

MASTER THESIS

TITLE: Study and application of machine learning techniques to the

deployment of services on 5G optical networks.

MASTER DEGREE: Master’s degree in Applied Telecommunications and

Engineering Management (MASTEAM)

AUTHOR: Héctor Delás Castellá

ADVISOR: SPADARO, Salvatore

DATE: October,22nd2019

Abstract

The vision of the future 5G corresponds to a highly heterogeneous network at

different levels; the increment in the number of services requests for the 5G

networks imposes several technical challenges.

In the 5G context, in the recent years, several machine learning-based

approaches have been demonstrated as useful tools for making easier the

networks’ management, by considering that different unexpected events could

make that the services cannot be satisfied at the moment they are requested.

Such approaches are usually referred as cognitive network management.

There are too many parameters inside the 5G network affecting each layer of

the network; the virtualization and abstraction of the services is a crucial part

for a satisfactory service deployment, being the monitoring and control of the

different planes the two keys inside the cognitive network management.

In this project it has been addressed the implementation of a simulated data

collector as well as the study of several machine learning-based approaches.

This way, possible future performance can be predicted, giving to the system

the ability to change the initial parameters and to adapt the network to future

demands.

INTRODUCTION .. 1

Introduction and scope. ...1

CHAPTER 1. OVERVIEW OF 5G-BASED NETWORKS SYSTEMS 2

1.1 Architecture and network slicing ..2
1.1.1 Understanding the radio access network 5G. ..4
1.1.2 Understanding the core network in 5G...6

1.2 Programmability & Softwarization ..7
1.2.1 Softwarization of 5G Service Management and Orchestration8

1.3 End to End virtualization. ...11
1.3.1 Abstraction in Software Defined Networking (SDN) for DataCenters13
1.3.2 Policies ..14

1.4 Cognitive Self-Organize Network Architectures ..14
1.4.1 Cognitive networking..17

CHAPTER 2. MACHINE LEARNING .. 19

2.1 Machine learning algorithms ...21
2.1.1 Supervised learning ..21
2.1.2 Unsupervised learning ..23

2.2 State of the art...24
2.2.1 Machine learning techniques in network management ..24

CHAPTER 3. IMPLEMENTATION AND SIMULATION. 26

3.1 Introduction of the use case. ...26

3.2 Implementation of the use case ..27
3.2.1 CloudSim structure ..27
3.2.2 Control Simulation ...30

3.3 Parameters inside CloudSim ...32

CHAPTER 4. DEVELOPMENT AND RESULTS .. 34

4.1 Predictions ..35
4.1.1 Classification. ...36
4.1.2 Regression. ..37

4.2 Results ...38

4.3 Environmental impact ..46

CHAPTER 5. CONCLUSIONS AND FUTURE WORK. 47

5.1 Conclusions ..47

5.2 Future work ...47

ANNEXES .. 49

Annexe A Cloudlet dataset ..49

Annexe B System dataset at every time ...49

Annexe C Algorithm accuracy ..50

Annexe D CloudSim code in Java ...51

Annexe E: Python code ..62

REFERENCES ... 89

 1

Introduction

Introduction and scope.

The upcoming generation of mobile communication systems will have around 8

million of subscriptions according to the forecasts. As a consequence, it has to

be considered the overwhelming increase of smart devices and the irruption of

the Internet of Things (IoT) whose main aim is to connect everything.

From predecessors, 5G systems implies a big jump, since key performance

indicators (KPIs) have to be taken into account, making a basic requirement the

self-organization of the whole network, including end-to-end network behaviour

intelligence to ensure a profitable business model. Here is where the self-

organizing network (SON) is introduced as the engine which will enable the

exploitation of Artificial Intelligence (AI) mechanisms for the efficient self-

management.

In legacy systems, the network observes the environment, makes a diagnosis of

the problem and executes the compensating action which involves to spend a

valuable operation time which is not compatible anymore with the 5G targeted

latency requirements. It is here where the big data must introduce the capabilities

which make that the network can adapt its structure making the future SONs

distinct from legacy cellular systems.

In this the following objectives have been settled down and finally they have been

finally accomplished:

 Review the 5G architecture and the study of machine learning techniques

as valuable tools for the autonomy management of 5G networks.

 Benchmark different machine learning techniques to infer the most

suitable solution.

 Analyse the results of the ML techniques and study their implementation.

 2

CHAPTER 1. Overview of 5G-based networks
systems

1.1 Architecture and network slicing

Nowadays due to the fact that a wide range of new services are growing up and

the industry automation is becoming a necessity, the significant increment of the

traffic makes that networks need to adapt in order to satisfy these new

requirements.

Then, it is planned a network slicing for satisfy these aims, including two

fundamental enablers, that is, software-defined and virtualization in order to

managed and orchestrate network in an efficient way. However, the network will

have other needs like the scalability which will take a relevant position

determining how the resources must be distribute in order to satisfy future

upcoming demands.

The customization of the network will introduce new elements like the virtual

network function where the network abstraction is particularly relevant to

accomplish the network slicing concept.

Fig. 1.1 E2E 5G vision per layers [2]

As we see in the figure 1.1, at the service level, the structure is repeated like in

network level, it can be just a specific part of the network or only a resource which

needs to be repeated.

Regarding to the network slicing, as it is shown in Fig 1.1, it will provide to the

operators the ability for fitting networks depending on the wide range of uses

cases (Personalized), by means of virtualization and software defined

networking. Summing up, the network slicing pretends to match the cloud

 3

infrastructure and network functions to meet the specific requirements of different

use cases.

In order to compute all this orchestration for the wide range of different use cases

and covered the totality of network segments it will be necessary to predict and

to analyse huge amounts of information, achieving not only the network

management but also the isolation of resources and the disjunctive rate of each

slice.

The adoption of network sharing and the introduction of multi-tenancy will allow

to increase the network flexibility relying on virtualization mechanisms and

software-based capabilities; in this regard, the network function virtualization

(NFV) takes a relevant sense inside of the network management architecture. In

particular, it will be responsible of identifying requirements, interfaces and

procedures which could be re-used or even extended.

The network slicing will allow dedicated networks where each one will be

assigned to serve different types of users based on client demand and assuring

the total isolation and independent scaling, making the 5G network slice broker

the key element which will allocate a collection of shared network resources and

VNFs among several concrete slices that fulfil the requirements of services.

The other new characteristic that will be part of the 5G network will be the mobile

edge computing (MEC), making possible that the service could be envisioned,

allowing low latencies, offering flexible services and if it is combined with VNFs

will enable a joint optimization of these services.

We can differentiate between different layers as we can see in the diagram of the

5G layers (Fig 1.2) where the network is clearly divided into 4 different layers,

where they are splitted among independent elements.

Fig. 1.2 Diagram of 5G layers [2]

 4

Basically the service layer is the layer which is closer to the real users of the

network and provide the applications and services. The management

orchestration will transform the consumer-facing service descriptions into

resources and vice versa. The control layer will translate decisions of control,

which will be processed in the data layer in order to decide what it will be the best

choice, into commands.

Regarding to the network slicing Life-cycle part we must separate the

management plane and the instance level (Fig 1.2). Every instantiation will

correspond to a segment of the network and all of them will have an embedded

common softwarization which will organize the resources; this way every slice will

be independent from the rest.

Summing up, network slicing basically “enables the operator to create logically

partitioned networks at a given time customized to provide optimized services for

different market scenarios” [2]. Therefore, the 5G can be reduced in three simpler

concepts: massive machine to machine communications connecting billions of

devices at the same time; ultra-reliable low latency communications in order to

control in real-time industry devices, transport networks etc.; And finally

enhanced mobile broadband: providing significantly faster data speeds and

greater capacity keeping the world connected.

1.1.1 Understanding the radio access network 5G.

The 5G technology introduce a new combination of challenges, emphasizing the

integration of the new radio access technology with the previous ones. These

problems are solved by means of centralizing hardware, reducing power

consumption, and with flexibility to adopt intermediate solutions.

One of the keys is SDMC, which allows to control and program the full network.

The different slices in the network enable sharing network functions between

them and reuse resources and slices. This control function is run on the top of a

controller for slice-dedicated and another coordinating controller in order to

shared functions. Furthermore, this programmable control and coordination

function provides a new level of abstraction in the lowest layer resources in RAN

simplifying in this way its control.

Other problem which appears because of the heterogeneous mobile networks is

optimal resource utilisation, for solving this issue the software defined network

(SDN) in radio access network (RAN) could give us the benefit of global

optimisation and programmability. But creating this software defined for the radio

access resources when it must be determined the optimal solution makes that

delay becomes in a truly problem between the centralized control entity and the

individual radio elements. The benefit of global optimisation and programmability

comes at the expense of scalability and latency.

 5

In order to face up these problems in several papers has been proposed the next

solutions:

1. Centralised controller for network-wide control and coordination.

2. Local controller for network functions requiring real-time operation.

The first solution deals with the idea of a centralised controller making decisions

which affects network states while local controller handles just latency decisions

in low layers without interfering in other ones; at the end it will improve the levels

of scalability and latency. The second solution will focus on different sub-

controllers in order to deal with the requirements in real time, adding a degree of

complexity to manage the RAN.

One of the main characteristics of 5G network is the integration of different

technologies in the radio access network by means of resources abstraction

which will be able to manage the complexity and simplifies the implementation of

all these functions and physical layer resources. Moreover, 5G wants to cope

huge diversity of application service requirements and deployment scenarios

whose features could be totally different.

The flexible implementation of 5G RAN will be impacted by application

performance requirements and capabilities of computing platform. Therefore, it is

crucial to understand this part of the network because, at the end, the abstraction

will play an essential role. The machine learning techniques will be applied in a

huge range in this part of the network. For this reason this section aims to show

how the virtualization would work.

 Now it is more interesting that 5G and enhanced LTE will be integrated on the

RAN level in a way of tight interworking, this means that it must be dual

connectivity, the user equipment (UE) has to be able to connect to eLTE and the

CP and UP simultaneously (Dual connectivity, DC).

Table 1.1. Advantages and disadvantages of dual connectivity

Advantages of DC Disadvantages of DC

DC can increase UE throughput Resource efficient than connect to the

best cell

Connection more reliable via CP

diversity

In the table 1.1 is presented which additions brings the dual connectivity to the

connection between the client part and the core network and how the

implementation of new radio access technologies could bring some points which

help to the performance of the network. However, and despite the advantages

that dual connectivity brings, it will implies other problems too. Right now the dual

connectivity is considering as the best choice for this issue but still there are some

points which has not been solved yet.

 6

1.1.2 Understanding the core network in 5G

The core network regards the part of the 5G network where is the mobile

exchange and data network that manages all of the mobile voice, data and

internet connections. For 5G, the ‘core network’ is being redesigned to better

integrate with the internet and cloud based services and also includes distributed

servers across the network improving response times (reducing latency).

This part of the 5G network is where the project will work, the core network is

where the new advanced features of 5G will be managed, like the function

virtualization and the network slicing for different applications and services. In the

figure 1.4 [18] we can observe the segment which corresponds with the core

network where the virtualization, abstraction and management functions work. In

the illustration we can see the introduction of the software defined network (SDN)

and local cloud servers; where the services applications will run providing, thanks

to the abstraction and virtualization, faster content and low latency applications.

Fig 1.3. 5G network architecture [18]

In this section we are not going too deeper in the core network architecture but

we will introduce some concepts that they will be used later as well as divided

the core architecture in the most relevant elements just for clarify how it works.

One of the most important elements inside the core network and an element that

it will be recursive is the network Function Virtualization (NVF); consisting in the

ability to instantiate network functions in real time at any desired location within

the operator’s cloud platform. Network functions that used to run on dedicated

hardware, for example a firewall and encryption at business premises, can now

 7

operate on software on a virtual machine. NVF is crucial to enable the speed

efficiency and agility to support new business applications and it is an important

technology for a 5G ready core.

The software defined network (SDN) is the other concept which has appeared in

previous sections, as an architecture controller or central software program,

called a controller where it dictates the overall network behaviour. SDN allows to

separate the data plane where the network devices become simple packet

forwarding devices, while the “brain” or control logic is implemented in the

controller will be the control plane.

This project has the aim of investigating this services virtualization due to the fact

that it could suppose a real challenge to manage thousands of different metrics

and data in order to provide a low latency services. There will be a huge amount

of parameters, which a datacenter will have to face up. Consequently, the project

will work on the idea of how could be managed and the introduction of the helpful

machine learning techniques in order to predict possible future demands inside

the core network.

1.2 Programmability & Softwarization

The dynamic programming refers to execute different codes in the execution

environments of the network. It means program personalized application services

in the network. This is strictly related to the management and the orchestration

part.

In this part, the operator will decide how is going to carry out the request, placing

the network function (NFs) to compose the slice and the assignation of the

resources, referring to placement algorithms that can be designed by using

Integer Linear Programming (ILP)-based approaches, multi-provider embedding,

greedy heuristics with backtracking.

The operator wants to fit as much as possible the number of resources. From an

end-to-end perspective it is considered a cooperative ecosystem among

operators in order to complete the service. Network programmability is an

essential part of the new 5G network in order to support the rapid deployment of

new use cases combining cloud-based services with mobile network

infrastructure, where the use cases in critical scenarios could benefit from QoS

programmability. In fact, cellular network’s connectivity requirements, including

latency, throughput, service lifetime and cost, could vary widely across different

use cases where the last beneficiary is the consumer getting a unique and

personalized experience (also defined as Quality of Experience, QoE).

The authors in [2] outline that: “The agents analyse on the information collected

during the monitoring phase and (re)configure policies to enact a desired

alteration in the network infrastructure.” Clearly it can be understood how the

softwarization assumes the important role of reconfiguration in the network when

it is necessary.

 8

As it has been mentioned, 5G must support several use cases and business

models; this brings the problem of having many different actors that have to be

independently managed. This could be a critical part from security point of view.

Now in 5G, new nodes can be added and removed, so it is a must to define model

attack vectors in this dynamic environment and to be able to offer strong network

protection and define security control points in order to avoid possible threats and

attacks. In spite of the fact that this project has not the aim of considering the

security inside the 5G layers, there are several points where the application of

machine learning techniques could be an important part of the system security,

making easier to capture and predict possible future threats for the network just

visualising different metrics.

It is important to consider that three different domain types appear: 1)

infrastructure(physical) domain; 2) tenant(management) domain used to

virtualize and getting logical functions and, 3) compound domain, which

constitute the relationship between other domain and ours. The latter one implies

for example, mapping 3G/4G with our network into our security architecture in a

simple way. Additionally, inside of this domain, we can highlight the slice domain,

which bring trust issues between the actors that control a domain and other actors

controlling at the same time operating slices in the same domain. But it is

important to stand out the strict isolation between domains and slices belonging

to different actors.

1.2.1 Softwarization of 5G Service Management and Orchestration

In order to execute the different services as efficient and fast as possible we need

to monitor the performance of 5G networks, therefore we can assume this

problem from different points of view but we should just understand how the

softwarization will be in general terms implemented.

We have to assure that each service component could support desired level of

performance, avoiding bottlenecks, this can be achieved by observing and

analysing how the infrastructure is used and what it the relation with the service

performance. In this regards, structures like TALE have been introduced. It is

based on a full stack telemetry to collect data metrics related to throughput in

order to identify possible issues and develop improvements/actions for solving

them.

Now we are going to focus on the management plane that supports the slicing

concept. The final aim of slice the 5G network is to provide an independent and

customized service to different uses cases. As every customer will have different

requirements, it is necessary that some entity manage the resources and deal

with them in order to achieve an agreement and a balance resource distribution.

For the above reasons it has been proposed the NFV management and network

orchestration (MANO) architecture which is stackable (Fig 1.5).

We can divide NFV MANO into three functional blocks:

 9

- NFV Orchestrator: Responsible for adding new network services and

virtual network function (VNF) packages; NS lifecycle management; global

resource management; validation and authorization of network functions

virtualization infrastructure (NFVI) resource requests.

- VNF Manager: supervise lifecycle management of VNF instances;

coordinates and adapts configuration and event reporting between NFV

infrastructure (NFVI) and Element/Network Management Systems.

- Virtualized Infrastructure Manager (VIM): Controls and manages the

NFVI compute, storage, and network resources.

The management plane can be simplified including Self Organizing networking

(SON) management mechanisms like configuration, self-optimization, self-

healing and self-protection.

The slicing business model is basically based on multi-tenancy support which

provides multiple simultaneously services. Four important aspects in network

slicing have to be taken into account:

1. Infrastructure sharing: it means that in order to reuse and optimize the

physical resources the network has to be able to use a scalable

infrastructure which can provide dedicated hardware for several services

without wasting any of the infrastructure resources. If two users can share

the same physical resource it will be more efficient than use one for each

of them.

2. Spectrum shared: the spectrum in a network is a significant issue due to

the fact that it is very expensive and it is limited. So its usage must be

optimised.

3. RAN sharing: depending on customer requests it will be necessary more

eNB which at the same time will require more physical resources. [Section

1.2].

4. Network sharing: regarding to the software defined mobile orchestration

enables the coordination between different inter-slice services; the main

responsibilities are to map the slice templates representing requirements

in contrast with available network resources, by deciding which network

can be shared and the placement of the virtual and physical resources.

The implementation of multi-tenancy in the radio access network can rely on the

current 3GPP and LTE implementation; by implementing effectively schedule

resource blocks between different mobile virtual network operators (MVNO). This

can be made by means of real time controller which helps to make policies shared

in RAN resources in order to keep information in real time and for synchronising

it.

The softwarization of the networks includes virtualization technologies like VNF

which can be used to cover different kind of functions, also the concept of

reusable functional block like the virtual network function (VNF) generalization

 10

allowing an abstraction of platforms and hardware. Softwarization and slicing

bring the implication that the infrastructure must be programmable. RAN

coordination and programmability are central concepts in 5G that are aimed to

improve service quality, resource usage, and management efficiency, while

addressing the limitations of the current LTE and WLAN systems caused by

distributed control among them.

Inside of softwarization it is essentially to include network graph abstractions

which are created from distributed data sources by means of collecting

information accessible directly from infrastructure entities. In conclusion, it is

created a hierarchical architecture instantiating the implementation capabilities in

order to control the operations locally in a centralised way via virtualized

infrastructure manager (VIM).

The orchestration of the network regulates network resources and management

decision. Some of the objectives that orchestration is focused on are:

Provisioning, security, QoS, fault tolerance, energy efficiency, etc. The difficulty

about orchestration is in essential the cognitive network management across

heterogeneous networks with their own characteristics and requirements.

This project is focused on the study of how the machine learning techniques and

several algorithms can contribute to provide to 5G networks this autonomous

management. Therefore, the orchestration is based on taking management

decisions, optimise and adapt the network over time trough in order to obtain self-

configuration. The main problem for achieving this self-management is the

heterogeneity of the networks because everyone has their particularities and

specific requirements like edge networks or computing clouds.

In new mobile service models due to the fact that are new requirements in terms

of data and functions for the network management based on 5G it will be

necessary to take care of them like the virtualization function in the network or

the multiple network services, the scalability referring to the capacity of the

network for adapting to the demand, the security which we have talked in previous

sections or the QoS. The next step is the encapsulation of networking function

virtualization (NFV) applications standardized by the European

Telecommunications Standards Institute (ETSI) as management and network

orchestration virtual network function manager (MANO VNFM) functionalities

towards a multi-tenant management of VNF lifecycle. The network functions

virtualization (NFV) defines standards for compute, storage, and networking

resources that could be used to build virtualized network functions. The virtual

network functions manager (VNFM) is a key component of the NFV management

and organization (MANO) architectural framework.

The VNFM works with the other two NFV-MANO functional blocks, the virtualized

infrastructure manager (VIM) and the NFV orchestrator (NFVO), to help

standardize the functions of virtual networking and increase the interoperability

of software-defined networking elements.

https://www.sdxcentral.com/networking/nfv/
https://www.sdxcentral.com/networking/nfv/
https://www.sdxcentral.com/networking/nfv/
https://www.sdxcentral.com/data-center/storage/
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://www.sdxcentral.com/networking/nfv/mano-lso/definitions/nfv-mano/
https://www.sdxcentral.com/networking/nfv/mano-lso/definitions/nfv-mano/
https://www.sdxcentral.com/networking/nfv/mano-lso/
https://www.sdxcentral.com/networking/nfv/definitions/virtualized-infrastructure-manager-vim-definition/
https://www.sdxcentral.com/networking/nfv/definitions/virtualized-infrastructure-manager-vim-definition/
https://www.sdxcentral.com/networking/nfv/definitions/nfv-orchestrator-nfvo-definition/
https://www.sdxcentral.com/networking/sdn/

 11

Finally, there are other elements that the network need to manage, due to the

fact that nowadays there are several operators that will have to share the same

ecosystem; then for achieving a multi-operator interaction, additional work is

needed for the inter-operator orchestration. Therefore, in order to achieve this

inter-operator coexistence, the components which are responsible for this

capabilities are divided in three groups; the first one is dedicated to the resource

acquisition; the second one to service request deployment and the third is in

charge of service assurance and service level agreement (SLA) management.

1.3 End to End virtualization

In order to satisfy the needs of providing services with different requirements,

offering at the same time a huge amount of different network functions is a must.

If the 5G networks want to satisfy these demands it will be necessary to virtualize

some infrastructures and functions, as well as making them scalable which

means that we can add as resources as the demand requires them.

For this reason, it has appeared the network function virtualization (NFV)

explained previously, whose function is providing a solution to reduce the

installation deployment and the infrastructure cost as well as making a flexible

function placement and service customization as we can check in Fig 1.5.

Fig 1.4 Data and control plane virtualized structure manager [1]

Going through the structure of the virtualization elements, one of the main

parameters which play a fundamental role is the NFV nodes. They have a general

purpose as programmable servers, each NFV node is virtualized as a virtual CPU

cores. In this regard it will be possible to apply different algorithms in order to

optimize and predict the future usage requirements. Then finally the virtualization

will work in a quite similar way as virtual machines by means of programmable

 12

virtual network functions (VNF Fig. 1.5) on VMs of different NFV nodes at different

network locations in order to achieve high and optimize resource utilization.

Finally, the backbone core network will consist in different network switches and

NFV nodes connected, the NFV nodes will host and operate VNFs.

Consequently, a set of VNFs and the virtual links making the proper

interconnection will constitute a logic VNF chain, therefore these VNF chains will

be managed by a virtualization controller (VNF manager Fig 1.5) which means

that will require a E2E service provisioning.

The 5GPPP multi-domain architecture as we have explained in section 1.1 is

composed by a layered model which compose the infrastructure layer, multi-

domain orchestration and application layer. In the infrastructure layer is where

cellular network operators will add their resources therefore where E2E multi-

domain orchestrator will be placed. The E2E service orchestrator uses the

resource slices in order to integrate services slices which finally will finish into

apps.

There are other requirements that the multi-domain architecture will have to

support in 5G networks, such as the division between the control and user plane.

As we can observe in figure 1.5 between the VNF and VNF manager coexists the

software defined networking (SDN) which allows that control and data planes of

network devices being decouple, enabling fast innovation as well as global

network programmability and independent evolution of control and data planes.

Summing up, NFV enables that the resources of an infrastructure provide can be

virtualized and shared among tenants, with one or more tenants requesting

services can reach the efficient utilization of its resources by dynamically slicing

them. The Network Virtualization function (NFV) proposes to move the

processing of dedicated hardware middleware packages to the hardware running

on the base servers; this way NFV brings the possibility of outsourcing enterprise

Network Function (NFs) processing to the cloud. When an enterprise outsources

its NFs to a Cloud Service Provider (CSP), the CSP is responsible for deciding:

where initial Virtual NFs (VNFs) should be instantiated and what, when and where

additional VNFs should be instantiated to satisfy the traffic changes (scalability)

with minimal impact on network performances.

It is remarkable than the VNFs can be re-scaled vertically in order to offer an

infrastructure resources based on client demands, consequently will provide

better management, flexibility, lower cost, energy efficiency and better resource

location and utilization. Most of the proposed heuristics are based on greedy

algorithms using simple rules, such as First Fit Decreasing (FFD) and Best Fit

Decreasing(BFD). In this project we are going to explored alternatives algorithms

for the virtualization optimization and proposed a known structure which could be

implemented in this kind of network regarding to 5G as well as explore different

heuristic algorithms which scales to large datacenters without a significant

decrease in performance.

 13

1.3.1 Abstraction in Software Defined Networking (SDN) for
DataCenters

The abstraction is an important part of the new generation of 5G networks, where

those elements that in previous generations were physically working in the

network; now are became into virtual machines or virtual processes that finally

are executed in a datacenter, where several hosts will allocate the resources and

it can be migrated depending on the needs.

Now, in this section we are going to analyse the part of the 5G core network

dedicated to virtualize all those services which are used for achieving low latency

and satisfy the demand of different network services and how it can be managed,

introducing in this way the objective of this project which is the investigation of

machine learning algorithms in the 5G network and why they are necessary.

A total effective abstraction of resources allocation requires a high precision for

measuring which services are going to be attended first, depending on the priority

and the available resources in each moment.

The SDN allows to organize the resources in the 5G network; summarizing its

functionality, it can be said that computing the shortest paths are functions of the

control plane and data plane functions handle packets and routing them from

input port to output port, therefore control planes consist of logic that controls the

packet forwarding behaviour of the routers and switches. It contains configuration

procedure for middle boxes too, such as firewalls, and load balancers. The data

plane is responsible for forwarding packets in the network, so it contains routing

tables and hardware pertaining to the network.

Fig 1.5 Core network abstraction [16]

We can say that the abstraction comes from becoming the legacy network into

intelligent network, thus means that we need to analyse every parameter in order

to optimize the resources abstraction. Here it comes the necessity of introducing

big data analytics as we see in the figure 1.6, where the resources abstraction

 14

will be blind if there is not any analysis and the policies can be changed in order

to adapt the network to possible future problems.

In the figure 1.6 the problematic of virtualization appears. Due to the fact that the

policies must change depending on the demand or the overwhelmed (due to a

poor prevision), here it appears a new concept inside the 5G network called self-

organize network (SON). The network must be able to adapt itself to possible

future inconvenient by means of big data and analytics approaches, without that

it would risk to make totally useless the improvements introduced in the new

generation.

1.3.2 Policies

The orchestration and management architecture allows mobile virtual networks

operators MVNOs to solve network slice requests, allowing programmable

policies. This section is dedicated to explain the last part of the virtualization in

the network management presented previously in the figure 1.5. Firstly, it is

important to highlight that this project will not carry out the implementation of this

part of the network which includes policies and actuators. Due to the fact that

everything will be sent to the part of actuators we need to understand it.

Therefore, our results in a real environment will be sent to the policy manager

where it would be designed a policies strategy in order to be prepared to face up

the future demand.

The policies manager or policy engine will be constant along this project, largely

due to the fact that we have to consider always this part, all the predictions will

be reflected in the policies engine, where depending on the results the actuators

should change some resources allocation in order to optimize the performance.

The policy engine will have to include old (previously defined) and the new ones,

those defined to support again the committed service requirements.

Furthermore, there will be a module in charge of making the convenient

recommendation in order to evaluate the different possibilities and calculate the

success rate we; can call this module as policy recommender (Fig 1.4). It could

be improved always so there should be a policy optimizer where the policies are

updated and installed in order to finally distribute and apply them into the network,

taking an advantage from the predictions made in the smart engine.

In conclusion the policies are an indispensable part of the 5G virtualization, just

not because they are the laws which will help to orchestrate and manage the

network abstraction but also the essential part for making the network totally

programmable.

1.4 Cognitive Self-Organize Network Architectures

The use case which better fits in order to explain the propose of applying machine

learning techniques in 5G is the cognitive network model. The key aspect about

cognitive network is the use of these models, collecting previously data and

metrics from the NFVI and the control plane, analysing them and by means of

 15

policies we can obtain a high level of abstraction in the network which means a

better performance and a softer deployment in different parts of the network

layers, as we have explained in the section 1.3.1.

In order to automatize the network management there is other element that can

applied strategies previously designed called 5G self-organise network (SON).

As SONs can be also defined those networks which have an autonomous

management vision extended to the end to end network. In literature and also in

some instances of products available in the market, Machine Learning (ML) has

been identified as the key tool to implement autonomous adaptability and take

advantage of experience when making decisions. In this project we will

investigate how 5G network management can benefit from the ML solutions. The

concept of SON is an approach to the future network generation requirements

where they will be totally autonomous.

The cloud computing plays a relevant role inside the cognitive networks, where a

high capability of computation is necessary in order to distribute efficiently the

resources, clean data, apply machine learning techniques and allocate them

when it was necessary. For that reason, the idea behind this structure is that the

analysis and the application of machine learning algorithms will be run in the

cloud (datacenters).

The new 5G networks look forward to achieve this autonomic network

management, but there are some crucial elements in order to give the dynamics

looked. The first important element will be the machine learning which will

suppose one of the key technologies used in Cognitive network management in

order to predict and facilitate the adaptation of the network, starting from the data

collected from the different elements of the network.

Also it would be necessary to build a representative knowledge base (KB) in order

to process input data from different sources through learning classification,

prediction and clustering models in order to bring all this data to the self-

organizing network (SON).

One of the most important points in the cognitive network is the autonomic

monitoring which will have to identify the important features and captures

information just to send it to the last important element, the automatic planning

and execution (ANM) which by means some policies will have to adapt the

resources to the needs of the network following this steps:

1. Knowledge.
2. Strategy.
3. Purposefulness.

4. Degree of adaptation autonomy.
5. Stimuli.
6. Adaptation rate.

7. Temporal scope and spatial scope.
8. open/closed adaptation and security.

 16

Following this structure proposed in the [8], this project would try to reproduce the

behaviour and making emphasis in each step for giving the Cognitive

management.

Fig 1.6 Cognitive self-organize network structure [8]

Following with the structure in the figure 1.7 we must highlight that there will be a

common structure independently of the model or the use case; consequently, the

characteristics finally are quite similar in a Cognitive network, therefore the

diagram showed in the Fig 1.7 will be helpful for making the implementation of a

real use case establishing the relation between the cognitive part and the self-

organize network and how it would work.

The figure 1.7 show us the general structure of a cognitive network, where the

SDN infrastructure is the layer where the metrics are collected and where it would

apply the policies in the network; the policies are built in the SON layer where all

the metrics are analyzed and sent to the smart engine where the machine

learning techniques are applied, for example, to detect anomalies.

The new 5G networks look forward to achieve this autonomic network

management, but there are some crucial elements in order to achieve the self-

automation pursued. The softwarization and orchestration of the new 5G

networks brings new opportunities that can be explored towards to the efficiency

and optimization, therefore, from the project’s point of view it is interesting

analyse how the programmability of a network can evolve enough for making a

network self-automatized.

Following the structure of the cognitive network, in this project has been proposed

to take the Cognet structure in order to study the impact of machine learning

techniques application, basing on the structure proposed by the authors in the

paper [8], where they explain how and why the Cognet solution has been

proposed achieving enough self-automation in the 5G network. Consequently,

 17

our project would try to reproduce the behaviour and making emphasis in each

step for analyse this Cognitive management.

Accordingly, the use of this structure together with ML techniques will not just

enable cognitive network management but also it will bring new challenges like:

automaticity, network function virtualization (NFV), software defined network

(SDN), network slicing and finally knowledge based radio resource management.

In order to manage these challenges and make a structure which provide the

fundamental elements that will be able to provide self-management we have

based on CogNet (Fig 1.8) structure which will be explain in the next section.

1.4.1 Cognitive networking

The general idea behind the Cognet structure is too keep the QoS and cost

management in a proportional and optimized way, this means that the resources

dedicated to the demand must be done according to the previous analysis and

service provision in order to save resources for future demands.

In the figure 1.8 is clearly described how the structure works and which

components constitute it. In the previous section we have explained the general

idea about the Cognet project, but there are still missing some details about how

it works and how it is going to introduce into our project.

The fact that 5G networks have not been implemented yet, makes impossible to

implement a real data collector. For this reason, we decided to simulate the

module and generate data inside of a data center, discarding the mobility and

focus on the virtualized elements. The network function virtualization is included

inside the Cognet structure (Fig 1.8/1.9), recording different kind of data, from

dynamic resource allocation, going through performance degradation to demand

prediction. To reduce complexity we only focus on data center resources within

the Cognet network.

Fig 1.7 Cognet-based architecture

 18

As we can observe in the figure 1.8 we can differentiate two main parts in the

architecture; on the left one it is described the connection between the VM,

control and orchestration level, from the network function virtualization framework

which implies all the physical devices and functions that are running there; then

all the key metric data will be sent to the data collector, where they are received

and sent to the part of the Cognet functionality which manages all the data

analysis.

The next step after applying all the algorithms, clean the data and obtain all the

scores, it is when the policy manager will receive the results, where the

orchestration level will decide which policies must be applied in order to improve,

solve or prevent the architectural framework issues or optimizations.: .

As the data, they can be very uncorrelated. Therefore we should be cautious

about the data since there are a lot of metrics which can be analysed. In this

project, we will be focused on the enhancement of the virtualization services and

the abstraction inside the hosts. The basic idea is to collect all the data which

come from servers and physical machines, meaning that we receive a part of

measurable data which is from machines like the RAM, CPU usage, total memory

to allocate a resource or number of virtual machines required in a specific

moment depending on a concrete demand. The data structure will be explained

more widely in the next sections.

Fig 1.8 Cognet and SON structure within 5G [4]

According with the figure 1.9 presented in [4] we are going to analyse deeply the

smart mechanism of CogNet, concretely the smart engine, where the first element

that we will find, it is the data collector. Data collector will be implemented in our

project as a simulator of virtual datacenter environments providing simulated

 19

data. The data should be always pre-processed because it could be problematic

to deal directly with it, consequently it needs to be clean and selected according

with the network requirements.

The structure in our project will be limited by the data and the actuators, mainly

due to the lack of real data. According with the figure 1.9 the data collected is

sent to a data storage where it is sent and received from the pre-processing and

automated model selection modules, therefore in the data storage it is stored

after and before all the models have been chosen. Once, when the model has

been selected the data will go through the batch processing engine, where it will

be applied the model, usually in real time which has been selected, making more

efficient the policies definition and the actuators performance.

 As we have explained, without a data collector, the cognitive management will

be useless. Once the data are collected from the network, the next step will be to

clean the data and storage, where they can be consulted by the CSE

components.

The pre-processing is the part of the network where the feature selection is

applied in order to reduce the dimensionality and prepared for Batch processing

engine; the feature selection is done by neural networks. It is important to remark

that the feature selection is an important functionality to overall flexibility of the

architecture.

When we have the variables which we are going to be used, we must choose the

algorithm that will be applied for satisfy the requirements. However, sometimes

an algorithm could not adapt properly so the batch processing engine evaluates

current model and if the model stale or is not available it will generate a new one.

Finally, when the model has been applied can be saved optionally in the

distributed file system because maybe the batch processing engine will generate

models directly, being consumed by real-time processing engine which scores

the data even in real time. As a conclusion, in this section we have explain the

parts of our use case in order to understand how we are going to study the use

of the machine learning techniques inside of the 5G environment.

Chapter 2. Machine learning

Machine Learning (ML) is a new approach guided by Artificial Intelligence that

suggests that machines should be able to learn by themselves. Instead of

providing them with repeatable knowledge, just giving some raw data from certain

patterns can be extracted and learn from them as the human mind would.

We have mentioned in previous section why machine learning is not only a useful

application for different areas within 5G, but also a requirement if we want to

achieve the QoS levels or latency and bandwidth expected. In order to analyse

the whole service given by some determined slice schemas, or due to the amount

of data generated by several resources, it will be necessary the full optimization

of the radio resource as well as the classification of the data traffic.

 20

Therefore, network providers are looking for the minimum cost solutions to deploy

total programmable network infrastructure. In order to maximize the profit of an

infrastructure provider, the orchestrator will need to accept as many slices asked

as possible; this obviously implies that, it will become in more incomes but they

should match the variation of service requirements scaling the network. In fact, if

a slice cannot be scaled up due to resource contention among the slices, the InP

needs to pay a penalty corresponding to service degradation (see [4]).

For all these reasons, managing and predicting the variation of different services

is a complicated task. The orchestrator can rely on ML techniques and Big Data

analytics (BDA), as depicted in the figure 2.1.

The project is aimed to analyse how the machine learning techniques can

improve the performance of the 5G networks and how they should be

implemented or which infrastructures we should design in order to take benefit of

apply them. The main architecture can be observed in the figure where the

orchestrator should be equipped with different elements based on BDA; we can

differentiate the typical processes which are followed in data analysis and data

science where we need a module where all the data is picked up RD, other where

this one is analysed by BDA.

The next step is to decide regarding to the slice requirements presented for the

MSP and CSP (fig 2.1), about the acceptance of an income slice request

depending on the resource availability. In order to have a continuous evaluation

we need to monitoring the current state of the network resources by means of

resource monitoring (RM).

Fig 2.1 System architecture in resource Orchestration [4]

Consequently, the slice management whose performance have been explained

in previous sections is where the policies will be implemented, deciding which

slices need to be scaled up or down, sending the necessary requests to domains

 21

controllers. Finally, the last module is about statistics collection where are

extracted different statistics from slices.

In the figure 2.1 it is explained in a general view and according to the authors of

[4] how the ML algorithms could be implemented for the optimization of slices,

but it is not the only solution, because they could be applied equally to the cluster

and forecast traffic behaviours of cells; as an example a clustering model will

explore and identify areas of the network where the traffic is suffering issues or

irregularities, then it should be compared with similar cells with same traffic

patterns and extract them; pointing that when we have the clusters extracted we

could apply ML algorithms.

2.1 Machine learning algorithms

In this section we are going to review what algorithms are available currently,

when and where we could apply them and which one will fit better. According to

[5] we can separate among several areas within 5G networks what kind of

algorithm will be more suitable. In this section we will make a general overview

of the main techniques known and the studies that have developed about

applying ML algorithms in 5G, as well as explaining the main algorithms and

classifying them.

The networking and distributed computing system is the key infrastructure to

provide efficient computational resources for machine learning. Networking itself

can also benefit from this promising technology. There a wide range of algorithms

which can be implemented but our objective is not focused on develop new

algorithms, but try to find out which are the most efficient so we will develop how

the different techniques could be apply.

2.1.1 Supervised learning

In the supervised learning each training set is composed by labelled data,

basically it consists in training a model by means of data which you can prove

that it is reliable, then you can use the model in order to recognize the optimal

solutions. It can be explained as a basic function in a linear system where you

have input variables (X) and an output variable (Y) and you use an algorithm to

learn the mapping function from the input to the output, Y = f(X)

The goal is to approximate the mapping function that can allow to predict a target

numeric value given several features, therefore, when you have new input data

(X) you are able to predict the output variables (Y) for that data. Therefore, the

final aim is to split the dataset into two different datasets, the training and the test;

with the first we could train the algorithm in order to make it more reliable and

with the second one we will check the results.

 22

However, supervised learning often brings some problems:

 Incomplete data cannot be modelled (Missing data), but it should be

valuable the source of unknown-ness (forgotten or lost) or the value does

not care or is not applicable.

 Feature selection is not as effective as in the other learning techniques,

due to the fact that many features will depend on a high grade from the

others, which make unduly the influences into the accuracy of supervised

ML classification models.

 The influence of the algorithm or the technique used will affect in a huge

way the results, consequently it is crucial to choose the adequate

technique.

We should differentiate between two different kind of techniques; regression and

classification, regression tries to model the relationship between the parameters

which are iteratively redefined using a measure error in the predictions. There

exist several regression algorithms that we can classify according to the variables

or the shape of the regression line, like linear, logistic, polynomial, stepwise,

ridge, lasso or elastic net regression.

Table 2.1 Supervisee learning algorithms

Regression or prediction which can be used when the variable is real or

continuous, allows us to predict with a probability of failing. Like in the small cells

which are being deployed in 5G networks to cope with the high demand of traffic,

AI

Technique

Learning model 5G-based Apps

Supervised

Learning

ML and statistical

logistic regression

techniques

Dynamic frequency and BW allocation in self-

organize LTE dense small cell deployments

Support vector

Machines (SVM)

Path loss prediction model for urban

environments

Neural-Network-based

approximation

Channel learning to infer unobservable CSI

from an observable channel

Supervised ML

frameworks

Adjustment of the TDD UL-DL configuration

to maximize the network performance based

on the ongoing traffic conditions

Artificial neural

networks (ANN) and

Multi-Layer Perceptron

Modelling and approximations of objective

functions for link budget and propagation loss

for next generation wireless networks

 23

they have an unpredictable and dynamic interference so that the SONs will be

able to learn dynamically and adapt to the conditions in the current environment.

Classification is a technique for determining to which class belongs and to assign

label to each class depending on the one or more independent variables.

Regarding to the main algorithms that can be used, in the table 2.1 we can see

summarized some supervised learning algorithms, where there are some

relevant ones which will be applied in this project. However, we are not going to

explore the theoretical background behind each one but, we will analyse how they

act in every case with different data and how they can suit for 5G use cases.

2.1.2 Unsupervised learning

The main key in unsupervised learning is that the data is unlabelled, therefore

the objective is training the data but without guidance, which can have supposed

to be quite useful when the differences between the data groups are not very

high. One of the main techniques within unsupervised learning is the clustering

(table 2.2), which uses ML to situate data inside several groups of them

considering the similarities among the features of the data.

The problem with clustering is that the no labelled data set cannot be compared,

consequently at the end, the error which it could make, it is also undetermined in

terms of comparison. Therefore, is difficult to evaluate if it is not in the specific

case where it is properly to apply it.

The performance of the technique is described by a vector of N features which

could be used to represent it in N dimensional spaces which could be useful in

heterogeneous cellular networks.

Table 2.2 Unsupervised learning algorithm

AI technique Learning model 5G – based Apps

Unsupervised

learning

K-means clustering,

Gaussian mixture model

(GMM) and expectation

maximization (EM)

Cooperative spectrum sensing.

Relay node selection in vehicular

networks

Hierarchical clustering Anomaly/Fault/Intrusion detection

in mobile wireless networks

Unsupervised soft-

clustering ML framework

Latency reduction by clustering

fog nodes to automatically decide

which LPN is upgraded to HPN

Affinity propagation

clustering

Data driven resource

management for Ultra-Dense

Small cells

 24

 The most common techniques are: k-means clustering: which consists into k

clusters where the data samples are place in groups.

Every cluster chooses Hierarchical clustering: Mini- Batch K-Means, Mean-Shift

clustering, DBSCAN, Agglomerative Clustering, etc., can be used to associate

the users to a certain base station in order to optimize the user equipment (UE)

and base stations (BS) transmitting/receiving power according with the authors

in [5].

2.2 State of the art

The objective of this section is to give some details of the main techniques and

technologies used in machine learning and then, we review the literature on

cognitive networking where we can study these techniques.

The aim behind this project is to show a high well-designed technology solution

to be used in the paradigm of 5G network, where it will be essential in order to

manage the millions of data generated at every second every day. Otherwise, it

could not be even imagined the implementation of low latency services with a

high QoS, at each moment that a client needs to use the service.

When we talked about the computing aspect inside the network we must take

care about the possible variables which will enter inside our modules.

Consequently, we should distinguish between two different algorithms, learning

and optimization algorithms. We will focus on the first one, but the optimization

algorithm will turn on the deterministic or stochastic techniques which

corresponds more to the policies part.

2.2.1 Machine learning techniques in network management

We have presented in the previous section a summary of the most common ML

techniques used at this moment. In spite of the fact that there are techniques like

the reinforcement and the clustering, which are widely used in the network

management, we should focus on those algorithms which are more oriented to

measure and predict the parameters inside of a network. In this project the aim

is to analyse the different techniques but not which platform is going to be more

powerful, so we will use python as the main technology, without going deeper

inside other technologies like Kafka, Spark, R or IBM InfoSphere Streams [19].

Therefore, we are going to start with the algorithms we should use to perform

analysis built on the premise that this project aims to achieve the demonstration

of how the ML algorithms can help in the performance of the new 5G network

performance where it is represented in the figure 2.2.However, as addressed in

the Recommendation ITU-T G.1000 on the QoS framework, the great challenge

to success when deploying a cognitive network management model (Fig 2.2) is

to deal with all the different QoS-related. This may become a difficult task when

dealing with next-generation wireless ecosystems, where many unpredictable

events may have an influence on the user´s experience. In view of this, some

 25

recent studies suggest using big data analysis and ML algorithms for modelling

possible future demands upcoming. ML techniques might be useful to infer rules

from big data analysis and identify the KPIs/KQIs that will lead to automatically

estimating the quality of a service. Selecting the most suitable learning algorithm

may be critical to obtaining reliable results.

Fig 2.2 Modelling network metrics using a big-data analytics approach [17]

There are other techniques which can be more efficient in comparison with the

typical supervised and unsupervised algorithm for the complexity of the network

but their efficiency is still being investigated such as the Q-learning and the neural

networks, as it is suggested in [15]. The authors discuss about the possibility of

the implementation of this new techniques since a wide range of RL problems

(including the ones of RRM) can be modelled as Markov decision processes. But

in our case we will deal with the warehouse and databases problem.

The congestion avoidance and control is other issue which a network usually

must deal with, then the reserved resources based on the forecast traffic of cells

should be calculated or even the abnormal problems inside the network have to

be analysed, where some algorithms are especially useful since they are

exclusively design for it that depending if the data is labelled or unlabelled they

will be apply like K-Nearest Neighbours Classifier.

In conclusion, for the mobile traffic there are other considerations that the network

must realize where the feature selection plays an important role reducing the

possible variable from hundreds to a short range, furthermore is quite usual that

k-means method could be used as efficient technique extracting common

patterns and in order to weekly traffic behaviour can be predicted, even the

hourly traffic forecasting where is also common to see auto-regressive algorithms

or Gaussian process due to the fact that as the weather it could imply random

patterns which make more difficult the training and the correct predictions of

them.

 26

CHAPTER 3. IMPLEMENTATION AND SIMULATION.

3.1 Introduction of the use case

We have described in the first part of the project, the potential benefit of the

application of the machine learning techniques for 5G networks. Then, we have

identified a management architecture which can help us in the implementation

and the enhancement of the performance applying the algorithms.

The next step in order to show how it will work this architecture, it is the necessity

of obtaining the data which will be received in a real environment, but here we

found several problems:

1. The first one is that the companies saved this data and it is impossible to

get it. This can be explained by two main factors, this technology is still in

a process of development and on the other hand, the companies would

not share the metrics until the technology was well implemented like 4G.

2. Due to the first problem it was thought that in order to get the most reliable

data we will need to reduce the global vision, meaning that, instead of

obtaining data from the 5G we should think about getting it from 4G but it

appears another problem; there will be a lot of parameters missing due to

the similarity between technologies but finally, they are different in many

aspects like the slicing, which is not contemplated, consequently we would

be predicting something unreal and without sense.

3. The third one appears when we want to focus on one part of the wide 5G

structure, due to the fact that it would be too much if we try to analyse

several parts (clustering, forecast traffic behaviours of cells or managing

handovers among other parameters) [9] so we have to add the lack of real

data to we cannot match uncorrelated data, because we will need much

more amounts of data in order to get a notable performance, therefore we

have to choose a specific 5G field.

4. The final problem is about how we will simulate the data. To do that we

must implement a sophisticated simulator and generated artificial metrics

based on mathematical and theoretical models which can approach a real

environment in order to get a good accuracy.

Therefore, these are the problems which we had to face up. Therefore, we

thought that the best choice would be to use a free-source software simulator and

see what kind of metrics we could obtain from it. But still we did not know in what

part of 5G we should focus on, so that we would try to obtain the data

performance from a datacenter, due to the fact that the datacenter will be an

important part of 5G network and the abstraction services.

Then we would try to improve the performance inside a datacenter, where every

host has an important cost not only in terms of money, but also in time when it is

a must to satisfied a service as quickly as possible and achieve a good

optimization of the structure, in order to not waste resources.

 27

3.2 Implementation of the use case

The first step was to try the different simulators which currently exist and how

they gave us the data. In particular, we tested different simulators which are very

common in the market, even installing a virtual machine in Linux; among others

there were tested: “DeepMIMO_simulator, ns-allinone, NYUSIM, omnetpp,

Nemo_outdoor, GNS3 etc”. Additionally, we have performed the review of studies

about mathematical models in order to derive the end-to-end latency by changing

the parameters. Nevertheless, at the end, it resulted in a too complex task.

Finally, we found a simulator based on java which has been used following the

recommendations in [10], within cloud environments, which provides the most

important features that are included into a datacentre called CloudSim, reported

in the paper [11]. CloudSim is a simulator which allows to simulate according to

several parameters and requirements, varying along the time, the different

conditions which can appear inside of cloud computing scenario. It also includes

the customization interfaces for the implementation of policies and providing

techniques for the allocation of VMs under an inter-networked cloud which can

simulate the data centre segment in a 5G ecosystem.

The cloud environments will approach the next generation of datacenters,

purchasing dynamic and flexible application provision by means of virtual

services, where the users will be able to access to them at every moment from

anywhere, enabling the application deployment according to the demand and

QoS requirements. [11] Therefore, we have a simulator which can provide us the

use case in order to simulate the part of the data collector, so we do not need to

use any monitoring software.

 CloudSim generates the part of the physical requirements inside hosts and

datacentre, this means that every service which appears at every moment, it will

have several characteristics of memory, speed, time and CPU usage. Basically

the idea is that behind of a 5G network, there are a lot of important parameters

to be care. As an example, if a host is too saturated, it will suppose that a service

it could not be satisfied properly, implying a possible delay and making slower

the network.

As we can observe in the figure 1.9 the part of the virtual network function and

management and network orchestration will be directly implemented by the

metrics which are given in the simulator, whose parameters will be manually

controlled in order to obtain different situations. We will be the management part

and the actuator in order to focus on how the techniques can help inside of the

5G network.

3.2.1 CloudSim structure

Previously to with the definition of the simulation scenario, we must to explain

what it is the structure of the simulator that we have used in order to understand

what kind of data we are going to lead with. Obviously, the simulation will give us

an approximation of the cloud environment which it could appear inside of a

 28

datacenter, where the 5G services are allocated. However, it will allow us to

demonstrate how the ML techniques can help to the 5G networks and not just

predict possible fails but also optimize and improve the performance in the whole

network.

We must understand the terminology used inside the CloudSim in order to clarify

with what kind of data we are going to lead. The most important element that we

need to understand is the cloudlet. It is quite abstract because it defines a

service which it could be provide in a 5G network.

Policies decide the list of potential actions to be taken to guarantee the VNF

Monitoring provision, in accordance with CRI of SDN and NVF elements as well

as 5G aspects like, for example, the number of active users consuming network

services which in our case it would be cloudlets, the network infrastructure’s

location, or the users’ mobility. Policies actions influence the behaviour of the

components and layers of the proposed architecture as it is explained in the

section 1.3.2 [12]

As we have observed in the figure 1.9, there are two clear sections for the radio

resources, where it is contemplated the part of mobility and user allocation, which

is intrinsically connected by means of the optical transport network to the cloud

services. In this part is where we are simulating; therefore, every service

requirement it will have this two parts mobile and cloud, so summing up

everything a cloudlet will represent the application services. It encapsulates the

number of instructions that will be executed, and the amount of disk transfer to

maintain the task.

The other elements which we have to understand are the hosts machine, virtual

machines, CPU, RAM and BW usage, datacenter and service broker explained

below [14].

- Datacenter: it is a set of typical hosts or servers; it is possible to have

several datacenter as in the real environments and make the

communication among them.

- Hosts: It operates the physical machine and joins information provided by

the processing unit, main memory virtualization monitor specification, and

disk and network bandwidth. It also specifies the information about the

policies for control and processing unit, disk, network and main memory to

virtual machines.

- Virtual machine: it is an application software which emulates the

instructions of a real computer, every virtual machine it will have

determined several parameters which cannot exceed the requirements of

the hosts, it will be used to separate the tasks, in order to make it more

efficient and work in parallel satisfying different tasks/services at the same

time.

- CPU, RAM and BW usage: the usage will measure the different

requirements and how they are evolving along every simulation getting

 29

directly the metrics from these parameters and applying directly the ML

algorithms according to these data.

- Service Broker: it is the element which choose which virtual machine will

allocate and provide the service request.

- Scheduling interval: Each task is represented by an interval describing the

time in which it needs to be executed.

- Host PES and VM PES: Indicates the number of cores inside of a host or

inside of a virtual machine typically are from 2 to 8 inside of a VM and

depending of the number of these VMs it would change the number inside

the host.

CloudSim follows several mathematical models in order to estimate the different

parameters like capacity, usage, etc. [11]. The models have not been changed,

and we have chosen the stochastic model which provides a more variety of

values in order to force the algorithm as much as it can.

Finally, the structure of this simulator can be observed in the figure 3.1 where it

can be found the elements mentioned above. Thus we could find that every user

it would suppose a service request, then every request will have different

characteristics like the length in terms of memory, the size, RAM etc. There will

be some parameters that in a datacenter are always stable like the bandwidth

between hosts and inside these ones, so here appears a possible case for

applying machine learning algorithms in order to optimize the different hosts.

Moreover, the storage capacity and the RAM are usually equal in every host, so

we must make it as efficient as possible distributing every cloudlet in different

virtual machines.

Fig 3.1 Operational CloudSim environment

In conclusion, the simulator will represent a scenario previously defined by us,

with a limited number of hosts which will be the main constraint in order to create

the VMs. We can increase (or introduce) the amount of cloudlets. Depending on

the amount of demands there will be a moment when the time in order to satisfy

 30

the demand it would unacceptable so we should try to find the better solution.

This can be extrapolated to the real environment where several users are asking

different services with different needs and you have limited resources in order to

satisfy them; here is where we must apply ML techniques in order to find the

most optimized path.

3.2.2 Control Simulation

In this section we are going to present the interface of the software used and what

modification we have included in order to adapt the simulator to our use case.

We have needed several modules from CloudSim API like CloudSim plus and

EDGE-CloudSim, the libraries imported from java API are included when you

download the program so the only part which have been modified has been the

example module. In the figure 3.2 we can see that we have created a specific

class in order to reproduce as similar as to a real example for our COGNET case,

we want to simulate the real conditions inside of a datacenter but in the conditions

of a 5G network.

Fig 3.2 CloudSim modules

Therefore, we can observe (Figure 3.2) that there is not any interface which can

help us to use the simulator, thus we have to understand how the program works

from the code part, after understand what data is generated we have created a

module adapting it to our requirements.

We have to establish several constraints which are not included in the simulator

(Figure 3.3), like the maximum number of RAM which cannot exceed the Host

Ram, also the virtual machines which can be created per host and making a little

modification we can get that generates a simulation with similar conditions but

changing the number of cloudlets which are arriving in order to see how it would

be the performance of the datacenter.

After defining the constraints, we will be able to control every parameter inside of

the datacenter, there will be some parameters which never change trying to make

it as real as possible. We will establish the typical values inside of a datacenter.

 31

Fig 3.3 Parameter definition inside the code

The program has been modified in order to generate the data conveniently, we

will have two different datasets whose relationship will be established by the

number of simulation, the first one [Annex A] gives us what has been the state of

every cloudlet which have entered into the datacentre. The cloudlets are identify

by an id number, each cloudlet will be attended by only one virtual machine

allocated in a host, so, for instance, if the cloudlet 57 has been attended by the

virtual machine 6 inside the host 0 cannot be at the same time attended by other

one. Furthermore, as we have mentioned previously every service (cloudlet) will

be probably different from the others, it is difficult that two different services have

the same characteristics, consequently the size needed will differ and it would

need different times to be satisfy.

The other dataset [Annex B] will concern to the part of each moment where the

execution is occurring. In the figure it is shown how evolve the different usage

along the time until the last cloudlet it has been attended as well as how many

resources they have to spend in order to satisfy cloudlets at every moment.

However, we needed another dataset [Annex B] which indicates what are the

initial conditions in every simulation in order to reinforce the algorithm and how

has evolved the simulation, where it will be included the number of simulations

and the initial conditions presented in [Annex A].

Finally, we have to match the different datasets in only one; by means of python

we have created the cognet_dataset where it has been integrated all the

information needed for applying the machine learning algorithms. The dataset

(Fig 3.4) is composed by all the simulations made. In order to get the most

important features and getting the most reasonable values and realistic instead

of using the metric provided at every moment we have got the average and the

maximum and minimum. Therefore, for each virtual machine in every simulation

we will get the data which has been allocated there, number of cloudlets total

size, the maximum usage used as well as the average. The explanation for doing

it, comes from the necessity of accuracy, we could extrapolate it to a real time

monitoring but it would have cost much more time and we want to demonstrate

 32

how a simple application of machine learning algorithms can improve the

performance of the network.

The main point here is that we can have as much data as we want, so it will

depend on how many simulations and which parameters you change but finally

we have made 3 different burst, with 250, 500 and with 750 simulations, in order

to see how the accuracy can increase when more data is added. It could be

applied to the dataset which stores the data at every moment but there it was not

other important data which should be analyse too.

Fig 3.4 Dataset from CloudSim environment

3.3 Parameters inside CloudSim

In order to understand what each parameter means and its importance, in this

section it will be explained their characteristics, meaning and how has been

calculated in a simple way.

Inside of a data analysis there is always an important background related to the

data, a lot of times just for making the predictions we do not need to understand

what the data means, but it is deeply helpful that we identify the parameters

before we proceed with the classification.

As we have explained the simulation will provide us three different datasets that

we will combine and making the feature selection. In all the databases it is a must

that exists an id in order to identify the rows and making that a parameter can

search. In our implementation, the id will be given by the simulation, virtual

machine and host; this way, every simulation will provide different measures. The

number of host will be established from the beginning due to the fact that it will

determine the result of every simulation.

We can distinguish between input parameters, output parameters and identifying

or categorical parameters. The number of hosts also will determine the maximum

number of virtual machine which can exists at the same time if we have

established that the RAM of a VM is 2 Gb and there two host of 8 Gb it could build

 33

as maximum 8 VM, 4 in each host. The creation of this VMs it would depend on

the requirements in the simulation, if they have to satisfy more resource request

or no. Every virtual machine has the same parameters but they could change

depending the cloudlet which they are attending in that moment. Some of these

parameters will be the total storage, the number of cloudlets which will be

attended in every simulation, the maximum of CPU, RAM and Bandwidth as well

as the meaning indicating the typical and the strange parameters, how it is the

mean size of the cloudlets in order to make the estimations, it can be understood

better looking at the table 3.1.

Table 3.1 CloudSim parameters extracted

Input parameters Output parameters Categorical

parameters

Ram Host Maximum CPU,BW and

RAM usage

Number of

simulation

Storage host Mean CPU,BW and RAM

usage

Host id

Total number of cloudlets Number of the cloudlet Virtual machine

id

Cloudlets length Mean execution time

Total number of virtual

machines

Mean finish time

Virtual machines

parameters (dependent on

the host)

Maximum and minimum

size of the cloudlet

attended

Fig 3.5 Time parameters

There are two output parameters which need to be explained because of their

ambiguity, that is the times given by the simulator. One of them is the finish time

which usually is greater than the execution time due to the fact that it represents

the time needed for satisfying a cloudlet request. The main difference between

them is that the finish time will depend always on the start time being the

execution time the difference ExecTime= FinishTime - StartTime, concluding that

the execution time it is how long it takes to complete a cloudlet request.

 34

Consequently, this two times are important in order to estimated when it would

be the next virtual machine free for attending the next service request and how

long it takes complete the service request.

CHAPTER 4. DEVELOPMENT AND RESULTS

After dealing with the problems related to the simulator, modifying the code in

order to give us the implementations for the generation of different cloud centre

scenarios, they would change depending on the number of resources which have

to be satisfy at every moment. Therefore, once we have obtained all the data and

the metrics we have to develop the analysis program, typically there are several

steps which are followed when we have to applied the techniques.

- Reinforcement: Previously of cleaning the data we can achieve a better

performance if the data is supported by other dataset in order to give it

more sense inside of our predictions. In our case, we have mixed three

different datasets (data at real time, final organization of the cloudlets and

the initial conditions) due to the fact that every single one will not give us

the required performance as we have explained previously in the section

1.5

- Missing data: The missing data is a typical problem which can appear

inside of a dataset or in a real environment due to the fact that not always

the data will have sense or it could be collected; the missing data appear

when an error occurs too, so that it is important to consider it. There are

several techniques which can calculate the approximate value which is

lack in the cell but in our case will be substituted by ceros just for making

it simplified. Feature selection: when we talk about the data a lot of times

is spoken that more data is better but not always is as easy as it seems.

In the datasets there will be always parameters which will add more

information and they will be more useful than others, but in our case we

have to eliminate those columns which will not change the final result in

order to streamline the process. This is the reason why we have removed

several columns like the minimum usage of the different process as RAM,

CPU or BW because it is logical that it would be 0 for all of them. In this

case it is easy to see that those parameters are useless but in other cases

we have to proceed to further analyse the data.

- Clean data: The next logical step will be to remove those columns which

will not be useful in a future, usually those parameters which are repeated.

They probably do not improve the prediction or otherwise, they are not

correlated with the others parameters, because sometimes to have more

data it could have a high price, reducing the accuracy. Other data like the

number of cores, storage host or Ram host will keep immutable, so it has

to be removed.

- Categorical data: this kind of data usually supposed a problem in terms of

how it is going to lead with it, although it is important data, it must be

 35

transform previously, first into numerical and after, indicating that this data

is categorical to the algorithm. In the project the id of the host or virtual

machines and the number of simulation belong to this type of data, but it

is important to know it, because indicates more than only a numerical

value, so that, these parameters will be considered as a categorical data.

- Normalization, finally when we have all the elements which we want to

include into the prediction, cleaned and organized, this step usually helps

to improve much more the prediction. In this project, the data has been

normalized between 0 and 1, due to the fact that we are not going to predict

categorical data but the all the numerical data is continuous, this means

that data will have very disperse values making more complicated their

management.

4.1 Predictions

In this section we are explaining how the prediction was performed. Generally

speaking, after making all the adjustments, fixing and cleaning all the data, we

have to choose which parameters we want to predict, from the point of view of a

5G network. Since we focus on the cloud part we should predict those parameters

which makes sensible that the service can be offered in a properly way.

Table 4.1 Algorithms accuracy in the use case

Algorithms Legend Accuracy

250

simulations

Accuracy

500

simulations

Accuracy

750

simulations

LogisticRegression LR 0.088356 0.119051 0.116883

LinearDiscriminantAnalysis LDA 0.481827 0.720334 0.445292

KNeighborsClassifier KNN 0.166602 0.127659 0.164109

DecisionTreeClassifier CART 0.212278 0.214519 0.280696

GaussianNB NB 0.112309 0.130283 0.155449

Support vector machine SVM 0.070757 0.133273 0.172473

As we have explained in the section 2.1, there are several techniques that we

could apply basing on the type of the data; we can use regression, classification,

clustering or anomaly detection but at the first sight we can observe that we are

leading with continuous data which it means there are several values for the

result. We can discard the last two options, the first one, anomaly detection, in

this case we do not want to find errors or fails inside the cloud centre,

consequently the values will be among a regular range.

About clustering, whose main objective looks for detection of data groups forms,

is disposable, largely due to the values will depend on the initial variable

conditions, making quite difficult that the output could be similar in different

 36

moments. Therefore, at the end, we will keep the other two options, in order to

see which, one give us a better performance.

However, there is a step which is quite common when we are going to apply ML

techniques, that consists in splitting the dataset into two different datasets, the

train set and the test set. The train set will be used to train the algorithm in order

to make the algorithm which results (Validation set in the figure 4.1) gives with

certain components; the test set will be used to prove if the algorithm works

properly, so that when there was more data the training will be better and the

prediction will earn more reliability.

Fig 4.1 Dataset splitted

4.1.1 Classification.

We are going to start analysing how it is the performance of the classification

techniques. As we have explained, we are leading with continuous data, then the

classification could not work with it, we need to transform it into exact integer

without decimals, losing a wide range of values as well as accuracy in the

prediction of the parameters, making classification at the first sight, quite vague.

Then proceeding with the analysis we have to encode those values in a range of

0.1 so that, if we have 0.423 it would change to 0.4. When we have normalized

dataset encoded we must choose which parameter will be predicted. In our case

the most efficient would be to make the estimation of several parameters but first

we have to select the algorithm which suits more properly. We decided to start

with the mean execution time, due to the fact is one of the most important

parameters that we have to take into account, as we have explained previously it

will suppose the difference between satisfying a service in the time required or

not.

We have chosen six different ML algorithms in order to test how the classification

will work with this dataset, between them it would be one algorithm of regression

in order to compare the efficiency. The algorithms will be the typical ones inside

of classification and their results can be seen in the table 4.1 represented in the

figure 4.2.

We can check that the regression does not work properly with the encoded

values, so the result is quite logical due to the fact it is an algorithm made for

 37

disperse values which are not between a short range. Regarding to the other

algorithms we can see that the classification will not work properly, our

suppositions were correct. In spite of the fact that they are not accurate the linear

discriminant analysis curiously it has almost a 50% of probability of predict right

but this is not enough, it can be explained because LDA is also closely related to

principal component analysis (PCA) and factor analysis in that they both look for

linear combinations of variables which best explain the data.

Fig 4.2 Algorithm comparison with 250,500 and 750 simulations

4.1.2 Regression

Once we have analysed the performance of the classification, we must try it with

regression. Previously we have explained that we will test the efficiency of these

algorithms with three different datasets, made by 250, 500 and 750 simulations

in order to work in the case of the last one with 23 columns and more than 12000

rows which it will give almost 300.000 cells of data. Usually the numbers are even

greater but in our case we want to measure and extract the conclusion of how

the machine learning can help to predict possible over consumption, or saturation

 38

of the resources making unsustainable the time needed with the current VMs

available.

Making a first sight into regression we test what result gives the linear regression

this time without encoding the data and we compare the validation set with the

prediction set in order to see if it could suit.

Fig 4.3 Plotting prediction vs test data with 250 simulations

The fig 4.3 indicates in a simple way how the predictions are according to the

validation set, as we can observe it plots a typical normal distribution, which

makes that the most of the values will be predicted correctly because the 80% of

values are situated between the -0.01 and 0.01 of the deviation. The x axis

indicates if the deviation between the prediction and the validation set it is too

great, so in this case we can see that the values in a range of 0.02 is a satisfactory

outcome.

Consequently, we can continue applying different regression algorithms in order

to check the performance in every case. Previously, we have explained that the

first parameter which would be evaluated it will be the execution time, this

parameter will be evaluated individually due to its importance. In order to see the

improvement into the performance the algorithms will be tested with the datasets

of 250,500 and 750. Applying in each of them the same algorithms and trying to

predict the execution time. Finally, if the regression techniques suit properly and

we achieve the performance desired we will test how the multi target regression

algorithm can be applied.

4.2 Results

In this section we are going to explain the results achieved. The first algorithm

which has been tested is the linear regression model which can be observed in

the figure 4.4 where is one of the simplest algorithms but it works quite well with

the data, giving well outcomes and the percentage of being well predicted is quite

high. So we can deduce that these techniques it is a good candidate if we want

to predict only one target, but commonly in the real 5G scenarios, this could have

 39

a high cost, due to the fact that it will require a high level of computation in order

to calculate which resources are needed in each case to accomplish the

expectations.

In the figure 4.4 we can see two plots.; The first one represents the deviation of

the results; if the line is straighter, the performance and the accuracy will be

better; on the left, plot indicates what are the normalized values in every virtual

machine, so there we can see that the times of the execution are quite similar to

the validation dataset.

Fig 4.4 Linear regression model comparison

In the table in the annex C is indicated the response in each case, where the error

which is obtained from the linear regression is lesser than in the other cases.

After test the linear regression with the three datasets it was the time of support

vector regression. This algorithm creates a line or a hyperplane which separates

the data into classes, consequently the general idea is that the algorithm takes

the data as an input and outputs a line that separates those classes, but it would

 40

be taken different lines until it gets the best candidate. Easily we can observe that

this algorithm can be used with classification and regression but in our case the

data is too much disperse in order to get a good performance.

Fig 4.5 Support vector machine model comparison

In the figure 4.5, it is shown how the dispersion from 250 to 750 simulation

increases instead of reducing it; the error introduced by this algorithm makes that

it must be discard for the used inside the cloud environment in the 5G network.

Meanwhile, we checked the last algorithm for predictions of only one target, which

is the decision tree. The general idea is to break down a dataset into smaller and

smaller subsets while at the same time an associated decision tree is

incrementally developed. The final result is a tree with decision nodes and leaf

nodes. This algorithm was chosen because it can handle with categorical and

numerical data, furthermore it is highly extended and quite known so that makes

easy to work with it.

 41

Fig 4.6 Decision Tree model comparison

In the figure 4.6 we see that the performance it is quite similar to the linear

regression giving good performance too; this can be explained firstly because this

algorithm can be used perfectly for regression cases and maybe needs a bit more

time of processing but the result is quite accurate.

After checking the algorithms dedicated to predictions of only one target we

thought that in a real environment it will be very tedious, even not considering

that it will have a high cost to make every time the predictions just with one

parameter. Eventually it was thought that with the linear regression it is possible

to handle with several targets, then it would call multi target linear regression.

 42

Multi target regression is the term used when there are multiple dependent

variables. If the target variables are categorical like in this case, then it is called

multi-label or multi-target classification. This algorithm can be used with decision

trees but we are just tested it with the simple linear regression.

In this case, to begin with the MTR, we have to choose more than one variable

which we want to predict, therefore we are going to predict those ones which will

impact directly in the final performance of the network and those which will

consume more resources, they are the RAM and CPU usage, the execution time

and the finish time explained in the section 3.3.

Firstly, we will apply the algorithm for 250 simulations figure 4.7, but due to the

fact that we are working with several targets in the same predictions the

performance needs more data in order to extract conclusions, in the case of using

250 simulations we have that the times are quite precise, just in the case of the

CPU the predictions are more disperse, so it will need more predictors in order to

fix it.

Fig 4.7 Multi target comparison prediction vs test data with 250 simulations

When we analysed the plots related to the network features we can see that the

first results indicates that we are able to predict in every virtual machine or in

future events (number of simulations) what could happen, as we observe the 10

first VMs are very saturated it overpasses the 0.8 of usage or time which it means

that this data it will be situated very close to the maximum value, so knowing

previously this situation we can modify the policies and distribute the resources

in order to optimized and not overpass the red line in order to reduce the times

and distribute the resources.

 43

Consequently, we can extract the first conclusion from here that for example we

could be able to see than in the time when the simulation 150 is being occurring

the performance in 100 simulations after of the network will be too similar and it

will be over saturating the first 10 VMs so it can be changed adding more priority

to the other 15 VMs by means of policies avoiding this situation.

Fig 4.8 Multi target prediction with 250 simulations

But it is quite simple with just 250 simulations, this time we do not analysed the

case with 500 simulations due to is very similar. Let’s go with the case of 750

simulations, it is the most similar to a real environment.

The first result which we can obtain comparing the different algorithm is that

depending how it is the behaviour of our scenario will change the techniques and

the way of applying the algorithms, this means that now for a multiple random

targets, like the times for finishing a service or the usage which it will be implied

at every moment in a VM, we must have a strong predictions with enough

accuracy, looking at the figure 4.9, there is a greater dispersion from the

regression line but it does not mean something wrong, in this case if we see the

table located in the annex C the error introduced into the prediction along more

than 750 simulations it is quite sure that more than 90% of the predictions will be

right, making the plots quite reliable in order to improve the performance. The

parameter in both cases with 250 and 750, which introduces more error and

uncertainty is the CPU usage, maybe the dispersion between the data makes

more difficult for the regression techniques predict the values but it should be

analysed as future work.

 44

Fig 4.9 Multi target comparison prediction vs test data with 750 simulations

Once, when we have the results from the data along the 75 simulation we can

realize that with 250 simulations we are able to train the algorithm and it will be

able to predict the behaviour of the cloud scenario, In the figure 4.10 we can

observe how the predictions works, finally we have a test set called Y_validation

where it must be predicted, if instead of having this Y_validation we want to know

what would happen in the next 500 simulations that in the real environment will

be translated to real time, we are able to predict with more than 90% of probability

what would happen.

The second result that we can extract in the case of a real scenario as we have

explained for 250 simulations would be that once when we can trust on the

prediction, now by means of actuators and policies it should be defined which it

is the best plan for the optimization.

In the figure 4.10 we can divided in two plots those which are talking in terms

along the time (number of simulations) and those which are focus on in each

virtual machine, the first case it can be used to change that the RAM usage and

the CPU usage are close to the maximum values along of the different scenarios,

so it can be understood because only the half of virtual machines are doing

almost all the work, just when they are totally saturated it uses the rest as we

observed in the CPU usage vs VM plot. This can be extrapolated to the time

needed for every VM to satisfied the services which is near to the maximum

values, but the criteria here should be analysed thinking what parameters must

be change in order to avoid this situation.

 45

Fig 4.10 Multi target prediction with 250 simulations

The annex C has been represented into the fig 4.11 indicates the evolution in

every case of the error and the accuracy with every algorithm, the R-squared is

a statistical measure of how close the data are to the fitted regression line. It is

also known as the coefficient of determination, continuing with the graph we can

see that the performance of the algorithms chosen is relevant in terms of

accuracy, being the linear regression and the multi target regression those that

have the minimum error and more probability of predict correctly.

Fig 4.11 Comparative table about each technique performance

 46

4.3 Environmental impact

In this section we are going to analyse the final impact that this project can

produce into different environments. On the one hand, we have to highlight that

this project has been developed from the point of view of softwarization inside the

5G network, so the maximum impact could be the server’s necessity, where they

will carry out all the performance.

On the other hand, we should see beyond this, the main reason is the deployment

of new datacenters and base stations, in order to satisfy the increase in demand.

First, regarding to datacenters, the increment of huge amounts of data will make

necessary to deploy new datacenters, obviously where, this huge amount of

metrics must be computed. Here it comes a relevant impact where there will be

necessary a planned infrastructure where the servers can be installed.

 Meanwhile these metrics have to come from several base stations implemented

in the streets, where we can see a clear environmental impact. The 5G and the

implementation of machine learning algorithms will need a real time streaming of

hundreds of parameters in each moment, the multi massive antennas

implementation needed for making MIMO (Multiple-input Multiple-output)

technology a reality will have a clear impact in the streets, as well as, the new

base stations where it will store data and send it to the closest datacenter.

Consequently, our project will not have in a direct way a clear impact in the

environment, however and despite of being indirect impact, it connects directly

with the direct impact produce by the implementation and deployment of the 5G

infrastructure, like the new fibre infrastructure connection in order to connect the

base stations with the core network.

Finally, in order to analyse the total impact, there is one more field, which we

have to analysed, called the impact in the social environment, where the people

life is changed by the action of our project, in this case the 5G has searched to

make easier the life and connected in a better way the whole network of existing

devices, consequently, the most important impact in this part is an advantage,

but they should buy devices adapted to this new generation.

 47

CHAPTER 5. CONCLUSIONS AND FUTURE WORK.

5.1 Conclusions

In this thesis, we addressed the problem of studying different techniques for being

applied into the 5G optical networks. In particular, we investigated how the part

of cognition inside of the structure of 5G works and the proposal of an Autonomic

Network Management based on Machine Learning as a key technology for 5G

networks to reach the vision of automated management of telecoms network

infrastructures. We have introduced the part of Smart Cognet related to the

collection of data streams and their analysis in order to apply different ML

techniques, giving a simple example of how the actuator part and policies can be

introduced.

We have solved the problem related with the data collector by means of the

implementation of a simulator of cloud environments which could represents the

real situation into the 5G structure due to currently it does not exist any repository

with the needed data.

A discussion on different ML algorithms performance has been provided as well

as the different solutions in order to deal with the data and provided the most

reliable solution. In particular, we have proposed the possible solution which can

suit better with the structure of the network.

The main focus of our thesis was on the optimization itself. A new approach

based on estimation of ML algorithms was introduced for solving cognition

problem, acting on the real application which can be extracted as well as looking

into the best option for the satisfaction of services request.

Finally, another contribution relies in the parallelization of the different prediction

by the introduction of multi target regression which gives a complete view of the

future parameters and how could be the performance of the network being able

to adapt the conditions of the whole network to possible increments in the

demand of services in punctual moments. From an experimental point of view,

our contribution lies in the comparison of different machine learning techniques

which could be apply in the Cognet structure inside of the 5G network.

5.2 Future work

Many different adaptations, tests, and experiments have been left for the future

due to lack of time as well as the data problem which has been common along

the project (i.e. the experiments with real data are usually very time consuming,

requiring even days to finish a single run)

From this project it can be extract several future works like the simulation with

real data and the monitoring in real time, furthermore one of the most complicated

 48

parts in the Cognet network have not been implemented which it counts with

actuators and policies management, indeed without this part we cannot know if

the data predicted has a real impact into the network. Therefore, this opens a

new opportunity of investigation, applying directly the algorithms and defining the

policies but if there is not real data could bring too many problems.

Obviously, the use of other types of ML techniques and data treatment functions

could be investigated, Concerning the results for our Cognet structure (data

collector, smart engine and policy manager), we can also expect to improve them

by having better data, with more attributes and even going deeper inside this

structure explaining the different parts and developed them.

 49

Annexes

Annexe A Cloudlet dataset

Annexe B System dataset at every time

 50

Annexe C Algorithm accuracy

Algorithm

Mean

Absolute

Error

Mean

Squared

Error

Root Mean

Squared

Error

R2

squared

Linear regression

250 0,0036 0,000020866 0,004567 0,99931

Linear regression

500 0,00457 0,00006047 0,00667 0,99457

Linear regression

750 0,00652 0,00009005 0,00948 0,9969

Support Vector

regression 250 0,03894 0,17676 0,0801 0,95009

Support Vector

regression 500 0,05953 0,00539 0,0734 0,8225

Support Vector

regression 750 0,06002 0,00514 0,07174 0,82402

Decision Tree

regression 250 0,01877 0,01877 0,0281 0,9679

Decision Tree

regression 500 0,01845 0,00077 0,02787 0,9744

Decision Tree

regression 750 0,012183 0,00028 0,017005 0,99011

Multi target

regression 250 0,03053 0,00168 0,04104 0,94931

Multi target

regression 750 0,03804 0,00266 0,0516 0,9363

 51

Annexe D CloudSim code in Java

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

Annexe E: Python code

import pandas as pd
import numpy as np
import os
import sys
import scipy
import matplotlib
import sklearn
import csv,operator
from sklearn import metrics
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn import svm
import seaborn as sns
import pandas as pd
import numpy as np
import os
import sys
import scipy
import matplotlib
import sklearn
import csv,operator

def txt_to_csv(numsimul):
 with open("cloudsim\\data"+ str(numsimul)+".txt", 'r') as in_file:
 stripped = (line.strip() for line in in_file)
 lines = (line.split(",") for line in stripped if line)
 with open('cloudsim\\data'+ str(numsimul)+'.csv', 'w') as out_
file:
 writer = csv.writer(out_file)
 writer.writerows(lines)

def parameters_to_csv():
 with open("cloudsim\\DC_Features.txt", 'r') as in_file:
 stripped = (line.strip() for line in in_file)
 lines = (line.split(",") for line in stripped if line)
 with open('cloudsim\\DC_Features.csv', 'w') as out_file:
 writer = csv.writer(out_file)
 writer.writerows(lines)

def make_tables(df):

 dfObj = pd.DataFrame()
 for j in range(0,df['Host_Id'].max()+1):
 for i in range(0,df['Vm_id'].max()+1):
 df2=df.loc[(df['Vm_id'] == i) & (df['Host_Id'] == j)].desc
ribe()

 63

 if (df2.isnull().values.any()):
 continue
 else:
 dfObj = dfObj.append({'Host_id':int(j) ,'Vm_id':int(i)
, 'Mean_CpuUsage':df2.iloc[1][3] , 'Max_CpuUsage':df2.iloc[7][3],
 'Min_CpuUsage':df2.iloc[3][4],'Mean_RamUsage':df2.iloc
[1][4],'Max_RamUsage':df2.iloc[7][4],
 'Max_BwUsage':df2.iloc[7][5] ,'Mean_BwUsage': df2.iloc
[1][5],'Min_RamUsage':df2.iloc[3][4]}, ignore_index=True)
 return dfObj

def make_tables_simulation(dfcloud):
 dfObjcloud=pd.DataFrame()

 for j in range(0,dfcloud['Host'].max()+1):
 for i in range(0,dfcloud['VM'].max()+1):
 dfcloud2=dfcloud[(dfcloud['VM'] == i) & (dfcloud['Host'] =
=j)].describe()

 if (dfcloud2.isnull().values.any()):
 continue
 else:
 dfObjcloud = dfObjcloud.append({'Host_id':int(j),
 'Vm_id':int(i) , 'Mean_FinishTime':dfcloud2.iloc[1][9]
, 'Mean_ExecTime':dfcloud2.iloc[1][10], 'NumCloudlet':dfcloud2.iloc[0]
[0],
 'Cloudletlen_mean':dfcloud2.iloc[1][6],'max_Cloudletle
n':dfcloud2.iloc[7][6],
 'min_Cloudletlen':dfcloud2.iloc[3][6], 'Max_Clodlets':
dfcloud2.iloc[7][0]}, ignore_index=True)
 return dfObjcloud

parameters_to_csv()
df = pd.read_csv("cloudsim\\DC_Features.csv",index_col=False)
dfFeatures_csv = pd.read_csv("cloudsim\\DC_Features.csv",index_col=Fal
se)
dfFeatures_final=pd.DataFrame()
dfFinal=pd.DataFrame()

for numsimul in range(1, df['N_simul'].max() + 1):
 txt_to_csv(numsimul)
 dfsimul = pd.read_csv("cloudsim\\data" + str(numsimul) + ".csv")
 dfcloud = pd.read_csv("cloudsim\\simulation" + str(numsimul) + ".c
sv", delimiter=';')
 #print(numsimul)
 dfObj = make_tables(dfsimul)
 dfObjcloud = make_tables_simulation(dfcloud)
 df5 = pd.concat([dfObj, dfObjcloud], axis=1)
 df5 = df5.loc[:,~df5.columns.duplicated()]
 dfFeatures = pd.DataFrame(np.repeat(dfFeatures_csv.values,len(df5.
index),axis=0))

 64

 dfFeatures.columns = dfFeatures_csv.columns
 dfFeatures=dfFeatures.loc[dfFeatures['N_simul']==numsimul]
 dfFeatures_final=dfFeatures_final.append(dfFeatures,ignore_index=T
rue)
 dfFinal=dfFinal.append(df5,ignore_index=True)

df6 =dfFeatures_final.join(dfFinal, how='outer')

df6=df6[['N_simul','Host_id', 'Vm_id', 'Ram_host', 'Storage_host', 'Vm
_Ram', 'Num_cloudlets',
 'storage_vm', 'Max_CpuUsage', 'Max_RamUsage','Max_BwUsage',
 'Mean_CpuUsage', 'Mean_RamUsage','Mean_BwUsage', 'Min_CpuUsage'
, 'Min_RamUsage',
 'Cloudletlen_mean', 'Max_Clodlets', 'Mean_ExecTime',
 'Mean_FinishTime', 'NumCloudlet', 'max_Cloudletlen', 'min_Cloud
letlen']]
df6.to_csv('cloudsim\\cognet_dataset.csv',index=False)

from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
import matplotlib.pyplot as plt

url='cloudsim\\cognet_dataset.csv'
'''names = ['N_simul','Host_id', 'Vm_id', 'Ram_host', 'Storage_host',
'Vm_Ram', 'Num_cloudlets',
 'storage_vm', 'Max_CpuUsage', 'Max_RamUsage','Max_BwUsage',
 'Mean_CpuUsage', 'Mean_RamUsage','Mean_BwUsage', 'Min_CpuUsage'
, 'Min_RamUsage',
 'Cloudletlen_mean', 'Max_Clodlets', 'Mean_ExecTime',
 'Mean_FinishTime', 'NumCloudlet', 'max_Cloudletlen', 'min_Cloud
letlen']'''
dataset = pd.read_csv(url)#, names=names)
dataset.fillna(0, inplace=True)
suma=dataset.isnull().sum()
dataset.to_csv('cloudsim\\cognet_dataset.csv',index=False)

dataset.fillna(0, inplace=True)
suma=dataset.isnull().sum()
suma

dataset.hist()
plt.rcParams['figure.figsize'] = (24, 18)
plt.show()

 65

png

png

scatter_matrix(dataset)
plt.rcParams['figure.figsize'] = (34, 24)
plt.show()

png

png

array = dataset.values
X = array[:,0:300]
Y = array[:,22]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train,Y_validation = model_selection.train_te
st_split(X,
 Y, test_size=validation_size, rand
om_state=seed)
seed = 7
scoring = 'accuracy'

models = []
#models.append(('LR', LogisticRegression(solver='liblinear', multi_cla
ss='ovr')))
#models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
#models.append(('SVM', SVC(gamma='auto')))
evaluate each model in turn
results = []
names = []
for name, model in models:
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 cv_results = model_selection.cross_val_score(model, X_train, Y_tra
in, cv=kfold, scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)

KNN: 0.046046 (0.010447)
CART: 0.793339 (0.030894)
NB: 0.633490 (0.040810)

fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()

png

 66

png

knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))

from sklearn import preprocessing
dataset = dataset.astype({"N_simul":'category',"Host_id":'category',"V
m_id":'category'})
dataset.dtypes
#dataset_norm=dataset.loc[:, dataset.columns != 'N_simul',"Host_id","V
m_id"]
dataset_norm_incomplete=dataset[dataset.columns.difference(['N_simul',
"Host_id","Vm_id"])]
dataset_categorical=dataset[['N_simul',"Host_id","Vm_id"]]

x = dataset_norm_incomplete.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
dataset_norm_incomplete = pd.DataFrame(x_scaled)
names=['Cloudletlen_mean', 'Max_BwUsage', 'Max_Clodlets', 'Max_CpuUsag
e',
 'Max_RamUsage', 'Mean_BwUsage', 'Mean_CpuUsage', 'Mean_ExecTime
',
 'Mean_FinishTime', 'Mean_RamUsage', 'Min_CpuUsage', 'Min_RamUsa
ge',
 'NumCloudlet', 'Num_cloudlets', 'Ram_host', 'Storage_host', 'Vm
_Ram',
 'max_Cloudletlen', 'min_Cloudletlen', 'storage_vm']
dataset_norm_incomplete.columns = [names]

dataset.head()

5 rows × 23 columns

print(dataset.describe())
dataset.shape
(12706, 23)

Calcular las predicciones en funcion de los datos categoricos
We should represent it according to N_simul, VM and HOST
Test what does it have more accuracy

dataset_norm=dataset_categorical.join(dataset_norm_incomplete, how='ou
ter')
namecolumns=['N_simul',"Host_id","Vm_id",'Cloudletlen_mean', 'Max_BwUs
age', 'Max_Clodlets', 'Max_CpuUsage',
 'Max_RamUsage', 'Mean_BwUsage', 'Mean_CpuUsage', 'Mean_ExecTime
',
 'Mean_FinishTime', 'Mean_RamUsage', 'Min_CpuUsage', 'Min_RamUsa
ge',
 'NumCloudlet', 'Num_cloudlets', 'Ram_host', 'Storage_host', 'Vm
_Ram',

 67

 'max_Cloudletlen', 'min_Cloudletlen', 'storage_vm']
dataset_norm.columns = [namecolumns]

Split-out validation dataset
#MinMaxScaler(copy=True, feature_range=(0, 10))
#target_train=scaler.transform(target_train)
#print(target_train)

target_train=dataset_norm['Mean_ExecTime']
from sklearn.model_selection import train_test_split
data=dataset_norm.drop(['Mean_ExecTime'],axis=1)
#array = dataset_norm.values
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed)
scoring = 'accuracy'

#est = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='uniform
')
#est.fit(Y_train)
Y_train.Mean_ExecTime =round(Y_train,2)
Y_validation.Mean_ExecTime=round(Y_validation,2)

c:\users\delas\appdata\local\programs\python\python37-32\lib\site-pack
ages\pandas\core\generic.py:4405: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-
docs/stable/indexing.html#indexing-view-versus-copy
 self[name] = value

import seaborn as sns
import matplotlib.pyplot as plt
model = LinearRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
sns.distplot(Y_validation - predictions, axlabel="Test - Prediction")
plt.show()

png

png

from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,Y_train)
predictions = lm.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Linear regression model, 250 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')

 68

plt.scatter(Y_validation,predictions)

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

<function matplotlib.pyplot.show(*args, **kw)>

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))

Mean Absolute Error: 0.003600919583487267
Mean Squared Error: 2.086629223845936e-05
Root Mean Squared Error: 0.004567963686201912

clf = svm.SVR()
clf.fit(X_train,Y_train)
predictions=clf.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Support vector Regression, 250 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge")

 69

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show
<function matplotlib.pyplot.show(*args, **kw)>

png

png

print(np.sqrt(metrics.mean_squared_error(Y_validation, predictions)))
print(np.sqrt(metrics.mean_absolute_error(Y_validation, predictions)))
print(metrics.r2_score(Y_validation, predictions))

0.03894161752648024
0.17676675125092087
0.9500909638076308

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
regressor.fit(X_train, Y_train)
X_columns = pd.DataFrame(X_train.columns)
X_columns.T
coeff_df = pd.DataFrame(regressor.coef_.T, X_columns, columns=['Coeffi
cient'])
print(coeff_df)

 Coefficient
((Cloudletlen_mean,),) 1.361957e-01
((Max_BwUsage,),) -6.369338e-02
((Max_Clodlets,),) -9.706228e-01
((Max_CpuUsage,),) -2.012091e-03
((Max_RamUsage,),) 4.284801e-01
((Mean_BwUsage,),) -3.494495e-03
((Mean_CpuUsage,),) 1.010490e-03
((Mean_FinishTime,),) 1.309856e+00

 70

((Mean_RamUsage,),) 6.615824e-02
((Min_CpuUsage,),) 0.000000e+00
((Min_RamUsage,),) 1.110223e-16
((NumCloudlet,),) 1.774677e-01
((Num_cloudlets,),) 4.046876e-01
((Ram_host,),) -5.551115e-17
((Storage_host,),) 0.000000e+00
((Vm_Ram,),) 0.000000e+00
((max_Cloudletlen,),) -1.542416e-01
((min_Cloudletlen,),) 2.803162e-02
((storage_vm,),) -7.900223e-02

from sklearn.tree import DecisionTreeRegressor

create a regressor object
regressor = DecisionTreeRegressor(random_state = 0)
fit the regressor with X and Y data
regressor.fit(X_train, Y_train)
predictions = regressor.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Decision Tree Regression, 250 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge")

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

<function matplotlib.pyplot.show(*args, **kw)>

png

 71

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.018772455089820356
Mean Squared Error: 0.0007940119760479043
Root Mean Squared Error: 0.02817821811342769

#Encoding the Y_train in order to handle with the continuous data

lab_enc = preprocessing.LabelEncoder()
training_scores_encoded = lab_enc.fit_transform(Y_train)
training_scores_encoded_validation=lab_enc.fit_transform(Y_validation)

from sklearn.svm import SVR
from sklearn import svm
clf = svm.SVC()
clf.fit(X_train,training_scores_encoded)

svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, training_scores_encoded)
y_pred = svclassifier.predict(X_validation)

print(confusion_matrix(training_scores_encoded_validation,y_pred))
print(classification_report(training_scores_encoded_validation,y_pred

#Polynomial Kernel
svclassifier = SVC(kernel='poly', degree=8)
svclassifier.fit(X_train, training_scores_encoded)
y_pred = svclassifier.predict(X_validation)
print(confusion_matrix(training_scores_encoded_validation,y_pred))
print(classification_report(training_scores_encoded_validation,y_pred)
)

c:\users\delas\appdata\local\programs\python\python37-32\lib\site-pack
ages\sklearn\metrics\classification.py:1143: UndefinedMetricWarning: P
recision and F-score are ill-defined and being set to 0.0 in labels wi
th no predicted samples.
 'precision', 'predicted', average, warn_for)

#Gaussian Kernel
svclassifier = SVC(kernel='rbf')
svclassifier.fit(X_train, training_scores_encoded)
y_pred = svclassifier.predict(X_validation)
print(confusion_matrix(training_scores_encoded_validation,y_pred))
print(classification_report(training_scores_encoded_validation,y_pred)
)

 72

#Sigmoid Kernel
svclassifier = SVC(kernel='sigmoid')
svclassifier.fit(X_train,training_scores_encoded)
y_pred = svclassifier.predict(X_validation)
print(confusion_matrix(training_scores_encoded_validation,y_pred))
print(classification_report(training_scores_encoded_validation,y_pred)
)

c:\users\delas\appdata\local\programs\python\python37-32\lib\site-)

#Logistic regression
from sklearn.linear_model import LogisticRegression

instantiate the model (using the default parameters)
logreg = LogisticRegression()

fit the model with data
logreg.fit(X_train,training_scores_encoded)
y_pred=logreg.predict(X_validation)
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(training_scores_encoded_validati
on, y_pred)
cnf_matrix

import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
evaluate each model in turn
results = []
names = []
scoring = 'accuracy'
for name, model in models:
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 cv_results = model_selection.cross_val_score(model, X_train,traini
ng_scores_encoded, cv=kfold, scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)
boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)

 73

plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
LR: 0.088356 (0.011503)
LDA: 0.481827 (0.021984)
KNN: 0.166602 (0.013082)
CART: 0.212278 (0.026045)
NB: 0.112309 (0.015819)

SVM: 0.070757 (0.006964)

target_train=dataset_norm[['Mean_RamUsage','Mean_CpuUsage','Mean_ExecT
ime','Mean_FinishTime']]
from sklearn.model_selection import train_test_split
data=dataset_norm.drop(['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime
','Mean_FinishTime'],axis=1)
#array = dataset_norm.values
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed)
scoring = 'accuracy'
Y_train.Mean_ExecTime =round(Y_train,2)
Y_validation.Mean_ExecTime=round(Y_validation,2)

model = LinearRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)

predictions_table = pd.DataFrame()
for row in predictions:
 predictions_table = predictions_table.append(pd.DataFrame([row]),
ignore_index=True)
names=['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime','Mean_FinishTim
e']
predictions_table.columns = [names]
#final
[668 rows x 4 columns]

plt.figure(figsize=(15,10))
plt.suptitle('Multi target linear regression, 250 simulations')
plt.subplots_adjust(hspace=0.3, wspace=0.3)
plt.subplot(2, 2,1)
plt.xlabel('Number of simulation')
plt.ylabel('Mean Ram usage')
plt.scatter(X_validation['N_simul'],Y_validation['Mean_RamUsage'],labe
l="True data")
plt.scatter(X_validation['N_simul'],predictions_table['Mean_RamUsage']
,label="Predictions")
plt.legend()
plt.subplot(2, 2,2)
plt.xlabel('Virtual machine')
plt.ylabel('Mean CPU usage')
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_CpuUsage'],label=

 74

"True data")
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions")
plt.legend()
plt.subplot(2, 2,3)
plt.xlabel('Virtual machine')
plt.ylabel('Mean Execution time ')
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_ExecTime'],label=
"True data")
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_ExecTime'],l
abel="Predictions")
plt.legend()
plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
plt.ylabel('Mean CPU usage')
plt.scatter(X_validation['N_simul'],Y_validation['Mean_CpuUsage'],labe
l="True data")
plt.scatter(X_validation['N_simul'],predictions_table['Mean_CpuUsage']
,label="Predictions")
plt.legend()
plt.show()

png

png

plt.figure(figsize=(15,10))
plt.suptitle('Multi target linear regression, 250 simulations')
plt.subplots_adjust(hspace=0.2, wspace=0.2)

plt.subplot(2, 2,1)
plt.scatter(Y_validation['Mean_RamUsage'],predictions_table['Mean_RamU
sage'],label='Mean_RamUsage',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,2)
plt.scatter(Y_validation['Mean_CpuUsage'],predictions_table['Mean_CpuU
sage'],label='Mean_CpuUsage',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,3)
plt.scatter(Y_validation['Mean_ExecTime'],predictions_table['Mean_Exec
Time'],label='Mean_ExecTime',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,4)
plt.scatter(Y_validation['Mean_FinishTime'],predictions_table['Mean_Fi
nishTime'],label='Mean_FinishTime',s=20,edgecolor="black",c="darkorang
e")
plt.xlabel('True Data')
plt.ylabel('Predicted')

 75

plt.legend()
plt.show()

png

png

import seaborn as sns
import matplotlib.pyplot as plt
model = LinearRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
sns.distplot(Y_validation - predictions, axlabel="Test - Prediction")
plt.show()

png

png

from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,Y_train)
predictions = lm.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Linear regression model, 500 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions)

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

<function matplotlib.pyplot.show(*args, **kw)>

 76

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.003600919583487267
Mean Squared Error: 2.086629223845936e-05
Root Mean Squared Error: 0.004567963686201912
R2 Score: 0.999313253436645

clf = svm.SVR()
clf.fit(X_train,Y_train)
predictions=clf.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Support vector Regression, 500 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge")

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

png

 77

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.05953956952186667
Mean Squared Error: 0.0053917670540499915
Root Mean Squared Error: 0.07342865281380281
R2 Score: 0.8225474151102468

from sklearn.tree import DecisionTreeRegressor

create a regressor object
regressor = DecisionTreeRegressor(random_state = 0)
fit the regressor with X and Y data
regressor.fit(X_train, Y_train)
predictions = regressor.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Decision Tree Regression, 500 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge")

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

 78

<function matplotlib.pyplot.show(*args, **kw)>

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.01845808383233533
Mean Squared Error: 0.0007770958083832337
Root Mean Squared Error: 0.027876438229860603
R2 Score: 0.9744244032573669

#Encoding the Y_train in order to handle with the continuous data

lab_enc = preprocessing.LabelEncoder()
training_scores_encoded = lab_enc.fit_transform(Y_train)
training_scores_encoded_validation=lab_enc.fit_transform(Y_validation)

from sklearn.svm import SVR
from sklearn import svm
clf = svm.SVC()
clf.fit(X_train,training_scores_encoded)

svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, training_scores_encoded)
y_pred = svclassifier.predict(X_validation)

import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
evaluate each model in turn
results = []

 79

names = []
scoring = 'accuracy'
for name, model in models:
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 cv_results = model_selection.cross_val_score(model, X_train,traini
ng_scores_encoded, cv=kfold, scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)
boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()

LR: 0.119051 (0.019042)
LDA: 0.720334 (0.025901)
KNN: 0.127659 (0.017453)
CART: 0.214519 (0.019078)
NB: 0.130283 (0.021463)
SVM: 0.133273 (0.014411)

png

png

target_train=dataset_norm[['Mean_RamUsage','Mean_CpuUsage','Mean_ExecT
ime','Mean_FinishTime']]
from sklearn.model_selection import train_test_split
data=dataset_norm.drop(['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime
','Mean_FinishTime'],axis=1)
#array = dataset_norm.values
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed)
scoring = 'accuracy'
Y_train.Mean_ExecTime =round(Y_train,2)
Y_validation.Mean_ExecTime=round(Y_validation,2)

model = LinearRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)

predictions_table = pd.DataFrame()
for row in predictions:
 predictions_table = predictions_table.append(pd.DataFrame([row]),
ignore_index=True)
names=['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime','Mean_FinishTim
e']
predictions_table.columns = [names]
#final

 80

plt.figure(figsize=(15,10))
plt.suptitle('Multi target linear regression, 500 simulations')
plt.subplots_adjust(hspace=0.3, wspace=0.3)
plt.subplot(2, 2,1)
plt.xlabel('Number of simulation')
plt.ylabel('Mean Ram usage')
plt.scatter(X_validation['N_simul'],Y_validation['Mean_RamUsage'],labe
l="True data")
plt.scatter(X_validation['N_simul'],predictions_table['Mean_RamUsage']
,label="Predictions")
plt.legend()
plt.subplot(2, 2,2)
plt.xlabel('Virtual machine')
plt.ylabel('Mean CPU usage')
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_CpuUsage'],label=
"True data")
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions")
plt.legend()
plt.subplot(2, 2,3)
plt.xlabel('Virtual machine')
plt.ylabel('Mean Execution time ')
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_ExecTime'],label=
"True data")
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_ExecTime'],l
abel="Predictions")
plt.legend()
plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
plt.ylabel('Mean CPU usage')
plt.scatter(X_validation['N_simul'],Y_validation['Mean_CpuUsage'],labe
l="True data")
plt.scatter(X_validation['N_simul'],predictions_table['Mean_CpuUsage']
,label="Predictions")
plt.legend()
plt.show()

png

png

plt.figure(figsize=(15,10))
plt.suptitle('Multi target linear regression, 500 simulations')
plt.subplots_adjust(hspace=0.2, wspace=0.2)

plt.subplot(2, 2,1)
plt.scatter(Y_validation['Mean_RamUsage'],predictions_table['Mean_RamU
sage'],label='Mean_RamUsage',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,2)
plt.scatter(Y_validation['Mean_CpuUsage'],predictions_table['Mean_CpuU
sage'],label='Mean_CpuUsage',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')

 81

plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,3)
plt.scatter(Y_validation['Mean_ExecTime'],predictions_table['Mean_Exec
Time'],label='Mean_ExecTime',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,4)
plt.scatter(Y_validation['Mean_FinishTime'],predictions_table['Mean_Fi
nishTime'],label='Mean_FinishTime',s=20,edgecolor="black",c="darkorang
e")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.show()

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.03053023291998854
Mean Squared Error: 0.0016847407807049147
Root Mean Squared Error: 0.0410455939255959
R2 Score: 0.9493117158337983

import seaborn as sns
import matplotlib.pyplot as plt
model = LinearRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
sns.distplot(Y_validation - predictions, axlabel="Test - Prediction")
plt.show()

png

png

from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,Y_train)
predictions = lm.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Linear regression model, 750 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')

 82

plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions)

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

<function matplotlib.pyplot.show(*args, **kw)>

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.006524309598998842
Mean Squared Error: 9.005736979335923e-05
Root Mean Squared Error: 0.009489856152406065
R2 Score: 0.996920870360047

clf = svm.SVR()
clf.fit(X_train,Y_train)
predictions=clf.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)
plt.suptitle('Support vector Regression, 750 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')

 83

plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge")

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

<function matplotlib.pyplot.show(*args, **kw)>

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.060022034988154414
Mean Squared Error: 0.005146782674973025
Root Mean Squared Error: 0.07174108080432734
R2 Score: 0.8240276046117104

from sklearn.tree import DecisionTreeRegressor

create a regressor object
regressor = DecisionTreeRegressor(random_state = 0)
fit the regressor with X and Y data
regressor.fit(X_train, Y_train)
predictions = regressor.predict(X_validation)

plt.figure(figsize=(15,10))
plt.subplots_adjust(hspace=0.4, wspace=0.4)

 84

plt.suptitle('Decision Tree Regression, 750 simulations')
plt.subplot(2, 2,1)
plt.xlabel('Mean_execution time true')
plt.ylabel('Mean_execution time predicted')
plt.scatter(Y_validation,predictions,s=20,edgecolor="black",c="darkora
nge")

plt.subplot(2, 2,2)
plt.xlabel('Vm_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Vm_id'],Y_validation,label="True data")
plt.scatter(X_validation['Vm_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,3)
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['Host_id'],Y_validation,label="True data")
plt.scatter(X_validation['Host_id'],predictions,label="Predictions")
plt.legend()

plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
#plt.ylabel('Mean_execusion time predicted')
plt.scatter(X_validation['N_simul'],Y_validation,label="True data")
plt.scatter(X_validation['N_simul'],predictions,label="Predictions")
plt.legend()

plt.show

<function matplotlib.pyplot.show(*args, **kw)>

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p
redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.012183320220298976
Mean Squared Error: 0.0002891817466561762
Root Mean Squared Error: 0.017005344649732218
R2 Score: 0.9901126571927921

import warnings
warnings.filterwarnings('ignore')
#Encoding the Y_train in order to handle with the continuous data

lab_enc = preprocessing.LabelEncoder()
training_scores_encoded = lab_enc.fit_transform(Y_train)

 85

training_scores_encoded_validation=lab_enc.fit_transform(Y_validation)

from sklearn.svm import SVR
from sklearn import svm
clf = svm.SVC()
clf.fit(X_train,training_scores_encoded)

svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, training_scores_encoded)
y_pred = svclassifier.predict(X_validation)

import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
evaluate each model in turn
results = []
names = []
scoring = 'accuracy'
for name, model in models:
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 cv_results = model_selection.cross_val_score(model, X_train,traini
ng_scores_encoded, cv=kfold, scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)
boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Algorithm Comparison 750 simulation')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()

LR: 0.116883 (0.007268)
LDA: 0.445292 (0.020541)
KNN: 0.164109 (0.006022)
CART: 0.280696 (0.010406)
NB: 0.155449 (0.010608)
SVM: 0.172473 (0.010660)

 86

png

png

target_train=dataset_norm[['Mean_RamUsage','Mean_CpuUsage','Mean_ExecT
ime','Mean_FinishTime']]
from sklearn.model_selection import train_test_split
data=dataset_norm.drop(['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime
','Mean_FinishTime'],axis=1)
#array = dataset_norm.values
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = train_test_split(data,t
arget_train, test_size=validation_size, random_state=seed)
scoring = 'accuracy'
Y_train.Mean_ExecTime =round(Y_train,2)
Y_validation.Mean_ExecTime=round(Y_validation,2)

model = LinearRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)

predictions_table = pd.DataFrame()
for row in predictions:
 predictions_table = predictions_table.append(pd.DataFrame([row]),
ignore_index=True)
names=['Mean_RamUsage','Mean_CpuUsage','Mean_ExecTime','Mean_FinishTim
e']
predictions_table.columns = [names]
#final

plt.figure(figsize=(15,10))
plt.suptitle('Multi target linear regression, 750 simulations')
plt.subplots_adjust(hspace=0.3, wspace=0.3)
plt.subplot(2, 2,1)
plt.xlabel('Number of simulation')
plt.ylabel('Mean Ram usage')
plt.scatter(X_validation['N_simul'],Y_validation['Mean_RamUsage'],labe
l="True data")
plt.scatter(X_validation['N_simul'],predictions_table['Mean_RamUsage']
,label="Predictions")
plt.legend()
plt.subplot(2, 2,2)
plt.xlabel('Virtual machine')
plt.ylabel('Mean CPU usage')
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_CpuUsage'],label=
"True data")
plt.scatter(X_validation['Vm_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions")
plt.legend()
plt.subplot(2, 2,3)
plt.xlabel('Virtual machine')
plt.ylabel('Mean Execution time ')
plt.scatter(X_validation['Vm_id'],Y_validation['Mean_ExecTime'],label=
"True data")

 87

plt.scatter(X_validation['Vm_id'],predictions_table['Mean_ExecTime'],l
abel="Predictions")
plt.legend()
plt.subplot(2, 2,4)
plt.xlabel('Number of simulation')
plt.ylabel('Mean CPU usage')
plt.scatter(X_validation['N_simul'],Y_validation['Mean_CpuUsage'],labe
l="True data")
plt.scatter(X_validation['N_simul'],predictions_table['Mean_CpuUsage']
,label="Predictions")
plt.legend()
plt.show()

png

png

plt.figure(figsize=(15,10))
plt.suptitle('Multi target linear regression, 750 simulations')
plt.subplots_adjust(hspace=0.2, wspace=0.2)

plt.subplot(2, 2,1)
plt.scatter(Y_validation['Mean_RamUsage'],predictions_table['Mean_RamU
sage'],label='Mean_RamUsage',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,2)
plt.scatter(Y_validation['Mean_CpuUsage'],predictions_table['Mean_CpuU
sage'],label='Mean_CpuUsage',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,3)
plt.scatter(Y_validation['Mean_ExecTime'],predictions_table['Mean_Exec
Time'],label='Mean_ExecTime',s=20,edgecolor="black",c="darkorange")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.subplot(2, 2,4)
plt.scatter(Y_validation['Mean_FinishTime'],predictions_table['Mean_Fi
nishTime'],label='Mean_FinishTime',s=20,edgecolor="black",c="darkorang
e")
plt.xlabel('True Data')
plt.ylabel('Predicted')
plt.legend()
plt.show()

png

png

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_validation
,predictions))
print('Mean Squared Error:', metrics.mean_squared_error(Y_validation,p

 88

redictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y
_validation,predictions)))
print('R2 Score:',metrics.r2_score(Y_validation, predictions))

Mean Absolute Error: 0.03804439270685506
Mean Squared Error: 0.002663392505041593
Root Mean Squared Error: 0.051608066278844365
R2 Score: 0.9363153172418959

import matplotlib.pyplot as plt

plt.figure(figsize=(15,10))
plt.xlabel('Host_id')
#plt.ylabel('Mean_execusion time predicted')
#plt.plot(X_validation['Host_id'],Y_validation['Mean_CpuUsage'],label=
"True data")
#plt.plot(X_validation['Host_id'],predictions_table['Mean_CpuUsage'],l
abel="Predictions")
plt.scatter(X_validation['Host_id'],Y_validation['Mean_RamUsage'],labe
l="True data")
plt.scatter(X_validation['Host_id'],predictions_table['Mean_RamUsage']
,label="Predictions")
plt.scatter(X_validation['Host_id'],Y_validation['Mean_CpuUsage'],labe
l="True data")
plt.scatter(X_validation['Host_id'],predictions_table['Mean_CpuUsage']
,label="Predictions")
plt.scatter(X_validation['Host_id'],Y_validation['Mean_ExecTime'],labe
l="True data")
plt.scatter(X_validation['Host_id'],predictions_table['Mean_ExecTime']
,label="Predictions")
plt.legend()

<matplotlib.legend.Legend at 0x1d4ec710>

png

png

plt.figure(figsize=(15,10))
plt.xlabel('Host_id')
plt.scatter(names,[Y_validation['Mean_RamUsage'],Y_validation['Mean_Cp
uUsage'],Y_validation['Mean_ExecTime'],
 Y_validation['Mean_FinishTime']])

 89

REFERENCES

[1] The 12th International Conference on Future Networks and Communications

(FNC-2017) Automatic monitoring management for 5G mobile networks Alberto

Huertas Celdrana,_, Manuel Gil P´ereza, F´elix J. Garc´ıa Clementeb, and

Gregorio Mart´ınez P´ereza aDept. Ingenier´ıa de la Informaci´on y las

Comunicaciones, University of Murcia, 30071 Murcia, Spain bDept. Ingeniería y

Tecnología de Computadores, University of Murcia, 30071 Murcia, Spain

[2] 5G PPP 5G Architecture White Paper Revision 2.0 – (White Paper version

2.0 Dec 2017) 5GPPP Architecture Working Group.

[3] Data Traffic Model in Machine to Machine Communications over 5G Network

Slicing, Mohammed Dighriri, Gyu Myoung Lee, Thar Baker, Ali Saeed Dayem

Alfoudi, Liverpool John Moores University.

[4] Demonstration of Resource Orchestration Using Big Data Analytics for

Dynamic Slicing in 5G Networks, M. R. Raza(1), C. Natalino(1), A. Vidal(2), M.

A. S. Santos(2), P. Öhlen(3), L. Wosinska(1), P. Monti(1). KTH Royal Institute of

Technology, Electrum 229, SE-164 40 Kista, Sweden

[5] Morocho Cayamcela, Manuel Eugenio & Lim, Wansu. (2018). Artificial

Intelligence in 5G Technology: A Survey. 860-

865.10.1109/ICTC.2018.8539642.

[6] Machine Learning at the Edge:A Data-Driven Architecture with

Applications to 5G Cellular Networks Michele Polese, Student Member, IEEE,

Rittwik Jana, Member, IEEE, Velin Kounev, Ke Zhang, Supratim Deb, Senior

Member, IEEE, Michele Zorzi, Fellow, IEEE

[7] Statistical QoS-Driven Power Allocation for Cooperative Caching Over

5G Big Data Mobile Wireless Networks Jingqing Wang and Xi Zhang

Networking and Information Systems Laboratory Department of Electrical and

Computer Engineering, Texas A&M University, College Station, TX 77843, USA

E-mail: fwang12078@tamu.edu, xizhang@ece.tamu.edu

[8] Xu, Lei & Assem, Haytham & Grida Ben Yahia, Imen & Buda, Teodora &

Martin, Angel & Gallico, Domenico & Biancani, Matteo & Pastor, Antonio &

Aranda Gutiérrez, Pedro & Smirnov, Mikhail & Raz, Danny & Uryupina, Olga &

Mozo, Alberto & Ordozgoiti, Bruno & Corici, Marius-Iulian & O’Sullivan, Pat &

Mullins, Robert. (2016). CogNet: A network management architecture featuring

cognitive capabilities. 325-329. 10.1109/EuCNC.2016.7561056.

[9] Applying Big Data, Machine Learning, and SDN/NFV to 5G Traffic

Clustering, Forecasting and management. Luong-Vy Le ; Do Sinh ; Bao-Shuh

Paul Lin National Chiao Tung University, Deparment of Computer Science,

Hsinchu, Taiwan; Li-Ping Tung, 018 IEEE International Conference on Network

Softwarization (NetSoft 2018) - Technical Sessions.

 90

[10] CloudSimSDN: Modeling and Simulation of Software-Defined Cloud Data

Centers, Jungmin Son∗, Amir Vahid Dastjerdi∗, Rodrigo N. Calheiros∗, Xiaohui

Ji∗, Young Yoon†, and Rajkumar Buyya∗∗Cloud Computing and Distributed

Systems (CLOUDS) Laboratory Department of Computing and Information

Systems The University of Melbourne, Australia. 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing

[11] CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Rodrigo N.

Calheiros1, Rajiv Ranjan2, Anton Beloglazov1, Cesar A. F. De Rose3 and

Rajkumar Buyya1, Cloud Computing and Distributed Systems (CLOUDS)

Laboratory, Department of Computer Science and Software Engineering, The

University of Melbourne, Australia School of Computer Science and

Engineering, The University of New South Wales, Sydney, Australia

Department of Computer Science, Pontifical Catholic University of Rio Grande

do Sul, Porto Alegre, Brazil

[12] Automatic monitoring management for 5G mobile networks Alberto

Huertas Celdrana,, Manuel Gil Pereza, Felix J. García Clemente, and Gregorio

Martınez Pereza Dept. Ingenierıa de la Informacion y las Comunicaciones,

University of Murcia, 30071 Murcia, Spain Dept. Ingenieria y Tecnologia de

Computadores, University of Murcia, 30071 Murcia, Spain.

 [13] 2018 IEEE 23rd International Workshop on Computer Aided Modeling

and Design of Communication Links and Networks (CAMAD). Optimized

Cloudlet Management in Edge Computing Environment Efthymios Oikonomou

Department of Digital Systems University of Piraeus Piraeus, Greece

oikonomouef@unipi.gr Angelos Rouskas Department of Digital Systems

University of Piraeus Piraeus, Greece arouskas@unipi.gr

[14] STUDY ON FUNDAMENTAL USAGE OF CLOUDSIM SIMULATOR AND

ALGORITHMS OF RESOURCE ALLOCATION IN CLOUD COMPUTING Ekta

Rani, Harpreet Kaur, Department of Computer Engineering Punjabi University,

Patiala *Assistant Professor, Department of Computer Engineering, Punjabi

University, Patiala

[15] Calabrese, Francesco Davide & Wang, Li & Ghadimi, Euhanna & Peters,

Gunnar & Hanzo, L. & Soldati, Pablo. (2018). Learning Radio Resource

Management in 5G Networks: Framework, Opportunities and Challenges. IEEE

Communications Magazine. 56. 10.1109/MCOM.2018.1701031.

[16] Implementation of Virtualization in Software Defined Networking (SDN) for

Data Center Networks. Nader F. Mir, Jayashree N. Kotte, and Gokul A. Pokuri

nader.mir@sjsu.edu Department of Electrical Engineering San Jose State

University San Jose, CA, 95195

[17] A MACHINE LEARNING MANAGEMENT MODEL FOR QoE

ENHANCEMENT IN NEXT-GENERATION WIRELESS ECOSYSTEMS Eva

 91

Ibarrola1 , Mark Davis2 , Camille Voisin3 , Ciara Close3 , Leire Cristobo1

1University of the Basque Country (UPV/EHU), Spain 2Dublin Institute of

Technology (DIT), Ireland 3OptiWi-fi, Ireland.

[18] The Way to 5G Dr. Whai-En Chen Associate Professor and Director Library

and Information Center Dept. of Computer Science and Information Engineering

National Ilan University Email: wechen@niu.edu.tw

[19] A scalable machine learning online service for big data real-time analysis.

Alejandro Baldominos ; Esperanza Albacete ; Yago Saez ; Pedro Isasi.

Published in: 2014 IEEE Symposium on Computational Intelligence in Big Data

(CIBD). INSPEC Accession Number: 14855680. Electronic ISBN: 978-1-4799-

4540-5. Publisher: IEEE.

mailto:wechen@niu.edu.tw

