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Abstract 
 

This thesis presents the derivation and validation processes of analytical models describing the 

dynamic and steady-state behaviors of CC-CP switched capacitor converters. The effects of 

FDSOI components in the implementation of such circuits is also addressed, studying their 

impact as compared to ideal models. Finally, the layout of a CMOS CC-CP in 28-nm UTBB-FDSOI 

technology is designed and tested against predicted functionality.  
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1. Introduction 
 

1.1. Technological trends and FDSOI  
   Technological improvements, industrial trends and energy efficient management 

have always driven the direction of microelectronic design.  

   The reduction in size of microelectronic components, in an endeavor to achieve ever 

larger system complexity has merited, almost since its conception, a defined trend that 

became law (Moore’s Law). In an effort to attain higher functioning speeds and ever 

decaying power consumption in digital circuits, billions of dollars are spent each year to 

reduce size, improve performance and reduce the cost of fabrication of transistors. 

   A reduction in transistor size is, however, accompanied by a myriad of challenges. 

Namely, a reduction in the channel length of MOS transistors leads to an increase of 

the electrical fields formed within the channel. As a consequence, the maximum 

voltage the device can withstand (breakdown voltage) is reduced with each technology 

reduction.  

   Also, as transistor size is reduced, more complex systems with a higher count of 

transistors can be implemented in the same die area. This leads to an overall increase 

of the power consumption, both dynamic and static.  

   Scaling the voltage supply then becomes a necessity both to allow functionality 

without surpassing the breakdown voltage and to reduce power consumption. In digital 

circuits, this reduction of the voltage supply produces a decreased Voltage overdrive 

(Vgs-Vth), which increases the equivalent switching resistance of transistors and limits 

the overall speed of the circuit. 

   To overcome these limitations, transistors must then be manufactured with lower 

Threshold voltages. But this presents other problems. 

   Both the reduction in channel length to sub-micron scales and the reduction of the 

Threshold voltage can significantly impact power losses due to leakage currents. 

   To overcome these limitations accompanied by size reduction, the last decades have 

seen the emergence of new technologies such as FIN-FETs and FDSOI transistors, 

with new “architectures” that provide solutions to the aforementioned problems.  

   FDSOI transistors in particular benefit from the addition of a fourth terminal that can 

be used to modify some of the properties of the transistors previously fixed during the 

manufacturing process.  

   The addition of an insulating layer below the channel limits the width of the junctions’ 

depletion layer and allows the use of an undoped channel (Fig.  1.1), significantly 

improving short-channel effects, leakage currents and variations of the Threshold 

voltage along the channel. The reduction of junctions’ depletion layer width decreases 

junction capacitances as well, reducing dynamic power consumption. At the same time, 

the architecture of FDSOI transistors allows biasing through a fourth terminal. 

Controlling the voltage applied to this fourth terminal, the Threshold voltage can be 

modified outside the manufacturing process to a certain degree. This, in turn, can be 

used to alter the operational speed, current gain, leakage current and consumption in 

idle states in low voltage circuits or otherwise. [1][2][3] 
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Fig.  1.1: Flipwell FDSOI transistor structure. The flipwells allow the NMOS and PMOS transistors to be biased 
through the BBnmos and BBpmos terminals with positive and negative voltage values respectively (forward body 

biasing). [4]  

1.2. Ultra-Low Voltage and Energy Harvesting 
On the other hand, with various industrial sectors (automobile, medical, weather) 

benefiting from the technological trend emerging from the IoT, some estimations point 

to a doubling in IoT nodes in the following five years (Fig.  1.2). 

 

Fig.  1.2: Prospective increase in IoT devices.[5] 

   The philosophy behind IoT nodes (either remote locations or minimum human 

intervention once installation is complete) goes hand by hand with minimum power 

consumption either by having low frequency of operation (the device is active only for 

short periods of time during long inactive periods), and/or by consuming the minimum 

possible power during operation, so as to maximize the available active life of the 

device. 

   This, in turn, leads to the potential application of energy-harvesting solutions that 

could be used to either completely power the device or extend its available active life 

before having to relay to human intervention to either change the battery or the device.  

   Energy harvesting, on the other hand, tends to produce low voltages, low power 

output, or both, which might not be readily suitable to power any active device, 

requiring the presence of intermediate power converters or voltage multipliers.          
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   Power converters have been a key element of electronic design since its conception. 

However, their reliance on inductors has been and, in some ways, continues to be, a 

problem for microelectronic design, given their poor performance in integrated circuit.        

Instead, inductorless power converters (switched-capacitor converters) have become 

one of the most widely used devices for this purpose in IC design. Switched-capacitor 

converters have been proven to exhibit similar properties and behavior to inductive 

power converters.   

1.3. Motivation and outline of the thesis 
 

   The present study is part of research project funded by the MICINN ([Together] " 

DISPOSITIVOS, CIRCUITOS Y ARQUITECTURAS FIABLES Y DE BAJO CONSUMO 

PARA IOT",  TEC2016-75151-C3-2-R (2016-2019)), where low voltage supply circuits 

are the focus of study, with implementation in FDSOI technology.  

   To improve or even allow the complete functionality of such circuits, a Back-biasing 

voltage higher to that of the supply voltage is needed, to be applied to the fourth 

terminal of the FDSOI transistors, thus decreasing the Threshold voltage of the 

transistors.     

   The objective of this study was to originally design a Cross-Coupled Charge Pump 

(CC-CP) [6] to perform this functionality. In the process of studying and analyzing the 

behavior of such circuits, a dynamical and steady-state models were derived to guide 

the design of such circuits in FDSOI technology (and otherwise).  

  As such, this thesis is a compendium of the models derived and the experiments 

followed to establish the validity of such models, presenting some design guidelines 

and a final design both with schematic and layout extraction.  

   This thesis is the culmination of a year-long project initiated during the first Semester 

of the academic year 2018-2019 through the Introduction to Research subject. Part of 

this work has been accepted for publishing as posters in two international 

conferences.[7][8]    
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2. Overview of the Cross-Coupled Charge Pump circuit 
 

2.1. Principles of Switched-Capacitor Converters 
 

   Power converters are ubiquitous components in most electronic systems, portable or 

otherwise, tailoring power management requirements between energy sources and 

circuits.  

   Traditionally, inductive power converters (IPC), in which the temporary energy 

storage between switching phases is carried out by inductors, have dominated the field 

of power electronics. Most courses on the subject of power electronics still focus solely 

on these types of converters. 

   DC-DC IPC have been extensively studied and modelled for the better part of the last 

century. They provide ideal power efficiencies of 100 %, step-up and step-down 

capabilities and can provide continuous Vout/Vin conversion ratios based on switching 

frequency.  

   However, as VLSI technologies continue to scale down, implementation of power 

converters with inductive components becomes challenging and expensive, given their 

complex scalability (reduced Q factor, parasitic components, bulk and adjacent vias 

coupling).     

   For this reason, and given the ease of implementation of capacitors in VLSI 

technologies, Switched-Capacitor converters can become the better alternative in 

power management of IC systems.  

   In Switched-Capacitor Converters (SCC), capacitors become the temporary energy 

storage components. Similarly to IPC, SCC use switches controlled by different clock 

phases to redirect the flow of energy between components at different phases of 

operation.  

    SCC also present step-up and step-down capabilities, but their conversion ratios are 

intrinsically tied to the topology of the circuit, and is presented in ratios of integer 

numbers (i.e. Vout/Vin→ 2/1, 3/1, 4/3, 5/8…)[9]. 

   On the other hand, the intrinsic losses associated with the charging or discharging of 

capacitors limit even the ideal efficiency of these converters, although practical 

applications show their feasibility [10].  

   Fig.  2.1 shows a Switched Capacitor voltage doubler in the equivalent topology of a 

Dickson Charge Pump. During phase 1, the top plate of capacitor C is connected to the 

input voltage source, and receives some charge. During phase 2, the bottom plate of 

capacitor C is connected to the input voltage source. Cload receives some charge from 

capacitor C at a voltage that is the superposition of Vin and the voltage across the 

terminals of capacitor C. With enough cycles of operation, Cload is eventually charged 

to 2*Vin.  
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Fig.  2.1: 1-stage equivalent Dickson Pump (charge doubler). A) General Topology. b) Phase 1, C charging. C) Phase 2, 
C discharging with boosted voltage.  

   A Cross-Coupled Charge Pump (CC-CP) is a type of switched-capacitor converter, 

similar in operation to a Dickson Charge Pump. A CC-CP is an inductorless DC-DC 

boost converter that provides a voltage at the output N times higher than the voltage at 

the input, where N is an integer that depends on the topology (namely, on the number 

of stages of the circuit): The voltage at the output is boosted to n+1, where n is the 

number of stages of the circuit.  It follows that: 

𝑁 =
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
= 𝑛 + 1 (1) 

   The functionality of a CC-CP (Fig.  2.2) is based on transfers of charge of ever-

increasing voltage potentials between capacitors through a series of resistive paths 

governed by clock-controlled switches. These properties are more or less shared by all 
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switched-capacitor converters, and the analysis of the circuit follows the foundations of 

SC circuit analysis, with certain peculiarities.  

   Namely, the gate of the MOS transistors implemented as switches are directly tied to 

the top plate of the fly-capacitors. As subsequent analysis will show, this guarantees 

that the Vgs is constant across all transistors during circuit operation, meaning that the 

clock amplitude must not be tailored for stages where VD and VS are higher than the 

clock voltage.  

2.2. Operation of the CC-CP 
 

   Fig.  2.2 depicts a 1-stage CC-CP. The circuit comprises 4 MOSFETs (2 NMOS and 

2 PMOS) and 2 fly capacitors. Two non-overlapping clock signals are connected to the 

bottom plates of the fly capacitors. Each clock is active high during 50 % of the period 

of operation of the circuit. The clocks are operating at the same frequency, but with a 

180 º phase difference (Fig.  2.3).  

   The MOSFET transistors are implemented to operate as resistive switches. They 

present a large off resistance and a comparatively low on resistance. The switching is 

controlled by the aforementioned clock signals, by connecting the top plate of the 

capacitors to the gate of the transistors lying opposite to them.     

 

Fig.  2.2: 1-Stage CC-CP 

 

 

Fig.  2.3:  Clock signals governing the behavior of CC-CP 
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   When Clock 2 has a rising transition, the top plate of capacitor C2 will experience an 

initial voltage increase equal to the clock source amplitude, Vclk. This increase in 

voltage produces a decrease in the equivalent resistance of the NMOS transistor M1 

lying opposite to C2 and, at the same time, increase the resistance of the PMOS 

transistor M3. 

   At the same time, as Clock1 has a falling transition, the top plate of capacitor C1 

sees a decrease in voltage that produces the opposite effect on the NMOS transistor 

M2 (increasing its resistance) and on PMOS transistor M4 (producing a decrease in its 

resistance). This combined effect generates a series of high and low resistance paths 

that connect the capacitors to different nodes in the circuit, as depicted schematically in 

the form of open and closed switches in Fig.  2.4, depicting a 2-stage CC-CP. 

 

Fig.  2.4: 2-Stage CC-CP schematic representation. Clock 2 is active high. 

When a path of low resistance is created between two capacitors, the capacitor the 

bottom plate of which is connected to a clock which has experienced a rising transition 

will have, at the top plate, a voltage equal to the clock signal amplitude plus the voltage 

across the terminals of the capacitor. This allows the capacitor with its bottom plate 

connected to an inactive clock to be charged, in subsequent periods, to a higher 

voltage than the preceding capacitor. Thus, as previously stated, the circuit acts as a 

boost-converter. 

Assuming that the impedances of the open switches are much higher than the 

impedances of the closed switches, from a current perspective, the circuit operates as 

a sequence of transfers of charge between capacitors. These charge transfers can be 

modeled as simple RC circuits once the pertaining topologies have been identified.  

Observing Fig.  2.4, it is possible to identify different resistive paths between: 

• The input voltage source and capacitor C1,1. 

• Capacitor C1,2 and capacitor C2,1  

• Capacitor C2,2 and the load capacitor.  

Careful consideration can lead to the observation that the last two resistive paths 

give rise to the same topology. Thus, a maximum of two different topologies arise 

during the circuit operation. These topologies are depicted in figure 5.  
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The first topology (Fig.  2.5.a) corresponds to the charging of the first fly capacitor by 

the input voltage source. In this topology, resistance R1 is comprises a single 

NMOS transistor. The second topology (Fig.  2.5.b) corresponds to the 

charging/discharging of any adjacent pair of capacitors. In this topology, resistance 

Ri comprises a series combination of 1 NMOS and 1 PMOS transistor. The final 

stage, where Ci+1 corresponds to the load capacitor Cload presents a resistance 

Ri formed by a single PMOS transistor (see Fig.  2.4)   

 

 

Fig.  2.5: a) Charging topology of the first fly-capacitor. B) Discharging topology of fly-capacitor i, charging topology 
of fly-capacitor (i+1).  

These topologies can be easily analyzed through Kirchoff Voltage Law (KVL) in the 

frequency domain to obtain equations that relate the changes in the fly capacitors 

voltage through charge transfer during one period of operation. 

2.3. Charge transfer equations: 
In order to analyze the different topologies, various assumptions are taken with the aim 

of simplifying the procedure.  

• The clocks are ideal and non-overlapping, with a period T and a duty cycle of 

50 %.  

• The clock signal amplitude (Vclk) is equal to the amplitude of the input voltage 

source (Vin).  

• The MOSFETs are modeled as ideal switches in series with linear resistors. 

• All fly-capacitors present the same capacitance. The load capacitor is also 

equal to the rest.   

• There are no losses nor parasitic elements (These will be explored later). 

These considerations lead to the ideal circuit depicted in Fig.  2.6, where the CC-CP has 

been simplified to depict a single path of current flow instead of the crossed, interwoven 

circuit with two parallel current paths.   
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Fig.  2.6: Schematic representation of one branch of a 3-stage CC-CP with resistive load. 

 

With these considerations in mind and the topologies depicted in Fig.  2.5, reflecting the 

different sub-circuits in the Laplace domain, KVL can be applied. Focusing on the first 

topology we obtain: 

−
𝑉𝑖𝑛
𝑠
+ 𝐼1 (𝑅1 +

1

𝐶𝑠
) +
𝑉1
𝑠
= 0 (2) 

𝐼1(𝑠) =
𝑉𝑖𝑛 − 𝑉1
𝑅1

∗ (
1

𝑠 +
1
𝑅1𝐶

) (3) 

𝑖1(𝑡) =
𝑉𝑖𝑛 − 𝑉1
𝑅

∗ 𝑒
−
𝑡
𝑅1𝐶  (4) 

 

Analyzing the second sub-circuit yields the following results: 

 

−
𝑉𝑖𝑛
𝑠
−
𝑉𝑖
𝑠
+ 𝐼2 ∗ (𝑅𝑖 +

1

𝐶𝑠
+
1

𝐶𝑠
) +
𝑉𝑖+1
𝑠
= 0 (5) 

 

𝐼2(𝑠) =
𝑉𝑖𝑛 + 𝑉𝑖 − 𝑉𝑖+1

𝑅𝑖
∗

1

𝑠 +
2
𝑅𝑖𝐶

 (6) 

 

𝑖2(𝑡) =
𝑉𝑖𝑛 + 𝑣𝑖 − 𝑣𝑖+1

𝑅𝑖
∗ 𝑒
−
2𝑡
𝑅𝑖𝐶  (7) 

 

  If we integrate both equations, knowing that each sub-circuit is operative for T/2: 
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∆𝑄1 = ∫ 𝑖1(𝑡) ∗ 𝑑𝑡

𝑇
2

0

= ∫
𝑉𝑖𝑛 − 𝑉1
𝑅1

∗ 𝑒
−
𝑡
𝑅1𝐶 ∗ 𝑑𝑡

𝑇
2

0

= 𝐶(𝑉𝑖𝑛 − 𝑣1) (1 − 𝑒
−
𝑇
2𝑅1𝐶) (8) 

 

∆𝑄𝑖 = −∫ 𝑖2(𝑡) ∗ 𝑑𝑡

𝑇
2

0

= −∫
𝑉𝑖𝑛 + 𝑣𝑖 − 𝑣𝑖+1

𝑅𝑖
∗ 𝑒
−
2𝑡
𝑅𝑖𝐶 ∗ 𝑑𝑡

𝑇
2

0

= −
𝐶(𝑉𝑖𝑛 + 𝑣𝑖 − 𝑣𝑖+1)

2
(1 − 𝑒

−
𝑇
𝑅𝑖𝐶) (9) 

 

These equations represent the amount of charge that is transferred into capacitor 1 

and from capacitor i respectively.  

Alternatively, the equations can be expressed as voltage variations: 

∆𝑄1
𝐶
= ∆𝑉1 (10) 

∆𝑄2
𝐶
= −∆𝑉𝑖 = ∆𝑉𝑖+1 (11) 

∆𝑉1 = (𝑉𝑖𝑛 − 𝑣1) (1 − 𝑒
−
𝑇
2𝑅1𝐶) (12) 

∆𝑉𝑖+1 = −∆𝑉𝑖 =
(𝑉𝑖𝑛 + 𝑣𝑖 − 𝑣𝑖+1)

2
(1 − 𝑒

−
𝑇
𝑅𝑖𝐶) (13) 

 

These two equations represent the increase or decrease in voltage across the 

terminals of a capacitor after one semi-period of operation.  

 They depend on the clock/input voltage amplitude, the current voltage across the 

terminals of the capacitors involved and a constant involving an exponential that 

depends on circuit parameters. 

   This last constant parameter is not equal between equations (12) and (13). In 

intermediate topologies, the discharging and charging capacitors form a series 

association (equation 5). Under the assumption that all capacitors are equal, the 

equivalent capacitance of intermediate stages is reduced to C/2. It is of interest to have 

equal RC time constants for all topologies, so the exponential parameter can be 

simplified in subsequent analysis. 

  Thus, notice that by reducing the resistance of the first stage R1 to half the value of Ri 

(𝑅1 = 𝑅𝑖/2), equation (12) becomes: 

∆𝑉1 = (𝑣𝑖𝑛 − 𝑣1)(1 − 𝑒
−
𝑇

2
𝑅𝑖
2
𝐶) = (𝑣𝑖𝑛 − 𝑣1) (1 − 𝑒

−
𝑇
𝑅𝑖𝐶) (14) 

   If we design the resistance of the first stage to be R1=Ri/2 we can ensure some 

mathematical simplifications that facilitate further analysis. At the same time, the 

equivalent resistance of the rest of stages must be the same. (𝑅𝑖 = 𝑅, ∀ 𝑖 ≠ 1).  

   That way, the parameter  
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(1 − 𝑒
−
𝑇
𝑅𝑖𝐶) 

   is the same for both equations (13) and (14). Note that, given the periodic nature of 

the circuit, this term, equal for all topologies, becomes a constant that depends 

exclusively on design parameters. This constraint massively simplifies the developing 

of the following analysis.  

   Given that this term appears through most part of the analysis and that once the 

equivalent resistance is fixed, the term becomes constant (under the assumed 

constraints), the 𝑅𝑖 notation will be dropped from now on, and will be substituted by 

simply 𝑅.  

(1 − 𝑒−
𝑇
𝑅𝐶) 
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3. Discrete-Time State-Space Model  
 

3.1. Procedure to derive the Discrete-Time State-Space Model 
If the values of the voltage across the different capacitors’ terminals are known at a 

given period kT, the equations above derived allows us to determine the value at 

period (k+1)T. Each capacitor experiences a charging and a discharging during a 

period of operation of the circuit. For an arbitrary fly-capacitor i (see Fig.  2.5), we can 

write: 

 

𝑉𝐶𝑖((𝑘 + 1)𝑇) = 𝑉𝐶𝑖(𝑘𝑇) + ∆𝑉𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − ∆𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (15) 

 

The charging and discharging terms correspond to equations (13) and/or (14) and, as 

above stated, depend exclusively on design parameters in the form of a constant term 

and, more importantly, on the current state of the circuit.  

 If the different capacitor voltages at a given time are treated as state-variables, given 

some initial conditions, these equations allow us to predict the evolution of the state-

variables in time. 

 These state-variables present a continuous time evolution, but the discontinuities 

introduced by the switching nature of the circuit would severely impact the linearity of a 

continuous time model. It is, therefore, much simpler to conceive the state-variables 

evolving in discrete increments of time.   

This leads to the foundations of a discrete-time state-space entity that can predict the 

dynamics of the circuit.  

   Consider a time-invariant system as represented by the generalized discrete-time 

state-space equations of the form: 

 

𝑿[𝐾 + 1] = 𝐴 ∗ 𝑿[𝐾] + 𝐵 ∗ 𝑈[𝐾] 

𝑌[𝐾] = 𝐶 ∗ 𝑿[𝐾] + 𝐷 ∗ 𝑈[𝐾] (16) 

   Where: 

• X[·] is the state vector, in this case representing the fly- and load capacitor 

voltages. It is an (2*n+1)*1 vector, where n is the number of stages.  

• Y[·] is the output vector. In this case, a scalar (1*1 vector) representing the load 

capacitor (output) voltage. 

• U[.] is the input vector. The inputs signals are those of the input voltage source 

and the clocks. Under the assumptions presented (the input voltage and clock 

amplitudes are equal) this is a 1*1 vector, constant in time.  

• A[·] is the state matrix, relating the current values of the state-variables to those 

of the next period. It is an N*N matrix.  

• B[·] is the input matrix, an N*1 matrix relating the current value of the input 

vector to the state of the next period. Since U[·] is a constant scalar, B 



 

 21 

comprises constant parameters. In fact, both A and B are constant, time-

invariant matrixes.  

• C[·] is the output matrix, a 1*N matrix.  

• D[·] is the feedthrough matrix. In this case it is a zero matrix. 

 

   We wish to derive such a compact expression so as to be able to better analyze the 

properties of this circuit. We analyze a single branch of a CC-CP (Fig.  2.6) to showcase 

the procedure.  

   In order to do so, we divide each period into two separate sub-periods with their 

respective sub-circuits as depicted in Fig.  3.1. The components of the state vector are 

here represented as Vc1, Vc2, Vc3 and Vout.   

 

Fig.  3.1: Circuit topologies during the first semi-period of operation. Bottom) Topologies during the second 

semi-period. 

We take as an example the voltage variations of capacitor C1 (Vc1) during the first 

semi-period of circuit operation (Fig.  3.1.top). It can be assumed that Capacitor C1 

already has some charge stored, and that the circuit is at its Kth period after start-up. 

Capacitor C1, connected to the input voltage source, will gain some additional charge. 

After the first semi-period has been completed, the voltage across the terminals of C1 

will be:  

𝑉𝐶1 [𝐾 +
1

2
] = 𝑉𝐶1[𝐾] + ∆𝑉𝐶1 (17) 

As per equation (14): 
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𝑉𝐶1 [𝐾 +
1

2
] = 𝑉𝐶1[𝐾] + (𝑉𝑖𝑛 − 𝑉𝐶1[𝐾]) (1 − 𝑒

−
𝑇
𝑅𝐶) (18) 

And, rearranging terms for ease of manipulation: 

𝑉𝐶1 [𝐾 +
1

2
] = 𝑉𝐶1[𝐾](1 − 𝑎) +  𝑎 ∗ 𝑉𝑖𝑛 (19) 

 

Where we have written 𝑎 = (1 − 𝑒−
𝑇

𝑅𝐶) 

We now take the same approach for capacitor C1 during the second semi-period of 

operation. In this instance, C1 is connected to C2 and will relay some charge onto it. 

That is, C1 will partially discharge and its voltage will decrease.  

𝑉𝐶1[𝐾 + 1] = 𝑉𝐶1 [𝐾 +
1

2
] − ∆𝑉𝐶1 (20) 

As per equation (13): 

𝑉𝐶1[𝐾 + 1] = 𝑉𝐶1 [𝐾 +
1

2
] −
(𝑉𝑖𝑛 + 𝑉𝐶1 [𝐾 +

1
2]
− 𝑉𝐶2 [𝐾 +

1
2]
)

2
(1 − 𝑒−

𝑇
𝑅𝐶) (21) 

Rearranging terms: 

𝑉𝐶1[𝐾 + 1] = 𝑉𝐶1 [𝐾 +
1

2
] (1 −

𝑎

2
) + 𝑉𝐶2 [𝐾 +

1

2
] ∗
𝑎

2
− 𝑉𝑖𝑛 ∗

𝑎

2
 (22) 

Now we can substitute the term 𝑉𝐶1 [𝐾 +
1

2
] by the expression derived in equation (19).  

𝑉𝐶1[𝐾 + 1] = (𝑉𝐶1[𝐾](1 − 𝑎) +  𝑎 ∗ 𝑉𝑖𝑛) (1 −
𝑎

2
) + 𝑉𝐶2 [𝐾 +

1

2
] ∗
𝑎

2
− 𝑉𝑖𝑛 ∗

𝑎

2
(23) 

The same procedure can be done for C2. That is, obtain an expression relating 

𝑉𝐶2 [𝐾 +
1

2
] to 𝑉𝐶2[𝐾], and substitute it in all the instances of equations of the type 

𝑉𝐶𝑖[𝐾 + 1]. Thus, for each capacitor in a circuit with 2n+1 capacitors an expression is 

obtained of the form: 

 

𝑉𝐶𝑖[𝐾 + 1] = 𝑎𝑖1 ∗ 𝑉𝐶1[𝐾] + 𝑎𝑖2 ∗ 𝑉𝐶2[𝐾] +⋯+ 𝑎𝑖𝑖 ∗ 𝑉𝐶𝑖[𝐾] +⋯+ 𝑎𝑖𝑁 ∗ 𝑉𝐶𝑁[𝐾] + 𝑏𝑖 ∗ 𝑉𝑖𝑛 (24) 

 

Where the different 𝑎𝑖𝑗 coefficients are the constant components of the ith row of the 

state matrix and the 𝑏𝑖 coefficient is the constant component of the ith row of the input 

matrix.  

If we wish to represent the output of the state-space system as the voltage of the load 

capacitor, following equation (16), consider the following: 

𝑌[𝐾] = 𝑉𝐶𝑁[𝐾] = [𝑐1 𝑐2…𝑐𝑁] ∗ [

𝑉1[𝐾]

𝑉2[𝐾]
…
𝑉𝑁[𝐾]

] (25) 
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It is readily observed that C is a vector where only the ith component of interest is 1, 

the rest being zero. 

𝐶 = [0 0…1] 

 

3.2. Parasitic capacitances effects on the dynamic model  
 

   Let’s consider now the case in which the circuit presents some parasitic components; 

namely, parasitic capacitances along the main capacitors forming the charge pump.  

Fig.  3.2 depicts a cross-section of capacitor implemented with VLSI technology, as well 

as the main parasitics that arise in such implementation. These are not to be taken as 

accurate representations of the parasitic capacitances arising in FDSOI technology, but 

as simple indications of the types of parasitics that can arise.   

The following analysis ignores for the moment the bottom plate parasitic capacitances 

which, despite generally being the largest, an initial analysis and circuit simulation 

show little to no impact on either the dynamic or steady-state models. However, bottom 

plate parasitic capacitances do present effects that can alter real implementations. 

Namely, they introduce loading effects at the output of the clock drivers. This loading 

effect impacts both the power consumption of the drivers and the clock waveform, so 

they have to be taken into account when designing the drivers. These considerations 

are beyond the scope of this thesis, so they will not, at the moment, be taken into 

account.  

Regarding top-plate parasitic capacitances, they can originate from various sources, 

such as top-plate to bulk couplings of the implemented capacitors (as seen in Fig.  3.2), 

the transistors (gate and junction capacitances), and nearby metal layers.   

 

Fig.  3.2: : [From Baker et al.]: Cross-sectional view of a capacitor implemented with VLSI technology, 

including the various sources of parasitic capacitances. 

 

3.2.1. Parasitic capacitances impact on voltage gain: 
 

When an arbitrary capacitor 𝐶𝑖 is charging (Fig.  3.3), its bottom plate is connected to 

ground (through the inverter), and so the capacitor 𝐶𝑖 lies in parallel to the top plate 

parasitic capacitances (𝐶𝑝).  
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Fig.  3.3: Topology during a charging semi-period. The main capacitor lies in parallel with the equivalent 

parasitic capacitances.  

 

At the end of a charging semi-period, both capacitors present the same voltage. 

When the capacitor 𝐶𝑖 is discharging (Fig.  3.4), its bottom plate is connected to the 

inverter (here depicted and analyzed as an ideal voltage source). The top plate 

parasitic capacitances are, however, still connected to ground at one end.  

 

Fig.  3.4: Topology during a discharging semi-period. The parasitic capacitances are not directly affected by 

the inverter. 

This generates a voltage difference between the top plates of both capacitors. This, in 

turn, initiates a charge redistribution between the two capacitors.  

Assuming that the process of charge redistribution between capacitors takes place at a 

much higher rate than the discharge of capacitor 𝐶𝑖 through the resistance R, the effect 

of the parasitic capacitances can be easily analyzed through the superposition principle 

and a capacitive voltage divider (Fig.  3.5). 
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Fig.  3.5: Parasitic Voltage Divider 

 

 

 

   Applying the superposition principle, the node connected to the R equivalent 

resistance experiences two sources of voltage: 

• The voltage across the terminals of either capacitor (𝑉𝐶𝑖). 

• The voltage contributed by the clock driver (𝑉𝑖𝑛) in the form of a capacitive 

voltage divider. 

   The voltage at the node connected to R before initiating the discharge process 

becomes:  

𝑉𝑛 = 𝑉𝐶𝑖 + 𝑉𝑖𝑛 ∗
𝐶𝑖

𝐶𝑖 + 𝐶𝑝
 (26) 

      Ideally, the voltage gain of a stage of a CC-CP is 𝑉𝑖𝑛. This equation shows that the 

maximum voltage gain of a stage is reduced from the ideal to a fraction of this value, 

meaning that the maximum voltage attainable at the output once the steady-state has 

been reached is affected by the presence of top-plate parasitic capacitances. In later 

sections discussing the steady-state model a proof of the final impact of parasitics in 

the output voltage will be derived.     

   Regarding the dynamic model, this effect can be included in the discrete-time state 

space system. To that end equation (13) must be modified, becoming:  

∆𝑉𝑖+1 = −∆𝑉𝑖 =

(𝑉𝑖𝑛 ∗
𝐶𝑖

𝐶𝑖 + 𝐶𝑝
+ 𝑣𝑖 − 𝑣𝑖+1)

2
(1 − 𝑒−

𝑇
𝑅𝐶) (27)

 

   However, there is another effect that must be taken into account before fully 

committing to the procedure derived in the previous section.  
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3.2.2. Parasitic effects on topology dynamics:  
 

 

Fig.  3.6: CC-CP topologies with top-plate parasitic capacitances. 

 

   Although the procedures derived in section 2.3 still hold, the inclusion of parasitic 

capacitances in the model requires the consideration that they modify the value of the 

equivalent capacitances in each topology. Again, for simplicity we can consider that all 

fly-capacitors present the same value and that all parasitic capacitances also present 

the same value, albeit distinct from the value of fly-capacitors. These assumptions are 

not so rigorous as they might have been in previous sections (given that the size of 

transistors may vary from stage to stage), but they allow us to showcase the effect of 

parasitics.  

Namely, the equivalent capacitance of the first stage topology (Fig.  3.6.left) is now the 

parallel association of capacitance C1 and Cp.  

𝐶𝑒𝑞 = 𝐶1 + 𝐶𝑝 (28) 

The same is true for the capacitances of intermediate stages. Since all fly-capacitances 

are equal and all parasitic capacitances are equal, all the resulting equivalent 

capacitances are equal.  

Equations (13) and (14) must now be further modified. 

∆𝑉1 = (𝑣𝑖𝑛 − 𝑣1) (1 − 𝑒
−
𝑇
𝑅𝑪𝒆𝒒) (29) 

∆𝑉𝑖+1 = −∆𝑉𝑖 =

(𝑣𝑖𝑛 ∗
𝐶𝑖

𝐶𝑖 + 𝐶𝑝
+ 𝑣𝑖 − 𝑣𝑖+1)

2
(1 − 𝑒

−
𝑇
𝑅𝑪𝒆𝒒) (30) 

 

3.3. Dynamic Model Validation: 
 

   The validation of the above derived models and equations is done in two steps. 

Firstly, a matlab script describing the model is written and tested. Secondly, using a 
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SPICE-based software (TINA-TI), an idealized version of the circuit is built and 

simulated, comparing the results obtained to the matlab results.  

      The matlab model has been created by generating a discrete-time state-space 

system. The transient response of such model has been simulated through the use of 

the Linear Simulation Tool, by applying a unit step function to the input.  

   Following the creation of the idealized circuit and its mathematical model, various 

transient analyses have been performed.The ideal circuit used to compare the results 

was built using the SPICE-based software from Texas Industries, TINA-TI. The circuit 

can be seen in Fig.  3.7.  

 

Fig.  3.7: Schematic form used for simulation of the CC-CP. 

 

The model is simulated in a variety of cases. However, we present here only those with 

parameters shown in Table II, so as to simplify the presentation. The transient 

response of the output stage in those two cases, only differing in the presence of 

parasitic capacitances, is compared to a transient simulation of the circuit using the 

Texas Instruments SPICE-based software (TINA-TI). 

All fly-capacitors and load capacitance are equal in value. Fig.  3.8 shows the 

superposition of the matlab model (black line) and the transient simulation of the 

SPICE circuit (red line). Table III presents the comparison of the steady-stage voltages 

reached as a consequence of the presence or absence of parasitic capacitances, given 

an ideal output voltage of 4V. The third column depicts the relative error between the 

model and the SPICE simulation.  

 



 

 28 

 

Fig.  3.8: Dynamic Model Simulation. Top) Case1. Bottom) Case 2. The black line corresponds to the 

Matlab script output. The red line, to the SPICE transient. 

 

 

TABLE I: Parameters used during the simulation of the Dynamic Model 

 C Cp R f Vin 

Case 1 6 fF 0 F 50 kΩ 500 MHz 1 V 

Case 2 6 fF 0.6 fF 50 kΩ 500 MHz 1 V 

  

TABLE II: Steady-State voltages achieved as a consequence of parasitics 

 Model (V) SPICE (V) % 

Case 1 4 3.99 0.25 

Case 2 3.73 3.727 0.08 

 

   It can be seen that both the transient and the steady-state output voltage coincide 

fairly well in both cases.   

   The advantage of the presented discrete time model is in calculation time. For large 

values of capacitances, the transient simulation in the SPICE based software can take 

several minutes, in some extreme cases (with capacitors in the picofarad range) up to 
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10-15 minutes. However, the Matlab model was able to produce results within 1-2 

seconds of run-time for a varied range of capacitor values.  
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4. Steady-State Analysis: mean voltage values. 
 

In a switched-capacitor converter of any type, the condition of steady-state is reached 

when, after a whole period of operation, the state-space vector value remains the same 

as that of the previous period. That is, 𝑋[𝐾 + 1] = 𝑋[𝐾]. What this means is that, for 

any capacitor: 𝑉𝐶𝑖[𝐾 + 1] = 𝑉𝐶𝑖[𝐾]. As per equation (15), this implies: 

∆𝑉𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∆𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (31) 

That is, the increase in voltage during the charging semi-period must be equal to the 

decrease in voltage during the discharging semi-period. 

A simple way to see this relation that allows to come up with an analysis equation is to 

consider that the increase in voltage of capacitor 𝐶𝑖 during its charging semi-period 

must be equal to the increase in voltage of capacitor 𝐶𝑖+1 during its own charging semi-

period. This is only true if both capacitors present the same capacitance.  

∆𝑉𝐶𝑖𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∆𝑉𝐶𝑖+1𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  (32) 

Restricting ourselves to the constraints imposed at the beginning of the analysis, we 

can forgo for the moment a generalized view and continue considering that all 

capacitances are equal. In this instance, equation (32) holds and, as per equations (13) 

and (14): 

(𝑉𝑖𝑛 − �̂�1) =
𝑉𝑖𝑛 + �̂�1 − �̂�2

2
(33) 

𝑉𝑖𝑛 + �̂�𝑖 − �̂�𝑖+1
2

=
𝑉𝑖𝑛 + �̂�𝑖+1 − �̂�𝑖+2

2
(34) 

The symbol ·̂ is indicative of the mean voltage value during steady-state. Here we work 

under the assumption that the ripple is superposed over a DC voltage value.   

It is important to stress that the voltage values of the capacitors change during a semi-

period of operation (the system is inherently time-continuous), but one can assume 

that, during steady-state, the mean value remains the same.  

Consider a CC-CP with 3 stages. The Steady-State condition equations are: 

(𝑉𝑖𝑛 − �̂�1) =
𝑉𝑖𝑛 + �̂�1 − �̂�2

2
(35) 

𝑉𝑖𝑛 + �̂�1 − �̂�2
2

=
𝑉𝑖𝑛 + �̂�2 − �̂�3

2
(36) 

𝑉𝑖𝑛 + �̂�2 − �̂�3
2

=
𝑉𝑖𝑛 + �̂�3 − �̂�𝑜𝑢𝑡

2
(37) 

 

The first equation can be rearranged to isolate the mean value of V1: 

�̂�1 =
𝑉𝑖𝑛 + �̂�2
3

 (38) 
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V1 can be substituted in the second equation, and V2 can be isolated: 

�̂�2 =
3 ∗ �̂�3 + 𝑉𝑖𝑛

5
 (39) 

And, finally, we can substitute V2 in the third equation, isolating V3. 

�̂�3 =
5 ∗ �̂�𝑜𝑢𝑡 + 𝑉𝑖𝑛

7
 (40) 

These equations relate the mean voltage value of each capacitor to the contiguous 

one. These equations serve two purposes: 

• From an analytical standpoint, they can be used to derive the ideal ratio 

𝑉𝑜𝑢𝑡/𝑉𝑖𝑛. One must only consider that capacitor C1 is fully charged, the circuit 

is unloaded, and there is no ripple. Then, �̂�1 = 𝑉𝑖𝑛. Substituting, one obtains: 

𝑉1 = 𝑉𝑖𝑛 

 

𝑉2 = 2𝑉𝑖𝑛 

 

𝑉3 = 3𝑉𝑖𝑛 

 

𝑉𝑜𝑢𝑡 = 4𝑉𝑖𝑛  

 

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
= 4  

 

Which is to be expected for a 3-stage CC-CP, partially validating equations 

(33) and (34)  

 

• From a synthesis perspective, these equations allow the prediction of mean 

voltage values of each capacitor under non-idealized conditions. That is, when 

the output voltage is lower than the one predicted by the ideal relation 

Vout/Vin, be it because of parasitic effects, the presence of a load or both, the 

mean voltage of the fly-capacitors can still be predicted. From a design 

perspective, knowing these mean voltage values allows the proper sizing of the 

transistors working under the circuit’s operating point. 

4.1. Mean Voltage Value Validation 
 

   In order to determine the validity of equations (33) and (34), the circuit in Fig.  3.7 is 

loaded with different resistances. A transient simulation is then performed with circuit 

parameters equal to those of TABLE I, case 1, expect for the resistances’ values. The 

mean voltage values of the output and each fly-capacitor is calculated grossly as 
(𝑉𝑚𝑖𝑛+𝑉𝑚𝑎𝑥 )

2
  during a charging semi-period for all capacitors and annotated (see Fig.  

4.1). The results can be seen in TABLE III.  
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Fig.  4.1: Fly-capacitor waveforms in steady-state, Rload = 2MΩ. Green:  output capacitor. Black: fly-capacitor 3. 
Purple: fly-capacitor 2. Blue: fly-capacitor 1. The mean value is extracted in their respective charging period.  

 

TABLE III: Mean Voltage Values, Simulation Results 

 

 

The values of V4 (Vout) are then introduced in equation (40) and the mean voltage 

value of each fly-capacitor is recursively calculated. TABLE IV presents the results 

obtained. TABLE V compares the results of both tables.    

 

TABLE IV: Mean Voltage Values, Equations Results 

 

 

 (V)  (V)  (V)  (V) Vin (V) Rload (Ω)

1 2 3 4 1 Open

0,93 1,72 2,5 3,34 1 2,5 M

0,88 1,66 2,4 3,22 1 2M

0,871 1,55 2,19 3 1 1,5M

0,803 1,37 1,93 2,67 1 1M

Simulation

𝑉1 𝑉2 𝑉3 𝑉  

 (V)  (V)  (V)  (V) Vin (V)

1 2 3 4 1

0,91 1,72 2,53 3,34 1

0,89 1,67 2,44 3,22 1

0,86 1,57 2,29 3 1

0,81 1,43 2,05 2,67 1

Equations

𝑉1 𝑉2 𝑉3 𝑉  
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TABLE V: Relative Error between simulation and equations 

 

 

   Note that the results are consistently under a 10% relative error. Also, it is important 

to note that as the value of the resistive load decreases, the ripple both at the output 

and each fly-capacitor increases. Given the exponential nature of ripple during a semi-

period, it can be hard to properly determine the mean value of the curves by inspection. 

These results are then to be taken as approximations.    

   However, they might be enough to consider them useful from a synthesis 

perspective. When transistors are to be sized appropriately to present a desired 

equivalent resistance, the mean values of the fly-capacitors correspond to the mean 

operating points of Vd, Vs and Vg.These considerations will be explored in detail in the 

FDSOI implementation section.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (V)  (V)  (V)

0,000 0,000 0,000

-2,681 -0,166 1,130

0,965 0,343 1,754

-1,617 1,364 4,188

0,864 4,196 5,854

Relative error (%)

𝑉1 𝑉2 𝑉3 
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5. Steady-State Analysis: Thèvenin Model and Ripple 

approximation.  
 

The previous section analyzed the mathematical conditions that arise during steady-

state and how they affect the mean voltage of the different fly-capacitors. However, no 

model has been derived yet to predict the output voltage under loaded conditions.   

There are three phenomena that affect the output voltage. Namely: 

• Resistive loses 

• Parasitic capacitances 

• Voltage dependent capacitors 

The effect of parasitic capacitances has been already explored in section 3.2, and will 

only be slightly extended to consider the effect on the output voltage as related to the 

number of stages of a CC-CP.  

Voltage dependent capacitors introduce some challenging effects, but under idealized 

conditions of linear capacitors, their effect can be ignored. Therefore, they will not be 

considered in this section. However, their effect will be presented in the sections 

regarding FDSOI implementations of the circuit.  

5.1. Resistive losses – CC-CP equivalent resistance.  
 

When a DC-DC converter is connected to a load, under steady-state conditions, a 

constant in average flow of current through the circuit will take place. If the converter 

can be modeled as a resistance under certain operation conditions, this flow of current 

will produce a voltage drop. This voltage drop will ultimately affect the voltage at the 

output of the converter. It is then necessary, in order to have a complete steady-state 

model, to model the equivalent resistance of the CC-CP. 

It is a well-known fact [11] that the equivalent resistance of a switched-capacitor (Fig.  

5.1) can be expressed as: 

𝑅𝑒𝑞 =
1

𝑓𝐶
 (41) 

 

Fig.  5.1: Switched-Capacitor circuit representation. 

Where f is the switching frequency and C the capacitance.  
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An extensive derivation of the generalized equivalent power resistance of a switched-

capacitor circuit can be found in [11], presenting a more generalized equation 

applicable to a broader set of conditions.  

𝑅𝑒𝑞 =
1

𝑓𝐶
coth (

1

2𝑓𝑅𝑠𝑤𝐶
) (42) 

Or, defining 𝛽1 =
1

𝑓𝑅𝑠𝑤𝐶
  

𝑅𝑒𝑞 =
1

𝑓𝐶
coth (

𝛽1
2
) (43) 

 

5.1.1. Fast vs Slow Switching limit 
Equation (43) can take two limits (Fig.  5.2): 

o When |𝛽1| → 0. This is called the Fast Switching Limit (FSL) 

o When |𝛽1| →  ∞. This is called the Slow Switching Limit (SSL) 

 

 

Fig.  5.2: Asymptotic and Real representations of equation (42), including their limits (from [12]) 

 

In the limit when 𝛽1 tends to 0 (FSL), equation (43) can be simplified as follows: 

𝑅𝑒𝑞 lim
𝛽1→0

=
1

𝑓𝐶
[
(1 + (1 − 𝛽1))

(1 − (1 − 𝛽1))
] (44) 

𝑅𝑒𝑞 lim
𝛽1→0

=
1

𝑓𝐶
[
2

𝛽1
] =

1

𝑓𝑠𝑤𝐶
(
2𝑓𝑅𝑠𝑤𝐶

1
) (45) 

𝑅𝐹𝑆𝐿 = 𝑅𝑒𝑞 lim
𝛽1→0

= 2𝑅𝑠𝑤  (46) 
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Where we have used the fact that the Maclaurin series expansion of the 

exponential function 𝑒𝑥 is 1 + 𝑥 in a first order approximation. 

In the limit when 𝛽1 tends to ∞ (SSL), coth (
𝛽1

2
) ≈ 1 and: 

𝑅𝑆𝑆𝐿 = 𝑅𝑒𝑞 lim
𝛽1→∞

=
1

𝑓𝑠𝑤𝐶
(47) 

Equation (46) tells us that when the frequency is sufficiently high, the equivalent 

resistance of a switched-capacitor is determined by the sum of the ON 

resistances of the switches at either side of the capacitor, while equation (47) 

tells us that if the switching frequency is low enough, the switch resistances 

bear no effect. These are, respectively, the fast and the slow switching limits 

(FSL and SSL). 

Conventionally, the literature [12][13] considers the equivalent resistance of a 

switched-capacitor circuit can be approximated as: 

𝑅𝑒𝑞 = √𝑅𝑆𝑆𝐿
2 + 𝑅𝐹𝑆𝐿

2  (48) 

Where Rssl and Rfsl, described below, are the equivalent resistances of the 

whole circuit operating, respectively, at the aforementioned limits. 

In the next section, we derive an expression for the equivalent resistance of a 

CC-CP as a simple linear combination of equation (43). 

 

5.1.2. Equivalent resistance of a CC-CP of an arbitrary number of stages. 
 

Equation (43) is based on a derivation based on the energy losses produced 

during the charging and/or discharging of a capacitor in a switched regime. 

Reference [14] offers a conceptual and physical insight into energy losses 

incurred during the operation of switched-capacitor circuits, remarking that it is 

the process of charging/discharging itself that is responsible for the equivalent 

power resistance.  

That is, there are energy losses that can be modelled as resistances regardless 

of the presence of actual ohmnic resistors. This is notable enough to be 

stressed: 

 

Switched-capacitor circuits with ideal switches presenting 0 ON resistances 

incur energy losses as a direct consequence of the process of 

charging/discharging of the capacitors.  

 

Every time a capacitor is charged, there are energy losses. Every time a 

capacitor is discharged, there are energy losses. 
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Let’s consider a 3-stage CC-CP with 2N fly-capacitors and 1 load capacitor, 

where N=n+1, and n is the number of stages (equation 1). The equivalent 

circuit can be found in Fig.  5.3 in schematic form. 

 

Fig.  5.3: Schematic representation of a 3-stage CC-CP with resistive load. 

If we consider only one branch of the CC-CP, there are N fly-capacitors and 1 

load capacitor. Each fly capacitor experiences charging and discharging, while 

the load capacitor experiences only a charging process through a switch.  

Reference [15] introduces a methodology to derive the Rssl and Rfsl for SC 

circuits of arbitrary complexity. These Rssl and Rfsl are not to be confused with 

those of equations (46) and (47), as those refer to a single switched-capacitor. 

Reference [15] proposes a method to compute the overall RSSL and RFSL of 

the circuit as a whole.  

In order to obtain the RSSL and RFSL of the circuit in Fig.  5.3, consider Fig.  5.4 

and Fig.  5.5, depicting, respectively, phase 1 and 2 of operation, during which a 

packet of charge is transferred among capacitors. 
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Fig.  5.4: Charge exchange during phase 1 of operation. 

𝜑1: 

𝑞1 = 𝑞𝑖𝑛 (49) 

𝑞3 = 𝑞2 (50) 

𝑞𝑜𝑢𝑡

2
= 𝑞4  (51) 

𝜑2: 

𝑞2 = 𝑞1 (52) 

𝑞3 =
𝑞𝑜𝑢𝑡

2
+ 𝑞4 (53) 

Solving the system yields: 

𝑞1 = 𝑞2 = 𝑞3 = 𝑞𝑜𝑢𝑡 (54) 

𝑞4 =
𝑞𝑜𝑢𝑡

2
 (55) 

 

 

Fig.  5.5: Charge exchange during phase 2 of operation 
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These are the equivalent topologies formed during phase 1 and 2 respectively 

(see Fig.  3.1). 

Following the nomenclature on [15], the Charge Multiplier Vector (CMV) has 

coefficients: 

�⃗�𝑐 = [1 1 1 
1

2
 ] (56) 

We can also define a capacitor vector: 

𝐶 = [
1

𝐶1
 
1

𝐶2
 
1

𝐶3
 
1

𝐶𝑙𝑜𝑎𝑑
] (57) 

And the equivalent RSSL resistance can be found as the vector product of the 

square of the CMV (�⃗�𝑐) and the capacitor vector (𝐶), all divided by the switching 

frequency.  

𝑅𝑆𝑆𝐿 =
1

𝑓
 �⃗�𝑐
2 · 𝐶′ (58) 

𝑅𝑆𝑆𝐿 =
1

𝑓
∗ (
1

𝐶1
+
1

𝐶2
+
1

𝐶3
+
1

4
∗
1

𝐶𝑙𝑜𝑎𝑑
) (59) 

Since we are assuming that all capacitances are equal: 

𝑅𝑆𝑆𝐿 ≈
13

4

1

𝑓𝐶
 (60) 

In order to determine the RFSL resistance, a similar procedure is followed 

regarding the charge flow through the switches. From the previous analysis, the 

charge flowing through each resistor is equal to Qout. Normalizing the vector.  

�⃗�𝑟 = [1 1 1 1] (61) 

We can now build a vector with the values of the switches’ resistances. 

�⃗⃗�𝑠𝑤 = [𝑅𝑠𝑤1 𝑅𝑠𝑤2 𝑅𝑠𝑤3 𝑅𝑠𝑤 ] (62) 

The RFSL resistance can be computed as 2 times the vector product of �⃗�𝑟 

squared and the �⃗⃗�𝑠𝑤 vector. 

𝑅𝐹𝑆𝐿 = 2 ∗ (�⃗�𝑟
2 · �⃗⃗�𝑠𝑤

′ ) (63) 

𝑅𝐹𝑆𝐿 = 2 ∗ (𝑅𝑠𝑤1 + 𝑅𝑠𝑤2 + 𝑅𝑠𝑤3 + 𝑅𝑠𝑤 ) (64) 

Remember that, in order to keep all the sub-circuits with equal RC constants, 

switches 2, 3 and 4 have equal resistance Ron, while switch 1 has a resistance 

of Ron/2. 

𝑅𝐹𝑆𝐿 = 2 ∗ (
𝑅𝑜𝑛
2
+ 3 ∗ 𝑅𝑜𝑛) (65) 

𝑅𝐹𝑆𝐿 = 2𝑅𝑜𝑛 ∗ (
7

2
) (66) 
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𝑅𝐹𝑆𝐿 = 7𝑅𝑜𝑛 (67) 

Therefore: 

𝑅𝑡𝑜𝑡 ≈ √(
13

4

1

𝑓𝐶
)
2

+ (7𝑅𝑜𝑛)
2 (68) 

However, a CC-CP presents a comparatively simple topology (two branches of 

switched-capacitors connected in series, those two branches connected in 

parallel). This allows us to derive a more general expression, a linear 

combination of equation (43).  

Based on the conceptual and physical insight presented in [11] and [14], we 

theorize that the equivalent resistance of a single switched-capacitor can be 

linearly associated, similarly to ideal ohmnic resistors. That is, several 

concatenations of switched-capacitors can form equivalent resistive series 

associations and parallel associations.  

In order to analyze these associations, we begin with the most generalized form 

of equation (43)   

𝑅𝑒𝑞 =
1

2𝑓𝐶
coth (

𝛽1
2
) + 

1

2𝑓𝐶
coth (

𝛽2
2
) (69) 

Equation (69) states that the equivalent resistance of a switched-capacitor 

converter comprises the linear association (sum) of two equivalent resistances.  

Remembering that it is the charging and discharging processes which produce 

the energy losses that can be modelled as resistances, we can identify each 

resistance of equation (69), one pertaining to the charging process and one 

pertaining to the discharging process (Fig.  5.1). If the charging and discharging 

time constants are equal (𝛽1 = 𝛽2), equation (69) reduces to equation (43). 

This leads us to hypothesize that the indivisible unit of the equivalent resistance 

of switched-capacitor converter is: 

𝑅𝑒𝑞𝑢𝑛𝑖𝑡 =
1

2𝑓𝐶
coth (

𝛽

2
) (70) 

This equation represents the instance of either a charging process or a 

discharging process.  

In a single branch of a CC-CP (Fig.  2.6), the switched-capacitors lie in series. 

Working under the assumption that all capacitors have equal value and that the 

RC time constants of each topology are equal, we expect to be able to express 

the equivalent resistance as the sum of all the instances of equation (70).  

To illustrate this process, consider Fig.  5.6. We can readily observe a total of 7 

charging and discharging processes (as illustrated by the black arrows) during a 

complete period of operation.  
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Fig.  5.6: Single Branch of a 3-Stage CC-CP. Top) Phase 1. Bottom) Phase 2. The black lines represent capacitive 
charging or discharging processes. We ignore discharging of Capacitor 4 (load capacitor) as it does not discharge in 

a switched manner.  

 

Thus, we conclude that the equivalent resistance of a single branch of a 3-stage 

CC-CP is:  

𝑅𝑒𝑞 = 7 ∗ 
1

2𝑓𝐶
coth (

𝛽

2
) (71) 

We believe that this equation holds, generally, as long as all the topologies 

present an equal RC time constant and, if all capacitors have equal value, when 

R1=Ri/2. 

Applying the limits above derived we can determine whether this expression 

coincides with the results of the CMV: 

𝑅𝑆𝑆𝐿 = lim
𝛽1→∞

7

2

1

𝑓𝐶
coth (

𝛽1
2
) =
7

2

1

𝑓𝐶
 (72) 

𝑅𝐹𝑆𝐿 = lim
𝛽1→0

7

2

1

𝑓𝐶
coth (

𝛽1
2
) = 7 𝑅𝑜𝑛 (73) 

The results of the RSSL resistance are not exactly equal, but they may suffice 

depending on the mode of operation. The RFSL coincides exactly (see equation 

(68)). 
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So far, we have calculated the resistance of one branch of a 3-stage CC-CP. To 

calculate the full resistance of a CC-CP, we can consider that the above 

resistances are simply halved (both for the CMV and our proposed method), 

there being two equivalent resistances in parallel. In the case of the Charge 

Multiplier Vector method, we can also analyze the circuit as a whole. 

Table I compares the different resistances of a full CC-CP using the CMV 

method, according to these two possibilities (considering a parallel association, 

or applying the CMV to the circuit as a whole). 

TABLE VI : 3-stage CC-CP Equivalent Resistances Method Comparison (Charge Multiplier Vector Method) 

 Single Branch Parallel 

Equivalent 

CMV Method 

𝑅𝑆𝑆𝐿 

 

13

4

1

𝑓𝐶
  

13

8

1

𝑓𝐶
 

3

2

1

𝑓𝐶
 

𝑅𝐹𝑆𝐿 7𝑅𝑜𝑛 7

2
 𝑅𝑜𝑛 

7

2
 𝑅𝑜𝑛 

 

With our proposed method, for a 3-stage CC-CP where all RC constants are equal 

across topologies, we consider that the total resistance is simply the parallel 

association of two branches: 

𝑅𝑒𝑞 =
7

4 

1

𝑓𝐶
coth (

1

2𝑓𝑅𝑠𝑤𝐶
) (74) 

For a n-stage CC-CP: 

𝑅𝑒𝑞 =
(2𝑛 + 1)

4 

1

𝑓𝐶
coth (

1

2𝑓𝑅𝑠𝑤𝐶
) (75) 

 

5.2. Parasitic Capacitances effect on the output voltage  
 

Section 3.2.1 showed how the presence of parasitic capacitances affects the maximum 

gain of a single stage in a CC-CP, reducing it from 𝑉𝑖𝑛 to 𝑉𝑖𝑛 ∗
𝐶𝑖

𝐶𝑖+𝐶𝑝
, where Ci was the 

capacitance of the 𝑖th  fly-capacitor and Cp was its corresponding top-plate parasitic 

capacitance.  

From a steady-state perspective, this phenomenon can be utilized to compute the 

maximum steady-state voltage the circuit can attain in open circuit conditions when 

sufficient time has elapsed.  

In steady-state, open circuit conditions, the first fly capacitor C1 will eventually reach, 

during the charging semi-period, a voltage equal to 𝑉𝑖𝑛 (capacitor C1 will be fully 

charged). As the switches commutate, the bottom plate of capacitor C1 will see a rising 

transition from the clock and, as per Fig.  3.5, a voltage divider will ensue. The maximum 

voltage fly-capacitor C2 will then be able to reach is: 
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𝑉𝐶1 = 𝑉𝑖𝑛 + 𝑉𝑖𝑛 ∗
𝐶1

𝐶1 + 𝐶𝑃1
 (76) 

Let’s now assume that capacitor C2, at the end of its charging semi-period, is fully 

charged at the maximum voltage capacitor C1 can attain equation (76) 

Again, when the clock signal experiences a rising transition, a voltage divider is formed, 

whose resulting voltage is superposed to the voltage value of capacitor C2.  

𝑉𝐶2 = 𝑉𝑖𝑛 + 𝑉𝑖𝑛 ∗
𝐶1

𝐶1 + 𝐶𝑃1
+ 𝑉𝑖𝑛 ∗

𝐶2
𝐶2 + 𝐶𝑃2

(77) 

The situation repeats itself for each stage. For an n-stage CC-CP, the output voltage 

would be: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 + 𝑉𝑖𝑛
𝐶1

𝐶1 + 𝐶𝑃1
+ 𝑉𝑖𝑛

𝐶2
𝐶2 + 𝐶𝑃2

+⋯+ 𝑉𝑖𝑛
𝐶𝑛

𝐶𝑛 + 𝐶𝑃𝑛
(78) 

If C1=C2=…=C(n+1), and their parasitics are similar or equal: 

𝑉𝐶𝑛 = 𝑉𝑖𝑛 + 𝑛 ∗ 𝑉𝑖𝑛 ∗
𝐶

𝐶 + 𝐶𝑝
(79) 

For a 3-stage charge pump: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 + 3𝑉𝑖𝑛 ∗
𝐶

𝐶 + 𝐶𝑝
(80) 

 

  

5.3. Thèvenin Equivalent: 
 

With derivations made in the previous sections we can now predict how the circuit 

would behave were it to be connected to a load. In fact, the circuit can be completely 

modelled as a Thèvenin-Equivalent of the form presented in Fig.  5.7.  

 

Fig.  5.7: Thèvenin Equivalent of a CC-CP. 

We are going to ignore, for the moment, the effect of voltage dependent capacitors.  

In a thèvenin equivalent model, we have two defining elements: the Thèvenin Voltage 

and the Thèvenin Resistance. We are going to consider the Thèvenin Voltage the 

maximum voltage attainable in the presence of parasistic capacitances. The Thèvenin 

Resistance is the equivalent resistance of the CC-CP. These have been derived above.  

Thus, we can consider the Thèvenin Voltage: 
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𝑉𝑇ℎ = 𝑉𝑖𝑛 + 𝑛 ∗ 𝑉𝑖𝑛 ∗
𝐶

𝐶 + 𝐶𝑝
 (81) 

n being the number of stages, and where the assumption has been made that all 

stages present equal parasitic capacitances.  

The Thèvenin Resistance is, likewise, already derived. Here we choose our proposed 

resistance.  

𝑅𝑇ℎ =
(2𝑛 + 1)

4 

1

𝑓𝐶
coth (

1

2𝑓𝑅𝑠𝑤𝐶
) (82) 

This way, the behavior of the circuit becomes readily analyzable in a number of 

potential configurations.  

 

Fig.  5.8: Potential topologies of the Thèvenin Equivalent 

 

    For a resistive load, the output voltage would simply result from the voltage divider 

generated by the circuit resistances. 

𝑉𝑜𝑢𝑡 = 𝑉𝑇ℎ ∗
𝑅𝑙𝑜𝑎𝑑

𝑅𝑇ℎ + 𝑅𝑙𝑜𝑎𝑑
 (83) 

   Whereas for a load that is known to draw an approximately constant amount of 

current in a given voltage range, the following equation would be more suitable.  

𝑉𝑜𝑢𝑡 = 𝑉𝑇𝐻 − 𝑅𝑇ℎ ∗ 𝐼𝑙𝑜𝑎𝑑 (84) 

   This is of particular interest in back-biasing circuits, where the load is a reverse PN 

junction.  

   These Thèvenin Equivalents are able to predict the operating point of the whole 

circuit. That is, they can be used to determine the output voltage and, through the 

equations derived at the beginning of this section, the operating points of the fly-

capacitors.  

   However, these equivalent circuits tell us nothing about the dynamics of the CC-CP. 

The Discrete Time State-Space model can be used to predict the time response of the 

circuit. But, under certain circuit constraints, the circuit can be modeled as a simple RC 

circuit.  

   So far, we have considered that load capacitor has an equal value to the fly-

capacitors. Nevertheless, in most cases the load capacitance is expected to be 

somewhat higher than the fly-capacitors. In those cases, the total contribution of the 

load capacitance to the equivalent resistance of the circuit can be neglected.  
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Fig.  5.9: Thèvenin Equivalent under certain constraints (namely, the capacitive load is much bigger than 

the fly-capacitors). 

   Also, when the load capacitances become high enough the charging time lengthens. 

When this happens, the fly-capacitors spend most of their time in a region of energy-

efficient operation, where the equivalent resistance models above explained hold. [16] 

(Fig.  5.9)    

   Under those constraints, the circuit approaches operation similar to that of an RC 

circuit, with time constant: 

𝜏 = 𝑅𝑇ℎ ∗ 𝐶𝑙𝑜𝑎𝑑 

 

5.4. Thèvenin Equivalent validation  
 

5.4.1. Effect of parasitic capacitances. 
   To validate the effect of parasitic capacitances on the output voltage, several 

transient simulations are performed on the circuit on Fig.  3.7, with different values of fly-

capacitors and parasitic capacitances. The results are summarized in Table IV, where 

the simulated results are compared to the theoretical values obtained through equation 

(80). 

 

TABLE VII: Parasitic capacitance effect summary. 

C Parasitics 

Vout Theo 

(V) 

Vout Sim 

(V) 

 

Err Ab 

(V) 

 

Err Rel 

(%) 

1 nF 

10 pF 

(1%) 3,970 3,97 

 

0,0002

97 

 

0,007481

86 

1 nF 

50 pF  

(5%) 3,857 3,85 

 

0,0071

43 

 

0,185528

76 

1 nF 

100 pF 

(10%) 3,727 3,72 

 

0,0072

73 

 

0,195503

42 

1 nF 

200 pF 

(20%) 3,500 3,49 

 

0,01 

 

0,286532

95 

1 nF 

300 pF 

(30%) 3,308 3,31 

 

0,0023

1 

 

0,069718

8 
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2 nF 

20 pF 

(1%) 3,970 3,97 

 

0,0002

97 

 

0,007481

86 

2 nF 

100 pf 

(5%) 3,857 3,86 

 

0,0028

6 

 

0,074019

2 

2 nF 

200 pF 

(10%) 3,727 3,73 

 

0,0027

3 

 

0,073117

2 

2 nF 

400 pf 

(20%) 3,500 3,5 

 

0 

 

0 

2 nF 

600 pF 

(30%) 3,308 3,31 

 

0,0023

1 

 

0,069718

8 

       

 

 

 

5 nF 

50 pF 

(1%) 3,970 3,97 

 

0,0002

97 

 

0,007481

86 

5 nF 

250 pF 

(5%) 3,857 3,86 

 

0,0028

6 

 

0,074019

2 

5 nF 

500 pF 

(10%) 3,727 3,73 

 

0,0027

3 

 

0,073117

2 

5 nF 

1 nF 

(20%) 3,500 3,5 

 

0 

 

0 

5 nF 

1,5 

nF(30%) 3,308 3,31 

 

0,0023

1 

 

0,069718

8 

 

It can be seen that it is the relative value of the parasitic capacitances to the fly-

capacitor which determines the effect on the output voltage, as predicted in equation 

(76).  

 

5.4.2. Equivalent resistance  
 

To determine the validity of the equivalent resistance equations, we set the parameters 

of the circuit in Fig.  3.7 to: 

𝐶 = 𝐶𝑙𝑜𝑎𝑑 = 6 𝑓𝐹 

𝑓 = 500 𝑀𝐻𝑧 

𝑅𝑠𝑤𝑖, ∀ 𝑖 ≠ 1 = 50 𝑘Ω 

𝑅𝑠𝑤1 = 25 𝑘Ω 

That means that the switch connecting the input voltage source to the first fly-capacitor 

has a resistance half that of the rest, maintaining equal RC constants across all 

topologies.  

This sets the circuit in the Slow Switching Limit (coth(
1

2𝑓𝑅𝑠𝑤𝐶
) ≈ 1). 

We compare the results provided by equation (68) (CMV method), and (74).  
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With these parameter values, we compute the two different theoretical equivalent 

resistance, the one based on the CMV and the one derived in this thesis. For equation 

(68) and based on TABLE VI: 

𝑅𝐶𝑀𝑉 = √𝑅𝑆𝑆𝐿
2 + 𝑅𝐹𝑆𝐿

2  

𝑅𝐶𝑀𝑉 = √(
3

2

1

𝑓𝐶
)
2

+ (
7

2
𝑅𝑜𝑛)

2

  ≈ 530 𝑘Ω 

And from equation (74): 

𝑅𝑇ℎ𝑒𝑠𝑖𝑠 =
7

4

1

𝑓𝐶
coth (

1

2𝑓𝑅𝑠𝑤𝐶
) = 584.82 𝑘Ω 

 

The circuit is then connected to an ideal current source, and both cases are simulated 

giving different values to the output current.  

With parasitic capacitances set to 0, the expected output voltage is calculated as: 

𝑉𝑜𝑢𝑡 = 𝑉𝑡ℎ − 𝑅𝑇ℎ ∗ 𝐼𝑙𝑜𝑎𝑑 

TABLE VIII summarizes the results obtained, depicting the theoretical and simulated 

output voltages for a Thevenin resistance calculated through the CMV.  

TABLE VIII: SPICE and equations result comparison of the Steady-Stage voltage under different current loads with 
RCMV. 

 

 

TABLE VIII summarizes the results obtained, depicting the theoretical and simulated 

output voltages for a Thevenin resistance calculated using our proposed method.  

 

TABLE IX: SPICE and equations result comparison of the Steady-Stage voltage under different current loads with 
RThesis. 

 

 

I (A) Vdrop Theo (V) Vout Theo (V) Vout Sim (V) Abs Err (V) Rel Err (%)

1,00E-06 0,530 3,470 3,5 0,030 0,850

1,50E-06 0,795 3,205 3,24 0,035 1,068

2,00E-06 1,059 2,941 3,01 0,069 2,308

2,50E-06 1,324 2,676 2,74 0,064 2,349

5,00E-06 2,649 1,351 1,51 0,159 10,510

I (A) Vdrop Theo (V) Vout Theo (V) Vout Sim (V) Abs Err (V) Rel Err (%)

1,00E-06 5,85E-01 3,415 3,500 0,085 2,423

1,50E-06 8,77E-01 3,123 3,240 0,117 3,618

2,00E-06 1,17E+00 2,830 3,010 0,180 5,968

2,50E-06 1,46E+00 2,538 2,740 0,202 7,374

5,00E-06 2,92E+00 1,076 1,510 0,434 28,748
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Our proposed equivalent resistance seems to deviate more from the simulations. It 

overestimates the resistance of the circuit when operating in SSL.  

Further testing in a broader set of conditions determines that, as the circuit approaches 

the Fast Switching Limit, RThesis is more accurate than RCMV. 

Setting 𝑅𝑜𝑛 = 200 𝑘Ω and 𝐼 = 2 𝜇𝐴 (leaving the same values for the switching 

frequency and the capacitances). 

    

TABLE X: Accuracy of distinct equivalent resistances in FSL operation 

 

 

Showing that Rthesis is more accurate in the Fast Switching Limit, while equation 

RCMV is more accurate in Slow Switching. 

Fig.  5.10 shows how both resistance equations evolve as a function of frequency, 

showcasing how the linear combination equation presents higher values at lower 

frequencies.  

 

 

Fig.  5.10: Resistance vs frequency comparison of the two resistance equations above presented. Blue- CMV method 
(equation (68)). Orange- Linear combination (equation (74)).  

 

 

 

 

Vdrop Theo (V) Vout Theo (V) Vout Sim (V) Abs Err (V) Rel Err (%)

RCMV1= 860 kΩ 1,72 2,28 2,355 0,075 3,185

RThesis=855 kΩ 1,71 2,29 2,355 0,065 2,760
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5.5. Ripple Approximation 
  

 

Fig.  5.11: Equivalent topology during one semi-period of operation at the load end. 

In steady-state conditions it is also important to minimize the ripple at the output. 

However, in order to do so we must have an aiding equation to help orient the design. 

In this section such an equation is derived.  

Consider the circuit in the above figure. 

Let’s assume that: 

• 𝑅𝑙𝑜𝑎𝑑 is large 

• 𝐶𝑙𝑜𝑎𝑑 (𝐶2) is large 

• 𝑇 is small 

• The output current is constant and equal to: 

𝐼𝑙𝑜𝑎𝑑 =
𝑉𝑜𝑢𝑡
𝑅𝑙𝑜𝑎𝑑

 (85) 

Thus, we model the output current as an ideal current source for ease of analysis. 

Analyzing the circuit with KVL yields the following equations (Where 𝐶𝑒𝑞 = (
1

𝐶1
+
1

𝐶2
)
−1

): 

 

−
(𝑉𝑖 + 𝑉𝑖𝑛)

𝑠
+ 𝐼1 (𝑅 +

1

𝐶𝑒𝑞𝑠
) − 𝐼2 (

1

𝐶2𝑠
) +
𝑉𝑖+1
𝑠
= 0 (84) 

𝐼1 (𝑠 +
1

𝑅𝐶𝑒𝑞
) =
𝑉𝑖 + 𝑉𝑖𝑛 − 𝑉𝑖+1

𝑅
+
𝐼2
𝑅𝐶2

(86) 

Noting that: 

𝐼2(𝑠) =
𝐼𝑙𝑜𝑎𝑑
𝑠

(87) 
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𝐼1(𝑠) =
𝑉𝑖 + 𝑉𝑖𝑛 − 𝑉𝑖+1

𝑅
∗

1

(𝑠 +
1
𝑅𝐶𝑒𝑞

)
+
𝐼𝐿𝑜𝑎𝑑 
𝑅𝐶2

∗
1

𝑠 (𝑠 +
1
𝑅𝐶𝑒𝑞

)
(88)

 

 

Using the partial fraction expansion method and transforming to the time domain: 

𝑖1(𝑡) =
𝑣𝑖 + 𝑣𝑖𝑛 − 𝑣𝑖+1

𝑅
𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
+ 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
(1 − 𝑒

−(
𝑡
𝑅𝐶𝑒𝑞

)
) (89) 

Where we can define: 

𝑖𝑠𝑤 =
𝑣𝑖 + 𝑣𝑖𝑛 − 𝑣𝑖+1

𝑅
(90) 

The current entering the loading capacitor (𝐶2) during a semi-period can be defined as: 

 

𝑖𝑐(𝑡) = 𝑖1(𝑡)− 𝑖𝑙𝑜𝑎𝑑 (91) 

𝑖𝑐(𝑡) = 𝑖𝑠𝑤 ∗ 𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
+ 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
(1 − 𝑒

−(
𝑡
𝑅𝐶𝑒𝑞

)
)− 𝑖𝑙𝑜𝑎𝑑 (92) 

𝑖𝑐(𝑡) = 𝑖𝑠𝑤 ∗ 𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
+ 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
((1 −

𝐶2
𝐶𝑒𝑞
)− 𝑒

−(
𝑡
𝑅𝐶𝑒𝑞

)
) (93) 

Let’s define, for ease of algebraic procedure, 𝑟 = (1 −
𝐶2

𝐶𝑒𝑞
) 

𝑖𝑐(𝑡) = 𝑖𝑠𝑤 ∗ 𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
+ 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
(𝑟 − 𝑒

−(
𝑡
𝑅𝐶𝑒𝑞

)
) (94) 

The value of 𝑖𝑠𝑤 is generally not readily accessible. However, we know that,  in a CC-

CP in steady-state conditions: 

∫ 𝑖𝑐(𝑡)𝑑𝑡 = 0
𝐾+
𝑇
2

𝐾

(95) 

Therefore: 

∫ 𝑖𝑠𝑤 ∗ 𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
𝑑𝑡 =

𝑇
2

0
∫ −𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
(𝑟 − 𝑒

−(
𝑡
𝑅𝐶𝑒𝑞

)
)𝑑𝑡

𝑇
2

0

(96) 

𝑖𝑠𝑤𝑅𝐶𝑒𝑞 (1 − 𝑒
−(

𝑇
2𝑅𝐶𝑒𝑞

)
) = 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
𝑅𝐶𝑒𝑞 (1 − 𝑒

−(
𝑇

2𝑅𝐶𝑒𝑞
)
)+ 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
∗ 𝑟 ∗

𝑇

2
(97) 

𝑖𝑠𝑤 ≈ 𝑖𝑙𝑜𝑎𝑑 ∗
𝐶𝑒𝑞
𝐶2
− 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
∗ 𝑟 ∗

1

2𝑓𝑅𝐶𝑒𝑞
∗

1

(1 − 𝑒
−(

𝑇
2𝑅𝐶𝑒𝑞

)
)

 (98)
 

This way, ic can be approximated as: 
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𝑖𝑐(𝑡) = 𝑖𝑙𝑜𝑎𝑑 ∗
𝐶𝑒𝑞
𝐶2
∗ 𝑟 − 𝑖𝑙𝑜𝑎𝑑 ∗

𝐶𝑒𝑞
𝐶2
∗ 𝑟

1

2𝑓𝑅𝐶𝑒𝑞
∗

1

(1 − 𝑒
−(

𝑇
2𝑅𝐶𝑒𝑞

)
)

∗ 𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
(99)

 

Assuming symmetry -for simplification; the actual peak time depends both on the time 

constant of the topology and the values of the current- during a semi-period and stating 

that the maximum ripple takes place at t=T/4: 

∆𝑉 =
1

𝐶𝑙𝑜𝑎𝑑
∫ 𝑖𝑐(𝑡)

𝑇
4

0
 𝑑𝑡 (100) 

∆𝑉 = 𝑖𝑙𝑜𝑎𝑑
𝐶𝑒𝑞
𝐶2
∗ 𝑟 ∗

1

4𝑓𝐶𝑙𝑜𝑎𝑑
− 𝑖𝑙𝑜𝑎𝑑

𝐶𝑒𝑞
𝐶2
∗ 𝑟 ∗

1

2𝑓𝐶𝑙𝑜𝑎𝑑
∗

(1 − 𝑒
−(

𝑇
4𝑅𝐶𝑒𝑞

)
)

(1 − 𝑒
−(

𝑇
2𝑅𝐶𝑒𝑞

)
)

(101) 

We can assume the worst-case scenario where: 

(1 − 𝑒
−(

𝑇
 𝑅𝐶𝑒𝑞

)
)

(1 − 𝑒
−(

𝑇
2𝑅𝐶𝑒𝑞

)
)

≈ 1 (102) 

The ripple equation then becomes: 

∆𝑉 = 𝑖𝑙𝑜𝑎𝑑
𝐶𝑒𝑞
𝐶2
∗ 𝑟 ∗

1

2𝑓𝐶𝑙𝑜𝑎𝑑
∗ [
1

2
− 1] (103) 

Noting that  

𝐶𝑒𝑞
𝐶2
∗ 𝑟 = (

𝐶𝑒𝑞
𝐶2
− 1) < 0 (104) 

∆𝑉 = 𝑖𝑙𝑜𝑎𝑑 (1 −
𝐶𝑒𝑞
𝐶2
) ∗

1

2𝑓𝐶𝑙𝑜𝑎𝑑
[1 −

1

2
] (105) 

Finally, we arrive at the expression: 

∆𝑉 = 𝑖𝑙𝑜𝑎𝑑 (1 −
𝐶𝑒𝑞

𝐶2
) ∗

1

4𝑓𝐶𝑙𝑜𝑎𝑑
(106) 

 

This equation is valid for SSL conditions. In FSL conditions, the simplifications made do 

not hold, but a comparatively simple analysis is possible.  

From equation (89), we can interpret that the current drawn from the discharging 

capacitor (𝐶1) is a combination of exponential terms. In FSL conditions, we can make 

the assumption that the current drawn from the discharging capacitor by the current 

source is severely restricted by the time constraints imposed by the fast switching. 

Therefore, equation (89) reduces to: 
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𝑖1(𝑡) = 𝑖𝑠𝑤𝑒
−(

𝑡
𝑅𝐶𝑒𝑞

)
 (107) 

Equation (91) still holds. Following a similar procedure, we can arrive at an expression 

for the ripple in the FSL: 

∆𝑉 = 𝑖𝑙𝑜𝑎𝑑 ∗
1

2𝑓𝐶𝑙𝑜𝑎𝑑

[
 
 
 
 (1 − 𝑒

−(
𝑇

 𝑅𝐶𝑒𝑞
)
)

(1 − 𝑒
−(

𝑇
2𝑅𝐶𝑒𝑞

)
)

−
1

2

]
 
 
 
 

 (108) 

Where the exponential terms cannot be simplified.  

 

5.5.1. Ripple equations validation 
 

To establish the validity of the ripple equation (106), the original setting is adopted 

(𝑅𝑠𝑤 = 50 𝑘Ω; 𝐶 = 6 𝑓𝐹; 𝑓 = 500 𝑀𝐻𝑧). The circuit is loaded with different magnitudes 

of current through a current source. This setting is used to determine the simulated 

ripple and compare it to that predicted by equation (106). TABLE XI summarizes these 

results 

 

TABLE XI: SPICE and equations result comparison of the ripple under different current loads in SSL 

operation. 

 

 

 

For the study of the ripple in FSL, we increase the switching frequency from 500 MHz 

to 2 GHz and perform a similar comparison. This time, the theoretical values are 

calculated using equation (108). 

TABLE XII: SPICE and equations result comparison of the ripple under different current loads in FSL 

operation. 

 

I (A) Ripple Sim (V) Ripple Theo (V) Rel Err (%)

1,00E-06 0,0447 0,042 6,04%

1,50E-06 0,06 0,063 5,00%

2,00E-06 0,092 0,084 8,70%

2,50E-06 0,109 0,105 3,67%

5,00E-06 0,243 0,21 13,58%

I (A) Ripple Sim (mV) Ripple Theo (mV) Rel Err (%)

1,00E-06 4,07 4,27 4,91%

1,50E-06 6,22 6,42 3,22%

2,00E-06 8,34 8,55 2,52%

2,50E-06 9,84 10,7 8,74%

5,00E-06 20,13 21,4 6,31%
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6. FDSOI implementation  
 

   An implementation of a CC-CP based on the available FDSOI technology does not 

allow for a completely controlled environment such that one can freely choose the 

exact values of the parameters of interest. That is to say, a SPICE based software 

such as the one used in the previous sections allows for linear, voltage independent 

components (resistances and capacitances do not vary with the operating point of the 

circuit). 

   A real implementation is constrained in area, power consumption, and expected 

voltage at the output based on a load. In this thesis, though, we do not seek optimizing 

solutions, but rather to demonstrate the above derived models and what further effects 

arise when using non-ideal components; in this particular case, FDSOI components. 

   This section is divided in three parts. The first part explores the effect of voltage 

dependent fly-capacitors and how their behavior changes as they switch (how the 

same fly-capacitor behaves differently when it is being charged than when it is 

discharging) and at different stages (how voltage dependent fly-capacitors present 

different capacitances depending on the stage they are at). At the end of this part, 

some conclusions are drawn as to what behaviors are key in the implementation.  

The second part explores the behavior of LVT FDSOI transistors, used to implement 

the switches, and their resistive characteristics at different stages. The last part of this 

section dwells on the procedures followed to adapt the characteristics of the 

components to a design perspective.  

   The FDSOI implementation has been carried out utilizing the 28 nm UTBB-FDSOI 

technology library from ST.  

   The FDSOI circuit studied and implemented is a 3-stage CC-CP with 𝑉𝑖𝑛 = 𝑉𝑐𝑙𝑘 =

0.3 𝑉 

 

6.1. Designing a test-bench / Experimental setting for the empirical analysis of 

voltage-dependent capacitors 
 

   The available technological library presents a variety of components that can be used 

as capacitors. Some are different architectures of stacks of metal vias, which present a 

predominantly linear, voltage independent behavior (MIM or MOM capacitors). And 

some are MOS based capacitors. In this section, we focus on the study of MOS 

capacitors, given their higher capacitance/area ratio. Specifically, we focus on the 

behavior of bulk MOS capacitors (that is, capacitors embedded in the bulk of the die) 

and LVT FDSOI MOSFETs designed to perform the function of capacitors.  

Given that capacitance provided by MOS components depends heavily on the 

formation of the channel, we expect the capacitance of these components to vary intra-

stage and inter-stage.  

Since the voltage dependence and non-linear behavior cannot be directly analyzed 

through theoretical methods, we must perform empirical testing of the components. 



 

 54 

This testing must be performed in such a way that it reflects the behavior of the 

components in implementations as fly-capacitors in a CC-CP.   

For this purpose, we design a test-bench schematic on Cadence. The schematic is 

designed to evaluate the effect of the voltage operating points of the CC-CP on the 

capacitors themselves (how they affect the formation of the channel in MOS 

capacitors).  

Each component is evaluated through two topologies. One reflecting the effect of the 

voltage operating points on charging fly-capacitors (Fig.  6.1), and one reflecting the 

effect of voltage operating points on discharging fly-capacitors (Fig.  6.2).  

As discussed on section 2, a capacitor can be charged by an input voltage source or 

another capacitor (Fig.  2.5). In the schematic depicted in Fig.  6.1, both the clock-driver 

and the fly-capacitor connected to it are grouped into a single, ideal voltage source 

(named V_prev, as it reflects the voltage bias provided by the capacitor of the previous 

stage). The objective is not to analyze how the charging or discharging process takes 

place, but rather how the voltage bias provided by the different voltage sources (be 

them clock drivers and/or fly-capacitor), affect the capacitance of the charging MOS 

capacitor.  

 

Fig.  6.1: Equivalent DC topology of a charging capacitor in steady-state (V_prev: Voltage of the Previous 

stage) 

A similar procedure is followed to design the test-bench of discharging capacitors. Fig.  

6.2 shows the topology of a discharging capacitor. Here, the clock-driver is 

represented, as in previous analysis, as an ideal voltage source (Vin), and the charging 

capacitor is also substituted by an ideal voltage source (named V_next to reflect the 

voltage bias provided by the capacitor of the next stage).  

Once these test-benches are implemented, a parametric sweep of V_prev and V_next 

is performed. Both V_prev and V_next are swept from Vin and 0 V respectively, to the 

maximum-attainable, ideal voltage at the output and the capacitances displayed by the 

components are registered.  
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Fig.  6.2: DC equivalent topology of a discharging capacitor 

 

We first analyze the behavior of LVTnFETs and LVTpFETs. These transistors are 

the same used as resistive switches. Fig.  6.3 and Fig.  6.4 depict the test-benches 

used for LVTnFET transistors for the charging and discharging topology 

respectively.  

 

 

Fig.  6.3: Testbench. Lvtnfet implemented as a capacitor, charging topology. V_Charge_in represents 

V_prev (see Fig.  6.1). 
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Fig.  6.4: Testbench. Lvtnfet implemented as a capacitor, discharging topology. 

 

In the charging topology (Fig.  6.3), the voltage source implementing V_prev 

presents a DC (vdc=V_prev) component and an AC (V_AC= 1 V) component. The 

width of the transistor is set equal to the length. 

𝑊 = 𝐿 = 1 𝜇𝑚 

Initially, V_prev is set to 0.3 V   

 In order to determine the Capacitance, the voltage and current across the 

terminals of the component (in this case, the lvtnfet) are saved and used to 

compute the equivalent impedance, noted as Xc.  

𝑋𝑐(𝑓) =
∆𝑉𝑐(𝑓)

𝐼𝑐(𝑓)
(109) 

   We apply a dB20 function to this variable and save it so that it will be computed 

automatically.  A frequency sweep is performed, obtaining a curve similar to the 

following one: 
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Fig.  6.5: dB20(Xc) 

With this curve it is possible to extract the value of the capacitance at high frequencies, 

as resistive elements become negligible  

A DC parametric sweep from 0.3 to 1.2 V (a case corresponding to a CC-CP with Vin= 

0.3 V and 3 stages) 

 

6.1.1. Lvtnfet / lvtpfet – Capacitive behavior  
    

The following curve represents how the capacitance of the lvtnfet changes as a 

function of V_prev in charging topologies: 
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Fig.  6.6: Lvtnfet Voltage-Capacitance Characteristic. Top) Charging topology. Bottom) Discharging 

topology 
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   For the discharging topology we perform a similar analysis, also depicted in the 

above figure. 

We can see that both curves are similar. However, the discharging topology 

presents a shift to the right of approximately 0.3 V.  

   Although a similarly thorough analysis has not been carried out for the lvtpfet, 

preliminary testings show a similar behavior, probably due to the nature of the FET 

capacitance, related to the formation of a channel once conditions of strong 

inversion are reached.   

That is, the connections of the FET terminals facilitate the formation of a channel 

during the charging semi-period. During a charging semi-period, Drain, Source and 

the back-gate are connected to ground, whereas during the discharging semi-

period they are connected to the clock voltage, which might impede the formation 

of a channel, given that VGS is smaller in this configuration.  

 

6.1.2. Egncap Behaviour  
 

   The following figures show the test benches employed to test the egncap 

capacitors: 

 

Fig.  6.7: Egncap Test Bench. Charging topology. 
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Fig.  6.8: Egncap Test Bench. Discharging topology. 

   The analysis made to extract values of the capacitance as a function of V_Prev and 

V_next_stage is the same as that for the FETs. Again, W=L=1 um 

   Note that the Egncap has a third terminal. This terminal corresponds with the bulk of 

the die and is, consequently, connected to ground.  

   Fig.  6.9 depicts the capacitance curve as a function of the charging voltage during the 

charging semi-period and the capacitance as a function of the V_next during the 

discharging semi-period.  
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Fig.  6.9: Egncap Voltage-Capacitance characteristcs. In blue, capacitance in the charging topology. In red, 

in the discharging topology.  

 

   It can be seen that, for the same voltage values, the capacitances during the 

charging semi-period are always higher than the capacitances during the discharging 

semi-period. As we will see in the next section, this is the sought behavior.  

   Note also that, for the same width, fly-capacitors of later stages present a higher 

capacitance. 

6.1.3. Effect of Voltage Dependent Fly-Capacitors   
  

In the previous section we conducted an empirical analysis of the behavior of 

transistors implemented as fly-capacitors and saw that their capacitance can be 

different in charging and discharging topologies.  

      Given that, in a charge-pump, a capacitor can find itself in one of two states: 

• It is being charged  

• It is discharging 

     And given that in any of those states the operating point is different, two situations 

can arise for a particular capacitor.  
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• The capacitance is smaller in the charging state, larger in the discharging state.  

• The capacitance is larger in the charging state, smaller in the discharging state. 

   Let’s study the effects these two potential situations can have on the behavior of a 

charge-pump. 

   Let’s assume that the charge-pump is operating in steady-state. We expect the 

voltages at all nodes to remain constant between periods, and to be similar between 

semi-periods. This means that the operating points of each capacitor will also remain 

constant during operation. 

  Let a capacitor be charged with a charge Q. During its charging, the capacitor 

presents a capacitance 𝐶(𝑉𝑄), set by the DC operating-point. We know that the voltage 

across its terminals will be: 

𝑉𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 =
𝑄

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
(110) 

   At the end of the charging semi-period, the switches commute and the capacitor 

enters its discharging semi-period. During the discharging semi-period, the DC 

operating point is different. The capacitance is now Cdischarghing. (We are assuming 

perfect switching without charge loss). 

   Given that there cannot be charge redistribution between the plates of the capacitor, 

the voltage across its terminals now becomes: 

𝑉𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 =
𝑄

𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
(111) 

   We divide both equations: 

𝑉𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝑉𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

=

(
𝑄

𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
)

(
𝑄

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
)
=
𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
 (112) 

𝑉𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑐ℎ𝑖𝑛𝑔 = 𝑉𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ∗
𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
(113) 

 

   From this equation we can extract the following conclusions: 

• If Ccharging>Cdischarging,  𝑉𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 > 𝑉𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

• If Ccharging<Cdischarging, 𝑉𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 < 𝑉𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  

   Which means that there can be either a loss or gain of voltage value across the 

terminals of the capacitor when transitioning from the charging to the discharging semi-

period.  

   This means that the theoretical voltage gain of each stage is impacted by the 

change in value of the capacitances. 

   Let’s introduce a change of nomenclature for ease of operation: 

• 𝑉𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 → 𝑉𝐶 
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• 𝑉𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 → 𝑉𝐶
′ 

And begin the analysis. 

   In an ideal CC-CP, with no parasitics and in open circuit, when steady-state is 

reached the output voltage at which capacitor 𝐶𝑙𝑜𝑎𝑑 would stabilize is: 

𝑉𝐶𝑙𝑜𝑎𝑑 = 𝑁 ∗ 𝑉𝑖𝑛 (114) 

   Where: 

𝑉𝐶𝑙𝑜𝑎𝑑 = (𝑉𝑖𝑛 + 𝑉𝐶(𝑁−1)) (115) 

   We can recursively develop this equation: 

𝑉𝐶𝐿𝑜𝑎𝑑 = 𝑉𝑖𝑛 + 𝑉𝐶(𝑁−1) = 𝑉𝑖𝑛 + 𝑉𝑖𝑛 + 𝑉𝐶(𝑁−2) =,

𝑉𝑖𝑛 + 𝑉𝑖𝑛 + 𝑉𝑖𝑛 + 𝑉𝐶(𝑁−3) = ⋯ = 𝑁 ∗ 𝑉𝑖𝑛 (116)
 

   Where 𝑁 is defined in equation (1). 

   If we now consider the effect of voltage dependent capacitances: 

𝑉𝐶𝑙𝑜𝑎𝑑 = 𝑉𝑖𝑛 + 𝑉𝐶(𝑁−1)
′ (117) 

   And as per equation (113) 

𝑉𝐶(𝑁−1)
′ = 𝑉𝐶(𝑁−1) ∗ (

𝐶𝑁−1
𝐶𝑁−1′

) (118) 

𝑉𝐶𝑁 = 𝑉𝑖𝑛 + 𝑉𝐶(𝑁−1) ∗ (
𝐶𝑁−1
𝐶𝑁−1′

) (119) 

𝑉𝐶(𝑁−1) = 𝑉𝑖𝑛 + 𝑉
′
𝑐(𝑁−2) = 𝑉𝑖𝑛 + 𝑉𝐶(𝑁−2) ∗ (

𝐶𝑁−2
𝐶𝑁−2′

) (120) 

   Substituting: 

𝑉𝐶𝑁 = 𝑉𝑖𝑛 + (𝑉𝑖𝑛 + 𝑉
′
𝑐(𝑁−2)) ∗ (

𝐶𝑁−1
𝐶𝑁−1′

) = 𝑉𝑖𝑛 + (𝑉𝑖𝑛 + 𝑉𝐶(𝑁−2) ∗ (
𝐶𝑁−2
𝐶𝑁−2′

)) ∗ (
𝐶𝑁−1
𝐶𝑁−1′

) =, 

= 𝑉𝑖𝑛 + 𝑉𝑖𝑛 ∗ (
𝐶𝑁−1
𝐶𝑁−1′

) + 𝑉𝐶(𝑁−2) ∗ (
𝐶𝑁−2
𝐶𝑁−2′

) (
𝐶𝑁−1
𝐶𝑁−1′

) (121) 

 

   Developing the series: 

𝑉𝐶𝑁 = 𝑉𝑖𝑛 ∗ (
𝐶𝑁−1
𝐶𝑁−1′

) (
𝐶𝑁−2
𝐶𝑁−2′

) ∗ … ∗ (
𝐶1
𝐶1′
) + 𝑉𝑖𝑛 ∗ (

𝐶𝑁−1
𝐶𝑁−1′

) (
𝐶𝑁−2
𝐶𝑁−2′

) ∗ …∗ (
𝐶2
𝐶2′
) + ⋯+,  

+𝑉𝑖𝑛 ∗ (
𝐶𝑁−1
𝐶𝑁−1′

) + 𝑉𝑖𝑛 (122) 

𝑉𝐶𝑁 = 𝑉𝑖𝑛 + 𝑉𝑖𝑛 ∗ ∑∏
𝐶𝑖
𝐶𝑖′

𝑁−1

𝑖

𝑁−1

𝑖=1

(123) 
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      Under no losses constraints, if, for all stages, Ccharging>Cdischarging, the output 

voltage of the charge pump will be higher than the theoretical output voltage 

vout>N*vin 

   The opposite is also true. If, for all stages, Ccharging<Cdischarging’, the output 

voltage of the charge pump will be lower than the theoretical output voltage 

(Vout<N*Vin). This would be true regardless of losses. That is, even operating the 

charge pump in open-circuit conditions under ideal circumstances, the 

maximum theoretical voltage attainable would never be reached.  

In the previous section, we observed that NMOS present the sought after behavior. 

Their capacitance is higher during charging and smaller while discharging. This is 

probably because during the discharging state, VGS and VGD is 0.3V smaller than 

during the charging state. This potentially shrinks the channel and decreases the 

capacitance.  

Between the two available options, LVTNFET and Egncap, note that the capacitance of 

LVTNFET during discharging topologies presents, for a voltage range of (0-0.3 V) a 

capacitance several times smaller than Egncap capacitors for the same size. This is to 

be expected for a FDSOI capacitor as compared to a bulk one, given that the  

PMOS transistors will present the opposite effect, what makes them unsuited for 

implementation as fly-capacitors.  

These equations are very cumbersome to operate with, especially given that the 

capacitance might present non-linear relationships with Voltage. However, in 

subsequent sections a numerical analysis in the form of an algorithm is presented that 

can, in well-behaved Capacitance-Voltage curves, be used to extract the values of the 

Capacitances at the operating point of the circuit, and the maximum output voltage that 

can be attained.  

 

6.1.4. Algorithm for the determination of the Thèvenin Voltage and capacitance 

values of voltage dependent capacitors 
 

Let’s assume that we have a charge pump in an open circuit configuration, with no 

losses and no parasitic capacitances. 

Let’s assume, like we have during all our previous derivations, that the input voltage is 

Vin, and the voltage provided by the clock is also Vin.  

The first capacitor, in steady state under no-losses conditions will eventually be 

charged to a voltage Vin during the charging semi-period.  

𝑉𝑐1 = 𝑉𝑖𝑛 =
𝑄

𝐶1
 (124) 

When a commutation takes place, the equivalent DC circuit that capacitor 1 sees is the 

one in Fig.  6.2. 

If we manage to express the value of 𝐶1
′ as a function of V_next (in this case, V_next is 

the voltage 𝑉𝐶2): 

𝐶1
′ = 𝑓(𝑉𝑐2) (125) 
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KVL tells us that: 

−𝑉𝑖𝑛 −
𝑄

𝑓(𝑉𝑐2)
+ 𝑉𝑐2 = 0 (126) 

We can define a function 𝑔(𝑉𝑐2) such that: 

𝑔(𝑉𝑐2) = −𝑉𝑖𝑛 −
𝑄

𝑓(𝑉𝑐2)
+ 𝑉𝑐2 (127) 

If we can find the value of 𝑉𝑐2 that solves the equation: 

𝑔(𝑉𝑐2) = 0 (128) 

We have found the DC operating point of capacitor 2 during its charging semi-period 

(Vc2Q). Having found Vc2, inputting this value in the function 𝑓(𝑉𝐶2 = 𝑉𝐶2𝑄), gives us 

the value of 𝐶1
′ 

𝑓(𝑉𝐶2𝑄) = 𝐶1
′ (129) 

We can now follow the same procedure to obtain the voltage and capacitance values of 

the next stage.  

An approximate algorithm would be: 

1. Set two test benches for the capacitive component under test; one for the 

charging semi-period, and one for the discharging semi-period. 

2. Obtain the curves C(V_next) and C(V_prev) 

3. Extract the data of those curves. 

4. With a curve fitting tool, obtain the best available expression (polynomial, 

logarithmic, exponential…) for those curves. i.e: C(X)=a0*x^n+ a1*x^(n-

1)+...+an 

5. Start with the first stage: 

a. Steady State with no losses 

b. Vc1=Vin 

c. C1=C(V_prev=Vin)  

6. Determine Q1: 

𝑄1 = 𝐶1 ∗ 𝑉𝐶1 = 𝐶1 ∗ 𝑉𝑖𝑛 (130) 

7. Define g(Vc2) 

𝑔(𝑉𝐶2) = −𝑉𝑖𝑛 −
𝑄1

𝐶1
′(𝑉𝐶2)

+ 𝑉𝐶2 (131) 

8. Apply a numerical method to solve for g(Vc2)=0 

9. Once the value of Vc2 is known, solve for C’1 

 𝐶1′ = 𝐶(𝑉𝑛𝑒𝑥𝑡 = 𝑉𝐶2) (132) 

10. Once C’1 is known, solve: 

𝑉𝐶1
′ =

𝑄1

𝐶1
′(𝑉𝐶2)

= 𝑉𝑖𝑛 ∗
𝐶1
𝐶1
′ (133) 

11. Use the value of VC1’ to determine the value of C2: 
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𝐶2 = 𝐶(𝑉𝑝𝑟𝑒𝑣 = 𝑉𝐶1
′ ) (134) 

12. Repeat from step 6, this time setting: 

𝑄2 = 𝐶2 ∗ 𝑉𝐶2 (135) 

Repeat until the Vout stage is reached. This is the Thèvenin Voltage. 

This algorithm also provides a means to obtain the capacitance of the different fly-

capacitors. 

The algorithm can be expanded to include the effect voltage drop due to the presence 

of a load, and the effect of parasitic capacitances.  
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Fig.  6.10: CC-CP Schematic implemented with FDSOI technology. The Back Bias is provided by the output node. In the case of the PMOS transistors, an ideal voltage buffer 

with gain -1 is used (slightly altering the real effects of the circuit). The clocks are implemented with out of phase square-wave generators. 

 



 

 68 

6.2. Exploring the behavior of Low Voltage Threshold FETs as resistive 

switches in an idealized test-bench.  
 

In order to study the behavior of LVTFETs as resistive switches, we follow a procedure 

similar to that of section 6.1. That is, we design a test-bench representative of the 

transistor’s behavior during circuit operation (Fig.  6.11) and perform parametric sweep 

of variables of interest.   

Although we first test each transistor individually, some transistors form resistive pairs. 

That is, intermediate stages present resistive paths comprised of the series 

combination of NMOS and PMOS transistors. Their joint behavior is significant and is 

also explored.  

Once the resistive characteristics of the components have been defined, the 

conclusions extracted are summarized in a design guide. Finally, an example case 3-

stage CC-CP is built with Cadence, using LVTFETs as resistive switches and ideal fly-

capacitors. By using ideal capacitors, the effect of voltage-dependent capacitors can be 

eliminated from the results. The circuit is shown in Fig.  6.10. This circuit is used to 

determine whether the equivalent resistance equations derived in section 5 hold when 

the implementation of the CC-CP is FSOI based.  

6.2.1. LVTFET empirical analysis. Test-Benches and procedures. 
 

   Fig.  6.11 illustrates the test-bench implemented to perform the analysis on the 

resistive characteristics of the transistors. There are two variables of interest or, rather, 

two variables that can be controlled. Since we are considering minimum length 

transistors (30nm), those variables are the width of the transistors, and the back bias. 

These are the variables that will be swept.  

Initially only the width of the different transistors is taken into account. The transistors 

are divided into two categories: PMOS and NMOS. They are then divided according to 

their stage. 

• NMOS 

o Stage 1 (N1) 

o Stage 2 (N2) 

o Stage 3 (N3) 

• PMOS 

o Stage 1 (P1) 

o Stage 2 (P2) 

o Stage 3 (P3) 

The transistors that form resistive pairs are: 

• N2+P1  

• N3 + P2 

Transistors N1 and P3 each operate as sole resistances (see Fig.  6.10). 

For any transistor, VD, VS and VG are different and unique. These values can be 

approximated via the equations below if the expected output voltage is known.  
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𝑉1 =
𝑉𝑖𝑛 + 𝑉2 

3
 

𝑉2 =
3 ∗ 𝑉3 +𝑉𝑖𝑛

5
 

𝑉3 =
5 ∗ 𝑉  + 𝑉𝑖𝑛

7
 

 

  Low High 

V4 Vout - 

V3 (5*V4+Vin)/7 V3+ Vin 

V2 (3*V3+ Vin)/5 V2+ Vin 

V1 (V2+ Vin)/3 V1+ Vin 

 

 

P3   

    

VD V4 

VS V3+ Vin 

VG V3 

 

 

N3    P2   

         

VS V3  VD - 

VD -  VS V2+ Vin 

VG V3+ Vin  VG V2 

 

 

 

 

N2    P1   

         

VS V2  VD - 

VD -  VS V1+ Vin 

VG V2+ Vin  VG V1 

 

N1   

    

VS V1 

VD Vin 

VG V1+ Vin 
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The empty boxes illustrate a priori unknown VD values for the transistor pairs based 

solely on the provided equations. This is because the transistor pairs form a voltage 

divider.  

Knowing that: 

𝑅𝑑𝑠(𝑁3) + 𝑅𝑑𝑠(𝑃2) = 𝑅 

𝑅𝑑𝑠(𝑁2) + 𝑅𝑑𝑠(𝑃1) = 𝑅 

The node VD of each pair of transistors forms a voltage divider and its voltage value 

will depend on the value of the resistances on either side.  

Since initially we do not know what the values of these resistances are, we can 

approximate the value of VD for either case. 

So, for transistor pair N3-P2: 

𝑉𝑑 = 
𝑉𝑠(𝑃2) + 𝑉𝑠(𝑁3)

2
 

And for pair N2-P1: 

𝑉𝑑 = 
𝑉𝑠(𝑃1) + 𝑉𝑠(𝑁2)

2
 

This is especially valid when 𝑅 is low, given that in that case we would expect the 

resistances on either side of node VD to be similar. 

Otherwise it is necessary to decide beforehand an approximate value for the 

resistances on each side and calculate VD more accurately.  

With these considerations in mind, VD, VS and VG are calculated for each transistor 

using the above equations for a value of Vout of 1.2 volts. VB is fixed at -1.2 V for the 

PMOS and 1.2 for the NMOS transistors (the ideal maximum output voltage attainable 

by a 3-stage CC-CP with Vin=0.3 V).  

 

Fig.  6.11: Transistor implemented as a resistance. 
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   A DC parametric sweep of the width of the transistors is made, obtaining the results 

described below, capturing the value of the transistor resistance and threshold voltage.  

   We observe that: 

• NMOS 

Increasing stages imply increasing resistance and threshold voltage for a fixed 

width. This trend is consistent with behavior expected of longer transistors (Fig.  

6.13), where: 

𝑅𝑑𝑠 ∝
1

𝑊(𝑉𝑔𝑠 − 𝑉𝑡ℎ)
 

 when  𝑉𝑑𝑠 ≪ (𝑉𝑔𝑠 − 𝑉𝑡ℎ). 

For each stage, VGS is approximately constant and equal to Vin (in this case, 

0.3 V). However, Vth increases for each stage, potentially due to the body 

effect. Increased width also influences the Vth, causing its increase. 

• PMOS 

 

The results obtained are similar, but evolve in the opposite fashion. For a fixed 

width, resistance decreases with each increasing stage (Fig.  6.14). 

   Fixing a transistor width, and performing a DC sweep of the Back Bias voltage for the 

different stages yields the following Resistance-Back Bias dependence: 

 

Fig.  6.12: Resistance vs Back Bias voltage for different stages (PMOS transistors) 
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Fig.  6.13: Resistance and Vth as a function of width for the NMOS under approximately operating conditions for all stages (N1 corresponding to the NMOS of the first stage and 

so on). 

  

 



 

 73 

 

Fig.  6.14: Resistance and Vth as a function of width for the PMOS under approximately operating conditions for all stages. 
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   From the figure above we see that, under operation conditions, decreasing the absolute 

value of the Back Bias increases the transistors resistance. This is valid for both types of 

transistors. 

   It is also of interest to study jointly the resistance curves of transistor pairs. Fig.  6.15 

depicts, in the same plot, the resistance-width characteristic of transistor pair N2-P1 for a 

fixed Back-Bias. The effective resistance of the equivalent topology these transistors form 

will be the sum of their respective resistances. 

   It can be seen in Fig.  6.15 how both transistors present a similar trend in decreasing 

resistance with increased width, and a given offset separating both of them. In this case, 

transistor N2 presents an overall smaller resistance than transistor P1 for the same width 

values. However, this is not always the case.  

Fig.  6.16 depicts the resistance-width characteristic of transistor pair N3-P2 for a fixed 

Back-Bias. In this case, the NMOS has an overall higher resistance than the PMOS for the 

same width values.  

    

 

Fig.  6.15: Resistance vs Width of transistor pair N2-P1. In green, transistor N2. In purple, transistor P1. 
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Fig.  6.16: Resistance vs Width of transistor pair N3-P2. In pink, transistor N3. In green, transistor P2. 

 

These curves show that, due to the biasing within the CC-CP, in some stages, PMOS 

transistors can exhibit lower resistive values than NMOS, contrary to expectations. 

Because of this phenomenon, optimizing area (choosing the minimum transistor-

combination width possible to reach a given resistance) can be different for each stage. 

And in some stages, it consumes less area to make PMOS transistors more conductive 

than NMOS.  
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6.2.2.  Thèvenin equivalent validation procedure in an implementation with LVTFETs 

as resistive switches.  
 

This section follows the procedures used to determine whether the theoretical analyses 

relating to the Thèvenin equivalent model as presented in previous sections still hold when 

applied to implementations in complex technologies. This section focuses on the effect of 

FDSOI LVTFET.  

This section considers a 3-stage CC-CP, an implementation of which is performed 

considering the follow steps. The results of the implementation can be found at the end of 

this section.  

1. Determine the input resistance/ leakage current of the circuit the charge pump will 

be connected to. 

2. Determine the desired output voltage of the charge pump 

3. Determine the value of the required Thèvenin Resistance of the circuit using the 

voltage divider equation.  

𝑉𝑜𝑢𝑡 = 𝑉𝑡ℎè𝑣𝑒𝑛𝑖𝑛 ∗
𝑅𝑙𝑜𝑎𝑑

𝑅𝑇ℎ + 𝑅𝑙𝑜𝑎𝑑
 

 

If technological parameters are available, consider the effect of the top plate 

parasitic capacitances and assume that the Thèvenin voltage is equal to: 

 

𝑉𝑡ℎè𝑣𝑒𝑛𝑖𝑛 = 𝑉𝑖𝑛 + 3𝑉𝑖𝑛 ∗
𝐶

𝐶 + 𝐶𝑝
 

Otherwise a worst case scenario where the parasitics represent the 20 % of the 

capacitances can be adopted.  

 

4. Solve the equation of the equivalent resistance to obtain the needed switch 

resistances: 

𝑅𝑇ℎ =
7

4
∗
1

𝑓𝐶
∗ coth (

1

2𝑓𝑅𝑠𝑤𝐶
) 

 

𝑅𝑠𝑤 =
𝑇

2𝐶 ∗ coth−1 (
4𝑓𝑅𝑇ℎ𝐶
7 )

 

 

(Note that the switch resistance of transistor N1 must be half this value).  

 

5. Using the equations and tables presented in the previous section, calculate VG, VS 

and VD for all the transistors 

 

6. Perform a parametric sweep of the width of each transistor.  
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7. Choose a width for transistor N1 so that 𝑅𝑑𝑠 =
1

2
𝑅𝑠𝑤. This value is unique under 

operating conditions 

 

8. Choose a width for P3 so that 𝑅𝑑𝑠 = 𝑅𝑠𝑤. This value is unique under operating 

conditions. 

 

9. Choose a  width for transistor N2 and one for transistor P1 so that  

 

𝑅𝑑𝑠(𝑁2) + 𝑅𝑑𝑠(𝑃1) = 𝑅𝑠𝑤 

 

10. Choose a  width for transistor N3 and  one for transistor P2 so that  

 

𝑅𝑑𝑠(𝑁3) + 𝑅𝑑𝑠(𝑃2) = 𝑅𝑠𝑤 

 

11. Steps 10 and 11 can be carried out in such a way that the desired resistance is 

obtained while minimizing the combined width. 

 

12. Set the Charge Pump with the values obtained. Perform a transient analysis in 

open circuit (no load). Note the output voltage. 

 

13. Perform a transient analysis with the load included. Note the output voltage.  

 

14. If the output voltage with the circuit loaded is within acceptable values, the initial 

design is finished. Otherwise, repeat steps 3-14 considering the Thèvenin voltage 

to be that obtained in step 12. 

 

Following the above steps, a first test-design is proposed. A 3-Stage CC-CP, with 𝑉𝑖𝑛 =

0.3 𝑉 and an ideal Vout of 1.2 V. We are designing the circuit so as to have equal 

capacitances and RC time constants for all topologies.  

• Resistive load of 200 kΩ (this value is chosen arbitrarily).  

• Targeted output voltage when loaded of 1.11 V 

• We assume that Back Bias voltage will be 1.10 V, a value slightly smaller than the 

targeted output voltage.  

• Switching frequency of 2 MHz.  

• All capacitances, equal to 500 pF. We use ideal capacitors and very large 

capacitive values to minimize the effect of parasitic capacitances.   

Other that high capacitive values, the rest of parameters are somewhat arbitrarily chosen 

and serve only to showcase the validity of the theoretical and empirical analysis so far 

performed.  
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With these values, we assume the effect of parasitic capacitances negligible. The 

Thèvenin Voltage can then be approximated as the ideal 1.2 V.  

Solving the voltage divider equation, we calculate the equivalent resistance needed to 

operate at 1.11 V.  

𝑉𝑜𝑢𝑡 = 𝑉𝑡ℎè𝑣𝑒𝑛𝑖𝑛 ∗
𝑅𝑙𝑜𝑎𝑑

𝑅𝑇ℎ + 𝑅𝑙𝑜𝑎𝑑
 

𝑅𝑇ℎ = 18.180 𝑘Ω 

With this value, it is possible to determine the required transistor resistances.  

𝑅𝑠𝑤 =
1

2𝑓𝐶 ∗ coth−1 (
4𝑓𝑅𝑇ℎ𝐶
7 )

 

𝑅𝑠𝑤 = 5.180 𝑘Ω 

Which we approximate to 5 kΩ. Note that these values are not intended to be 

representative of real implementations. Rather, the purpose is to show that the models 

hold regardless.  

We now design the transistors so that they exhibit an equivalent On resistance of 5 kΩ. As 

per the previous section: 

• N1 → 2.5 kΩ 

• N2+P1 → 5 kΩ 

• N3+P2 → 5 kΩ 

• P3 → 5 kΩ 

We set test-benches as described in the previous section utilizing the equations for the 

mean voltages and the tables pertaining to each transistor. All values represent mean 

voltage approximations.  

  Low High 

V4 1.11 V - 

V3 0,836 V 1,136 V 

V2 0,561 V 0,861 V 

V1 0,287 V 0,587 V 

 

 

 

 

P3   

    

VD 1.11 V 

VS 1,136 V 

VG 0,836 V 
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N3    P2   

         

VS 0,849 V  VD 0,836 V 

VD 0,861 V  VS 0,849 V 

VG 1,136 V  VG 0,561 V 

 

 

N2    P1   

         

VS 0,574 V  VD 0,561 V 

VD 0,587 V  VS 0,574 V 

VG 0,861 V  VG 0,287 V 

 

N1   

    

VS 0,287 V 

VD 0,3 V 

VG 0,587 V 

 

Where, for the transistor pairs N3-P2 and N2-P1, we have used:  

𝑉𝑑 = 
𝑉𝑠(𝑃) + 𝑉𝑠(𝑁)

2
 

With these values, the test-benches are set and parametric sweeps on the width of the 

transistors are performed, with a constant back bias of 1.1 V. The widths are chosen. 

TABLE XIII summarizes these results. 

  

TABLE XIII: Transistors’ width and resistances 

 

 

The circuit is implemented with the above widths for each transistor and the parameters 

established at the beginning. 

Width (um) Resistance (kΩ) Joint Resistance (kΩ)

N1 2,13 2,498 -

N2 2,9 2,487

P1 3,08 2,506

N3 3,54 3,063

P2 4,23 2,003

P3 2,16 4,994 -

4,993

5,066
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The circuit is then simulated without a load. The transient simulation stabilizes at an output 

voltage of 1.19688 V (Fig.  6.17). This represents a 0.26 % relative error with respect to the 

ideal output voltage of 1.2 V when unloaded. This could be due to the small parasitic 

capacitances introduced by the transistors.  

Introducing the resistive load of 200 kΩ we finally obtain an output voltage of 1.114 V, a 

value slightly above that of the initially desired (Fig.  6.18).  

 

 

Fig.  6.17: Open circuit transient depicting the output voltage  
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Fig.  6.18: Loaded Circuit transient depicting the output voltage. 
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7. Layout design 
 

   After various iterations of how best to start implementing a layout, the structure of an 

inverter is chosen as an initial building block. This allows for a simple, symmetrical design, 

where the inverter layout can be used as a standard-cell. Fig.  7.1shows the schematic 

representation of such and inverter.  

   At this point, it was deemed beneficial to use transistors of equal width for each stage, 

set at 500 nm. This is done to maintain a tightly symmetrical design, trying to avoid 

asymmetries from impacting the interpretation of the results obtained.  

As per the previous figures regarding the on resistance of the transistors, a common 500 

nm width would set the combined resistances of the different stages between 20-40 kΩ. 

 

Fig.  7.1: Schematic representation of the inverter cell. 

 

Fig.  7.2 shows the layout implementation of the inverter, where the gates are shared and 

the drains of both transistors are placed at the left, connected through metal 2 layers.  

   A second inverter is flipped and overlapped onto the previous one, and additional 

connections are made so as to cross-couple the inverters. Other metal layers are added to 

connect with the previous and next stages. Lateral connections are added for the 

capacitors.   
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Fig.  7.2: Left) Inverter Layout. Right) Cross-coupled inverter using a flipped copy of the initial inverter. Added lateral metal layers for connection to the capacitors 
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Each cross-coupled cell represents a stage of the design. Keeping in line with the previous 

experiments and so as not to deviate too much from their results in this new step, a CC-

CP of three stages is implemented (Fig.  7.3). 

 

 

Fig.  7.3: Layout of a 3-stage CC-CP. 

The outmost lateral structures represent the egncap capacitors, with a guard-ring 

connecting their bulk structure to the overall bulk of the die. The transistors are, 

meanwhile, embedded in a triple well that isolates them from the rest of the bulk, thus 

granting the possibility of feeding them a back-bias distinct from the die potential.  

   The overall size of the final structure gives rise to sufficient area so that the capacitors 

can have 2 um of square area. A new set of curves representing the capacitance-voltage 

dependency is needed to evaluate the final results. Fig.  7.4 and Fig.  7.5 depict this 

dependency and establish that the capacitance of the implemented capacitors is expected 

to be between 20 and 40 fF, depending on the stage.  
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Fig.  7.4: Capacitance vs V_prev of a 2 um egncap 

 

Fig.  7.5: Capacitance vs V_next of a 2 um egncap 

 

The layout is finally extracted and implemented within a test-bench. The components of 

the test-bench are: 
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• Ideal clock at 500 MHz frequency. 

• Capacitance load of 6 fF 

These values are chosen to perform simulations in conditions similar to those of previous 

sections, so as to better interpret and compare the results obtained.  

• Resistive load in parallel with the load capacitor of 1.17 MΩ (this is chosen 

retroactively, as it produces an output voltage of approximately 1 V in the 

schematic tests). 

• The Back-Bias is set at |1.1| V with ideal voltage sources.  

   Under these conditions, both the schematic and the layout extraction are simulated. First 

in open circuit configuration and then with the aforementioned load.  

 

7.1. Schematic results, open circuit configuration: 

 

Fig.  7.6: Transient simulation, open circuit, of the schematic. Overview. 

Fig.  7.6 shows the transient simulation of the schematic in open circuit configuration. The 

following figure illustrates the DC operating conditions, representative of the Thèvenin 

Voltage. Some ripple can be appreciated, specially in the form of downward voltage peaks. 

This is probably the result of some clock-overlapping and is the major contributor to ripple 

in this instance such that it can probably be considered an artifact.  

The following table summarizes the results. 

TABLE XIV: Schematic, open circuit results 

Mean Voltage (V) Max Volt Min Volt Ripple 

1,148 V 1,148 1,137 11 mV
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Fig.  7.7: Transient Simulation, schematic, open circuit. Zoomed in steady-state. 

    

7.2. Schematic results, with load: 

 

Fig.  7.8: Transient Simulation, Schematic. Loaded. Overview. 

 

 



 

 88 

 

Fig.  7.9: Transient Simulation, schematic. Loaded. Zoomed. 

 

TABLE XV: Schematic, Loaded. Results 

Mean Voltage (V) Max Volt Mini Volt Ripple 

1,026 V 1,031 1,009 22 mV
 

 

The rise time also increases from approximately 70 ns to approximately 100 ns. 

 

7.3. Layout, open circuit configuration. 
 

The same remarks can be made for the results of the extracted layout simulation regarding 

ripple and voltage peaks. The slight overlapping clock creates downward voltage peaks 

that could potentially be mitigated, offering slightly better result.  

The following table summarizes the results in open circuit configuration.  

 

TABLE XVI: Layout, open circuit. Results 

Mean Voltage (V) Max Volt Mini Volt Ripple 

1,083 V 1,085 1,075 10 mV
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Note how the Thèvenin Voltage (mean voltage) is slightly inferior to that of the schematic 

(the mean voltages are determined through visual inspection of the plots in steady-state). 

∆𝑉𝑇ℎ = 1.14 − 1.08 = 60 𝑚𝑉 

This is probably due to a combination of increased presence of parasitic capacitance at 

the critical nodes and resistive effects in combination with a slightly overlapping clock 

producing some forms of losses. However, the potential effect of clock-overlapping 

requires further study and remains, at this point, an hypothesis.     

 

Fig.  7.10: Transient simulation. Layout, open circuit. Overview. 
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Fig.  7.11: Transient Simulation. Layout, open circuit. Zoomed. 

Note also how the rising time has increased as compared to the unloaded schematic has 

increased from approximately 70 ns to approximately 90 ns.  

 

7.4. Layout, loaded.  

 

Fig.  7.12: Transient Simulation. Layout, loaded. Overview. 
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Fig.  7.13: Transient Simulation. Layout, loaded. Zoomed. 

TABLE XVII: Layout. Loaded. Results. 

Mean Voltage (V) Max Volt Mini Volt Ripple 

914 mV 917 mV 902 mV 15 mV
 

 

The difference between the output mean voltage of the schematic and the layout under 

loaded conditions is approximately: 

∆𝑉𝑜𝑢𝑡 = 1.026 − 0.914 = 112 𝑚𝑉 

Or a 10 % relative error.  

The ripple is, curiously, slightly smaller than that of the schematic, probably because a 

lower output voltage generates a lower output current given a resistive load.  

If we use the Thèvenin model to reverse-engineer the resistance of the circuits: 

𝑉𝑜𝑢𝑡 = 𝑉𝑇ℎ ∗
𝑅𝑙𝑜𝑎𝑑

𝑅𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 + 𝑅𝑙𝑜𝑎𝑑
 

Where the Thèvenin voltage is the mean voltage in open circuit configuration, we obtain: 

𝑅𝑒𝑞𝑆𝑐ℎ𝑒𝑚𝑎𝑡𝑖𝑐 = 139,12 𝑘Ω 

This result coincides fairly well with the theoretical value of the equivalent resistance 

calculated through the CMV method equation: 

𝑅𝑒𝑞 = √𝑅𝑆𝑆𝐿
2 + 𝑅𝐹𝑆𝐿

2 ≈ 135 𝑘Ω 
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Where the values of the capacitances and the switch resistances have been obtained from 

the figures depicting the voltage dependence of egncaps with 2 um^2 area and the figures 

depicting the resistance-width relation of lvtn- and -pfets. 

However, the results of the layout deviate slightly from these values, potentially due to 

increasing resistive (and capacitive) parasitic elements. 

𝑅𝑒𝑞𝐿𝑎𝑦𝑜𝑢𝑡 ≈ 184,90 𝑘Ω 
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8. Conclusions 
 

   Switched-capacitor converters are the preferable alternative to Inductive Power 

Converters in IC design. FDSOI implementations are particularly apt for ultra-low power 

applications. However, the non-linear nature of switched-capacitor converters and the 

complex underlying physical characteristics of charging/discharging capacitors presents a 

variety of modelling challenges. This thesis focuses on the analysis of CC-CP, both from 

an ideal-circuit point of view and real implementations based on FDSOI technology. 

   A discrete-time state-space model is derived. The model is able to encapsulate the non-

linear dynamics of a CC-CP in a linear, time-invariant set of matrices with great accuracy 

as compared to the transient behavior of idealized versions of the circuit and the effect of 

parasitic elements. These results can be achieved at a very low computational cost, 

reducing the simulation time from several minutes to seconds in cases with large 

capacitive values.  

   The dynamic model, as is, lacks some external validity, in the sense that real 

implementations of the circuit would present, as evidenced by section 6, varying values of 

resistive and capacitive components. These variations are not reflected in the original 

model derived, which only considers constant parameters of the exponential terms.  

   These limitations can be solved by a more refined algorithm where the values of the 

resistive and capacitive components are recomputed after each iteration. 

   A steady-state model is also derived, providing equations to determine approximations of 

the mean voltage operation points for each fly-capacitor. These equations can be useful 

during the design phase of the circuit, as they can inform of the biasing conditions of the 

different components during operation. Note, however, that optimization constraints (be 

them for efficiency or area) are not part of this study and might supersede these 

considerations.  

   The steady-state model is fully characterized by a Thèvenin equivalent circuit. The 

Thèvenin voltage is studied under the presence of parasitic capacitances and their effect 

on the maximum attainable voltage of the converter, deriving equations that provide high 

similarity to simulated results.  

   A Thèvenin resistance equation is derived as the linear combination of switched-

capacitors’ equivalent resistance. To validate the equation, it is compared to the results 

provided by pre-existing models (equation ()) and simulations, finding that depending on 

the mode of operation of the circuit (SSL or FSL), the resulting accuracy varies.  

  The Thèvenin equivalent circuit is characterized for a CC-CP with an arbitrary number of 

stages. 

   Regarding purely theoretical analysis, the CC-CP model is finalized with two ripple 

equations, one for each mode of operation (SSL and FSL). Both equations serve as good 

approximations to the ripple observed in transient simulations of the circuit. 

   As for FDSOI implementations of the circuit, empirical analyses are first conducted on 

MOS capacitors to elucidate their behavior as fly-capacitors. We conclude that voltage 

dependent capacitors vary in capacitance as they switch from charging to discharging 
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states. From these qualitative remarks, a theoretical analysis ensues, reaching an 

equation and a numerical algorithm that allows us to predict the effect of voltage 

dependent capacitors on the output voltage as well as the value of the capacitance of each 

fly-capacitor during operation. Difficulty in the design of a test-bench or simulation that can 

capture this effect limits these conclusions, at the moment, to a purely theoretical 

framework.  

   The study of FDSOI components continues with the empirical characterization of 

LVTFET’s behavior as resistive switches, where the influence of transistor width, back bias 

and, specially, stage of the CC-CP in which the transistor is present are remarked in their 

effect on the resistance. An example circuit is built with LVTFET technology, using ideal 

capacitors, to further proof that the ideal models hold when implemented with more 

complex components.  

   Finally, a layout for a 3-stage CC-CP in FDSOI technology, with LVTFETs as resistive 

switches and bulk MOS capacitors as fly-capacitors is designed and its extraction tested 

against its schematic. The chosen design functionality is confirmed, albeit with slight 

performance differences to its schematic counterpart, due to the increased presence of 

parasitic elements.   
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Annexes 

Generalized forms of Dynamic and Steady-State Models (including parasitics) 
 

 

Generalized form of the mean voltage 
 

In essence, these equations state the very fundamental principle of conservation of 

charge. In order for a capacitor to remain at the same voltage during a whole period of 

operation, the following equation must hold: 

∆𝑉 ∗ 𝐶 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 = 0 (31) 

In a generalized model, with each capacitor having different capacitance values than the 

rest, the relation between voltage and charge is not the same. That is, the change in 

voltage of Capacitor Ci is only equal to that of Capacitor Ci+1 for a given amount of charge 

only if their capacitances are the same. 

 

 

𝑉1 =
𝑎𝑉2 + 𝑉𝑖𝑛(1 − 𝑎)

(1 + 𝑎)
 (𝑎. 1) 

 

𝑉2 =
𝑏(1 + 𝑎)𝑉3 + 𝑉𝑖𝑛(2 − 𝑏(1 + 𝑎))

(1 + 𝑏(1 + 𝑎))
 (𝑎. 2) 

 

𝑉3 =
(𝑐(1 + 𝑏(1 + 𝑎)))𝑉 + 𝑉𝑖𝑛 (3 − 𝑐(1 + 𝑏(1 + 𝑎)))

(1 + 𝑐(1 + 𝑏(1 + 𝑎)))
(𝑎. 3) 

 

𝑎 =
𝑐2

𝑐1 + 𝑐2
(𝑎. 4) 

𝑏 =
𝑐3(𝑐2 + 𝑐1)

𝑐1(𝑐3 + 𝑐2)
(𝑎. 5) 

𝑐 =
𝑐4(𝑐2 + 𝑐3)

𝑐2(𝑐3 + 𝑐4)
(𝑎. 6) 
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Dynamic model expansion. Consideration of Inequal Capacitors, Inequal Time 

constants, introduction of parasitic effects.  
 

The dynamics of the CC-CP had been found to be governed by the transfer of charge 

between different capacitors of the circuit. This phenomenon is conveyed by the solutions 

to two differential equations, each pertaining to one of the two potential topologies in which 

the circuit can be divided.   

   Each of these solutions expresses the rate by which charge either enters or leaves a 

capacitor pertaining to that particular topology. These equations are: 

∆Q1 = C1(Vin − V1) (1 − e
−
T
2R1C) (𝑎. 7) 

 

∆Qi = Ceq(Vclki + Vi − Vi+1) (1 − e
−

T
2RiCeq) (𝑎. 8) 

 

Where C1 represents the capacitance of the first capacitor, while Ceq is the series 

combination of capacitances 𝐶𝑖 and 𝐶𝑖+1. 

𝐶𝑒𝑞 = (
1

𝐶𝑖
+
1

𝐶𝑖+1
)
−1

(𝑎. 9) 

 

Since the Dynamic model originally derived contemplated, for the sake of simplicity, equal 

capacitances for each stage of the Charge Pump, the equivalent capacitance of the ith 

stage became, simply, one-half of the capacitance C1. Therefore: 

𝐶𝑒𝑞 =
𝐶1
2

(𝑎. 10) 

 

And equation (a.8) became: 

∆Qi =
𝐶1
2
(Vclki + Vi − Vi+1) (1 − e

−
T
𝑅𝑖𝐶) (𝑎. 11) 

It was thus posible to stablish the following relation regarding the ith and the first 

resistance. If all the ith resistances were equal and resistance 1 was made to be half of 

them, the exponential terms became constants for all the topologies: 

𝑅𝑖 = 𝑅 ∀𝑖 ≠ 1 

𝑅1 =
𝑅

2
 

In this particular case, the term (1 − e−
T

RiC) could be expressed by a single variable: 
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𝑎 = (1 − e−
T
𝑅𝑖𝐶) 

This way, all the model would be fully parametrized by this single variable.  

However, when all capacitances are not equal, the model has to be modified to account for 

this fact.  

Consider the case of inequal capacitances. 

Equation (a.7) remains the same. Equation (a.8) must be modified.  

Consider the charge that capacitor 1 loses as it discharges onto capacitor 2, which will be 

referred to as ∆𝑄12: 

∆𝑄12 = −
𝐶1𝐶2
𝐶1 + 𝐶2 

(Vin + V1 − V2) (1 − e
−
T

𝑅𝑖𝐶12) (𝑎. 11) 

This equation is equal to the one expressing the charge that capacitor 2 gains as it is 

being charged by capacitor 1, with a -1 factor. 

∆𝑄21 = −∆𝑄12 =
𝐶1𝐶2
𝐶1 + 𝐶2 

(Vin + V1 − V2) (1 − e
−
T

𝑅𝑖𝐶12) (𝑎. 12) 

Noting that: 

∆𝑉𝑐1 =
∆𝑄12
𝐶1

= −
𝐶2

𝐶1 + 𝐶2 
(Vin + V1 − V2) (1 − e

−
T

𝑅𝑖𝐶12) (𝑎. 13) 

∆𝑉𝑐2 =
∆𝑄21
𝐶2

=
𝐶1

𝐶1 + 𝐶2 
(Vin + V1 − V2) (1 − e

−
T

𝑅𝑖𝐶12) (𝑎. 14) 

 

It can be seen that, now, ∆𝑉𝑐1 ≠ ∆𝑉𝑐2. These two equations are only equal (in absolute 

value) when 𝐶1 = 𝐶2, otherwise the parameters 
𝐶2

𝐶1+𝐶2 
 and 

𝐶1

𝐶1+𝐶2 
 have to be included in the 

model. 
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Scripts 

Dynamic Model  
 

c1=6e-15 

c2=c1 

c3=c1 

c4=c1 

c5=c1 

c6=c2 

c7=c3 

 

c12=c2/(c1+c2) 

c21=c1/(c1+c2) 

c23=c3/(c2+c3) 

c32=c2/(c2+c3) 

c34=c4/(c3+c4) 

c43=c3/(c3+c4) 

 

c56=c12 

c65=c21 

c67=c23 

c76=c32 

c74=c34 

c47=c43 

 

R=25e3 

 

f=500e6 

T=1/(f) 

 

bout=0 

 

 

%ceq=c1*c2/(c1+c2) 

ceq=(3.3e-15) 

 

a=(1-exp(-1/(f*2*R*ceq))) 

 

%%-------------   Parasitic effects 

cx=6.6e-15 

R1=25e3 

a1=(1-exp(-1/(f*2*R1*cx))) 

%a1=a 

x=1-0.14 

%x=1 

%%------------------ 

 

 

 

 

 

A=[((1-a1)*(1-c12*a)) (c12*a*(1-c23*a))  (a*a*c12*c23) 0 0 0 0; 
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    (a*c21*(1-a1)) (1-a*c23)*(1-a*c21) a*c23*(1-a*c21) 0 0 0 0; 

    0 a*c32*(1-a*c34) (1-a*c32)*(1-a*c34) a*c34*(1-a*c47-bout) 0 0 

a*a*c34*c47; 

    0 a*a*c43*c32 a*c43*(1-a*c32) (1-a*c47-bout)*(1-a*c43-bout) 0 

0 a*c47*(1-a*c43-bout); 

    0 0 0 0 (1-a1)*(1-a*c56) a*c56*(1-a1) 0; 

    0 0 0 a*a*c67*c74 a*c65*(1-a*c67) (1-a*c65)*(1-a*c67) 

a*c67*(1-a*c74); 

    0 0 0 a*c74*(1-a*c76) a*a*c76*c65 a*c76*(1-a*c65) (1-

a*c74)*(1-a*c76)] 

 

B=[a*(1-a*c12)*x-a*a*c12*c23*x-a*c12 0; 

   -a*c23*(1-a*c21)*x+a*a*c21+a*c21*x 0; 

   x*(a*c32*(1-a*c34)+a*a*c34*c47-a*c34); 

   (a*c47*(1-a*c43-bout)+a*a*c43*c32+a*c43)*x; 

   -a*c56*(1-a)*x+a 0; 

   x*(a*c65*(1-a*c67)-a*a*c74*c67-a*c67) 0; 

   x*(-a*c74*(1-a*c76)+a*a*c76*c65+a*c76) 0] 

 

   

C=[0 0 0 1 0 0 0] 

D=[0] 

 

sys = ss(A,B,C,D,T) 

 

 

lsim(sys) 
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Voltage dependent capacitors 
 

E=0.3 

C_vs_V_prev=load('C_vs_V_prev.sfit','-mat') 

 

%v.savedSession.AllFitdevsAndConfigs{1, 1}.Fitdev.Fit 

p=coeffvalues(C_vs_V_prev.savedSession.AllFitdevsAndConfigs{1, 

1}.Fitdev.Fit) 

 

 

c_prev= @(x) p(1)*x^5 + p(2)*x^4 + p(3)*x^3 +p(4)*x^2+p(5)*x+p(6) 

 

 

C_vs_V_next=load('C_vs_V_next.sfit','-mat') 

 

p=coeffvalues(C_vs_V_next.savedSession.AllFitdevsAndConfigs{1, 

1}.Fitdev.Fit) 

 

c_next=@(x) p(1)*x^5 + p(2)*x^4 + p(3)*x^3 +p(4)*x^2+p(5)*x+p(6) 

 

c_charging=zeros(1,4) 

c_discharging=zeros(1,4) 

vc=zeros(1,4) 

vc_e=zeros(1,4) 

vc(1)=E 

c_charging(1)=c_prev(E) 

j=0 

while j<=10 

 

for i=2:4 

    v_next= @(x) -E-(vc(i-1)*(1-0.13)*c_charging(i-1))/c_next(x) 

+x  

    vc(i)=fsolve(v_next,0) 

    c_discharging(i-1)=c_next(vc(i)) 

    Q=c_charging(i-1)*vc(i-1) 

    vc_e(i-1)=(Q/(c_discharging(i-1))+E) 

    c_charging(i)=c_prev(vc_e(i-1)) 

end 

 

cap1=[1 1 1 1]*transpose(c_charging.^-1) 

cap2=[1 1 1]*transpose(c_discharging(:,1:3).^-1) 

 

total_cap=(cap1+cap2)^-1 

     

f=500e6 

 

I=1e-9  

 

Req=(7/4)*(1/(f*total_cap)) 

 

vc(4)=vc(4)-(7/4)*I/(f*total_cap) 
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%% assume initially coth(x) = 1, the disparity between capacitors 

is not significant 

%calculate the new V4 considering losses at the output,  

%introduce the new VC vector, complete the loop, form the error 

formula 

 

vc(3)=vc(4)-E 

 

vc(2)=(3*vc(3)+E)/5 

 

vc(1)=(E+vc(2))/3 

 

j=j+1 

end 
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Netlist Layout Extraction  
 

// Generated for: spectre 

// Generated on: Aug 19 17:34:52 2019 

// Design library name: CHARGEPUMP_EXTR 

// Design cell name: CP_4N 

// Design view name: config 

simulator lang=spectre 

global 0 

parameters delay Vclk_DC period tr pwidth Vin V_bp V_bn Cload 

Rload 

include "/home/kenneth/fdsoi2/corners.scs" 

 

// Library name: CHARGEPUMP 

// Cell name: CC_N_inverters 

// View name: av_extracted 

// Inherited view list: SimMosfetStandard SimCapacitorStandard 

//SimVaractorStandard SimBipolarStandard SimMosfetrfStandard 

//SimMosfetrfSeg SimMosfetAccurate SimResistorAccurate 

SimEsddiodeNova 

//SimEsdmosfetStandard SimEsdmosfetNova SimCapaStd SimCapaAcc 

spectre 

//auCmos_sch cmos_sch cmos.sch ads_schematic schematic auGate_sch 

//auGate.sch extracted ahdl veriloga 

subckt CC_N_inverters_av_extracted bbn bbp cap_ground clk1 clk2 

vin vout 

I2\|I0\|P0 (\33\:net5 \36\:net6 \1\:vout bbp) lvtpfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I2\|I1\|P0 (\10\:net6 net5 \6\:vout bbp) lvtpfet_acc w=5e-07 l=3e-

08 nf=1 \ 

        sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-1 

scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I1\|I0\|P0 (\33\:net11 \36\:net12 \7\:net9 bbp) lvtpfet_acc w=5e-

07 \ 

        l=3e-08 nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 

sca=-1 \ 

        scb=-1 scc=-1 pre_layout_local=0 p_la=0 lpccnr=0 

covpccnr=0 \ 
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        ngcon=1 wrxcnr=0 nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 

swshe=0 \ 

        swrg=1 mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 \ 

        pcpastrx_top=-1 pcpastrx_bot=-1 mx=1 my=1 deltax=0 

deltay=0 

I1\|I1\|P0 (\10\:net12 net11 \12\:net9 bbp) lvtpfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I0\|I0\|P0 (\33\:net17 \36\:net18 \7\:net15 bbp) lvtpfet_acc w=5e-

07 \ 

        l=3e-08 nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 

sca=-1 \ 

        scb=-1 scc=-1 pre_layout_local=0 p_la=0 lpccnr=0 

covpccnr=0 \ 

        ngcon=1 wrxcnr=0 nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 

swshe=0 \ 

        swrg=1 mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 \ 

        pcpastrx_top=-1 pcpastrx_bot=-1 mx=1 my=1 deltax=0 

deltay=0 

I0\|I1\|P0 (\10\:net18 net17 \12\:net15 bbp) lvtpfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I2\|I0\|N0 (\34\:net5 \37\:net6 net9 bbn) lvtnfet_acc w=5e-07 

l=3e-08 nf=1 \ 

        sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-1 

scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I2\|I1\|N0 (\5\:net6 \3\:net5 \6\:net9 bbn) lvtnfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 
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        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I1\|I0\|N0 (\34\:net11 \37\:net12 net15 bbn) lvtnfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I1\|I1\|N0 (\5\:net12 \3\:net11 \6\:net15 bbn) lvtnfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I0\|I0\|N0 (\34\:net17 \37\:net18 \1\:vin bbn) lvtnfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

I0\|I1\|N0 (\5\:net18 \3\:net17 \6\:vin bbn) lvtnfet_acc w=5e-07 

l=3e-08 \ 

        nf=1 sa=76.0n sb=76.0n sd=114n ptwell=0 par=1 sca=-1 scb=-

1 scc=-1 \ 

        pre_layout_local=0 p_la=0 lpccnr=0 covpccnr=0 ngcon=1 

wrxcnr=0 \ 

        nsig_delvto_uo1=0 nsig_delvto_uo2=0 soa=1 swshe=0 swrg=1 \ 

        mismatch=1 m=1 xpos=-1 ypos=-1 plorient=1 plsnf=0 

pcpastrx_top=-1 \ 

        pcpastrx_bot=-1 mx=1 my=1 deltax=0 deltay=0 

    C7 (cap_ground \1\:bbn) capacitor c=2.67569e-17 

    C8 (bbn bbp) capacitor c=8.59546e-16 

    C9 (cap_ground bbp) capacitor c=1.90157e-17 

    C10 (\1\:bbn bbp) capacitor c=9.04988e-17 

    C11 (bbp \32\:net17) capacitor c=5.42586e-17 

    C12 (cap_ground \32\:net17) capacitor c=6.46762e-16 

    C13 (\1\:bbn \32\:net17) capacitor c=8.05578e-16 

    C14 (bbp net17) capacitor c=7.60091e-17 

    C15 (cap_ground \32\:net5) capacitor c=6.73292e-16 

    C16 (\1\:bbn \32\:net5) capacitor c=8.64712e-16 
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    C17 (bbp \32\:net5) capacitor c=2.4248e-16 

    C18 (\950\:bbn net5) capacitor c=1.31016e-18 

    C19 (\32\:net17 \32\:net11) capacitor c=2.95202e-17 

    C20 (bbp \32\:net11) capacitor c=2.24833e-16 

    C21 (\32\:net5 \32\:net11) capacitor c=3.05998e-17 

    C22 (cap_ground \32\:net11) capacitor c=6.49082e-16 

    C23 (\1\:bbn \32\:net11) capacitor c=8.45614e-16 

    C24 (bbp net11) capacitor c=7.22088e-18 

    C25 (\35\:net5 \35\:net11) capacitor c=2.56293e-18 

    C26 (\35\:net17 \35\:net11) capacitor c=2.55919e-18 

    C27 (net5 \27\:net6) capacitor c=2.60057e-16 

    C28 (bbp \27\:net6) capacitor c=2.52856e-16 

    C29 (cap_ground \27\:net6) capacitor c=6.9367e-16 

    C30 (\1\:bbn \27\:net6) capacitor c=8.55613e-16 

    C31 (\32\:net5 \37\:net6) capacitor c=1.89991e-16 

    C32 (\3\:net5 \5\:net6) capacitor c=4.32621e-17 

    C33 (\33\:net5 \36\:net6) capacitor c=4.38836e-17 

    C34 (\33\:net6 \33\:net12) capacitor c=2.41026e-18 

    C35 (\27\:net6 \27\:net12) capacitor c=3.00129e-17 

    C36 (bbp \27\:net12) capacitor c=2.33257e-16 

    C37 (net11 \27\:net12) capacitor c=2.5865e-16 

    C38 (cap_ground \27\:net12) capacitor c=6.69401e-16 

    C39 (\1\:bbn \27\:net12) capacitor c=8.39075e-16 

    C40 (\32\:net11 \37\:net12) capacitor c=1.89985e-16 

    C41 (\3\:net11 \5\:net12) capacitor c=4.38194e-17 

    C42 (\33\:net11 \36\:net12) capacitor c=4.42129e-17 

    C43 (\33\:net12 \33\:net18) capacitor c=2.41026e-18 

    C44 (net17 \27\:net18) capacitor c=2.63514e-16 

    C45 (bbp \27\:net18) capacitor c=8.06981e-17 

    C46 (\27\:net12 \27\:net18) capacitor c=2.96248e-17 

    C47 (cap_ground \27\:net18) capacitor c=6.49881e-16 

    C48 (\1\:bbn \27\:net18) capacitor c=7.82397e-16 

    C49 (\32\:net17 \37\:net18) capacitor c=1.91185e-16 

    C50 (\3\:net17 \5\:net18) capacitor c=4.40474e-17 

    C51 (bbp \36\:net18) capacitor c=4.52604e-17 

    C52 (\33\:net17 \36\:net18) capacitor c=4.39003e-17 

    C53 (\35\:net5 \1\:clk2) capacitor c=1.1431e-15 

    C54 (cap_ground \70\:clk2) capacitor c=8.87739e-17 

    C55 (\35\:net11 \23\:clk2) capacitor c=1.14367e-15 

    C56 (cap_ground \72\:clk2) capacitor c=9.54132e-16 

    C57 (\35\:net17 \45\:clk2) capacitor c=1.14477e-15 

    C58 (\33\:net6 \7\:clk1) capacitor c=1.14136e-15 

    C59 (\33\:net12 \29\:clk1) capacitor c=1.14181e-15 

    C60 (cap_ground \4\:clk1) capacitor c=1.04538e-15 

    C61 (\33\:net18 \51\:clk1) capacitor c=1.14332e-15 

    C62 (\32\:net17 vin) capacitor c=9.43264e-17 

    C63 (bbp vin) capacitor c=7.04837e-19 

    C64 (\27\:net18 vin) capacitor c=8.81872e-17 

    C65 (cap_ground vin) capacitor c=1.65709e-16 

    C66 (\1\:bbn vin) capacitor c=4.5574e-16 

    C67 (bbp vout) capacitor c=6.97454e-17 

    C68 (\32\:net5 vout) capacitor c=7.93798e-17 

    C69 (\27\:net6 vout) capacitor c=8.42335e-17 
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    C70 (cap_ground vout) capacitor c=1.67468e-16 

    C71 (\1\:bbn vout) capacitor c=4.66196e-16 

    C72 (\37\:net12 \6\:net15) capacitor c=3.76139e-17 

    C73 (bbn \6\:net15) capacitor c=3.44818e-17 

    C74 (\3\:net11 \6\:net15) capacitor c=3.69176e-17 

    C75 (cap_ground \6\:net15) capacitor c=4.24668e-18 

    C76 (bbp \12\:net9) capacitor c=8.01792e-17 

    C77 (\32\:net11 \12\:net9) capacitor c=1.15488e-16 

    C78 (\27\:net12 \12\:net9) capacitor c=1.20037e-16 

    C79 (cap_ground \12\:net9) capacitor c=4.4481e-18 

    C80 (bbp net15) capacitor c=1.07858e-17 

    C81 (\32\:net11 net15) capacitor c=8.78914e-17 

    C82 (\27\:net12 net15) capacitor c=8.07508e-17 

    C83 (\1\:bbn net15) capacitor c=2.46464e-17 

    C84 (\3\:net5 \6\:net9) capacitor c=3.69101e-17 

    C85 (\37\:net6 \6\:net9) capacitor c=3.76126e-17 

    C86 (bbn \6\:net9) capacitor c=3.78325e-17 

    C87 (\32\:net5 net9) capacitor c=8.86695e-17 

    C88 (\27\:net6 net9) capacitor c=8.15831e-17 

    C89 (\1\:bbn net9) capacitor c=2.54763e-17 

    C90 (\3\:net17 \6\:vin) capacitor c=3.66319e-17 

    C91 (\37\:net18 \6\:vin) capacitor c=3.73544e-17 

    C92 (net5 \6\:vout) capacitor c=3.72423e-17 

    C93 (\36\:net6 \6\:vout) capacitor c=3.68237e-17 

    C94 (\32\:net17 \12\:net15) capacitor c=1.15555e-16 

    C95 (\27\:net18 \12\:net15) capacitor c=1.20103e-16 

    C96 (bbp \12\:net15) capacitor c=6.35705e-17 

    I6\|C0 (\35\:net5 \1\:clk2 cap_ground) egncap l=2e-06 w=2e-06 

nf=1 \ 

        nrep=1 rsx=50 setres=0 setind=-2 soa=1 m=1 

    I7\|C0 (\35\:net11 \23\:clk2 cap_ground) egncap l=2e-06 w=2e-

06 nf=1 \ 

        nrep=1 rsx=50 setres=0 setind=-2 soa=1 m=1 

    I8\|C0 (\35\:net17 \45\:clk2 cap_ground) egncap l=2e-06 w=2e-

06 nf=1 \ 

        nrep=1 rsx=50 setres=0 setind=-2 soa=1 m=1 

    I3\|C0 (\33\:net6 \7\:clk1 cap_ground) egncap l=2e-06 w=2e-06 

nf=1 \ 

        nrep=1 rsx=50 setres=0 setind=-2 soa=1 m=1 

    I4\|C0 (\33\:net12 \29\:clk1 cap_ground) egncap l=2e-06 w=2e-

06 nf=1 \ 

        nrep=1 rsx=50 setres=0 setind=-2 soa=1 m=1 

    I5\|C0 (\33\:net18 \51\:clk1 cap_ground) egncap l=2e-06 w=2e-

06 nf=1 \ 

        nrep=1 rsx=50 setres=0 setind=-2 soa=1 m=1 

    Rm_3_48 (\34\:net17 net17) resistor r=24734.5 tc1=0 tc2=0 c=0 

    Rm_3_47 (net6 \33\:net6) resistor r=0.7584 tc1=0 tc2=0 c=0 

    Rm_3_46 (\7\:net15 \6\:net15) resistor r=231.757 tc1=0 tc2=0 

c=0 

    Rm_3_45 (\1\:vin \6\:vin) resistor r=8.5802 tc1=0 tc2=0 c=0 

    Rm_3_40 (\32\:net17 \34\:net17) resistor r=30.584 tc1=0 tc2=0 

c=0 
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    Rm_3_39 (\33\:net6 \27\:net6) resistor r=6.6078 tc1=0 tc2=0 

c=0 

    Rm_3_38 (\33\:net18 \27\:net18) resistor r=6.8587 tc1=0 tc2=0 

c=0 

    Rm_3_37 (\7\:clk1 \2\:clk1) resistor r=0.5295 tc1=0 tc2=0 c=0 

    Rm_2_48 (\34\:net17 \3\:net17) resistor r=6010.4 tc1=0 tc2=0 

c=0 

    Rm_2_47 (\10\:net12 \37\:net12) resistor r=27485.1 tc1=0 tc2=0 

c=0 

    Rm_2_46 (\12\:net15 \6\:net15) resistor r=231.757 tc1=0 tc2=0 

c=0 

    Rm_2_45 (\6\:vin vin) resistor r=59.902 tc1=0 tc2=0 c=0 

    Rm_2_40 (\32\:net17 \3\:net17) resistor r=234.371 tc1=0 tc2=0 

c=0 

    Rm_2_39 (\27\:net6 \37\:net6) resistor r=962.341 tc1=0 tc2=0 

c=0 

    Rm_2_38 (\27\:net18 \37\:net18) resistor r=962.341 tc1=0 tc2=0 

c=0 

    Rm_2_37 (\29\:clk1 \4\:clk1) resistor r=0.5295 tc1=0 tc2=0 c=0 

    Rl14 (net17 \3\:net17) resistor r=476.044 tc1=0 tc2=0 c=0 

    Rl13 (\37\:net12 \36\:net12) resistor r=472.566 tc1=0 tc2=0 

c=0 

    Rl5 (net15 \6\:net15) resistor r=8.2933 tc1=0 tc2=0 c=0 

    Rl15 (\1\:vin vin) resistor r=59.902 tc1=0 tc2=0 c=0 

    Rl6 (\34\:net5 \32\:net5) resistor r=30.584 tc1=0 tc2=0 c=0 

    Rl8 (\27\:net6 \10\:net6) resistor r=30.5967 tc1=0 tc2=0 c=0 

    Rl7 (\27\:net18 \10\:net18) resistor r=30.5967 tc1=0 tc2=0 c=0 

    Rl1 (\4\:clk1 \6\:clk1) resistor r=0.9976 tc1=0 tc2=0 c=0 

    Rk_1_215 (\34\:net5 net5) resistor r=24734.5 tc1=0 tc2=0 c=0 

    Rk_1_218 (\10\:net12 \36\:net12) resistor r=7905.41 tc1=0 

tc2=0 c=0 

    Rk_1_203 (\7\:net9 \12\:net9) resistor r=8.2912 tc1=0 tc2=0 

c=0 

    Rk_1_206 (\950\:bbn \507\:bbn) resistor r=10.5599 tc1=0 tc2=0 

c=0 

    Rk_1_209 (\32\:net5 \33\:net5) resistor r=30.0324 tc1=0 tc2=0 

c=0 

    Rk_1_212 (\27\:net6 \5\:net6) resistor r=29.9812 tc1=0 tc2=0 

c=0 

    Rk_1_64 (\27\:net18 \5\:net18) resistor r=29.9812 tc1=0 tc2=0 

c=0 

    Rk_1_67 (\6\:clk1 \51\:clk1) resistor r=0.5295 tc1=0 tc2=0 c=0 

    Rk191 (\34\:net5 \3\:net5) resistor r=6010.4 tc1=0 tc2=0 c=0 

    Rk16 (net12 \33\:net12) resistor r=0.7583 tc1=0 tc2=0 c=0 

    Rk17 (\7\:net9 net9) resistor r=233.377 tc1=0 tc2=0 c=0 

    Rk18 (\507\:bbn bbn) resistor r=280.861 tc1=0 tc2=0 c=0 

    Rk19 (\32\:net5 net5) resistor r=964.506 tc1=0 tc2=0 c=0 

    Rk20 (\27\:net6 \36\:net6) resistor r=276.794 tc1=0 tc2=0 c=0 

    Rk21 (\27\:net18 \36\:net18) resistor r=276.794 tc1=0 tc2=0 

c=0 

    Rk22 (\2\:clk1 clk1) resistor r=0.6966 tc1=0 tc2=0 c=0 

    Rj29 (net5 \3\:net5) resistor r=476.044 tc1=0 tc2=0 c=0 



 

 108 

    Rj30 (\10\:net18 \37\:net18) resistor r=27485.1 tc1=0 tc2=0 

c=0 

    Rj31 (\12\:net9 net9) resistor r=233.377 tc1=0 tc2=0 c=0 

    Rj4 (\950\:bbn bbn) resistor r=1212.01 tc1=0 tc2=0 c=0 

    Rj5 (\32\:net5 \35\:net5) resistor r=4.2343 tc1=0 tc2=0 c=0 

    Rj6 (\27\:net6 net6) resistor r=4.7215 tc1=0 tc2=0 c=0 

    Rj41 (\27\:net18 net18) resistor r=4.9009 tc1=0 tc2=0 c=0 

    Rj38 (\4\:clk1 clk1) resistor r=0.3011 tc1=0 tc2=0 c=0 

    Ri10 (\34\:net11 net11) resistor r=24734.5 tc1=0 tc2=0 c=0 

    Ri3 (\37\:net18 \36\:net18) resistor r=472.566 tc1=0 tc2=0 c=0 

    Ri20 (\7\:net9 \6\:net9) resistor r=233.377 tc1=0 tc2=0 c=0 

    Ri1 (bbn \1\:bbn) resistor r=0.5847 tc1=0 tc2=0 c=0 

    Ri2 (\32\:net5 \3\:net5) resistor r=234.371 tc1=0 tc2=0 c=0 

    Ri21 (\33\:net12 \27\:net12) resistor r=6.6215 tc1=0 tc2=0 c=0 

    Ri4 (\1\:clk2 \70\:clk2) resistor r=0.5296 tc1=0 tc2=0 c=0 

    Rv_11 (\34\:net11 \3\:net11) resistor r=6010.4 tc1=0 tc2=0 c=0 

    Rv_12 (\10\:net18 \36\:net18) resistor r=7905.41 tc1=0 tc2=0 

c=0 

    Rv_13 (\12\:net9 \6\:net9) resistor r=233.377 tc1=0 tc2=0 c=0 

    Rv_14 (\507\:bbn \1\:bbn) resistor r=1.2968 tc1=0 tc2=0 c=0 

    Rv_15 (\34\:net11 \32\:net11) resistor r=30.584 tc1=0 tc2=0 

c=0 

    Rv_16 (\27\:net12 \37\:net12) resistor r=962.341 tc1=0 tc2=0 

c=0 

    Rv_17 (\23\:clk2 \72\:clk2) resistor r=0.5296 tc1=0 tc2=0 c=0 

    Rv_21 (net11 \3\:net11) resistor r=476.044 tc1=0 tc2=0 c=0 

    Rv_22 (net18 \33\:net18) resistor r=0.7565 tc1=0 tc2=0 c=0 

    Rv_23 (net9 \6\:net9) resistor r=8.2912 tc1=0 tc2=0 c=0 

    Rv_24 (\950\:bbn \1\:bbn) resistor r=1.0562 tc1=0 tc2=0 c=0 

    Rv_25 (\32\:net11 net11) resistor r=964.506 tc1=0 tc2=0 c=0 

    Rv_26 (\27\:net12 \10\:net12) resistor r=30.5967 tc1=0 tc2=0 

c=0 

    Rv_27 (\72\:clk2 \74\:clk2) resistor r=0.9966 tc1=0 tc2=0 c=0 

    Rv_31 (\10\:net6 \37\:net6) resistor r=27485.1 tc1=0 tc2=0 c=0 

    Rv_32 (\7\:net15 \12\:net15) resistor r=8.2933 tc1=0 tc2=0 c=0 

    Rv_33 (\1\:vout \6\:vout) resistor r=8.5736 tc1=0 tc2=0 c=0 

    Rv_34 (\35\:net17 \32\:net17) resistor r=4.327 tc1=0 tc2=0 c=0 

    Rv_35 (\32\:net11 \33\:net11) resistor r=30.0324 tc1=0 tc2=0 

c=0 

    Rv_36 (\27\:net12 \5\:net12) resistor r=29.9812 tc1=0 tc2=0 

c=0 

    Rv_37 (\45\:clk2 \74\:clk2) resistor r=0.5296 tc1=0 tc2=0 c=0 

    Rv_433 (\37\:net6 \36\:net6) resistor r=472.566 tc1=0 tc2=0 

c=0 

    Rv_434 (\7\:net15 net15) resistor r=231.757 tc1=0 tc2=0 c=0 

    Rv_435 (\6\:vout vout) resistor r=60.5543 tc1=0 tc2=0 c=0 

    Rv_436 (\32\:net17 net17) resistor r=964.506 tc1=0 tc2=0 c=0 

    Rv_425 (\32\:net11 \35\:net11) resistor r=4.2063 tc1=0 tc2=0 

c=0 

    Rv_426 (\27\:net12 net12) resistor r=4.7314 tc1=0 tc2=0 c=0 

    Rv_427 (\70\:clk2 clk2) resistor r=0.7249 tc1=0 tc2=0 c=0 

    Rv_533 (\10\:net6 \36\:net6) resistor r=7905.41 tc1=0 tc2=0 

c=0 
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    Rv_534 (\12\:net15 net15) resistor r=231.757 tc1=0 tc2=0 c=0 

    Rv_535 (\1\:vout vout) resistor r=60.5543 tc1=0 tc2=0 c=0 

    Rv_536 (\32\:net17 \33\:net17) resistor r=30.0324 tc1=0 tc2=0 

c=0 

    Rv_525 (\32\:net11 \3\:net11) resistor r=234.371 tc1=0 tc2=0 

c=0 

    Rv_526 (\27\:net12 \36\:net12) resistor r=276.794 tc1=0 tc2=0 

c=0 

    Rv_527 (\72\:clk2 clk2) resistor r=0.2714 tc1=0 tc2=0 c=0 

ends CC_N_inverters_av_extracted 

// End of subcircuit definition. 

 

// Library name: CHARGEPUMP_EXTR 

// Cell name: CP_4N 

// View name: schematic 

// Inherited view list: SimMosfetStandard SimCapacitorStandard 

// SimVaractorStandard SimBipolarStandard SimMosfetrfStandard 

// SimMosfetrfSeg SimMosfetAccurate SimResistorAccurate 

SimEsddiodeNova 

// SimEsdmosfetStandard SimEsdmosfetNova SimCapaStd SimCapaAcc 

spectre 

// auCmos_sch cmos_sch cmos.sch ads_schematic schematic auGate_sch 

// auGate.sch extracted ahdl veriloga 

I0 (net3 net2 0 net5 net4 net7 net6) CC_N_inverters_av_extracted 

Clk2 (net4 0) vsource type=pulse delay=delay val0=0 val1=Vclk_DC \ 

        period=period rise=tr fall=tr width=pwidth 

Clk1 (net5 0) vsource type=pulse delay=0 val0=0 val1=Vclk_DC 

period=period \ 

        rise=tr fall=tr width=pwidth 

V2 (net7 0) vsource dc=Vin type=dc 

V1 (net2 0) vsource dc=V_bp type=dc 

V0 (net3 0) vsource dc=V_bn type=dc 

C0 (net6 0) capacitor c=Cload 

R0 (net6 0) resistor r=Rload 

simulatorOptions options reltol=1e-3 vabstol=1e-6 iabstol=1e-12 

temp=27 \ 

    tnom=25 scalem=1.0 scale=1.0 gmin=1e-12 rforce=1 maxnotes=5 

maxwarns=5 \ 

    digits=5 cols=80 pivrel=1e-3 sensfile="../psf/sens.output" \ 

    dochecklimit=no checklimitdest=both  

modelParameter info what=models where=rawfile 

element info what=inst where=rawfile 

outputParameter info what=output where=rawfile 

designParamVals info what=parameters where=rawfile 

primitives info what=primitives where=rawfile 

subckts info what=subckts where=rawfile 

saveOptions options save=allpub subcktprobelvl=2 
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