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Abstract 

 

The vision of the future 5G corresponds to a highly heterogeneous network at 

different levels; the increment in the number of services requests for the 5G 

networks imposes several technical challenges.  

In the 5G context, in the recent years, several machine learning-based 

approaches have been demonstrated as useful tools for making easier the 

networks’ management, by considering that different unexpected events could 

make that the services cannot be satisfied at the moment they are requested. 

Such approaches are usually referred as cognitive network management. 

There are too many parameters inside the 5G network affecting each layer of 

the network; the virtualization and abstraction of the services is a crucial part 

for a satisfactory service deployment, being the monitoring and control of the 

different planes the two keys inside the cognitive network management.  

In this project it has been addressed the implementation of a simulated data 

collector as well as the study of several machine learning-based approaches. 

This way, possible future performance can be predicted, giving to the system 

the ability to change the initial parameters and to adapt the network to future 

demands.  
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Introduction 

Introduction and scope. 
 

The upcoming generation of mobile communication systems will have around 8 

million of subscriptions according to the forecasts. As a consequence, it has to 

be considered the overwhelming increase of smart devices and the irruption of 

the Internet of Things (IoT) whose main aim is to connect everything. 

From predecessors, 5G systems implies a big jump, since key performance 

indicators (KPIs) have to be taken into account, making a basic requirement the 

self-organization of the whole network, including end-to-end network behaviour 

intelligence to ensure a profitable business model. Here is where the self-

organizing network (SON) is introduced as the engine which will enable the 

exploitation of Artificial Intelligence (AI) mechanisms for the efficient self-

management.  

In legacy systems, the network observes the environment, makes a diagnosis of 

the problem and executes the compensating action which involves to spend a 

valuable operation time which is not compatible anymore with the 5G targeted 

latency requirements. It is here where the big data must introduce the capabilities 

which make that the network can adapt its structure making the future SONs 

distinct from legacy cellular systems. 

In this the following objectives have been settled down and finally they have been 

finally accomplished: 

 

 Review the 5G architecture and the study of machine learning techniques 

as valuable tools for the autonomy management of 5G networks. 

 Benchmark different machine learning techniques to infer the most 

suitable solution. 

 Analyse the results of the ML techniques and study their implementation. 
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CHAPTER 1. Overview of 5G-based networks 
systems 

1.1 Architecture and network slicing 

Nowadays due to the fact that a wide range of new services are growing up and 

the industry automation is becoming a necessity, the significant increment of the 

traffic makes that networks need to adapt in order to satisfy these new 

requirements. 

Then, it is planned a network slicing for satisfy these aims, including two 

fundamental enablers, that is, software-defined and virtualization in order to 

managed and orchestrate network in an efficient way. However, the network will 

have other needs like the scalability which will take a relevant position 

determining how the resources must be distribute in order to satisfy future 

upcoming demands.  

The customization of the network will introduce new elements like the virtual 

network function where the network abstraction is particularly relevant to 

accomplish the network slicing concept. 

 

 

Fig. 1.1 E2E 5G vision per layers [2] 

 

As we see in the figure 1.1, at the service level, the structure is repeated like in 

network level, it can be just a specific part of the network or only a resource which 

needs to be repeated. 

Regarding to the network slicing, as it is shown in Fig 1.1, it will provide to the 

operators the ability for fitting networks depending on the wide range of uses 

cases (Personalized), by means of virtualization and software defined 

networking. Summing up, the network slicing pretends to match the cloud 
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infrastructure and network functions to meet the specific requirements of different 

use cases. 

In order to compute all this orchestration for the wide range of different use cases 

and covered the totality of network segments it will be necessary to predict and 

to analyse huge amounts of information, achieving not only the network 

management but also the isolation of resources and the disjunctive rate of each 

slice. 

The adoption of network sharing and the introduction of multi-tenancy will allow 

to increase the network flexibility relying on virtualization mechanisms and 

software-based capabilities; in this regard, the network function virtualization 

(NFV) takes a relevant sense inside of the network management architecture. In 

particular, it will be responsible of identifying requirements, interfaces and 

procedures which could be re-used or even extended.  

The network slicing will allow dedicated networks where each one will be 

assigned to serve different types of users based on client demand and assuring 

the total isolation and independent scaling, making the 5G network slice broker 

the key element which will allocate a collection of shared network resources and 

VNFs among several concrete slices that fulfil the requirements of services. 

The other new characteristic that will be part of the 5G network will be the mobile 

edge computing (MEC), making possible that the service could be envisioned, 

allowing low latencies, offering flexible services and if it is combined with VNFs 

will enable a joint optimization of these services. 

We can differentiate between different layers as we can see in the diagram of the 

5G layers (Fig 1.2) where the network is clearly divided into 4 different layers, 

where they are splitted among independent elements. 

 

 

Fig. 1.2 Diagram of 5G layers [2] 
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Basically the service layer is the layer which is closer to the real users of the 

network and provide the applications and services. The management 

orchestration will transform the consumer-facing service descriptions into 

resources and vice versa. The control layer will translate decisions of control, 

which will be processed in the data layer in order to decide what it will be the best 

choice, into commands. 

Regarding to the network slicing Life-cycle part we must separate the 

management plane and the instance level (Fig 1.2). Every instantiation will 

correspond to a segment of the network and all of them will have an embedded 

common softwarization which will organize the resources; this way every slice will 

be independent from the rest. 

Summing up, network slicing basically “enables the operator to create logically 

partitioned networks at a given time customized to provide optimized services for 

different market scenarios” [2]. Therefore, the 5G can be reduced in three simpler 

concepts: massive machine to machine communications connecting billions of 

devices at the same time; ultra-reliable low latency communications in order to 

control in real-time industry devices, transport networks etc.; And finally 

enhanced mobile broadband: providing significantly faster data speeds and 

greater capacity keeping the world connected. 

1.1.1 Understanding the radio access network 5G.  

 

The 5G technology introduce a new combination of challenges, emphasizing the 

integration of the new radio access technology with the previous ones. These 

problems are solved by means of centralizing hardware, reducing power 

consumption, and with flexibility to adopt intermediate solutions. 

One of the keys is SDMC, which allows to control and program the full network. 

The different slices in the network enable sharing network functions between 

them and reuse resources and slices. This control function is run on the top of a 

controller for slice-dedicated and another coordinating controller in order to 

shared functions. Furthermore, this programmable control and coordination 

function provides a new level of abstraction in the lowest layer resources in RAN 

simplifying in this way its control. 

Other problem which appears because of the heterogeneous mobile networks is 

optimal resource utilisation, for solving this issue the software defined network 

(SDN) in radio access network (RAN) could give us the benefit of global 

optimisation and programmability. But creating this software defined for the radio 

access resources when it must be determined the optimal solution makes that 

delay becomes in a truly problem between the centralized control entity and the 

individual radio elements. The benefit of global optimisation and programmability 

comes at the expense of scalability and latency.  
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In order to face up these problems in several papers has been proposed the next 

solutions: 

1. Centralised controller for network-wide control and coordination.  

2. Local controller for network functions requiring real-time operation. 

The first solution deals with the idea of a centralised controller making decisions 

which affects network states while local controller handles just latency decisions 

in low layers without interfering in other ones; at the end it will improve the levels 

of scalability and latency. The second solution will focus on different sub-

controllers in order to deal with the requirements in real time, adding a degree of 

complexity to manage the RAN. 

One of the main characteristics of 5G network is the integration of different 

technologies in the radio access network by means of resources abstraction 

which will be able to manage the complexity and simplifies the implementation of 

all these functions and physical layer resources. Moreover, 5G wants to cope 

huge diversity of application service requirements and deployment scenarios 

whose features could be totally different. 

The flexible implementation of 5G RAN will be impacted by application 

performance requirements and capabilities of computing platform. Therefore, it is 

crucial to understand this part of the network because, at the end, the abstraction 

will play an essential role. The machine learning techniques will be applied in a 

huge range in this part of the network. For this reason this section aims to show 

how the virtualization would work. 

 Now it is more interesting that 5G and enhanced LTE will be integrated on the 

RAN level in a way of tight interworking, this means that it must be dual 

connectivity, the user equipment (UE) has to be able to connect to eLTE and the 

CP and UP simultaneously (Dual connectivity, DC). 

Table 1.1. Advantages and disadvantages of dual connectivity 

Advantages of DC Disadvantages of DC 

DC can increase UE throughput Resource efficient than connect to the 

best cell 

Connection more reliable via CP 

diversity 

 

 

In the table 1.1 is presented which additions brings the dual connectivity to the 

connection between the client part and the core network and how the 

implementation of new radio access technologies could bring some points which 

help to the performance of the network. However, and despite the advantages 

that dual connectivity brings, it will implies other problems too. Right now the dual 

connectivity is considering as the best choice for this issue but still there are some 

points which has not been solved yet. 
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1.1.2 Understanding the core network in 5G 

 

The core network regards the part of the 5G network where is the mobile 

exchange and data network that manages all of the mobile voice, data and 

internet connections. For 5G, the ‘core network’ is being redesigned to better 

integrate with the internet and cloud based services and also includes distributed 

servers across the network improving response times (reducing latency). 

This part of the 5G network is where the project will work, the core network is 

where the new advanced features of 5G will be managed, like the function 

virtualization and the network slicing for different applications and services. In the 

figure 1.4 [18] we can observe the segment which corresponds with the core 

network where the virtualization, abstraction and management functions work. In 

the illustration we can see the introduction of the software defined network (SDN) 

and local cloud servers; where the services applications will run providing, thanks 

to the abstraction and virtualization, faster content and low latency applications. 

 

Fig 1.3. 5G network architecture [18] 

 

In this section we are not going too deeper in the core network architecture but 

we will introduce some concepts that they will be used later as well as divided 

the core architecture in the most relevant elements just for clarify how it works. 

One of the most important elements inside the core network and an element that 

it will be recursive is the network Function Virtualization (NVF); consisting in the 

ability to instantiate network functions in real time at any desired location within 

the operator’s cloud platform. Network functions that used to run on dedicated 

hardware, for example a firewall and encryption at business premises, can now 
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operate on software on a virtual machine. NVF is crucial to enable the speed 

efficiency and agility to support new business applications and it is an important 

technology for a 5G ready core. 

The software defined network (SDN) is the other concept which has appeared in 

previous sections, as an architecture controller or central software program, 

called a controller where it dictates the overall network behaviour. SDN allows to 

separate the data plane where the network devices become simple packet 

forwarding devices, while the “brain” or control logic is implemented in the 

controller will be the control plane. 

This project has the aim of investigating this services virtualization due to the fact 

that it could suppose a real challenge to manage thousands of different metrics 

and data in order to provide a low latency services. There will be a huge amount 

of parameters, which a datacenter will have to face up. Consequently, the project 

will work on the idea of how could be managed and the introduction of the helpful 

machine learning techniques in order to predict possible future demands inside 

the core network. 

1.2 Programmability & Softwarization 

The dynamic programming refers to execute different codes in the execution 

environments of the network. It means program personalized application services 

in the network. This is strictly related to the management and the orchestration 

part. 

In this part, the operator will decide how is going to carry out the request, placing 

the network function (NFs) to compose the slice and the assignation of the 

resources, referring to placement algorithms that can be designed by using 

Integer Linear Programming (ILP)-based approaches, multi-provider embedding, 

greedy heuristics with backtracking.  

The operator wants to fit as much as possible the number of resources. From an 

end-to-end perspective it is considered a cooperative ecosystem among 

operators in order to complete the service. Network programmability is an 

essential part of the new 5G network in order to support the rapid deployment of 

new use cases combining cloud-based services with mobile network 

infrastructure, where the use cases in critical scenarios could benefit from QoS 

programmability. In fact, cellular network’s connectivity requirements, including 

latency, throughput, service lifetime and cost, could vary widely across different 

use cases where the last beneficiary is the consumer getting a unique and 

personalized experience (also defined as Quality of Experience, QoE). 

The authors in [2] outline that: “The agents analyse on the information collected 

during the monitoring phase and (re)configure policies to enact a desired 

alteration in the network infrastructure.” Clearly it can be understood how the 

softwarization assumes the important role of reconfiguration in the network when 

it is necessary. 
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As it has been mentioned, 5G must support several use cases and business 

models; this brings the problem of having many different actors that have to be 

independently managed. This could be a critical part from security point of view. 

Now in 5G, new nodes can be added and removed, so it is a must to define model 

attack vectors in this dynamic environment and to be able to offer strong network 

protection and define security control points in order to avoid possible threats and 

attacks. In spite of the fact that this project has not the aim of considering the 

security inside the 5G layers, there are several points where the application of 

machine learning techniques could be an important part of the system security, 

making easier to capture and predict possible future threats for the network just 

visualising different metrics. 

It is important to consider that three different domain types appear: 1) 

infrastructure(physical) domain; 2) tenant(management) domain used to 

virtualize and getting logical functions and, 3) compound domain, which 

constitute the relationship between other domain and ours. The latter one implies 

for example, mapping 3G/4G with our network into our security architecture in a 

simple way. Additionally, inside of this domain, we can highlight the slice domain, 

which bring trust issues between the actors that control a domain and other actors 

controlling at the same time operating slices in the same domain. But it is 

important to stand out the strict isolation between domains and slices belonging 

to different actors. 

1.2.1 Softwarization of 5G Service Management and Orchestration 

 

In order to execute the different services as efficient and fast as possible we need 

to monitor the performance of 5G networks, therefore we can assume this 

problem from different points of view but we should just understand how the 

softwarization will be in general terms implemented. 

We have to assure that each service component could support desired level of 

performance, avoiding bottlenecks, this can be achieved by observing and 

analysing how the infrastructure is used and what it the relation with the service 

performance. In this regards, structures like TALE have been introduced. It is 

based on a full stack telemetry to collect data metrics related to throughput in 

order to identify possible issues and develop improvements/actions for solving 

them. 

Now we are going to focus on the management plane that supports the slicing 

concept. The final aim of slice the 5G network is to provide an independent and 

customized service to different uses cases. As every customer will have different 

requirements, it is necessary that some entity manage the resources and deal 

with them in order to achieve an agreement and a balance resource distribution. 

For the above reasons it has been proposed the NFV management and network 

orchestration (MANO) architecture which is stackable (Fig 1.5). 

We can divide NFV MANO into three functional blocks: 



  9 

 
 

- NFV Orchestrator: Responsible for adding new network services and 

virtual network function (VNF) packages; NS lifecycle management; global 

resource management; validation and authorization of network functions 

virtualization infrastructure (NFVI) resource requests. 

- VNF Manager: supervise lifecycle management of VNF instances; 

coordinates and adapts configuration and event reporting between NFV 

infrastructure (NFVI) and Element/Network Management Systems. 

- Virtualized Infrastructure Manager (VIM): Controls and manages the 

NFVI compute, storage, and network resources. 

The management plane can be simplified including Self Organizing networking 

(SON) management mechanisms like configuration, self-optimization, self-

healing and self-protection. 

The slicing business model is basically based on multi-tenancy support which 

provides multiple simultaneously services. Four important aspects in network 

slicing have to be taken into account: 

1. Infrastructure sharing: it means that in order to reuse and optimize the 

physical resources the network has to be able to use a scalable 

infrastructure which can provide dedicated hardware for several services 

without wasting any of the infrastructure resources. If two users can share 

the same physical resource it will be more efficient than use one for each 

of them.  

2. Spectrum shared: the spectrum in a network is a significant issue due to 

the fact that it is very expensive and it is limited. So its usage must be 

optimised. 

3. RAN sharing: depending on customer requests it will be necessary more 

eNB which at the same time will require more physical resources. [Section 

1.2]. 

4. Network sharing: regarding to the software defined mobile orchestration 

enables the coordination between different inter-slice services; the main 

responsibilities are to map the slice templates representing requirements 

in contrast with available network resources, by deciding which network 

can be shared and the placement of the virtual and physical resources. 

The implementation of multi-tenancy in the radio access network can rely on the 

current 3GPP and LTE implementation; by implementing effectively schedule 

resource blocks between different mobile virtual network operators (MVNO). This 

can be made by means of real time controller which helps to make policies shared 

in RAN resources in order to keep information in real time and for synchronising 

it. 

The softwarization of the networks includes virtualization technologies like VNF 

which can be used to cover different kind of functions, also the concept of 

reusable functional block like the virtual network function (VNF) generalization 
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allowing an abstraction of platforms and hardware.  Softwarization and slicing 

bring the implication that the infrastructure must be programmable. RAN 

coordination and programmability are central concepts in 5G that are aimed to 

improve service quality, resource usage, and management efficiency, while 

addressing the limitations of the current LTE and WLAN systems caused by 

distributed control among them. 

Inside of softwarization it is essentially to include network graph abstractions 

which are created from distributed data sources by means of collecting 

information accessible directly from infrastructure entities. In conclusion, it is 

created a hierarchical architecture instantiating the implementation capabilities in 

order to control the operations locally in a centralised way via virtualized 

infrastructure manager (VIM). 

The orchestration of the network regulates network resources and management 

decision. Some of the objectives that orchestration is focused on are: 

Provisioning, security, QoS, fault tolerance, energy efficiency, etc. The difficulty 

about orchestration is in essential the cognitive network management across 

heterogeneous networks with their own characteristics and requirements. 

This project is focused on the study of how the machine learning techniques and 

several algorithms can contribute to provide to 5G networks this autonomous 

management. Therefore, the orchestration is based on taking management 

decisions, optimise and adapt the network over time trough in order to obtain self-

configuration. The main problem for achieving this self-management is the 

heterogeneity of the networks because everyone has their particularities and 

specific requirements like edge networks or computing clouds. 

In new mobile service models due to the fact that are new requirements in terms 

of data and functions for the network management based on 5G it will be 

necessary to take care of them like the virtualization function in the network or 

the multiple network services, the scalability referring to the capacity of the 

network for adapting to the demand, the security which we have talked in previous 

sections or the QoS. The next step is the encapsulation of networking function 

virtualization (NFV) applications standardized by the European 

Telecommunications Standards Institute (ETSI) as management and network 

orchestration virtual network function manager (MANO VNFM) functionalities 

towards a multi-tenant management of VNF lifecycle. The network functions 

virtualization (NFV) defines standards for compute, storage, and networking 

resources that could be used to build virtualized network functions. The virtual 

network functions manager (VNFM) is a key component of the NFV management 

and organization (MANO) architectural framework.  

The VNFM works with the other two NFV-MANO functional blocks, the virtualized 

infrastructure manager (VIM) and the NFV orchestrator (NFVO), to help 

standardize the functions of virtual networking and increase the interoperability 

of software-defined networking elements. 

https://www.sdxcentral.com/networking/nfv/
https://www.sdxcentral.com/networking/nfv/
https://www.sdxcentral.com/networking/nfv/
https://www.sdxcentral.com/data-center/storage/
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://www.sdxcentral.com/networking/nfv/mano-lso/definitions/nfv-mano/
https://www.sdxcentral.com/networking/nfv/mano-lso/definitions/nfv-mano/
https://www.sdxcentral.com/networking/nfv/mano-lso/
https://www.sdxcentral.com/networking/nfv/definitions/virtualized-infrastructure-manager-vim-definition/
https://www.sdxcentral.com/networking/nfv/definitions/virtualized-infrastructure-manager-vim-definition/
https://www.sdxcentral.com/networking/nfv/definitions/nfv-orchestrator-nfvo-definition/
https://www.sdxcentral.com/networking/sdn/
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Finally, there are other elements that the network need to manage, due to the 

fact that nowadays there are several operators that will have to share the same 

ecosystem; then for achieving a multi-operator interaction, additional work is 

needed for the inter-operator orchestration. Therefore, in order to achieve this 

inter-operator coexistence, the components which are responsible for this 

capabilities are divided in three groups; the first one is dedicated to the resource 

acquisition; the second one to service request deployment and the third is in 

charge of service assurance and service level agreement (SLA) management. 

1.3 End to End virtualization 

 

In order to satisfy the needs of providing services with different requirements, 

offering at the same time a huge amount of different network functions is a must. 

If the 5G networks want to satisfy these demands it will be necessary to virtualize 

some infrastructures and functions, as well as making them scalable which 

means that we can add as resources as the demand requires them. 

For this reason, it has appeared the network function virtualization (NFV) 

explained previously, whose function is providing a solution to reduce the 

installation deployment and the infrastructure cost as well as making a flexible 

function placement and service customization as we can check in Fig 1.5. 

 

Fig 1.4 Data and control plane virtualized structure manager [1] 

 

Going through the structure of the virtualization elements, one of the main 

parameters which play a fundamental role is the NFV nodes. They have a general 

purpose as programmable servers, each NFV node is virtualized as a virtual CPU 

cores. In this regard it will be possible to apply different algorithms in order to 

optimize and predict the future usage requirements. Then finally the virtualization 

will work in a quite similar way as virtual machines by means of programmable 
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virtual network functions (VNF Fig. 1.5) on VMs of different NFV nodes at different 

network locations in order to achieve high and optimize resource utilization. 

Finally, the backbone core network will consist in different network switches and 

NFV nodes connected, the NFV nodes will host and operate VNFs. 

Consequently, a set of VNFs and the virtual links making the proper 

interconnection will constitute a logic VNF chain, therefore these VNF chains will 

be managed by a virtualization controller (VNF manager Fig 1.5) which means 

that will require a E2E service provisioning. 

The 5GPPP multi-domain architecture as we have explained in section 1.1 is 

composed by a layered model which compose the infrastructure layer, multi-

domain orchestration and application layer. In the infrastructure layer is where 

cellular network operators will add their resources therefore where E2E multi-

domain orchestrator will be placed. The E2E service orchestrator uses the 

resource slices in order to integrate services slices which finally will finish into 

apps. 

There are other requirements that the multi-domain architecture will have to 

support in 5G networks, such as the division between the control and user plane.  

As we can observe in figure 1.5 between the VNF and VNF manager coexists the 

software defined networking (SDN) which allows that control and data planes of 

network devices being decouple, enabling fast innovation as well as global 

network programmability and independent evolution of control and data planes. 

Summing up, NFV enables that the resources of an infrastructure provide can be 

virtualized and shared among tenants, with one or more tenants requesting 

services can reach the efficient utilization of its resources by dynamically slicing 

them. The Network Virtualization function (NFV) proposes to move the 

processing of dedicated hardware middleware packages to the hardware running 

on the base servers; this way NFV brings the possibility of outsourcing enterprise 

Network Function (NFs) processing to the cloud. When an enterprise outsources 

its NFs to a Cloud Service Provider (CSP), the CSP is responsible for deciding: 

where initial Virtual NFs (VNFs) should be instantiated and what, when and where 

additional VNFs should be instantiated to satisfy the traffic changes (scalability) 

with minimal impact on network performances. 

It is remarkable than the VNFs can be re-scaled vertically in order to offer an 

infrastructure resources based on client demands, consequently will provide 

better management, flexibility, lower cost, energy efficiency and better resource 

location and utilization. Most of the proposed heuristics are based on greedy 

algorithms using simple rules, such as First Fit Decreasing (FFD) and Best Fit 

Decreasing(BFD). In this project we are going to explored alternatives algorithms 

for the virtualization optimization and proposed a known structure which could be 

implemented in this kind of network regarding to 5G as well as explore different 

heuristic algorithms which scales to large datacenters without a significant 

decrease in performance. 
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1.3.1 Abstraction in Software Defined Networking (SDN) for 
DataCenters 

 

The abstraction is an important part of the new generation of 5G networks, where 

those elements that in previous generations were physically working in the 

network; now are became into virtual machines or virtual processes that finally 

are executed in a datacenter, where several hosts will allocate the resources and 

it can be migrated depending on the needs. 

Now, in this section we are going to analyse the part of the 5G core network 

dedicated to virtualize all those services which are used for achieving low latency 

and satisfy the demand of different network services and how it can be managed, 

introducing in this way the objective of this project which is the investigation of 

machine learning algorithms in the 5G network and why they are necessary. 

A total effective abstraction of resources allocation requires a high precision for 

measuring which services are going to be attended first, depending on the priority 

and the available resources in each moment. 

The SDN allows to organize the resources in the 5G network; summarizing its 

functionality, it can be said that computing the shortest paths are functions of the 

control plane and data plane functions handle packets and routing them from 

input port to output port, therefore control planes consist of logic that controls the 

packet forwarding behaviour of the routers and switches. It contains configuration 

procedure for middle boxes too, such as firewalls, and load balancers. The data 

plane is responsible for forwarding packets in the network, so it contains routing 

tables and hardware pertaining to the network. 

 

Fig 1.5 Core network abstraction [16] 

We can say that the abstraction comes from becoming the legacy network into 

intelligent network, thus means that we need to analyse every parameter in order 

to optimize the resources abstraction. Here it comes the necessity of introducing 

big data analytics as we see in the figure 1.6, where the resources abstraction 
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will be blind if there is not any analysis and the policies can be changed in order 

to adapt the network to possible future problems. 

In the figure 1.6 the problematic of virtualization appears. Due to the fact that the 

policies must change depending on the demand or the overwhelmed (due to a 

poor prevision), here it appears a new concept inside the 5G network called self-

organize network (SON). The network must be able to adapt itself to possible 

future inconvenient by means of big data and analytics approaches, without that 

it would risk to make totally useless the improvements introduced in the new 

generation. 

1.3.2 Policies 

The orchestration and management architecture allows mobile virtual networks 

operators MVNOs to solve network slice requests, allowing programmable 

policies. This section is dedicated to explain the last part of the virtualization in 

the network management presented previously in the figure 1.5. Firstly, it is 

important to highlight that this project will not carry out the implementation of this 

part of the network which includes policies and actuators. Due to the fact that 

everything will be sent to the part of actuators we need to understand it. 

Therefore, our results in a real environment will be sent to the policy manager 

where it would be designed a policies strategy in order to be prepared to face up 

the future demand. 

The policies manager or policy engine will be constant along this project, largely 

due to the fact that we have to consider always this part, all the predictions will 

be reflected in the policies engine, where depending on the results the actuators 

should change some resources allocation in order to optimize the performance. 

The policy engine will have to include old (previously defined) and the new ones, 

those defined to support again the committed service requirements. 

Furthermore, there will be a module in charge of making the convenient 

recommendation in order to evaluate the different possibilities and calculate the 

success rate we; can call this module as policy recommender (Fig 1.4). It could 

be improved always so there should be a policy optimizer where the policies are 

updated and installed in order to finally distribute and apply them into the network, 

taking an advantage from the predictions made in the smart engine. 

In conclusion the policies are an indispensable part of the 5G virtualization, just 

not because they are the laws which will help to orchestrate and manage the 

network abstraction but also the essential part for making the network totally 

programmable. 

1.4 Cognitive Self-Organize Network Architectures  

 
The use case which better fits in order to explain the propose of applying machine 

learning techniques in 5G is the cognitive network model. The key aspect about 

cognitive network is the use of these models, collecting previously data and 

metrics from the NFVI and the control plane, analysing them and by means of 
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policies we can obtain a high level of abstraction in the network which means a 

better performance and a softer deployment in different parts of the network 

layers, as we have explained in the section 1.3.1. 

In order to automatize the network management there is other element that can 

applied strategies previously designed called 5G self-organise network (SON). 

As SONs can be also defined those networks which have an autonomous 

management vision extended to the end to end network. In literature and also in 

some instances of products available in the market, Machine Learning (ML) has 

been identified as the key tool to implement autonomous adaptability and take 

advantage of experience when making decisions. In this project we will 

investigate how 5G network management can benefit from the ML solutions. The 

concept of SON is an approach to the future network generation requirements 

where they will be totally autonomous. 

The cloud computing plays a relevant role inside the cognitive networks, where a 

high capability of computation is necessary in order to distribute efficiently the 

resources, clean data, apply machine learning techniques and allocate them 

when it was necessary. For that reason, the idea behind this structure is that the 

analysis and the application of machine learning algorithms will be run in the 

cloud (datacenters). 

The new 5G networks look forward to achieve this autonomic network 

management, but there are some crucial elements in order to give the dynamics 

looked. The first important element will be the machine learning which will 

suppose one of the key technologies used in Cognitive network management in 

order to predict and facilitate the adaptation of the network, starting from the data 

collected from the different elements of the network.  

Also it would be necessary to build a representative knowledge base (KB) in order 

to process input data from different sources through learning classification, 

prediction and clustering models in order to bring all this data to the self-

organizing network (SON). 

One of the most important points in the cognitive network is the autonomic 

monitoring which will have to identify the important features and captures 

information just to send it to the last important element, the automatic planning 

and execution (ANM) which by means some policies will have to adapt the 

resources to the needs of the network following this steps:  

1. Knowledge.  
2. Strategy.  
3. Purposefulness.  

4. Degree of adaptation autonomy. 
5. Stimuli. 
6. Adaptation rate.  

7. Temporal scope and spatial scope.  
8. open/closed adaptation and security. 
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Following this structure proposed in the [8], this project would try to reproduce the 

behaviour and making emphasis in each step for giving the Cognitive 

management.  

 

 

Fig 1.6 Cognitive self-organize network structure [8] 

Following with the structure in the figure 1.7 we must highlight that there will be a 

common structure independently of the model or the use case; consequently, the 

characteristics finally are quite similar in a Cognitive network, therefore the 

diagram showed in the Fig 1.7 will be helpful for making the implementation of a 

real use case establishing the relation between the cognitive part and the self-

organize network and how it would work. 

The figure 1.7 show us the general structure of a cognitive network, where the 

SDN infrastructure is the layer where the metrics are collected and where it would 

apply the policies in the network; the policies are built in the SON layer where all 

the metrics are analyzed and sent to the smart engine where the machine 

learning techniques are applied, for example, to detect anomalies. 

The new 5G networks look forward to achieve this autonomic network 

management, but there are some crucial elements in order to achieve the self-

automation pursued. The softwarization and orchestration of the new 5G 

networks brings new opportunities that can be explored towards to the efficiency 

and optimization, therefore, from the project’s point of view it is interesting 

analyse how the programmability of a network can evolve enough for making a 

network self-automatized.  

Following the structure of the cognitive network, in this project has been proposed 

to take the Cognet structure in order to study the impact of machine learning 

techniques application, basing on the structure proposed by the authors in the 

paper [8], where they explain how and why the Cognet solution has been 

proposed achieving enough self-automation in the 5G network. Consequently, 
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our project would try to reproduce the behaviour and making emphasis in each 

step for analyse this Cognitive management.  

Accordingly, the use of this structure together with ML techniques will not just 

enable cognitive network management but also it will bring new challenges like: 

automaticity, network function virtualization (NFV), software defined network 

(SDN), network slicing and finally knowledge based radio resource management. 

In order to manage these challenges and make a structure which provide the 

fundamental elements that will be able to provide self-management we have 

based on CogNet (Fig 1.8) structure which will be explain in the next section. 

1.4.1 Cognitive networking  

The general idea behind the Cognet structure is too keep the QoS and cost 

management in a proportional and optimized way, this means that the resources 

dedicated to the demand must be done according to the previous analysis and 

service provision in order to save resources for future demands. 

In the figure 1.8 is clearly described how the structure works and which 

components constitute it. In the previous section we have explained the general 

idea about the Cognet project, but there are still missing some details about how 

it works and how it is going to introduce into our project.  

The fact that 5G networks have not been implemented yet, makes impossible to 

implement a real data collector. For this reason, we decided to simulate the 

module and generate data inside of a data center, discarding the mobility and 

focus on the virtualized elements. The network function virtualization is included 

inside the Cognet structure (Fig 1.8/1.9), recording different kind of data, from 

dynamic resource allocation, going through performance degradation to demand 

prediction. To reduce complexity we only focus on data center resources within 

the Cognet network. 

 

Fig 1.7 Cognet-based architecture 
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As we can observe in the figure 1.8 we can differentiate two main parts in the 

architecture; on the left one it is described the connection between the VM, 

control and orchestration level, from the network function virtualization framework 

which implies all the physical devices and functions that are running there; then 

all the key metric data will be sent to the data collector, where they are received 

and sent to the part of the Cognet functionality which manages all the data 

analysis. 

The next step after applying all the algorithms, clean the data and obtain all the 

scores, it is when the policy manager will receive the results, where the 

orchestration level will decide which policies must be applied in order to improve, 

solve or prevent the architectural framework issues or optimizations.: . 

As the data, they can be very uncorrelated. Therefore we should be cautious 

about the data since there are a lot of metrics which can be analysed. In this 

project, we will be focused on the enhancement of the virtualization services and 

the abstraction inside the hosts. The basic idea is to collect all the data which 

come from servers and physical machines, meaning that we receive a part of 

measurable data which is from machines like the RAM, CPU usage, total memory 

to allocate a resource or number of virtual machines required in a specific 

moment depending on a concrete demand. The data structure will be explained 

more widely in the next sections. 

 

Fig 1.8 Cognet and SON structure within 5G [4]  

According with the figure 1.9 presented in [4] we are going to analyse deeply the 

smart mechanism of CogNet, concretely the smart engine, where the first element 

that we will find, it is the data collector. Data collector will be implemented in our 

project as a simulator of virtual datacenter environments providing simulated 
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data. The data should be always pre-processed because it could be problematic 

to deal directly with it, consequently it needs to be clean and selected according 

with the network requirements.  

The structure in our project will be limited by the data and the actuators, mainly 

due to the lack of real data. According with the figure 1.9 the data collected is 

sent to a data storage where it is sent and received from the pre-processing and 

automated model selection modules, therefore in the data storage it is stored 

after and before all the models have been chosen.  Once, when the model has 

been selected the data will go through the batch processing engine, where it will 

be applied the model, usually in real time which has been selected, making more 

efficient the policies definition and the actuators performance. 

 As we have explained, without a data collector, the cognitive management will 

be useless. Once the data are collected from the network, the next step will be to 

clean the data and storage, where they can be consulted by the CSE 

components. 

The pre-processing is the part of the network where the feature selection is 

applied in order to reduce the dimensionality and prepared for Batch processing 

engine; the feature selection is done by neural networks. It is important to remark 

that the feature selection is an important functionality to overall flexibility of the 

architecture. 

When we have the variables which we are going to be used, we must choose the 

algorithm that will be applied for satisfy the requirements. However, sometimes 

an algorithm could not adapt properly so the batch processing engine evaluates 

current model and if the model stale or is not available it will generate a new one. 

Finally, when the model has been applied can be saved optionally in the 

distributed file system because maybe the batch processing engine will generate 

models directly, being consumed by real-time processing engine which scores 

the data even in real time. As a conclusion, in this section we have explain the 

parts of our use case in order to understand how we are going to study the use 

of the machine learning techniques inside of the 5G environment. 

Chapter 2. Machine learning  
 

Machine Learning (ML) is a new approach guided by Artificial Intelligence that 

suggests that machines should be able to learn by themselves. Instead of 

providing them with repeatable knowledge, just giving some raw data from certain 

patterns can be extracted and learn from them as the human mind would. 

We have mentioned in previous section why machine learning is not only a useful 

application for different areas within 5G, but also a requirement if we want to 

achieve the QoS levels or latency and bandwidth expected. In order to analyse 

the whole service given by some determined slice schemas, or due to the amount 

of data generated by several resources, it will be necessary the full optimization 

of the radio resource as well as the classification of the data traffic. 
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Therefore, network providers are looking for the minimum cost solutions to deploy 

total programmable network infrastructure. In order to maximize the profit of an 

infrastructure provider, the orchestrator will need to accept as many slices asked 

as possible; this obviously implies that, it will become in more incomes but they 

should match the variation of service requirements scaling the network. In fact, if 

a slice cannot be scaled up due to resource contention among the slices, the InP 

needs to pay a penalty corresponding to service degradation (see [4]). 

For all these reasons, managing and predicting the variation of different services 

is a complicated task. The orchestrator can rely on ML techniques and Big Data 

analytics (BDA), as depicted in the figure 2.1. 

The project is aimed to analyse how the machine learning techniques can 

improve the performance of the 5G networks and how they should be 

implemented or which infrastructures we should design in order to take benefit of 

apply them. The main architecture can be observed in the figure where the 

orchestrator should be equipped with different elements based on BDA; we can 

differentiate the typical processes which are followed in data analysis and data 

science where we need a module where all the data is picked up RD, other where 

this one is analysed by BDA.  

The next step is to decide regarding to the slice requirements presented for the 

MSP and CSP (fig 2.1), about the acceptance of an income slice request 

depending on the resource availability. In order to have a continuous evaluation 

we need to monitoring the current state of the network resources by means of 

resource monitoring (RM). 

 

Fig 2.1 System architecture in resource Orchestration [4] 

Consequently, the slice management whose performance have been explained 

in previous sections is where the policies will be implemented, deciding which 

slices need to be scaled up or down, sending the necessary requests to domains 
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controllers. Finally, the last module is about statistics collection where are 

extracted different statistics from slices. 

In the figure 2.1 it is explained in a general view and according to the authors of 

[4] how the ML algorithms could be implemented for the optimization of slices, 

but it is not the only solution, because they could be applied equally to the cluster 

and forecast traffic behaviours of cells; as an example a clustering model will 

explore and identify areas of the network where the traffic is suffering issues or 

irregularities, then it should be compared with similar cells with same traffic 

patterns and extract them; pointing that when we have the clusters extracted we 

could apply ML algorithms. 

2.1 Machine learning algorithms 
 

In this section we are going to review what algorithms are available currently, 

when and where we could apply them and which one will fit better. According to 

[5] we can separate among several areas within 5G networks what kind of 

algorithm will be more suitable. In this section we will make a general overview 

of the main techniques known and the studies that have developed about 

applying ML algorithms in 5G, as well as explaining the main algorithms and 

classifying them. 

The networking and distributed computing system is the key infrastructure to 

provide efficient computational resources for machine learning. Networking itself 

can also benefit from this promising technology. There a wide range of algorithms 

which can be implemented but our objective is not focused on develop new 

algorithms, but try to find out which are the most efficient so we will develop how 

the different techniques could be apply. 

2.1.1 Supervised learning 

 

In the supervised learning each training set is composed by labelled data, 

basically it consists in training a model by means of data which you can prove 

that it is reliable, then you can use the model in order to recognize the optimal 

solutions. It can be explained as a basic function in a linear system where you 

have input variables (X) and an output variable (Y) and you use an algorithm to 

learn the mapping function from the input to the output, Y = f(X) 

The goal is to approximate the mapping function that can allow to predict a target 

numeric value given several features, therefore, when you have new input data 

(X) you are able to predict the output variables (Y) for that data. Therefore, the 

final aim is to split the dataset into two different datasets, the training and the test; 

with the first we could train the algorithm in order to make it more reliable and 

with the second one we will check the results.  
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However, supervised learning often brings some problems: 

 Incomplete data cannot be modelled (Missing data), but it should be 

valuable the source of unknown-ness (forgotten or lost) or the value does 

not care or is not applicable.  

 Feature selection is not as effective as in the other learning techniques, 

due to the fact that many features will depend on a high grade from the 

others, which make unduly the influences into the accuracy of supervised 

ML classification models. 

 The influence of the algorithm or the technique used will affect in a huge 

way the results, consequently it is crucial to choose the adequate 

technique. 

We should differentiate between two different kind of techniques; regression and 

classification, regression tries to model the relationship between the parameters 

which are iteratively redefined using a measure error in the predictions. There 

exist several regression algorithms that we can classify according to the variables 

or the shape of the regression line, like linear, logistic, polynomial, stepwise, 

ridge, lasso or elastic net regression. 

Table 2.1 Supervisee learning algorithms 

 

Regression or prediction which can be used when the variable is real or 

continuous, allows us to predict with a probability of failing. Like in the small cells 

which are being deployed in 5G networks to cope with the high demand of traffic, 

AI 

Technique 

Learning model  5G-based Apps 

 

 

 

 

 

Supervised 

Learning 

ML and statistical 

logistic regression 

techniques 

Dynamic frequency and BW allocation in self-

organize LTE dense small cell deployments 

Support vector 

Machines (SVM) 

Path loss prediction model for urban 

environments 

Neural-Network-based 

approximation 

Channel learning to infer unobservable CSI 

from an observable channel 

Supervised ML 

frameworks 

Adjustment of the TDD UL-DL configuration 

to maximize the network performance based 

on the ongoing traffic conditions 

Artificial neural 

networks (ANN) and 

Multi-Layer Perceptron 

Modelling and approximations of objective 

functions for link budget and propagation loss 

for next generation wireless networks 
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they have an unpredictable and dynamic interference so that the SONs will be 

able to learn dynamically and adapt to the conditions in the current environment. 

Classification is a technique for determining to which class belongs and to assign 

label to each class depending on the one or more independent variables. 

Regarding to the main algorithms that can be used, in the table 2.1 we can see 

summarized some supervised learning algorithms, where there are some 

relevant ones which will be applied in this project. However, we are not going to 

explore the theoretical background behind each one but, we will analyse how they 

act in every case with different data and how they can suit for 5G use cases. 

2.1.2 Unsupervised learning 

 

The main key in unsupervised learning is that the data is unlabelled, therefore 

the objective is training the data but without guidance, which can have supposed 

to be quite useful when the differences between the data groups are not very 

high. One of the main techniques within unsupervised learning is the clustering 

(table 2.2), which uses ML to situate data inside several groups of them 

considering the similarities among the features of the data.  

The problem with clustering is that the no labelled data set cannot be compared, 

consequently at the end, the error which it could make, it is also undetermined in 

terms of comparison. Therefore, is difficult to evaluate if it is not in the specific 

case where it is properly to apply it.  

The performance of the technique is described by a vector of N features which 

could be used to represent it in N dimensional spaces which could be useful in 

heterogeneous cellular networks. 

Table 2.2 Unsupervised learning algorithm 

AI technique  Learning model 5G – based Apps 

 

 

 

 

 

Unsupervised 

learning 

K-means clustering, 

Gaussian mixture model 

(GMM) and expectation 

maximization (EM) 

Cooperative spectrum sensing. 

Relay node selection in vehicular 

networks 

Hierarchical clustering Anomaly/Fault/Intrusion detection 

in mobile wireless networks 

Unsupervised soft-

clustering ML framework 

Latency reduction by clustering 

fog nodes to automatically decide 

which LPN is upgraded to HPN  

Affinity propagation 

clustering  

Data driven resource 

management for Ultra-Dense 

Small cells 



  24 

 
 

 The most common techniques are: k-means clustering: which consists into k 

clusters where the data samples are place in groups.  

Every cluster chooses Hierarchical clustering: Mini- Batch K-Means, Mean-Shift 

clustering, DBSCAN, Agglomerative Clustering, etc., can be used to associate 

the users to a certain base station in order to optimize the user equipment (UE) 

and base stations (BS) transmitting/receiving power according with the authors 

in [5]. 

2.2 State of the art  

 
The objective of this section is to give some details of the main techniques and 

technologies used in machine learning and then, we review the literature on 

cognitive networking where we can study these techniques. 

The aim behind this project is to show a high well-designed technology solution 

to be used in the paradigm of 5G network, where it will be essential in order to 

manage the millions of data generated at every second every day. Otherwise, it 

could not be even imagined the implementation of low latency services with a 

high QoS, at each moment that a client needs to use the service. 

When we talked about the computing aspect inside the network we must take 

care about the possible variables which will enter inside our modules. 

Consequently, we should distinguish between two different algorithms, learning 

and optimization algorithms. We will focus on the first one, but the optimization 

algorithm will turn on the deterministic or stochastic techniques which 

corresponds more to the policies part. 

2.2.1 Machine learning techniques in network management 

 

We have presented in the previous section a summary of the most common ML 

techniques used at this moment. In spite of the fact that there are techniques like 

the reinforcement and the clustering, which are widely used in the network 

management, we should focus on those algorithms which are more oriented to 

measure and predict the parameters inside of a network. In this project the aim 

is to analyse the different techniques but not which platform is going to be more 

powerful, so we will use python as the main technology, without going deeper 

inside other technologies like Kafka, Spark, R or IBM InfoSphere Streams [19].  

Therefore, we are going to start with the algorithms we should use to perform 

analysis built on the premise that this project aims to achieve the demonstration 

of how the ML algorithms can help in the performance of the new 5G network 

performance where it is represented in the figure 2.2.However, as addressed in 

the Recommendation ITU-T G.1000 on the QoS framework, the great challenge 

to success when deploying a cognitive network management model (Fig 2.2) is 

to deal with all the different QoS-related. This may become a difficult task when 

dealing with next-generation wireless ecosystems, where many unpredictable 

events may have an influence on the user´s experience. In view of this, some 
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recent studies suggest using big data analysis and ML algorithms for modelling 

possible future demands upcoming. ML techniques might be useful to infer rules 

from big data analysis and identify the KPIs/KQIs that will lead to automatically 

estimating the quality of a service. Selecting the most suitable learning algorithm 

may be critical to obtaining reliable results. 

 

Fig 2.2 Modelling network metrics using a big-data analytics approach [17] 

 

There are other techniques which can be more efficient in comparison with the 

typical supervised and unsupervised algorithm for the complexity of the network 

but their efficiency is still being investigated such as the Q-learning and the neural 

networks, as it is suggested in [15]. The authors discuss about the possibility of 

the implementation of this new techniques since a wide range of RL problems 

(including the ones of RRM) can be modelled as Markov decision processes. But 

in our case we will deal with the warehouse and databases problem. 

The congestion avoidance and control is other issue which a network usually 

must deal with, then the reserved resources based on the forecast traffic of cells 

should be calculated or even the abnormal problems inside the network have to 

be analysed, where some algorithms are especially useful since they are 

exclusively design for it that depending if the data is labelled or unlabelled they 

will be apply like K-Nearest Neighbours Classifier. 

In conclusion, for the mobile traffic there are other considerations that the network 

must realize where the feature selection plays an important role reducing the 

possible variable from hundreds to a short range, furthermore is quite usual that 

k-means method could be used as efficient technique extracting common 

patterns and  in order to weekly traffic behaviour can be predicted, even the 

hourly traffic forecasting where is also common to see auto-regressive algorithms  

or Gaussian process due to the fact that as the weather it could imply random 

patterns which make more difficult the training and the correct predictions of 

them.  
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CHAPTER 3. IMPLEMENTATION AND SIMULATION. 

3.1 Introduction of the use case 

We have described in the first part of the project, the potential benefit of the 

application of the machine learning techniques for 5G networks. Then, we have 

identified a management architecture which can help us in the implementation 

and the enhancement of the performance applying the algorithms. 

The next step in order to show how it will work this architecture, it is the necessity 

of obtaining the data which will be received in a real environment, but here we 

found several problems: 

1. The first one is that the companies saved this data and it is impossible to 

get it. This can be explained by two main factors, this technology is still in 

a process of development and on the other hand, the companies would 

not share the metrics until the technology was well implemented like 4G. 

2. Due to the first problem it was thought that in order to get the most reliable 

data we will need to reduce the global vision, meaning that, instead of 

obtaining data from the 5G we should think about getting it from 4G but it 

appears another problem; there will be a lot of parameters missing due to 

the similarity between technologies but finally, they are different in many 

aspects like the slicing, which is not contemplated, consequently we would 

be predicting something unreal and without sense. 

3. The third one appears when we want to focus on one part of the wide 5G 

structure, due to the fact that it would be too much if we try to analyse 

several parts (clustering, forecast traffic behaviours of cells or managing 

handovers among other parameters) [9] so we have to add the lack of real 

data to we cannot match uncorrelated data, because we will need much 

more amounts of data in order to get a notable performance, therefore we 

have to choose a specific 5G field. 

4. The final problem is about how we will simulate the data. To do that we 

must implement a sophisticated simulator and generated artificial metrics 

based on mathematical and theoretical models which can approach a real 

environment in order to get a good accuracy. 

Therefore, these are the problems which we had to face up. Therefore, we 

thought that the best choice would be to use a free-source software simulator and 

see what kind of metrics we could obtain from it. But still we did not know in what 

part of 5G we should focus on, so that we would try to obtain the data 

performance from a datacenter, due to the fact that the datacenter will be an 

important part of 5G network and the abstraction services. 

Then we would try to improve the performance inside a datacenter, where every 

host has an important cost not only in terms of money, but also in time when it is 

a must to satisfied a service as quickly as possible and achieve a good 

optimization of the structure, in order to not waste resources. 
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3.2 Implementation of the use case 

 

The first step was to try the different simulators which currently exist and how 

they gave us the data. In particular, we tested different simulators which are very 

common in the market, even installing a virtual machine in Linux; among others 

there were tested: “DeepMIMO_simulator, ns-allinone, NYUSIM, omnetpp, 

Nemo_outdoor, GNS3 etc”. Additionally, we have performed the review of studies 

about mathematical models in order to derive the end-to-end latency by changing 

the parameters. Nevertheless, at the end, it resulted in a too complex task. 

Finally, we found a simulator based on java which has been used following the 

recommendations in [10], within cloud environments, which provides the most 

important features that are included into a datacentre called CloudSim, reported 

in the paper [11]. CloudSim is a simulator which allows to simulate according to 

several parameters and requirements, varying along the time, the different 

conditions which can appear inside of cloud computing scenario. It also includes 

the customization interfaces for the implementation of policies and providing 

techniques for the allocation of VMs under an inter-networked cloud which can 

simulate the data centre segment in a 5G ecosystem. 

The cloud environments will approach the next generation of datacenters, 

purchasing dynamic and flexible application provision by means of virtual 

services, where the users will be able to access to them at every moment from 

anywhere, enabling the application deployment according to the demand and 

QoS requirements. [11] Therefore, we have a simulator which can provide us the 

use case in order to simulate the part of the data collector, so we do not need to 

use any monitoring software. 

 CloudSim generates the part of the physical requirements inside hosts and 

datacentre, this means that every service which appears at every moment, it will 

have several characteristics of memory, speed, time and CPU usage. Basically 

the idea is that behind of a 5G network, there are a lot of important parameters 

to be care. As an example, if a host is too saturated, it will suppose that a service 

it could not be satisfied properly, implying a possible delay and making slower 

the network. 

As we can observe in the figure 1.9 the part of the virtual network function and 

management and network orchestration will be directly implemented by the 

metrics which are given in the simulator, whose parameters will be manually 

controlled in order to obtain different situations. We will be the management part 

and the actuator in order to focus on how the techniques can help inside of the 

5G network. 

3.2.1 CloudSim structure 

Previously to with the definition of the simulation scenario, we must to explain 

what it is the structure of the simulator that we have used in order to understand 

what kind of data we are going to lead with. Obviously, the simulation will give us 

an approximation of the cloud environment which it could appear inside of a 
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datacenter, where the 5G services are allocated. However, it will allow us to 

demonstrate how the ML techniques can help to the 5G networks and not just 

predict possible fails but also optimize and improve the performance in the whole 

network. 

We must understand the terminology used inside the CloudSim in order to clarify 

with what kind of data we are going to lead. The most important element that we 

need to understand is the cloudlet. It is quite abstract because it defines a 

service which it could be provide in a 5G network.  

Policies decide the list of potential actions to be taken to guarantee the VNF 

Monitoring provision, in accordance with CRI of SDN and NVF elements as well 

as 5G aspects like, for example, the number of active users consuming network 

services which in our case it would be cloudlets, the network infrastructure’s 

location, or the users’ mobility. Policies actions influence the behaviour of the 

components and layers of the proposed architecture as it is explained in the 

section 1.3.2 [12]  

As we have observed in the figure 1.9, there are two clear sections for the radio 

resources, where it is contemplated the part of mobility and user allocation, which 

is intrinsically connected by means of the optical transport network to the cloud 

services. In this part is where we are simulating; therefore, every service 

requirement it will have this two parts mobile and cloud, so summing up 

everything a cloudlet will represent the application services. It encapsulates the 

number of instructions that will be executed, and the amount of disk transfer to 

maintain the task. 

The other elements which we have to understand are the hosts machine, virtual 

machines, CPU, RAM and BW usage, datacenter and service broker explained 

below [14]. 

- Datacenter: it is a set of typical hosts or servers; it is possible to have 

several datacenter as in the real environments and make the 

communication among them. 

- Hosts: It operates the physical machine and joins information provided by 

the processing unit, main memory virtualization monitor specification, and 

disk and network bandwidth. It also specifies the information about the 

policies for control and processing unit, disk, network and main memory to 

virtual machines. 

- Virtual machine: it is an application software which emulates the 

instructions of a real computer, every virtual machine it will have 

determined several parameters which cannot exceed the requirements of 

the hosts, it will be used to separate the tasks, in order to make it more 

efficient and work in parallel satisfying different tasks/services at the same 

time. 

- CPU, RAM and BW usage: the usage will measure the different 

requirements and how they are evolving along every simulation getting 
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directly the metrics from these parameters and applying directly the ML 

algorithms according to these data. 

- Service Broker: it is the element which choose which virtual machine will 

allocate and provide the service request. 

- Scheduling interval: Each task is represented by an interval describing the 

time in which it needs to be executed. 

- Host PES and VM PES: Indicates the number of cores inside of a host or 

inside of a virtual machine typically are from 2 to 8 inside of a VM and 

depending of the number of these VMs it would change the number inside 

the host. 

CloudSim follows several mathematical models in order to estimate the different 

parameters like capacity, usage, etc. [11]. The models have not been changed, 

and we have chosen the stochastic model which provides a more variety of 

values in order to force the algorithm as much as it can. 

Finally, the structure of this simulator can be observed in the figure 3.1 where it 

can be found the elements mentioned above. Thus we could find that every user 

it would suppose a service request, then every request will have different 

characteristics like the length in terms of memory, the size, RAM etc. There will 

be some parameters that in a datacenter are always stable like the bandwidth 

between hosts and inside these ones, so here appears a possible case for 

applying machine learning algorithms in order to optimize the different hosts. 

Moreover, the storage capacity and the RAM are usually equal in every host, so 

we must make it as efficient as possible distributing every cloudlet in different 

virtual machines. 

 

Fig 3.1 Operational CloudSim environment 

In conclusion, the simulator will represent a scenario previously defined by us, 

with a limited number of hosts which will be the main constraint in order to create 

the VMs. We can increase (or introduce) the amount of cloudlets. Depending on 

the amount of demands there will be a moment when the time in order to satisfy 
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the demand it would unacceptable so we should try to find the better solution. 

This  can be extrapolated to the real environment where several users are asking 

different services with different needs and you have limited resources in order to 

satisfy them; here is where we must apply ML techniques in order to find the  

most optimized path. 

3.2.2 Control Simulation 

In this section we are going to present the interface of the software used and what 

modification we have included in order to adapt the simulator to our use case.   

We have needed several modules from CloudSim API like CloudSim plus and 

EDGE-CloudSim, the libraries imported from java API are included when you 

download the program so the only part which have been modified has been the 

example module. In the figure 3.2 we can see that we have created a specific 

class in order to reproduce as similar as to a real example for our COGNET case, 

we want to simulate the real conditions inside of a datacenter but in the conditions 

of a 5G network. 

 

Fig 3.2 CloudSim modules 

Therefore, we can observe (Figure 3.2) that there is not any interface which can 

help us to use the simulator, thus we have to understand how the program works 

from the code part, after understand what data is generated we have created a 

module adapting it to our requirements. 

We have to establish several constraints which are not included in the simulator 

(Figure 3.3), like the maximum number of RAM which cannot exceed the Host 

Ram, also the virtual machines which can be created per host and making a little 

modification we can get that generates a simulation with similar conditions but 

changing the number of cloudlets which are arriving in order to see how it would 

be the performance of the datacenter. 

After defining the constraints, we will be able to control every parameter inside of 

the datacenter, there will be some parameters which never change trying to make 

it as real as possible. We will establish the typical values inside of a datacenter.  
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Fig 3.3 Parameter definition inside the code 

The program has been modified in order to generate the data conveniently, we 

will have two different datasets whose relationship will be established by the 

number of simulation, the first one [Annex A] gives us what has been the state of 

every cloudlet which have entered into the datacentre. The cloudlets are identify 

by an id number, each cloudlet will be attended by only one virtual machine 

allocated in a host, so, for instance, if the cloudlet 57 has been attended by the 

virtual machine 6 inside the host 0 cannot be at the same time attended by other 

one. Furthermore, as we have mentioned previously every service (cloudlet) will 

be probably different from the others, it is difficult that two different services have 

the same characteristics, consequently the size needed will differ and it would 

need different times to be satisfy. 

The other dataset [Annex B] will concern to the part of each moment where the 

execution is occurring. In the figure it is shown how evolve the different usage 

along the time until the last cloudlet it has been attended as well as how many 

resources they have to spend in order to satisfy cloudlets at every moment.  

However, we needed another dataset [Annex B] which indicates what are the 

initial conditions in every simulation in order to reinforce the algorithm and how 

has evolved the simulation, where it will be included the number of simulations 

and the initial conditions presented in [Annex A]. 

Finally, we have to match the different datasets in only one; by means of python 

we have created the cognet_dataset where it has been integrated all the 

information needed for applying the machine learning algorithms. The dataset 

(Fig 3.4) is composed by all the simulations made. In order to get the most 

important features and getting the most reasonable values and realistic instead 

of using the metric provided at every moment we have got the average and the 

maximum and minimum. Therefore, for each virtual machine in every simulation 

we will get the data which has been allocated there, number of cloudlets total 

size, the maximum usage used as well as the average. The explanation for doing 

it, comes from the necessity of accuracy, we could extrapolate it to a real time 

monitoring but it would have cost much more time and we want to demonstrate 
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how a simple application of machine learning algorithms can improve the 

performance of the network. 

The main point here is that we can have as much data as we want, so it will 

depend on how many simulations and which parameters you change but finally 

we have made 3 different burst, with 250, 500 and with 750 simulations, in order 

to see how the accuracy can increase when more data is added. It could be 

applied to the dataset which stores the data at every moment but there it was not 

other important data which should be analyse too. 

 

 

 

 

 

 

 

 

 

Fig 3.4 Dataset from CloudSim environment 

3.3 Parameters inside CloudSim 

 

In order to understand what each parameter means and its importance, in this 

section it will be explained their characteristics, meaning and how has been 

calculated in a simple way. 

Inside of a data analysis there is always an important background related to the 

data, a lot of times just for making the predictions we do not need to understand 

what the data means, but it is deeply helpful that we identify the parameters 

before we proceed with the classification. 

As we have explained the simulation will provide us three different datasets that 

we will combine and making the feature selection. In all the databases it is a must 

that exists an id in order to identify the rows and making that a parameter can 

search. In our implementation, the id will be given by the simulation, virtual 

machine and host; this way, every simulation will provide different measures. The 

number of host will be established from the beginning due to the fact that it will 

determine the result of every simulation. 

We can distinguish between input parameters, output parameters and identifying 

or categorical parameters. The number of hosts also will determine the maximum 

number of virtual machine which can exists at the same time if we have 

established that the RAM of a VM is 2 Gb and there two host of 8 Gb it could build 
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as maximum 8 VM, 4 in each host. The creation of this VMs it would depend on 

the requirements in the simulation, if they have to satisfy more resource request 

or no.  Every virtual machine has the same parameters but they could change 

depending the cloudlet which they are attending in that moment. Some of these 

parameters will be the total storage, the number of cloudlets which will be 

attended in every simulation, the maximum of CPU, RAM and Bandwidth as well 

as the meaning indicating the typical and the strange parameters, how it is the 

mean size of the cloudlets in order to make the estimations, it can be understood 

better looking at the table 3.1. 

Table 3.1 CloudSim parameters extracted 

Input parameters Output parameters Categorical 

parameters 

Ram Host Maximum CPU,BW and 

RAM usage 

Number of 

simulation 

Storage host Mean CPU,BW and RAM 

usage 

Host id 

Total number of cloudlets Number of the cloudlet Virtual machine 

id 

Cloudlets length Mean execution time  

Total number of virtual 

machines 

Mean finish time  

Virtual machines 

parameters (dependent on 

the host) 

Maximum and minimum 

size of the cloudlet 

attended 

 

 

Fig 3.5 Time parameters 

There are two output parameters which need to be explained because of their 

ambiguity, that is the times given by the simulator. One of them is the finish time 

which usually is greater than the execution time due to the fact that it represents 

the time needed for satisfying a cloudlet request. The main difference between 

them is that the finish time will depend always on the start time being the 

execution time the difference ExecTime= FinishTime - StartTime, concluding that 

the execution time it is how long it takes to complete a cloudlet request. 
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Consequently, this two times are important in order to estimated when it would 

be the next virtual machine free for attending the next service request and how 

long it takes complete the service request. 

CHAPTER 4.  DEVELOPMENT AND RESULTS 
 

After dealing with the problems related to the simulator, modifying the code in 

order to give us the implementations for the generation of different cloud centre 

scenarios, they would change depending on the number of resources which have 

to be satisfy at every moment. Therefore, once we have obtained all the data and 

the metrics we have to develop the analysis program, typically there are several 

steps which are followed when we have to applied the techniques. 

- Reinforcement: Previously of cleaning the data we can achieve a better 

performance if the data is supported by other dataset in order to give it 

more sense inside of our predictions. In our case, we have mixed three 

different datasets (data at real time, final organization of the cloudlets and 

the initial conditions) due to the fact that every single one will not give us 

the required performance as we have explained previously in the section 

1.5 

- Missing data: The missing data is a typical problem which can appear 

inside of a dataset or in a real environment due to the fact that not always 

the data will have sense or it could be collected; the missing data appear 

when an error occurs too, so that it is important to consider it. There are 

several techniques which can calculate the approximate value which is 

lack in the cell but in our case will be substituted by ceros just for making 

it simplified. Feature selection: when we talk about the data a lot of times 

is spoken that more data is better but not always is as easy as it seems. 

In the datasets there will be always parameters which will add more 

information and they will be more useful than others, but in our case we 

have to eliminate those columns which will not change the final result in 

order to streamline the process. This is the reason why we have removed 

several columns like the minimum usage of the different process as RAM, 

CPU or BW because it is logical that it would be 0 for all of them. In this 

case it is easy to see that those parameters are useless but in other cases 

we have to proceed to further analyse the data. 

- Clean data: The next logical step will be to remove those columns which 

will not be useful in a future, usually those parameters which are repeated. 

They probably do not improve the prediction or otherwise, they are not 

correlated with the others parameters, because sometimes to have more 

data it could have a high price, reducing the accuracy. Other data like the 

number of cores, storage host or Ram host will keep immutable, so it has 

to be removed. 

- Categorical data: this kind of data usually supposed a problem in terms of 

how it is going to lead with it, although it is important data, it must be 
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transform previously, first into numerical and after, indicating that this data 

is categorical to the algorithm. In the project the id of the host or virtual 

machines and the number of simulation belong to this type of data, but it 

is important to know it, because indicates more than only a numerical 

value, so that, these parameters will be considered as a categorical data.  

- Normalization, finally when we have all the elements which we want to 

include into the prediction, cleaned and organized, this step usually helps 

to improve much more the prediction. In this project, the data has been 

normalized between 0 and 1, due to the fact that we are not going to predict 

categorical data but the all the numerical data is continuous, this means 

that data will have very disperse values making more complicated their 

management. 

4.1 Predictions 

In this section we are explaining how the prediction was performed. Generally 

speaking, after making all the adjustments, fixing and cleaning all the data, we 

have to choose which parameters we want to predict, from the point of view of a 

5G network. Since we focus on the cloud part we should predict those parameters 

which makes sensible that the service can be offered in a properly way.  

Table 4.1 Algorithms accuracy in the use case 

Algorithms Legend Accuracy 

250 

simulations 

Accuracy 

500 

simulations 

Accuracy 

750 

simulations 

LogisticRegression LR 0.088356 0.119051 0.116883 

LinearDiscriminantAnalysis LDA 0.481827 0.720334 0.445292 

KNeighborsClassifier KNN 0.166602 0.127659 0.164109 

DecisionTreeClassifier CART 0.212278 0.214519 0.280696 

GaussianNB NB 0.112309 0.130283 0.155449 

Support vector machine SVM 0.070757 0.133273 0.172473 

 

As we have explained in the section 2.1, there are several techniques that we 

could apply basing on the type of the data; we can use regression, classification, 

clustering or anomaly detection but at the first sight we can observe that we are 

leading with continuous data which it means there are several values for the 

result.  We can discard the last two options, the first one, anomaly detection, in 

this case we do not want to find errors or fails inside the cloud centre, 

consequently the values will be among a regular range. 

About clustering, whose main objective looks for detection of data groups forms, 

is disposable, largely due to the values will depend on the initial variable 

conditions, making quite difficult that the output could be similar in different 
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moments. Therefore, at the end, we will keep the other two options, in order to 

see which, one give us a better performance.  

However, there is a step which is quite common when we are going to apply ML 

techniques, that consists in splitting the dataset into two different datasets, the 

train set and the test set. The train set will be used to train the algorithm in order 

to make the algorithm which results (Validation set in the figure 4.1) gives with 

certain components; the test set will be used to prove if the algorithm works 

properly, so that when there was more data the training will be better and the 

prediction will earn more reliability.  

 

Fig 4.1 Dataset splitted  

4.1.1 Classification. 

 

We are going to start analysing how it is the performance of the classification 

techniques. As we have explained, we are leading with continuous data, then the 

classification could not work with it, we need to transform it into exact integer 

without decimals, losing a wide range of values as well as accuracy in the 

prediction of the parameters, making classification at the first sight, quite vague. 

Then proceeding with the analysis we have to encode those values in a range of 

0.1 so that, if we have 0.423 it would change to 0.4. When we have normalized 

dataset encoded we must choose which parameter will be predicted. In our case 

the most efficient would be to make the estimation of several parameters but first 

we have to select the algorithm which suits more properly. We decided to start 

with the mean execution time, due to the fact is one of the most important 

parameters that we have to take into account, as we have explained previously it 

will suppose the difference between satisfying a service in the time required or 

not. 

We have chosen six different ML algorithms in order to test how the classification 

will work with this dataset, between them it would be one algorithm of regression 

in order to compare the efficiency. The algorithms will be the typical ones inside 

of classification and their results can be seen in the table 4.1 represented in the 

figure 4.2. 

We can check that the regression does not work properly with the encoded 

values, so the result is quite logical due to the fact it is an algorithm made for 
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disperse values which are not between a short range. Regarding to the other 

algorithms we can see that the classification will not work properly, our 

suppositions were correct. In spite of the fact that they are not accurate the linear 

discriminant analysis curiously it has almost a 50% of probability of predict right 

but this is not enough, it can be explained because LDA is also closely related to 

principal component analysis (PCA) and factor analysis in that they both look for 

linear combinations of variables which best explain the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2 Algorithm comparison with 250,500 and 750 simulations 

 

4.1.2 Regression 

 

Once we have analysed the performance of the classification, we must try it with 

regression. Previously we have explained that we will test the efficiency of these 

algorithms with three different datasets, made by 250, 500 and 750 simulations 

in order to work in the case of the last one with 23 columns and more than 12000 

rows which it will give almost 300.000 cells of data. Usually the numbers are even 

greater but in our case we want to measure and extract the conclusion of how 

the machine learning can help to predict possible over consumption, or saturation 
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of the resources making unsustainable the time needed with the current VMs 

available. 

Making a first sight into regression we test what result gives the linear regression 

this time without encoding the data and we compare the validation set with the 

prediction set in order to see if it could suit. 

 

Fig 4.3 Plotting prediction vs test data with 250 simulations 

The fig 4.3 indicates in a simple way how the predictions are according to the 

validation set, as we can observe it plots a typical normal distribution, which 

makes that the most of the values will be predicted correctly because the 80% of 

values are situated between the -0.01 and 0.01 of the deviation. The x axis 

indicates if the deviation between the prediction and the validation set it is too 

great, so in this case we can see that the values in a range of 0.02 is a satisfactory 

outcome. 

Consequently, we can continue applying different regression algorithms in order 

to check the performance in every case. Previously, we have explained that the 

first parameter which would be evaluated it will be the execution time, this 

parameter will be evaluated individually due to its importance. In order to see the 

improvement into the performance the algorithms will be tested with the datasets 

of 250,500 and 750. Applying in each of them the same algorithms and trying to 

predict the execution time. Finally, if the regression techniques suit properly and 

we achieve the performance desired we will test how the multi target regression 

algorithm can be applied. 

4.2 Results  

 
In this section we are going to explain the results achieved. The first algorithm 

which has been tested is the linear regression model which can be observed in 

the figure 4.4 where is one of the simplest algorithms but it works quite well with 

the data, giving well outcomes and the percentage of being well predicted is quite 

high. So we can deduce that these techniques it is a good candidate if we want 

to predict only one target, but commonly in the real 5G scenarios, this could have 
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a high cost, due to the fact that it will require a high level of computation in order 

to calculate which resources are needed in each case to accomplish the 

expectations. 

In the figure 4.4 we can see two plots.; The first one represents the deviation of 

the results; if the line is straighter, the performance and the accuracy will be 

better; on the left, plot indicates what are the normalized values in every virtual 

machine, so there we can see that the times of the execution are quite similar to 

the validation dataset. 

 

Fig 4.4 Linear regression model comparison  

In the table in the annex C is indicated the response in each case, where the error 

which is obtained from the linear regression is lesser than in the other cases. 

After test the linear regression with the three datasets it was the time of support 

vector regression. This algorithm creates a line or a hyperplane which separates 

the data into classes, consequently the general idea is that the algorithm takes 

the data as an input and outputs a line that separates those classes, but it would 
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be taken different lines until it gets the best candidate. Easily we can observe that 

this algorithm can be used with classification and regression but in our case the 

data is too much disperse in order to get a good performance.  

 

Fig 4.5 Support vector machine model comparison 

In the figure 4.5, it is shown how the dispersion from 250 to 750 simulation 

increases instead of reducing it; the error introduced by this algorithm makes that 

it must be discard for the used inside the cloud environment in the 5G network. 

Meanwhile, we checked the last algorithm for predictions of only one target, which 

is the decision tree. The general idea is to break down a dataset into smaller and 

smaller subsets while at the same time an associated decision tree is 

incrementally developed. The final result is a tree with decision nodes and leaf 

nodes. This algorithm was chosen because it can handle with categorical and 

numerical data, furthermore it is highly extended and quite known so that makes 

easy to work with it. 
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Fig 4.6 Decision Tree model comparison 

In the figure 4.6 we see that the performance it is quite similar to the linear 

regression giving good performance too; this can be explained firstly because this 

algorithm can be used perfectly for regression cases and maybe needs a bit more 

time of processing but the result is quite accurate. 

After checking the algorithms dedicated to predictions of only one target we 

thought that in a real environment it will be very tedious, even not considering 

that it will have a high cost to make every time the predictions just with one 

parameter. Eventually it was thought that with the linear regression it is possible 

to handle with several targets, then it would call multi target linear regression.  
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Multi target regression is the term used when there are multiple dependent 

variables. If the target variables are categorical like in this case, then it is called 

multi-label or multi-target classification. This algorithm can be used with decision 

trees but we are just tested it with the simple linear regression. 

In this case, to begin with the MTR, we have to choose more than one variable 

which we want to predict, therefore we are going to predict those ones which will 

impact directly in the final performance of the network and those which will 

consume more resources, they are the RAM and CPU usage, the execution time 

and the finish time explained in the section 3.3. 

Firstly, we will apply the algorithm for 250 simulations figure 4.7, but due to the 

fact that we are working with several targets in the same predictions the 

performance needs more data in order to extract conclusions, in the case of using 

250 simulations we have that the times are quite precise, just in the case of the 

CPU the predictions are more disperse, so it will need more predictors in order to 

fix it. 

 

Fig 4.7 Multi target comparison prediction vs test data with 250 simulations 

When we analysed the plots related to the network features we can see that the 

first results indicates that we are able to predict in every virtual machine or in 

future events (number of simulations) what could happen, as we observe the 10 

first VMs are very saturated it overpasses the 0.8 of usage or time which it means 

that this data it will be situated very close to the maximum value, so knowing 

previously this situation we can modify the policies and distribute the resources 

in order to optimized and not overpass the red line in order to reduce the times 

and distribute the resources. 
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Consequently, we can extract the first conclusion from here that for example we 

could be able to see than in the time when the simulation 150 is being occurring 

the performance in 100 simulations after of the network will be too similar and it 

will be over saturating the first 10 VMs so it can be changed adding more priority 

to the other 15 VMs by means of policies avoiding this situation. 

 

 

Fig 4.8 Multi target prediction with 250 simulations 

But it is quite simple with just 250 simulations, this time we do not analysed the 

case with 500 simulations due to is very similar. Let’s go with the case of 750 

simulations, it is the most similar to a real environment.  

The first result which we can obtain comparing the different algorithm is that 

depending how it is the behaviour of our scenario will change the techniques and 

the way of applying the algorithms, this means that now for a multiple random 

targets, like the times for finishing a service or the usage which it will be implied 

at every moment in a VM, we must have a strong predictions with enough 

accuracy, looking at the figure 4.9, there is a greater dispersion from the 

regression line but it does not mean something wrong, in this case if we see the 

table located in the annex C the error introduced into the prediction along more 

than 750 simulations it is quite sure that more than 90% of the predictions will be 

right, making the plots quite reliable in order to improve the performance. The 

parameter in both cases with 250 and 750, which introduces more error and 

uncertainty is the CPU usage, maybe the dispersion between the data makes 

more difficult for the regression techniques predict the values but it should be 

analysed as future work. 
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Fig 4.9 Multi target comparison prediction vs test data with 750 simulations 

Once, when we have the results from the data along the 75 simulation we can 

realize that with 250 simulations we are able to train the algorithm and it will be 

able to predict the behaviour of the cloud scenario, In the figure 4.10 we can 

observe how the predictions works, finally we have a test set called Y_validation 

where it must be predicted, if instead of having this Y_validation we want to know 

what would happen in the next 500 simulations that in the real environment will 

be translated to real time, we are able to predict with more than 90% of probability 

what would happen. 

The second result that we can extract in the case of a real scenario as we have 

explained for 250 simulations would be that once when we can trust on the 

prediction, now by means of actuators and policies it should be defined which it 

is the best plan for the optimization.  

In the figure 4.10 we can divided in two plots those which are talking in terms 

along the time (number of simulations) and those which are focus on in each 

virtual machine, the first case it can be used to change that the RAM usage and 

the CPU usage are close to the maximum values along of the different scenarios, 

so it can be understood because only the half of virtual machines are doing 

almost all the work, just when they are totally saturated it uses the rest as we 

observed in the CPU usage vs VM plot. This can be extrapolated to the time 

needed for every VM to satisfied the services which is near to the maximum 

values, but the criteria here should be analysed thinking what parameters must 

be change in order to avoid this situation. 
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Fig 4.10 Multi target prediction with 250 simulations 

The annex C has been represented into the fig 4.11 indicates the evolution in 

every case of the error and the accuracy with every algorithm, the R-squared is 

a statistical measure of how close the data are to the fitted regression line. It is 

also known as the coefficient of determination, continuing with the graph we can 

see that the performance of the algorithms chosen is relevant in terms of 

accuracy, being the linear regression and the multi target regression those that 

have the minimum error and more probability of predict correctly. 

 

 

Fig 4.11 Comparative table about each technique performance 
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4.3 Environmental impact  

 

In this section we are going to analyse the final impact that this project can 

produce into different environments. On the one hand, we have to highlight that 

this project has been developed from the point of view of softwarization inside the 

5G network, so the maximum impact could be the server’s necessity, where they 

will carry out all the performance. 

On the other hand, we should see beyond this, the main reason is the deployment 

of new datacenters and base stations, in order to satisfy the increase in demand. 

First, regarding to datacenters, the increment of huge amounts of data will make 

necessary to deploy new datacenters, obviously where, this huge amount of 

metrics must be computed. Here it comes a relevant impact where there will be 

necessary a planned infrastructure where the servers can be installed.  

 Meanwhile these metrics have to come from several base stations implemented 

in the streets, where we can see a clear environmental impact. The 5G and the 

implementation of machine learning algorithms will need a real time streaming of 

hundreds of parameters in each moment, the multi massive antennas 

implementation needed for making MIMO (Multiple-input Multiple-output) 

technology a reality will have a clear impact in the streets, as well as, the new 

base stations where it will store data and send it to the closest datacenter. 

Consequently, our project will not have in a direct way a clear impact in the 

environment, however and despite of being indirect impact, it connects directly 

with the direct impact produce by the implementation and deployment of the 5G 

infrastructure, like the new fibre infrastructure connection in order to connect the 

base stations with the core network. 

Finally, in order to analyse the total impact, there is one more field, which we 

have to analysed, called the impact in the social environment, where the people 

life is changed by the action of our project, in this case the 5G has searched to 

make easier the life and connected in a better way the whole network of existing 

devices, consequently, the most important impact in this part is an advantage, 

but they should buy devices adapted to this new generation.  
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CHAPTER 5.  CONCLUSIONS AND FUTURE WORK. 
 

5.1 Conclusions 

 

In this thesis, we addressed the problem of studying different techniques for being 

applied into the 5G optical networks. In particular, we investigated how the part 

of cognition inside of the structure of 5G works and the proposal of an Autonomic 

Network Management based on Machine Learning as a key technology for 5G 

networks to reach the vision of automated management of telecoms network 

infrastructures. We have introduced the part of Smart Cognet related to the 

collection of data streams and their analysis in order to apply different ML 

techniques, giving a simple example of how the actuator part and policies can be 

introduced. 

We have solved the problem related with the data collector by means of the 

implementation of a simulator of cloud environments which could represents the 

real situation into the 5G structure due to currently it does not exist any repository 

with the needed data. 

A discussion on different ML algorithms performance has been provided as well 

as the different solutions in order to deal with the data and provided the most 

reliable solution. In particular, we have proposed the possible solution which can 

suit better with the structure of the network. 

The main focus of our thesis was on the optimization itself. A new approach 

based on estimation of ML algorithms was introduced for solving cognition 

problem, acting on the real application which can be extracted as well as looking 

into the best option for the satisfaction of services request. 

Finally, another contribution relies in the parallelization of the different prediction 

by the introduction of multi target regression which gives a complete view of the 

future parameters and how could be the performance of the network being able 

to adapt the conditions of the whole network to possible increments in the 

demand of services in punctual moments. From an experimental point of view, 

our contribution lies in the comparison of different machine learning techniques 

which could be apply in the Cognet structure inside of the 5G network. 

 

5.2 Future work 

Many different adaptations, tests, and experiments have been left for the future 

due to lack of time as well as the data problem which has been common along 

the project (i.e. the experiments with real data are usually very time consuming, 

requiring even days to finish a single run) 

From this project it can be extract several future works like the simulation with 

real data and the monitoring in real time, furthermore one of the most complicated 
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parts in the Cognet network have not been implemented which it counts with 

actuators and policies management, indeed without this part we cannot know if 

the data predicted has a real impact into the network. Therefore, this opens a 

new opportunity of investigation, applying directly the algorithms and defining the 

policies but if there is not real data could bring too many problems. 

Obviously, the use of other types of ML techniques and data treatment functions 

could be investigated, Concerning the results for our Cognet structure (data 

collector, smart engine and policy manager), we can also expect to improve them 

by having better data, with more attributes and even going deeper inside this 

structure explaining the different parts and developed them. 
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Annexes   

Annexe A Cloudlet dataset 

 

 

Annexe B System dataset at every time 
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Annexe C Algorithm accuracy 
 

 

 

 

 

 

 

 

Algorithm 

Mean 

Absolute 

Error 

Mean 

Squared 

Error 

Root Mean 

Squared 

Error 

R2 

squared 

Linear regression 

250 0,0036 0,000020866 0,004567 0,99931 

Linear regression 

500 0,00457 0,00006047 0,00667 0,99457 

Linear regression 

750 0,00652 0,00009005 0,00948 0,9969 

Support Vector 

regression 250 0,03894 0,17676 0,0801 0,95009 

Support Vector 

regression 500 0,05953 0,00539 0,0734 0,8225 

Support Vector 

regression 750 0,06002 0,00514 0,07174 0,82402 

Decision Tree 

regression 250 0,01877 0,01877 0,0281 0,9679 

Decision Tree 

regression 500 0,01845 0,00077 0,02787 0,9744 

Decision Tree 

regression 750 0,012183 0,00028 0,017005 0,99011 

Multi target 

regression 250 0,03053 0,00168 0,04104 0,94931 

Multi target 

regression 750 0,03804 0,00266 0,0516 0,9363 
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Annexe D CloudSim code in Java 
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Annexe E:  Python code  

 

 
import pandas as pd 
import numpy as np 
import os 
import sys 
import scipy 
import matplotlib 
import sklearn 
import csv,operator 
from sklearn import metrics 
from sklearn import model_selection 
from sklearn.linear_model import LogisticRegression 
from sklearn.linear_model import LinearRegression 
from sklearn.svm import SVR 
from sklearn import svm 
import seaborn as sns 
import pandas as pd 
import numpy as np 
import os 
import sys 
import scipy 
import matplotlib 
import sklearn 
import csv,operator 
 
 
def txt_to_csv(numsimul): 
   with open("cloudsim\\data"+ str(numsimul)+".txt", 'r') as in_file: 
        stripped = (line.strip() for line in in_file) 
        lines = (line.split(",") for line in stripped if line) 
        with open('cloudsim\\data'+ str(numsimul)+'.csv', 'w') as out_
file: 
            writer = csv.writer(out_file) 
            writer.writerows(lines) 
 
 
def parameters_to_csv(): 
   with open("cloudsim\\DC_Features.txt", 'r') as in_file: 
        stripped = (line.strip() for line in in_file) 
        lines = (line.split(",") for line in stripped if line) 
        with open('cloudsim\\DC_Features.csv', 'w') as out_file: 
            writer = csv.writer(out_file) 
            writer.writerows(lines) 
 
def make_tables(df): 
                   
    dfObj = pd.DataFrame() 
    for j in range(0,df['Host_Id'].max()+1): 
        for i in range(0,df['Vm_id'].max()+1): 
            df2=df.loc[(df['Vm_id'] == i) & (df['Host_Id'] == j)].desc
ribe() 
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            if (df2.isnull().values.any()): 
                continue 
            else: 
                dfObj = dfObj.append({'Host_id':int(j) ,'Vm_id':int(i) 
, 'Mean_CpuUsage':df2.iloc[1][3] , 'Max_CpuUsage':df2.iloc[7][3], 
                'Min_CpuUsage':df2.iloc[3][4],'Mean_RamUsage':df2.iloc
[1][4],'Max_RamUsage':df2.iloc[7][4], 
                'Max_BwUsage':df2.iloc[7][5] ,'Mean_BwUsage': df2.iloc
[1][5],'Min_RamUsage':df2.iloc[3][4]}, ignore_index=True) 
    return  dfObj 
 
def make_tables_simulation(dfcloud): 
    dfObjcloud=pd.DataFrame() 
    
    for j in range(0,dfcloud['Host'].max()+1): 
        for i in range(0,dfcloud['VM'].max()+1): 
            dfcloud2=dfcloud[(dfcloud['VM'] == i) & (dfcloud['Host'] =
=j)].describe() 
           
            if (dfcloud2.isnull().values.any()): 
                continue  
            else: 
                dfObjcloud = dfObjcloud.append({'Host_id':int(j), 
                'Vm_id':int(i) , 'Mean_FinishTime':dfcloud2.iloc[1][9]
, 'Mean_ExecTime':dfcloud2.iloc[1][10], 'NumCloudlet':dfcloud2.iloc[0]
[0], 
                'Cloudletlen_mean':dfcloud2.iloc[1][6],'max_Cloudletle
n':dfcloud2.iloc[7][6], 
                'min_Cloudletlen':dfcloud2.iloc[3][6], 'Max_Clodlets':
dfcloud2.iloc[7][0]}, ignore_index=True) 
    return  dfObjcloud 
 
 
             
 
parameters_to_csv()                   
df = pd.read_csv("cloudsim\\DC_Features.csv",index_col=False ) 
dfFeatures_csv = pd.read_csv("cloudsim\\DC_Features.csv",index_col=Fal
se ) 
dfFeatures_final=pd.DataFrame() 
dfFinal=pd.DataFrame() 
 
for numsimul in range(1, df['N_simul'].max() + 1): 
    txt_to_csv(numsimul) 
    dfsimul = pd.read_csv("cloudsim\\data" + str(numsimul) + ".csv") 
    dfcloud = pd.read_csv("cloudsim\\simulation" + str(numsimul) + ".c
sv", delimiter=';') 
    #print(numsimul) 
    dfObj = make_tables(dfsimul) 
    dfObjcloud = make_tables_simulation(dfcloud) 
    df5 = pd.concat([dfObj, dfObjcloud], axis=1) 
    df5 = df5.loc[:,~df5.columns.duplicated()] 
    dfFeatures = pd.DataFrame(np.repeat(dfFeatures_csv.values,len(df5.
index),axis=0)) 
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    dfFeatures.columns = dfFeatures_csv.columns 
    dfFeatures=dfFeatures.loc[dfFeatures['N_simul']==numsimul] 
    dfFeatures_final=dfFeatures_final.append(dfFeatures,ignore_index=T
rue)   
    dfFinal=dfFinal.append(df5,ignore_index=True) 
 
df6 =dfFeatures_final.join(dfFinal, how='outer') 
 
df6=df6[['N_simul','Host_id', 'Vm_id', 'Ram_host', 'Storage_host', 'Vm
_Ram', 'Num_cloudlets', 
       'storage_vm',  'Max_CpuUsage', 'Max_RamUsage','Max_BwUsage', 
       'Mean_CpuUsage', 'Mean_RamUsage','Mean_BwUsage', 'Min_CpuUsage'
, 'Min_RamUsage', 
       'Cloudletlen_mean', 'Max_Clodlets', 'Mean_ExecTime', 
       'Mean_FinishTime', 'NumCloudlet', 'max_Cloudletlen', 'min_Cloud
letlen']] 
df6.to_csv('cloudsim\\cognet_dataset.csv',index=False) 
 

from pandas.plotting import scatter_matrix 
import matplotlib.pyplot as plt 
from sklearn import model_selection 
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import accuracy_score 
from sklearn.linear_model import LogisticRegression 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.naive_bayes import GaussianNB 
from sklearn.svm import SVC  
import matplotlib.pyplot as plt 
 
url='cloudsim\\cognet_dataset.csv' 
'''names = ['N_simul','Host_id', 'Vm_id', 'Ram_host', 'Storage_host', 
'Vm_Ram', 'Num_cloudlets', 
       'storage_vm',  'Max_CpuUsage', 'Max_RamUsage','Max_BwUsage', 
       'Mean_CpuUsage', 'Mean_RamUsage','Mean_BwUsage', 'Min_CpuUsage'
, 'Min_RamUsage', 
       'Cloudletlen_mean', 'Max_Clodlets', 'Mean_ExecTime', 
       'Mean_FinishTime', 'NumCloudlet', 'max_Cloudletlen', 'min_Cloud
letlen']''' 
dataset = pd.read_csv(url)#, names=names) 
dataset.fillna(0, inplace=True) 
suma=dataset.isnull().sum() 
dataset.to_csv('cloudsim\\cognet_dataset.csv',index=False) 

dataset.fillna(0, inplace=True) 
suma=dataset.isnull().sum() 
suma 

 
dataset.hist() 
plt.rcParams['figure.figsize'] = (24, 18) 
plt.show() 
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png 

png 

scatter_matrix(dataset) 
plt.rcParams['figure.figsize'] = (34, 24) 
plt.show() 

png 

png 

array = dataset.values 
X = array[:,0:300] 
Y = array[:,22] 
validation_size = 0.20 
seed = 7 
X_train, X_validation, Y_train,Y_validation = model_selection.train_te
st_split(X, 
                                    Y, test_size=validation_size, rand
om_state=seed) 
seed = 7 
scoring = 'accuracy' 

models = [] 
#models.append(('LR', LogisticRegression(solver='liblinear', multi_cla
ss='ovr'))) 
#models.append(('LDA', LinearDiscriminantAnalysis())) 
models.append(('KNN', KNeighborsClassifier())) 
models.append(('CART', DecisionTreeClassifier())) 
models.append(('NB', GaussianNB())) 
#models.append(('SVM', SVC(gamma='auto'))) 
# evaluate each model in turn 
results = [] 
names = [] 
for name, model in models: 
    kfold = model_selection.KFold(n_splits=10, random_state=seed) 
    cv_results = model_selection.cross_val_score(model, X_train, Y_tra
in, cv=kfold, scoring=scoring) 
    results.append(cv_results) 
    names.append(name) 
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 
    print(msg) 

KNN: 0.046046 (0.010447) 
CART: 0.793339 (0.030894) 
NB: 0.633490 (0.040810) 

fig = plt.figure() 
fig.suptitle('Algorithm Comparison') 
ax = fig.add_subplot(111) 
plt.boxplot(results) 
ax.set_xticklabels(names) 
plt.show() 

png 
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png 

knn = KNeighborsClassifier() 
knn.fit(X_train, Y_train) 
predictions = knn.predict(X_validation) 
print(accuracy_score(Y_validation, predictions)) 
print(confusion_matrix(Y_validation, predictions)) 
print(classification_report(Y_validation, predictions)) 

from sklearn import preprocessing 
dataset = dataset.astype({"N_simul":'category',"Host_id":'category',"V
m_id":'category'})  
dataset.dtypes 
#dataset_norm=dataset.loc[:, dataset.columns != 'N_simul',"Host_id","V
m_id"] 
dataset_norm_incomplete=dataset[dataset.columns.difference(['N_simul',
"Host_id","Vm_id"])] 
dataset_categorical=dataset[['N_simul',"Host_id","Vm_id"]] 

x = dataset_norm_incomplete.values #returns a numpy array 
min_max_scaler = preprocessing.MinMaxScaler() 
x_scaled = min_max_scaler.fit_transform(x) 
dataset_norm_incomplete = pd.DataFrame(x_scaled) 
names=['Cloudletlen_mean', 'Max_BwUsage', 'Max_Clodlets', 'Max_CpuUsag
e', 
       'Max_RamUsage', 'Mean_BwUsage', 'Mean_CpuUsage', 'Mean_ExecTime
', 
       'Mean_FinishTime', 'Mean_RamUsage', 'Min_CpuUsage', 'Min_RamUsa
ge', 
       'NumCloudlet', 'Num_cloudlets', 'Ram_host', 'Storage_host', 'Vm
_Ram', 
       'max_Cloudletlen', 'min_Cloudletlen', 'storage_vm'] 
dataset_norm_incomplete.columns = [names] 

dataset.head() 

5 rows × 23 columns 

print(dataset.describe()) 
dataset.shape 
(12706, 23) 

Calcular las predicciones en funcion de los datos categoricos 
We should represent it according to N_simul, VM and HOST 
Test what does it have more accuracy 

dataset_norm=dataset_categorical.join(dataset_norm_incomplete, how='ou
ter') 
namecolumns=['N_simul',"Host_id","Vm_id",'Cloudletlen_mean', 'Max_BwUs
age', 'Max_Clodlets', 'Max_CpuUsage', 
       'Max_RamUsage', 'Mean_BwUsage', 'Mean_CpuUsage', 'Mean_ExecTime
', 
       'Mean_FinishTime', 'Mean_RamUsage', 'Min_CpuUsage', 'Min_RamUsa
ge', 
       'NumCloudlet', 'Num_cloudlets', 'Ram_host', 'Storage_host', 'Vm
_Ram', 
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       'max_Cloudletlen', 'min_Cloudletlen', 'storage_vm'] 
dataset_norm.columns = [namecolumns] 

# Split-out validation dataset 
#MinMaxScaler(copy=True, feature_range=(0, 10)) 
#target_train=scaler.transform(target_train) 
#print(target_train) 
 
target_train=dataset_norm['Mean_ExecTime'] 
from sklearn.model_selection import train_test_split 
data=dataset_norm.drop(['Mean_ExecTime'],axis=1) 
#array = dataset_norm.values 
validation_size = 0.20 
seed = 7 
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed) 
scoring = 'accuracy' 

#est = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='uniform
') 
#est.fit(Y_train) 
Y_train.Mean_ExecTime =round(Y_train,2) 
Y_validation.Mean_ExecTime=round(Y_validation,2) 

c:\users\delas\appdata\local\programs\python\python37-32\lib\site-pack
ages\pandas\core\generic.py:4405: SettingWithCopyWarning:  
A value is trying to be set on a copy of a slice from a DataFrame. 
Try using .loc[row_indexer,col_indexer] = value instead 
 
See the caveats in the documentation: http://pandas.pydata.org/pandas-
docs/stable/indexing.html#indexing-view-versus-copy 
  self[name] = value 

import seaborn as sns 
import matplotlib.pyplot as plt 
model = LinearRegression() 
model.fit(X_train, Y_train) 
predictions = model.predict(X_validation) 
sns.distplot(Y_validation - predictions, axlabel="Test - Prediction") 
plt.show() 

png 

png 

from sklearn.linear_model import LinearRegression 
lm = LinearRegression() 
lm.fit(X_train,Y_train) 
predictions = lm.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Linear regression model, 250 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
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plt.scatter(Y_validation,predictions) 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

<function matplotlib.pyplot.show(*args, **kw)> 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 

Mean Absolute Error: 0.003600919583487267 
Mean Squared Error: 2.086629223845936e-05 
Root Mean Squared Error: 0.004567963686201912 

clf = svm.SVR() 
clf.fit(X_train,Y_train) 
predictions=clf.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Support vector Regression, 250 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge") 
 



  69 

 
 

plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 
<function matplotlib.pyplot.show(*args, **kw)> 

png 

png 

print(np.sqrt(metrics.mean_squared_error(Y_validation, predictions)))  
print(np.sqrt(metrics.mean_absolute_error(Y_validation, predictions))) 
print(metrics.r2_score(Y_validation, predictions)) 

0.03894161752648024 
0.17676675125092087 
0.9500909638076308 

from sklearn.linear_model import LinearRegression 
 
regressor = LinearRegression()   
regressor.fit(X_train, Y_train) 
X_columns = pd.DataFrame(X_train.columns) 
X_columns.T 
coeff_df = pd.DataFrame(regressor.coef_.T, X_columns, columns=['Coeffi
cient'])   
print(coeff_df) 

                         Coefficient 
((Cloudletlen_mean,),)  1.361957e-01 
((Max_BwUsage,),)      -6.369338e-02 
((Max_Clodlets,),)     -9.706228e-01 
((Max_CpuUsage,),)     -2.012091e-03 
((Max_RamUsage,),)      4.284801e-01 
((Mean_BwUsage,),)     -3.494495e-03 
((Mean_CpuUsage,),)     1.010490e-03 
((Mean_FinishTime,),)   1.309856e+00 
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((Mean_RamUsage,),)     6.615824e-02 
((Min_CpuUsage,),)      0.000000e+00 
((Min_RamUsage,),)      1.110223e-16 
((NumCloudlet,),)       1.774677e-01 
((Num_cloudlets,),)     4.046876e-01 
((Ram_host,),)         -5.551115e-17 
((Storage_host,),)      0.000000e+00 
((Vm_Ram,),)            0.000000e+00 
((max_Cloudletlen,),)  -1.542416e-01 
((min_Cloudletlen,),)   2.803162e-02 
((storage_vm,),)       -7.900223e-02 

from sklearn.tree import DecisionTreeRegressor   
   
# create a regressor object  
regressor = DecisionTreeRegressor(random_state = 0)     
# fit the regressor with X and Y data  
regressor.fit(X_train, Y_train)  
predictions = regressor.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Decision Tree Regression, 250 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge") 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

<function matplotlib.pyplot.show(*args, **kw)> 

png 
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print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.018772455089820356 
Mean Squared Error: 0.0007940119760479043 
Root Mean Squared Error: 0.02817821811342769 

#Encoding the Y_train in order to handle with the continuous data 
 
lab_enc = preprocessing.LabelEncoder() 
training_scores_encoded = lab_enc.fit_transform(Y_train) 
training_scores_encoded_validation=lab_enc.fit_transform(Y_validation) 
 
 
from sklearn.svm import SVR 
from sklearn import svm 
clf = svm.SVC() 
clf.fit(X_train,training_scores_encoded) 
 
svclassifier = SVC(kernel='linear') 
svclassifier.fit(X_train, training_scores_encoded) 
y_pred = svclassifier.predict(X_validation)     
    

print(confusion_matrix(training_scores_encoded_validation,y_pred)) 
print(classification_report(training_scores_encoded_validation,y_pred 

#Polynomial Kernel 
svclassifier = SVC(kernel='poly', degree=8) 
svclassifier.fit(X_train, training_scores_encoded) 
y_pred = svclassifier.predict(X_validation) 
print(confusion_matrix(training_scores_encoded_validation,y_pred)) 
print(classification_report(training_scores_encoded_validation,y_pred)
) 

c:\users\delas\appdata\local\programs\python\python37-32\lib\site-pack
ages\sklearn\metrics\classification.py:1143: UndefinedMetricWarning: P
recision and F-score are ill-defined and being set to 0.0 in labels wi
th no predicted samples. 
  'precision', 'predicted', average, warn_for) 

#Gaussian Kernel 
svclassifier = SVC(kernel='rbf') 
svclassifier.fit(X_train, training_scores_encoded) 
y_pred = svclassifier.predict(X_validation) 
print(confusion_matrix(training_scores_encoded_validation,y_pred)) 
print(classification_report(training_scores_encoded_validation,y_pred)
) 
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#Sigmoid Kernel 
svclassifier = SVC(kernel='sigmoid') 
svclassifier.fit(X_train,training_scores_encoded) 
y_pred = svclassifier.predict(X_validation) 
print(confusion_matrix(training_scores_encoded_validation,y_pred)) 
print(classification_report(training_scores_encoded_validation,y_pred)
) 

c:\users\delas\appdata\local\programs\python\python37-32\lib\site-) 

#Logistic regression 
from sklearn.linear_model import LogisticRegression 
 
# instantiate the model (using the default parameters) 
logreg = LogisticRegression() 
 
# fit the model with data 
logreg.fit(X_train,training_scores_encoded) 
y_pred=logreg.predict(X_validation) 
from sklearn import metrics 
cnf_matrix = metrics.confusion_matrix(training_scores_encoded_validati
on, y_pred) 
cnf_matrix 

import matplotlib.pyplot as plt 
from sklearn import model_selection 
from sklearn.linear_model import LogisticRegression 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.naive_bayes import GaussianNB 
from sklearn.svm import SVC 
models = [] 
models.append(('LR', LogisticRegression())) 
models.append(('LDA', LinearDiscriminantAnalysis())) 
models.append(('KNN', KNeighborsClassifier())) 
models.append(('CART', DecisionTreeClassifier())) 
models.append(('NB', GaussianNB())) 
models.append(('SVM', SVC())) 
# evaluate each model in turn 
results = [] 
names = [] 
scoring = 'accuracy' 
for name, model in models: 
    kfold = model_selection.KFold(n_splits=10, random_state=seed) 
    cv_results = model_selection.cross_val_score(model, X_train,traini
ng_scores_encoded, cv=kfold, scoring=scoring) 
    results.append(cv_results) 
    names.append(name) 
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 
    print(msg) 
# boxplot algorithm comparison 
fig = plt.figure() 
fig.suptitle('Algorithm Comparison') 
ax = fig.add_subplot(111) 
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plt.boxplot(results) 
ax.set_xticklabels(names) 
plt.show() 
LR: 0.088356 (0.011503) 
LDA: 0.481827 (0.021984) 
KNN: 0.166602 (0.013082) 
CART: 0.212278 (0.026045) 
NB: 0.112309 (0.015819) 
 
SVM: 0.070757 (0.006964) 

target_train=dataset_norm[['Mean_RamUsage','Mean_CpuUsage','Mean_ExecT
ime','Mean_FinishTime']] 
from sklearn.model_selection import train_test_split 
data=dataset_norm.drop(['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime
','Mean_FinishTime'],axis=1) 
#array = dataset_norm.values 
validation_size = 0.20 
seed = 7 
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed) 
scoring = 'accuracy' 
Y_train.Mean_ExecTime =round(Y_train,2) 
Y_validation.Mean_ExecTime=round(Y_validation,2) 
 
model = LinearRegression() 
model.fit(X_train, Y_train) 
predictions = model.predict(X_validation) 
 
predictions_table = pd.DataFrame() 
for row in predictions: 
    predictions_table = predictions_table.append(pd.DataFrame([row]), 
ignore_index=True)    
names=['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime','Mean_FinishTim
e'] 
predictions_table.columns = [names] 
#final 
[668 rows x 4 columns] 

plt.figure(figsize=(15,10)) 
plt.suptitle('Multi target linear regression, 250 simulations') 
plt.subplots_adjust(hspace=0.3, wspace=0.3) 
plt.subplot(2, 2,1) 
plt.xlabel('Number of simulation') 
plt.ylabel('Mean Ram usage') 
plt.scatter(X_validation['N_simul'],Y_validation['Mean_RamUsage'],labe
l="True data") 
plt.scatter(X_validation['N_simul'],predictions_table['Mean_RamUsage']
,label="Predictions")  
plt.legend() 
plt.subplot(2, 2,2) 
plt.xlabel('Virtual machine') 
plt.ylabel('Mean CPU usage') 
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_CpuUsage'],label=
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"True data") 
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions") 
plt.legend() 
plt.subplot(2, 2,3) 
plt.xlabel('Virtual machine') 
plt.ylabel('Mean Execution time ') 
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_ExecTime'],label=
"True data") 
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_ExecTime'],l
abel="Predictions")  
plt.legend() 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
plt.ylabel('Mean CPU usage') 
plt.scatter(X_validation['N_simul'],Y_validation['Mean_CpuUsage'],labe
l="True data") 
plt.scatter(X_validation['N_simul'],predictions_table['Mean_CpuUsage']
,label="Predictions")  
plt.legend() 
plt.show() 

png 

png 

plt.figure(figsize=(15,10)) 
plt.suptitle('Multi target linear regression, 250 simulations') 
plt.subplots_adjust(hspace=0.2, wspace=0.2) 
 
plt.subplot(2, 2,1) 
plt.scatter(Y_validation['Mean_RamUsage'],predictions_table['Mean_RamU
sage'],label='Mean_RamUsage',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,2) 
plt.scatter(Y_validation['Mean_CpuUsage'],predictions_table['Mean_CpuU
sage'],label='Mean_CpuUsage',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,3) 
plt.scatter(Y_validation['Mean_ExecTime'],predictions_table['Mean_Exec
Time'],label='Mean_ExecTime',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,4) 
plt.scatter(Y_validation['Mean_FinishTime'],predictions_table['Mean_Fi
nishTime'],label='Mean_FinishTime',s=20,edgecolor="black",c="darkorang
e") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
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plt.legend() 
plt.show() 

png 

png 

import seaborn as sns 
import matplotlib.pyplot as plt 
model = LinearRegression() 
model.fit(X_train, Y_train) 
predictions = model.predict(X_validation) 
sns.distplot(Y_validation - predictions, axlabel="Test - Prediction") 
plt.show() 

png 

png 

from sklearn.linear_model import LinearRegression 
lm = LinearRegression() 
lm.fit(X_train,Y_train) 
predictions = lm.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Linear regression model, 500 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions) 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

<function matplotlib.pyplot.show(*args, **kw)> 
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png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.003600919583487267 
Mean Squared Error: 2.086629223845936e-05 
Root Mean Squared Error: 0.004567963686201912 
R2 Score: 0.999313253436645 

clf = svm.SVR() 
clf.fit(X_train,Y_train) 
predictions=clf.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Support vector Regression, 500 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge") 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

png 
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print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.05953956952186667 
Mean Squared Error: 0.0053917670540499915 
Root Mean Squared Error: 0.07342865281380281 
R2 Score: 0.8225474151102468 

from sklearn.tree import DecisionTreeRegressor   
   
# create a regressor object  
regressor = DecisionTreeRegressor(random_state = 0)     
# fit the regressor with X and Y data  
regressor.fit(X_train, Y_train)  
predictions = regressor.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Decision Tree Regression, 500 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge") 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 
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<function matplotlib.pyplot.show(*args, **kw)> 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.01845808383233533 
Mean Squared Error: 0.0007770958083832337 
Root Mean Squared Error: 0.027876438229860603 
R2 Score: 0.9744244032573669 

#Encoding the Y_train in order to handle with the continuous data 
 
lab_enc = preprocessing.LabelEncoder() 
training_scores_encoded = lab_enc.fit_transform(Y_train) 
training_scores_encoded_validation=lab_enc.fit_transform(Y_validation) 
 
 
from sklearn.svm import SVR 
from sklearn import svm 
clf = svm.SVC() 
clf.fit(X_train,training_scores_encoded) 
 
svclassifier = SVC(kernel='linear') 
svclassifier.fit(X_train, training_scores_encoded) 
y_pred = svclassifier.predict(X_validation)     
    

import warnings 
warnings.filterwarnings('ignore') 
import matplotlib.pyplot as plt 
from sklearn import model_selection 
from sklearn.linear_model import LogisticRegression 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.naive_bayes import GaussianNB 
from sklearn.svm import SVC 
models = [] 
models.append(('LR', LogisticRegression())) 
models.append(('LDA', LinearDiscriminantAnalysis())) 
models.append(('KNN', KNeighborsClassifier())) 
models.append(('CART', DecisionTreeClassifier())) 
models.append(('NB', GaussianNB())) 
models.append(('SVM', SVC())) 
# evaluate each model in turn 
results = [] 
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names = [] 
scoring = 'accuracy' 
for name, model in models: 
    kfold = model_selection.KFold(n_splits=10, random_state=seed) 
    cv_results = model_selection.cross_val_score(model, X_train,traini
ng_scores_encoded, cv=kfold, scoring=scoring) 
    results.append(cv_results) 
    names.append(name) 
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 
    print(msg) 
# boxplot algorithm comparison 
fig = plt.figure() 
fig.suptitle('Algorithm Comparison') 
ax = fig.add_subplot(111) 
plt.boxplot(results) 
ax.set_xticklabels(names) 
plt.show() 

LR: 0.119051 (0.019042) 
LDA: 0.720334 (0.025901) 
KNN: 0.127659 (0.017453) 
CART: 0.214519 (0.019078) 
NB: 0.130283 (0.021463) 
SVM: 0.133273 (0.014411) 

png 

png 

target_train=dataset_norm[['Mean_RamUsage','Mean_CpuUsage','Mean_ExecT
ime','Mean_FinishTime']] 
from sklearn.model_selection import train_test_split 
data=dataset_norm.drop(['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime
','Mean_FinishTime'],axis=1) 
#array = dataset_norm.values 
validation_size = 0.20 
seed = 7 
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed) 
scoring = 'accuracy' 
Y_train.Mean_ExecTime =round(Y_train,2) 
Y_validation.Mean_ExecTime=round(Y_validation,2) 
 
model = LinearRegression() 
model.fit(X_train, Y_train) 
predictions = model.predict(X_validation) 
 
predictions_table = pd.DataFrame() 
for row in predictions: 
    predictions_table = predictions_table.append(pd.DataFrame([row]), 
ignore_index=True)    
names=['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime','Mean_FinishTim
e'] 
predictions_table.columns = [names] 
#final 
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plt.figure(figsize=(15,10)) 
plt.suptitle('Multi target linear regression, 500 simulations') 
plt.subplots_adjust(hspace=0.3, wspace=0.3) 
plt.subplot(2, 2,1) 
plt.xlabel('Number of simulation') 
plt.ylabel('Mean Ram usage') 
plt.scatter(X_validation['N_simul'],Y_validation['Mean_RamUsage'],labe
l="True data") 
plt.scatter(X_validation['N_simul'],predictions_table['Mean_RamUsage']
,label="Predictions")  
plt.legend() 
plt.subplot(2, 2,2) 
plt.xlabel('Virtual machine') 
plt.ylabel('Mean CPU usage') 
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_CpuUsage'],label=
"True data") 
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions") 
plt.legend() 
plt.subplot(2, 2,3) 
plt.xlabel('Virtual machine') 
plt.ylabel('Mean Execution time ') 
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_ExecTime'],label=
"True data") 
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_ExecTime'],l
abel="Predictions")  
plt.legend() 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
plt.ylabel('Mean CPU usage') 
plt.scatter(X_validation['N_simul'],Y_validation['Mean_CpuUsage'],labe
l="True data") 
plt.scatter(X_validation['N_simul'],predictions_table['Mean_CpuUsage']
,label="Predictions")  
plt.legend() 
plt.show() 

png 

png 

plt.figure(figsize=(15,10)) 
plt.suptitle('Multi target linear regression, 500 simulations') 
plt.subplots_adjust(hspace=0.2, wspace=0.2) 
 
plt.subplot(2, 2,1) 
plt.scatter(Y_validation['Mean_RamUsage'],predictions_table['Mean_RamU
sage'],label='Mean_RamUsage',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,2) 
plt.scatter(Y_validation['Mean_CpuUsage'],predictions_table['Mean_CpuU
sage'],label='Mean_CpuUsage',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 



  81 

 
 

plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,3) 
plt.scatter(Y_validation['Mean_ExecTime'],predictions_table['Mean_Exec
Time'],label='Mean_ExecTime',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,4) 
plt.scatter(Y_validation['Mean_FinishTime'],predictions_table['Mean_Fi
nishTime'],label='Mean_FinishTime',s=20,edgecolor="black",c="darkorang
e") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.show() 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.03053023291998854 
Mean Squared Error: 0.0016847407807049147 
Root Mean Squared Error: 0.0410455939255959 
R2 Score: 0.9493117158337983 

import seaborn as sns 
import matplotlib.pyplot as plt 
model = LinearRegression() 
model.fit(X_train, Y_train) 
predictions = model.predict(X_validation) 
sns.distplot(Y_validation - predictions, axlabel="Test - Prediction") 
plt.show() 

png 

png 

from sklearn.linear_model import LinearRegression 
lm = LinearRegression() 
lm.fit(X_train,Y_train) 
predictions = lm.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Linear regression model, 750 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
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plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions) 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

<function matplotlib.pyplot.show(*args, **kw)> 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.006524309598998842 
Mean Squared Error: 9.005736979335923e-05 
Root Mean Squared Error: 0.009489856152406065 
R2 Score: 0.996920870360047 

clf = svm.SVR() 
clf.fit(X_train,Y_train) 
predictions=clf.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
plt.suptitle('Support vector Regression, 750 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
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plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge") 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

<function matplotlib.pyplot.show(*args, **kw)> 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.060022034988154414 
Mean Squared Error: 0.005146782674973025 
Root Mean Squared Error: 0.07174108080432734 
R2 Score: 0.8240276046117104 

from sklearn.tree import DecisionTreeRegressor   
   
# create a regressor object  
regressor = DecisionTreeRegressor(random_state = 0)     
# fit the regressor with X and Y data  
regressor.fit(X_train, Y_train)  
predictions = regressor.predict(X_validation) 
 
plt.figure(figsize=(15,10)) 
plt.subplots_adjust(hspace=0.4, wspace=0.4) 
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plt.suptitle('Decision Tree Regression, 750 simulations') 
plt.subplot(2, 2,1) 
plt.xlabel('Mean_execution time true') 
plt.ylabel('Mean_execution time predicted') 
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge") 
 
plt.subplot(2, 2,2) 
plt.xlabel('Vm_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,3) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['Host_id'],Y_validation,label="True data") 
plt.scatter(X_validation['Host_id'],predictions,label="Predictions") 
plt.legend() 
 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
#plt.ylabel('Mean_execusion time predicted') 
plt.scatter(X_validation['N_simul'],Y_validation,label="True data") 
plt.scatter(X_validation['N_simul'],predictions,label="Predictions") 
plt.legend() 
 
plt.show 

<function matplotlib.pyplot.show(*args, **kw)> 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.012183320220298976 
Mean Squared Error: 0.0002891817466561762 
Root Mean Squared Error: 0.017005344649732218 
R2 Score: 0.9901126571927921 

import warnings 
warnings.filterwarnings('ignore') 
#Encoding the Y_train in order to handle with the continuous data 
 
lab_enc = preprocessing.LabelEncoder() 
training_scores_encoded = lab_enc.fit_transform(Y_train) 
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training_scores_encoded_validation=lab_enc.fit_transform(Y_validation) 
 
 
from sklearn.svm import SVR 
from sklearn import svm 
clf = svm.SVC() 
clf.fit(X_train,training_scores_encoded) 
 
svclassifier = SVC(kernel='linear') 
svclassifier.fit(X_train, training_scores_encoded) 
y_pred = svclassifier.predict(X_validation)     
    
import matplotlib.pyplot as plt 
from sklearn import model_selection 
from sklearn.linear_model import LogisticRegression 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.naive_bayes import GaussianNB 
from sklearn.svm import SVC 
models = [] 
models.append(('LR', LogisticRegression())) 
models.append(('LDA', LinearDiscriminantAnalysis())) 
models.append(('KNN', KNeighborsClassifier())) 
models.append(('CART', DecisionTreeClassifier())) 
models.append(('NB', GaussianNB())) 
models.append(('SVM', SVC())) 
# evaluate each model in turn 
results = [] 
names = [] 
scoring = 'accuracy' 
for name, model in models: 
    kfold = model_selection.KFold(n_splits=10, random_state=seed) 
    cv_results = model_selection.cross_val_score(model, X_train,traini
ng_scores_encoded, cv=kfold, scoring=scoring) 
    results.append(cv_results) 
    names.append(name) 
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 
    print(msg) 
# boxplot algorithm comparison 
fig = plt.figure() 
fig.suptitle('Algorithm Comparison 750 simulation') 
ax = fig.add_subplot(111) 
plt.boxplot(results) 
ax.set_xticklabels(names) 
plt.show() 

LR: 0.116883 (0.007268) 
LDA: 0.445292 (0.020541) 
KNN: 0.164109 (0.006022) 
CART: 0.280696 (0.010406) 
NB: 0.155449 (0.010608) 
SVM: 0.172473 (0.010660) 
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png 

png 

target_train=dataset_norm[['Mean_RamUsage','Mean_CpuUsage','Mean_ExecT
ime','Mean_FinishTime']] 
from sklearn.model_selection import train_test_split 
data=dataset_norm.drop(['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime
','Mean_FinishTime'],axis=1) 
#array = dataset_norm.values 
validation_size = 0.20 
seed = 7 
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed) 
scoring = 'accuracy' 
Y_train.Mean_ExecTime =round(Y_train,2) 
Y_validation.Mean_ExecTime=round(Y_validation,2) 
 
model = LinearRegression() 
model.fit(X_train, Y_train) 
predictions = model.predict(X_validation) 
 
predictions_table = pd.DataFrame() 
for row in predictions: 
    predictions_table = predictions_table.append(pd.DataFrame([row]), 
ignore_index=True)    
names=['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime','Mean_FinishTim
e'] 
predictions_table.columns = [names] 
#final 

plt.figure(figsize=(15,10)) 
plt.suptitle('Multi target linear regression, 750 simulations') 
plt.subplots_adjust(hspace=0.3, wspace=0.3) 
plt.subplot(2, 2,1) 
plt.xlabel('Number of simulation') 
plt.ylabel('Mean Ram usage') 
plt.scatter(X_validation['N_simul'],Y_validation['Mean_RamUsage'],labe
l="True data") 
plt.scatter(X_validation['N_simul'],predictions_table['Mean_RamUsage']
,label="Predictions")  
plt.legend() 
plt.subplot(2, 2,2) 
plt.xlabel('Virtual machine') 
plt.ylabel('Mean CPU usage') 
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_CpuUsage'],label=
"True data") 
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions") 
plt.legend() 
plt.subplot(2, 2,3) 
plt.xlabel('Virtual machine') 
plt.ylabel('Mean Execution time ') 
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_ExecTime'],label=
"True data") 
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plt.scatter(X_validation['Vm_id'],predictions_table['Mean_ExecTime'],l
abel="Predictions")  
plt.legend() 
plt.subplot(2, 2,4) 
plt.xlabel('Number of simulation') 
plt.ylabel('Mean CPU usage') 
plt.scatter(X_validation['N_simul'],Y_validation['Mean_CpuUsage'],labe
l="True data") 
plt.scatter(X_validation['N_simul'],predictions_table['Mean_CpuUsage']
,label="Predictions")  
plt.legend() 
plt.show() 

png 

png 

plt.figure(figsize=(15,10)) 
plt.suptitle('Multi target linear regression, 750 simulations') 
plt.subplots_adjust(hspace=0.2, wspace=0.2) 
 
plt.subplot(2, 2,1) 
plt.scatter(Y_validation['Mean_RamUsage'],predictions_table['Mean_RamU
sage'],label='Mean_RamUsage',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,2) 
plt.scatter(Y_validation['Mean_CpuUsage'],predictions_table['Mean_CpuU
sage'],label='Mean_CpuUsage',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,3) 
plt.scatter(Y_validation['Mean_ExecTime'],predictions_table['Mean_Exec
Time'],label='Mean_ExecTime',s=20,edgecolor="black",c="darkorange") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.subplot(2, 2,4) 
plt.scatter(Y_validation['Mean_FinishTime'],predictions_table['Mean_Fi
nishTime'],label='Mean_FinishTime',s=20,edgecolor="black",c="darkorang
e") 
plt.xlabel('True Data') 
plt.ylabel('Predicted') 
plt.legend() 
plt.show() 

png 

png 

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))   
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
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redictions))   
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions))) 
print('R2 Score:',metrics.r2_score(Y_validation, predictions)) 

Mean Absolute Error: 0.03804439270685506 
Mean Squared Error: 0.002663392505041593 
Root Mean Squared Error: 0.051608066278844365 
R2 Score: 0.9363153172418959 

 

import matplotlib.pyplot as plt 
 
plt.figure(figsize=(15,10)) 
plt.xlabel('Host_id') 
#plt.ylabel('Mean_execusion time predicted') 
#plt.plot(X_validation['Host_id'],Y_validation['Mean_CpuUsage'],label=
"True data") 
#plt.plot(X_validation['Host_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions") 
plt.scatter(X_validation['Host_id'],Y_validation['Mean_RamUsage'],labe
l="True data") 
plt.scatter(X_validation['Host_id'],predictions_table['Mean_RamUsage']
,label="Predictions")  
plt.scatter(X_validation['Host_id'],Y_validation['Mean_CpuUsage'],labe
l="True data") 
plt.scatter(X_validation['Host_id'],predictions_table['Mean_CpuUsage']
,label="Predictions") 
plt.scatter(X_validation['Host_id'],Y_validation['Mean_ExecTime'],labe
l="True data") 
plt.scatter(X_validation['Host_id'],predictions_table['Mean_ExecTime']
,label="Predictions")  
plt.legend() 

<matplotlib.legend.Legend at 0x1d4ec710> 

png 

png 

plt.figure(figsize=(15,10)) 
plt.xlabel('Host_id') 
plt.scatter(names,[Y_validation['Mean_RamUsage'],Y_validation['Mean_Cp
uUsage'],Y_validation['Mean_ExecTime'], 
                   Y_validation['Mean_FinishTime']]) 
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