +
 " \"isExpired\": false\n" +
 " }\n" +
 " },\n" +
 " {\n" +
 " \"name\": \"Ruben\",\n" +
 " \"departureAirport\": \"LDN\",\n" +
 " \"dni\": {\n" +
 " \"number\": \"BBCCDD\",\n" +
 " \"isExpired\": true\n" +
 " }\n" +
 " },\n" +
 " {\n" +
 " \"name\": \"Benjamin\",\n" +
 " \"departureAirport\": \"BCN\"\n" +
 " },\n" +
 " {\n" +
 " \"name\": \"Invalid\"\n" +
 " }\n" +
 "],\n" +
 " \"name\": \"Brothers\"\n" +
 "}"
val group = Gson()
 .fromJson<Group>(
 Gson().fromJson<JsonElement?>(
 json,
 JsonElement::class.java
)!!.asJsonObject,
 Group::class.java
)

group.getDepartureAirports().forEach {
 Log.d("KotlinApp", "Departure airport: $it")
}

Fig. 3.7 Parse a JSON string into a Kotlin object

Kotlin 43

The parsing is correctly done, therefor calling Java code from Kotlin works
perfectly.

One issue to be commented is that in the input JSON there is a member object,
the “Invalid” one, that has not specified the “departureAriport” but regardless it is
not specified even if we access it in the “getDepartureAirports” we don’t get a null
pointer exception as we would get in Java, but it prints null as you can see in
Figure 3.8.

Fig. 3.8 Logs printed by the application

After debugging the application, we could see that regardless the application
didn’t throw a null pointer exception the value of “departureAirport” for the
member “Invalid” was null! Therefor the null reference appeared even in Kotlin
code.

Having realised that, I thought of a way of getting a null pointer exception in Kotlin
by just adding a method to the “DNI” model and invoking it from a member that
did not have the “DNI” value set as you can see in Figure 3.9.

data class DNI(
 val number: String,
 val isExpired: Boolean = false
) {
 fun createNullPointerException(): Int {
 // This has to throw a NPE if the DNI is not present in the Member
 return 123
 }
}

…

// This does not throw an exception
group.members[0].dni.createNullPointerException()
// This throws a Null Pointer Exception!!!
group.members[2].dni.createNullPointerException()

Fig. 3.9 Code modifications to get a Null Pointer exception in Kotlin

44 A study of Kotlin's: conciseness, safety and interoperability.

And after executing the code we get the null pointer exception as you can see in
Figure 3.10.

Fig. 3.10 Null Pointer Exception in a Kotlin application

To sum up, Java code can be invoked from a Kotlin application perfectly. But
during the experimentation of this feature we found two issues to comment. The
first one is that the syntax of the Java code is modified when used into a Kotlin
file. And lastly, the critical issue, we got a null reference in Kotlin code in a non-
optional parameter. Therefore, combining Java with Kotlin needs to be done
carefully as you cannot expect the full safety feature that full Kotlin code offers.

3.3 Asynchronous programming with Kotlin Coroutines

Kotlin coroutines is one of the most loved features. The possibility of writing
asynchronous code as if it was synchronous when reading the code is awesome.
Not only this, but the fact that asynchronous can be done in a very simple and
clean way has given Kotlin Coroutines this popularity15.

The first thing to do is to add the Kotlin Coroutines dependency to our project, as
shown in Figure 3.11.

dependencies {
…
 implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:1.1.1"
 implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:1.1.1"
…
}

Fig. 3.5 Gradle file showing the dependencies section

Now that coroutines are imported we will parse the JSON from the chapter above
within the scope of an Android AsyncTask with callbacks, which is the way
asynchronous programming was done in Android application, as you can see in
Figure 3.6.

class JsonParser: AsyncTask<String, Void, Group?>() {

 private var onComplete: OnTaskCompleted? = null

 interface OnTaskCompleted {
 fun onTaskCompleted(group: Group)

15 You can find all the source code of the experiments in GitHub:
https://github.com/andreasluca/TFG-KotlinPoCs.

Kotlin 45

 }
 fun onFinish(onComplete: OnTaskCompleted) {
 this.onComplete = onComplete
 }

 override fun doInBackground(vararg p0: String?): Group? {
 val group = Gson()
 .fromJson<Group>(
 Gson().fromJson<JsonElement?>(
 MainActivity.GROUP_JSON,
 JsonElement::class.java
)!!.asJsonObject,
 Group::class.java
)
 onComplete!!.onTaskCompleted(group)

 return null
 }
}

// Then in the main thread
val parser = JsonParser()
parser.execute(GROUP_JSON)
parser.onFinish(object : JsonParser.OnTaskCompleted {
 override fun onTaskCompleted(group: Group) {
 group.members.forEach {
 Log.d("KotlinApp", "From: ${it.departureAirport}")
 }

 throwNullPointerException(group)
 }
})

Fig. 3.6 Implementation of an AsyncTask

To understand the code above you need to have some prior knowledge on the
threading and asynchronous programming, also, in this case is not that difficult
to follow but normally in large projects the asynchronous tasks are very difficult
to understand due to the fact that you need to have many things in mind.

That why, the next step is converting the parsing of the JSON in a Kotlin Coroutine
to see the differences, see Figure 3.7.

private suspend fun parseJsonAsyncTask(): Group {
 delay(1000) // We need to mock we are doing some slow task
 return Gson()
 .fromJson<Group>(
 Gson().fromJson<JsonElement?>(
 GROUP_JSON,
 JsonElement::class.java
)!!.asJsonObject,
 Group::class.java
)
}

// Then in the main thread
GlobalScope.launch {
 parseJsonAsyncTask().members.forEach {

46 A study of Kotlin's: conciseness, safety and interoperability.

 Log.d("KotlinApp", "${it.departureAirport}")
 }
}

Fig. 3.7 Kotlin coroutines in action

The Kotlin Coroutines approach is was easier to understand and shorter. You
don’t have to implement any interface, nor create boiler-plate code for doing
asynchronous operations.

There for in any case an asynchronous operation is required, due to networks
calls, storage operations, or any other kind of operation, using the coroutines
approach will save a lot of time.

3.4 Conclusions

Now that we have done different proofs of concept of the different features, we
know for fact that working with Kotlin is straight forward, the IDE helps a lot by
providing examples and hints for enhancing our code. Also, the Kotlin developer
community is starting to grow a lot, so, whenever we had a practical issue there
was already some feedback given from the community, it is not the case for some
theoretical aspects.

At the beginning, the concept of creating a multiplatform, sound a bit scary,
because normally when you build something that has lots of dependencies you
have to watch out a lot of different things and it is very difficult to find a solution,
but with the support given from JetBrains creating a multiplatform project is not
that scary. Also, we have built a shared mobile application but there are many
other possibilities for multiplatform code, such as sharing client and server logic.

Also, the Java interoperability, is as good as expected. Following the theory,
having Kotlin getting compiled in Java bytecode, we could proof that there is a lot
of investment of that smooth interoperability that lets you, either migrate your
project or use old libraries in Kotlin projects.

Finally, Kotlin coroutines revolutionize the way we do asynchronous
programming, as they are very clean, very easy to use and very efficient. This
allows a beginner to understand the flow of an application without losing its mind
reading and remembering where there was a callback and what was that callback
doing. And also helps to have a better code maintenance.

Kotlin 47

CHAPTER 4. BUILDING AN ANDROID APPLICATION
WITH KOTLIN

So far, we know what Kotlin is, what can we build with Kotlin, what features does
Kotlin have and we also have taken a practical look at some of its features. Now,
let’s go a step further and try to build an entire Android application with Kotlin.

Almost all applications we have in our smartphone developed by third party
companies communicate with a Server that normally fetches data for them. Then,
we want to communicate to a Server too in order to see how can to retrieve
remote data.

After some brainstorming, some ideas came up on what application to build in
order to test Kotlin as the development language for an Android application and
the most interesting one was to build an application that looks for flights.

Not just a simple application that looks for a certain flight but an application that
looks for flights from several airports and just one destination. Basically, an app
for finding flights for you and your friends that live abroad, for example, to the
same destination. This implies, creating groups of people for which to look for the
flights, and retrieving a flight for each as shown in Figure 4.1.

Fig. 4.1 High level detail of the application flow

48 A study of Kotlin's: conciseness, safety and interoperability.

The goal is to build an application16 that uses and interacts with some of the
features that Kotlin enhances for Android development. By the simple fact of
using Kotlin for the whole development we are going to be able to see most of
the features described in Chapter 2 such as the conciseness of Kotlin, the fact
that it’s a modern language and lets the developer write code in a more intuitive
way, the benefits of using its standard library, the safeness of avoiding null
references and so on.

For the development we are going to use Android Studio as the IDE, as it is based
on the famous Java IDE IntelliJ IDEA, developed by the same company that
developed Kotlin. Also, Android Studio is the IDE recommended by Android to
develop Android applications and it already has Kotlin support.

4.1 Application flow

In order to have an easy to use application, we will try to have as less workflows
as possible for the user. So, for an application that searches flights for a group of
people we can define two concrete flows.

These two workflows consist in: creating groups of people for who to search the
flights and the actual search for the flights.

In the first use-case, the user opens the application and clicks on the
configuration menu to create a group by setting a name for the group. Then he
just clicks on the created group and starts adding people as members of this
group. The members added to the group need to specify an origin airport, from
where to get the departure option for the flight request.

The second workflow consists in the actual search of the flights.

Once we have the groups of people created, in the landing view, we have a form
to complete. We need to select the group of people, created in the previous
workflow, for who we are searching the flights. The group of people parameter
substitutes the typical “From:” input box that we have in all flight searches
websites. What the group of people parameter actually does is giving an array of
departure airports instead of just one. Then we have the destination airport input
box and the option to select the one-way departure date and also the optional
return date. Finally, for submitting the flight search request we have the search
button. For a graphical insight of the view see Figure 4.2.

16 You can find all the source code of the application in GitHub:
https://github.com/andreasluca/coFly.

Kotlin 49

Fig. 4.2 Main user interface for looking for a flight

Therefore, after the user inputs the queried, they are sent to the business logic of
the app that for each member of the group looks for a flight for the given
destination airport and date.

After the network calls are performed for each member, the result is either a new
view with the list of flights from each origin airport in the successful case. Or if the
query fails, due to network issues or because there are no flights available for the
requested parameters a pop-up message appears informing the user that there
were no flights for the requested query.

For each found flight the information displayed is the departure and arrival
airports and dates, the duration of the flights and the total price as you can see in
Figure 4.3.

50 A study of Kotlin's: conciseness, safety and interoperability.

Fig. 4.3 Retrieved flights

4.2 Technical considerations

4.2.1 Retrieving flights information

Several options came to my mind when wondering where to retrieve the data for
the flights search.

The first idea was to create a NodeJS server that would mock flights results and
serve them via a REST interface. But there were several inconveniences, one of
them was the fact that fake data is not real data (and mocking data is not that
cool unless it is a test), another issue was the fact that normally in real world
applications retrieving data from a server requires authentication, and normally
not just a basic HTTP authentication but implementing secure protocols such as
OAuth 2.0 and this would take a lot of time in the development of a mock server
that goes out of the scope of this paper.

Kotlin 51

Secondly, I thought on using the most used search flight platform: SkyScanner.
The only and important problem is that their API is closed to patterns. This didn’t
use to be the case but due to its popularity they decide it to close it.

So, I started researching for open flight search APIs and I found one that offered:
OAuth 2.0 authentication on an open API for searching flights, Amadeus.
Amadeus is an IT company that offers IT services for travel industry. Amadeus
offers several open APIs for searching flights but with a 3000 calls per moth limit,
which actually met my needs.

4.2.2 Android application architecture

In order to start coding the application there were several architectural decisions
that needed to be taken. For example, coding an application from scratch or
coding the application with the Anko library that we covered in Chapter 2.

In order to go code with as many Kotlin features as possible I decided to code
the application without the Anko library, as it is not very commonly used, and I
wanted the developed application to be coded with the most common techniques
that our mobile applications have.

Having a clear application architecture form the beginning is key, as normally
when an application is being developed without considering any architecture it
ends up being unmaintainable and with a lot of headache whenever you want to
change anything. Therefor I had to study the most common application
architectures.

The Model-View-Controller (MVC) pattern is one of the most used for application
architecture in general. The MVC pattern consists in three components, which
are implicit in its name. The model is in charge of defining the data layer of the
components of the application. The view is responsible of showing the models in
the user interface, this is its only responsibility, showing the data to the user in a
cool way. And the controller, which is the part that has all the logic. It’s notified
when the user interacted with the view and updates the model with the respective
action.

After some years of Android development being active the expert developers
propose that the Android classes: Activity, Fragment and View should take the
role of the view in the MVC pattern, see [5]. Then the controller should be a
separated class that does not extend any Android class and the same for the
model.
The only problem with this approach is that the controller needs to tell the view to
update when the model changed, therefor there should be an interface for the
view, the controller should have a reference of the view and the view should
implement the interface. This has multiple benefits, one of them is that whenever
you want to refactor the whole view, which is something that usually happens due
to new user interface updates, the new view just has to implement the view
interface and the controller will be able to work with it. Another benefit it the
application can be tested without problems, as all classes follow the single

52 A study of Kotlin's: conciseness, safety and interoperability.

responsibility principle. Also integrating new features should not be any problem
and code readability is ensured.

Fig. 4.4 Model-View-Controller structure

The Model-View-Presenter (MVP) pattern works very similar to the MVC pattern,
see [6]. We again have three main components implied in the name of the pattern.
The model, as in the MVC pattern, is in charge of defining the data layer of the
components of the application. The view is responsible of showing the models in
the user interface and notifying the presenter about any change or interaction
with the user. The presenter reacts to the user interactions, updates the model
and decides what to show in the view, basically it does all the trick, it’s responsible
of what to show, interact with the user actions and update the model.

Usually in order to make the whole application testable a contract is defined
between the view and the presenter and that way they can be abstract to each
other but on the other way they can still hold reference on each other. The
contract defines an interface to be implemented by the presenter and referenced
by the view and an interface to be implemented by the view and referenced from
the presenter. This has its disadvantages such as the management of the user
interface is done by both the view and the presenter, and the presenter has a lot
of information but still this solution separates very well the three components and
lets you have a clearer flow.
For Android applications this architecture makes more sense when the
application is big, and for having a clearer flow to follow.

Kotlin 53

Fig. 4.5 Model-View-Presenter structure

The last architectural pattern studied is the Model-View-ViewModel (MVVM), see
[8]. In this case we, again, have three major components. The model does the
same as in the other two patterns, it is in charge of defining the data layer of the
components of the application. The View notifies the ViewModel of user actions.
And lastly, the ViewModel works with the model in order to tell the View what to
show, therefor the ViewModel is a model of the view. This architectural pattern
looks similar to the MVP pattern, in fact all of them have their similarities and their
differences but choosing the correct one for the kind of application you do is key.
In this case, the MVVM is more likely to be used in events-based applications,
the view can easily bind the ViewModel.

Fig. 4.6 Model-View-ViewModel structure

The decision on what architecture to follow was difficult due to the similarity and
the unknown factor of not having designed any system based on these
architecture patterns before. But after some thought’s the pattern that most
convinced me for the kind of application built, the flight search app, was the MVP
as it has a very clear separation of concerns that made me create a very straight
forward flow.

54 A study of Kotlin's: conciseness, safety and interoperability.

Another aspect to keep in mind for the architecture of the application was the
management of the data retrieved from the Amadeus REST API. Therefor
researching how do real applications deal with the data source for their models I
found the repository pattern. The repository pattern consists in a decoupling the
data source of the application from the model, so that whenever changing the
data source, the only change required would be on the repository part and we
would have nothing to touch in the actual architecture of the application. Also,
some other benefits that it offers are: the centralization of all the data sources of
the application (in case there is more than one), the possibility to add very easily
new data sources, the abstraction on where the data comes from, it can either
come from a database or from a remote server.

While researching about application architecture there was an aspect that was
not in my consideration, the dependency injection. Having a dependency injection
strategy in your application is key for having a clean architecture overall the
application. However, all the existing frameworks or dependency injection, such
as Ktor or Dagger, add too much overhead in simple applications, they are very
useful for large projects, therefor I came to the conclusion of having a self-
implemented solution for dependency injection as you can see in Figure 4.7.

package com.andreas.fly

import AmadeusSecurityApi
import com.andreas.fly.repository.AmadeusRepository
import com.andreas.fly.repository.AmadeusShoppingApi
import com.andreas.fly.repository.Repository
import com.andreas.fly.repository.authentication.AccessTokenAuthenticator
import com.andreas.fly.repository.authentication.AccessTokenProvider
import okhttp3.OkHttpClient
import retrofit2.Retrofit
import retrofit2.converter.gson.GsonConverterFactory

object Injector {

 private fun injectAmadeusShoppingRetrofit(): Retrofit {
 return Retrofit.Builder().apply {
 baseUrl(Constants.AMADEUS_SHOPPING_BASE_URL)
 addConverterFactory(GsonConverterFactory.create())
 client(injectAuthenticatorOkHttpClient())
 }.build()
 }

 private fun injectAmadeusSecurityRetrofit(): Retrofit {
 return Retrofit.Builder().apply {
 baseUrl(Constants.AMADEUS_SECURITY_BASE_URL)
 addConverterFactory(GsonConverterFactory.create())
 }.build()
 }

 private fun injectAmadeusSecurityApi(): AmadeusSecurityApi {
 return
injectAmadeusSecurityRetrofit().create(AmadeusSecurityApi::class.java)
 }

 private fun injectAuthenticatorOkHttpClient(): OkHttpClient {
 return OkHttpClient.Builder()

Kotlin 55

.authenticator(AccessTokenAuthenticator(AccessTokenProvider.getInstance(inje
ctAmadeusSecurityApi())))
 .build()
 }

 private fun injectAmadeusShoppingApi(): AmadeusShoppingApi {
 return
injectAmadeusShoppingRetrofit().create(AmadeusShoppingApi::class.java)
 }

 private fun injectRepository(): Repository {
 return AmadeusRepository(injectAmadeusShoppingApi())
 }

 fun injectMainPresenter(): MainPresenter {
 return MainPresenter(injectRepository())
 }
}

Fig. 4.7 Self implemented injector

So, the final product of the research for the architectural proposal for the
application results in a combination of the MVP pattern plus the repository pattern
with a self-implemented dependency injector as you can see in Figure 4.8 and
Figure 4.9.

Fig. 4.8 High level architecture of the application

56 A study of Kotlin's: conciseness, safety and interoperability.

Fig 4.9 Project structure of the application

4.3 Conclusions

After having built an entire Android application with Kotlin that retrieves flights for
groups of people taking full advantage of the features offered by Kotlin we can
conclude that it makes you way more productive.

For example, by using the Kotlin Android Extensions to bind the data in the user
interfaces, you forget of writing a lot of boilerplate code for a very common
operation. Also, creating new data classes saves a lot of time not having to create
all the getters, setters and override methods.

Also, using Kotlin Coroutines for the asynchronous operations makes the code
very clear and easy to read, which end up saving a lot of time whenever you want
to debug something.

Hence, by the mere fact of using Kotlin during the development made the amount
of unexpected crashes decrease drastically. Actually, the only runtime crashes
were due to the fact of a bad serialization of the JSON received from the server.
Therefor we can conclude we have built safer code with less lines of code.

Lastly, it was a very good decision to study the common architectural patterns
and applying them because it has organised the structure of the project in a very
simple way, so that whenever a change is needed it will only affect the component
that needs this change. Also, changing the flights provider would be very easy or
any user interface change would not have any impact in the business logic of the
applications.

Kotlin 57

CONCLUSIONS

Objectives

The result of the project is a positive validation of Kotlin’s claim of being a concise,
safe, interoperable and tool-friendly programming language.

First, we have gone through a theorical study of Kotlin’s compilation process,
mainly to understand how it builds the Kotlin code into platform specific code. In
other words, from Kotlin code to Java bytecode, JavaScript or even native code.
This proofed, in a theoretical way, that Kotlin is interoperable with existing code,
as depending on the compilation target it is built with it has interoperability with
Java libraries or JavaScript frameworks.

Secondly, we researched what features does Kotlin have and what problems do
they solve. The result of such research happens to coincide with Kotlin’s claim of
being a concise programming language. In regard to conciseness what most of
the features do is help the developer write less boilerplate code with a modern
language. Some of the features that make Kotlin code concise are the possibility
of adding extension functions to any class, the use of its standard library, a bunch
of extension functions that do a lot of repetitive tasks for you, and the fact that it
is a modern language with type inference.

After having a broader vision of Kotlin, we moved to do several proofs of concept
in order to evaluate in a practical way some of the theoretical features. As a result,
we found that creating multiplatform projects is very straight forward with IntelliJ
IDEA, what else could we expect from the company under the programming
language and the IDE. Also, working with Kotlin in Android Studio is straight
forward as for when integrating the Kotlin library into a Java Android application
it would automatically detect it an add its dependency. Therefor we could also
validate that Kotlin is tool friendly. Not everything was perfect, we faced an issue
when mixing Kotlin and Java code. Even if they were perfectly interoperable, we
could see that Kotlin is not that null safe in combination with Java, as Java code
can bring the null references into Kotlin code.

Lastly, we built an entire Android application to put everything together. During
the development of the application the only runtime crashes found were because
of a bad serialization of JSON data. All the other possible crashes were solved
because a compilation error was thrown before launching the application. The
issued runtime crash was due to a misspell of an expected object parameter
when the JSON was being serialized, therefor the crash was because some
parameters where not expected, and it was not handling properly. But if I didn’t
misspell the parameter, I would not have had any critical crash during the
development. This makes Kotlin a very safe programming language. In the
paragraph above we were saying that Kotlin in combination with Java is not that
safe, but when we go for a full implementation in Kotlin it is.

58 A study of Kotlin's: conciseness, safety and interoperability.

The development of the application was fast as a previous analysis of the
architecture was done, but also because a lot of boiler code was avoided with the
Android Kotlin Extensions and with the conciseness of such modern language.

Consequently, using Kotlin in application development has also resulted in having
better applications as for: there are null checks at compile time, avoidance of the
callback hell and the reduction of code complexity.

Inconveniences

During the study of Kotlin, not many inconveniences appeared. One of them is
that even if it has a great documentation, when you want to dig a little bit more
into its internals it is difficult to find something useful, therefor the most difficult to
write chapter was the first one, as it does an analysis of the compilation process
for each platform.

Another inconvenience is that when building a mobile shared library multiplatform
project the output is a Java Archive in order of being an Android Archive, this
second one is more optimized and it already contains Dalvik bytecode, the code
that Android understands, instead of Java bytecode, which needs to be compiled
into Dalvik.

Also, the mix of Java and Kotlin can lead to bringing null reference back to Kotlin,
as for so in mixed application it is recommend having a good isolation between
the Kotlin code from the Java.

Finally, from the security point of view of an Android application built with Kotlin,
even if Kotlin is a new programming language, Kotlin Android applications can be
easily reverse engineered with current tools that reverse Java code. This means
that people that were reversing Android applications did not have to make any
effort for adapting any tool for reversing Kotlin built applications.

Personal conclusions

From the personal point of view, studying Kotlin has made me understand lots of
concepts from the software engineering world. Some of those are:

• The Java Virtual Machine world, from how most JVM programs get
compiled to understanding what JVM itself is.

• Architecture for mobile applications.
• Learning a top new programming language that is building a lot of

professional careers.

Apart from that, I could also see what some foundations of Kotlin’s success as a
programming language are:

Kotlin 59

• JetBrains has some of the most used IDE’s, therefor it has a lot of
feedback on what type of programming language do developers use so it
started the Kotlin project based on this.

• Strong names, Google and JetBrains, are behind the Kotlin project
maintaining it and investing in it.

• A good documentation and lots of sample code, that help the developer
not being afraid of starting a new project.

• A very intuitive syntax that leads to a very good learning curve.
• The possibility of doing multiplatform projects where the business logic is

shared.
• The fact that for Android development Kotlin can run in old Android devices

as its first version is based in Java 6, hence there is not this fear or
migrating to Kotlin for not breaking backwards compatibility.

In case I have to build an Android, I will for sure chose Kotlin as the feedback I
can give from executing this project is very good.

Future work

This project can be extended in many ways. An approach would be to build the
same final application but using some of the frameworks or features mentioned
in the project. For example, using Anko, the Android Kotlin framework described
in the second chapter, and analysing the differences between the application built
with plain Kotlin and the one built with Anko. Also, another option would be to
move all the logic of the application into a multiplatform project and use it in an
iOS project. Not to go further, if the logic of the application is moved to a
multiplatform project a website could also be built using that logic.

From another perspective, the project could also be extended by doing an
analysis of several factors such as the performance of the same Kotlin application
built in Java. Also, comparisons of the application size of a Java application and
a Kotlin application and many more comparable parameters.

60 A study of Kotlin's: conciseness, safety and interoperability.

BIBLIOGRAPHY

[1] Kotlin’s official webpage, [Online] Available: https://kotlinlang.org/

[2] Kotlin’s official documentation, [Online] Available:
https://kotlinlang.org/docs/reference/

[3] S. Wirtz, “Kotlin on the JVM - How can it provide so many features?”, Kotlin
Experise Blog 2017 [Online] Available: https://kotlinexpertise.com/kotlin-byte-
code-generation/

[4] A. Leiva, “Kotlin Android Extensions: Say goodbye to findViewById”,
Anotonio Leiva’s Blog 2017 [Online] Available: https://antonioleiva.com/kotlin-
android-extensions/

[5] F. Muntenescu, “Android Architecture Patterns Part 1: Model-View-
Controller”, Medium 2016 [Online] Available: https://medium.com/upday-
devs/android-architecture-patterns-part-1-model-view-controller-3baecef5f2b6

[6] F. Muntenescu, “Android Architecture Patterns Part 2: Model-View-
Presenter”, Medium 2016 [Online] Available: https://medium.com/upday-
devs/android-architecture-patterns-part-2-model-view-presenter-8a6faaae14a5

[7] F. Muntenescu, “Android Architecture Patterns Part 3: Model-View-
ViewModel”, Medium 2016 [Online] Available: https://medium.com/upday-
devs/android-architecture-patterns-part-3-model-view-viewmodel-
e7eeee76b73b

[8] Y. Shah, J. Shah and K. Kansara, "Code obfuscating a Kotlin-based App
with Proguard", 2018 Second International Conference on Advances in
Electronics, Computers and Communications (ICAECC) Advances in
Electronics, Computers and Communications (ICAECC), 2018 Second
International Conference on. :1-5 Feb, 2018, [Online] Available:
https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/document/8479507/

