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Abstract 

Automated Guided Vehicles are a vital part of the future intelligent manufacturing processes. In 

order to make the better profit, it is important to study if deadlocks can occur and how to tackle 

them. In this project we demonstrate how Petri Net models, which are perfect for representing 

deadlocks, can be mapped in the simulation software FlexSim. Eventually, we are using this 

software in order to evaluate different study cases with deadlocks. 
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1. Structure 

The motivation for the existence of this project is addressed in this section, marking the main 

points and structure of the memory, with the intention of fixing a clear, concise and ordered 

system to pursue its goals and expectations. 

 

1.1. Objectives 

Deadlocks are an important issue to be addressed in complex applications as flexible 

manufacturing systems, since they might result in system failures or blocking. The solution for 

deadlocks is far from being general, as each case has different optimal solutions. In order to 

study these situations, Petri Nets and simulation software are used together to analyze and try 

to find solutions to this problem. 

The main goal of this project is to analyze and propose solutions to the deadlock problem using 

the FlexSim simulation software using AGV networks as the target system of the analysis.   

Additionally, one secondary objective that is addressed in this document is the observation of 

parallelisms between FlexSim and Arena (other simulation software that is currently used in 

ESEIAAT), with the use of Petri Nets. 

 

1.2. Scope 

The scope of this master thesis is established in this section: 

- Studying the FlexSim simulation software by the study of simple AGV networks which 

present deadlocks. 

- Proposal of a solution for deadlocks which does not need to be the optimal one for each 

presented AGV network. 

- Mapping the typical characteristics exhibited by the activities in a dynamic event-driven 

system. 

 

1.3. Requirements 

The requirements of the master thesis are: 

- The work effort for this project is 300 man-hours (12 ECTS, being 25 h for each ECTS) 

- Used simulation software version are: 

o FlexSim 2018 for Education 

o PIPE v.4.3 

- The proposed solution for AGV networks must be applicable within the limits of FlexSim 

capabilities. 

- All activities in a dynamic event-driven system must be described for FlexSim. 
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1.4. Usefulness 

The main utility of this project is the final overview of the capacity for FlexSim to solve deadlocks 

in simple AGV networks. 

Other outcome for this project is to validate the use of FlexSim as an alternative for Arena 

simulation software and assess its substitutability as a teaching software for ESEIAAT. 
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2. Automated Guided Vehicles 

AGV corresponds to the acronym for automated guided vehicle, which is a portable robot that 

moves automatically with no need of having a driver. These systems help automate material 

handling even if the throughput does not warrant fixed path conveyors. These systems are 

suitable for short or medium distances moves, improving response time for material movement. 

They are efficient, dependable, and versatile material handling solution. Nowadays they are 

considered autonomous intelligent robots, so they are a vital part of the future Industry 4.0 

processes. 

 

Figure 1. Automated Guided Vehicle handling material (source: http://ca.wikipedia.org) 

Traditional AGVs use defined and previously programmed movements inside the installations. 

These carry out certain degree of difficulty if the route of a vehicle wants to be changed as the 

infrastructure is fixed. Recently, more flexible and intelligent vehicles have been created along 

algorithms that make decisions in non-familiar situations to avoid, for example, deadlocks. 

In fact, this new generation of intelligent AGVs can solve one of the main problems: their 

response to unexpected situations. They can have a PLC incorporated to accomplish that 

function. This independent navigation systems might also imply that the plant manager might 

not need to change the environment of the plant [1]. 

These vehicles are flexible, since they can be relocated and their route can easily be remapped; 

accurate, as each detail of material handling can be tracked and efficient; safe, because they can 

operate in environments that might be hazardous for people and productive, as they can work 

24 hours a day. 

Much has been made lately about AGVs replacing people in the workplace and what that means 

for society and the economy. This is true in some cases, but it is also true that these vehicles will 

do work that people cannot or will not do. In these cases they are a win-win solution for 

everyone, because their work must be monitored, adjusted or completed by human workers 

who are employed to do it. This is just the start of seeing what AGVs are capable of doing in the 

workplace [2]. 
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3. Deadlocks 

A deadlock can be defined as a situation where one or more concurrent processes in a system 

are blocked forever because the requests for resources by the processes can never be satisfied. 

Deadlocks result from decentralized planning, which is the only realistic mode to govern large-

scale logistic systems with highly dynamic interactions and no-detailed knowledge about future 

events [3]. Deadlocks have no global solution, so they are studied for each specific case. 

An easy example is the classical problems of an intersection of two 2-way roads, with a car 

arriving from each lane, as it is seen in Figure 2. If the rule applied is the conventional “right car 

has priority over anyone”, a deadlock occurs. None of the cars can pass, unless at least one of 

them is removed or moves backwards. 

 

Figure 2. Deadlock of a road intersection 

In a typical Flexible Manufacturing Process, raw parts of various types enter the system at 

discrete points of time and are processed concurrently, sharing a limited number of resources 

such as machines, robots, material handling system, fixtures and buffers. In such resource-

sharing systems, deadlocks constitute a major issue to be addressed at the design and operation 

phases. This is a highly undesirable situation in which each of a set of two or more jobs keeps 

waiting indefinitely for the other jobs in the set to release resources. Both the lost production 

and the labor cost in resetting the system, meanwhile clearing the deadlock manually, can be 

avoided by proper design and careful operation [4].  

 

3.1. Deadlock characterization 

As it has been seen in the previous section, deadlocks problems must be dealt, and therefore it 

is important to characterize them, looking more closely to its features.  

A deadlock situation can arise if the following four conditions take place simultaneously in a 

system. In fact, all deadlocks must present the existence of these conditions [5]: 

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, 

only one process at a time can use the resource. If another process requests that 

resource, the requesting process must be delayed until the resource has been released. 

For example: People do queues in the supermarket at the shop clerk, since the 

supermarket’s worker cannot attend several people at once. It is not a sharable 

resource. 
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2. Hold and wait. A process must be holding at least one resource and waiting to acquire 

additional resources that are currently being held by other processes. 

For example: The people in the supermarket’s queue are still using their shopping carts 

and trolleys. They will not release this resource until they can “use” the shop clerk. 

 

3. No preemption. Resources cannot be preempted; that is, a resource can be released 

only voluntarily by the process holding it, after that process has completed its task. 

 

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting 

for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is waiting for a 

resource held by Pn, and Pn is waiting for a resource held by P0. 

 

3.2. Deadlocks in AGV systems 

Deadlock problems have been attracting intensive research efforts in the design of automated 

manufacturing systems in which AGVs are used in the material handling systems and recent 

years have witnessed increasing research attention on solving deadlock problems for the AGV 

systems at Automated Container Terminals [6].  

 

Figure 3. Automated operations at the Port of Hamburg (source: http://www.joc.com) 

Firstly, it is important to characterize specifically the deadlocks for these systems. Note that the 

first three conditions mentioned in section 3.1 are always true for an AGV system. Resources are 

the zones of the path and the processes are the AGVs movement: 

1. Mutual exclusion: A zone cannot have two vehicles in it at the same time (collision) 

2. Hold and wait: Each vehicle has to be located within a determined time and waiting to 

move into a next zone. 

3. No preemption: The vehicle cannot disappear suddenly from the system. 

Therefore, the only avoidable condition is the circular wait. This situation can occur in this AGVs 

environment, depending on the control logic of the system, as various vehicles tend to share 
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lanes along this system. Because of this condition, deadlock prediction must focus on this fact in 

order to prevent an imminent problem [7].  

The most common kinds of deadlock in AGV systems are explained with some examples in 

section 6. However, before seeing the examples it is highly recommended to see how Petri Nets 

work in order to understand the development and solution. 

 

3.3. Deadlock handling 

Now that the basics of deadlocks have been exposed, they must be controlled anyhow in order 

to avoid them. Deadlocks can be handled in three ways [8]:  

 Deadlock prevention: Ensures that at least one of the four necessary conditions 

characteristics explained in section 3.1 does not occur. Most approaches work by 

preventing the last condition of circular wait, and in fact, it is the only preventable 

condition in AGV systems. 

 

 Deadlock avoidance: Examines the system’s date dynamically and avoids deadlock 

states 

 

 Deadlock detection and recovery: Allows the system to enter into deadlock state and 

then recovering from deadlock 

 

 

3.3.1. Deadlock prevention 

The simplest way to avoid deadlocks is to use systems where any of the characteristics explained 

in section 3.1. Using this limits ensure that deadlocks will never happen. Nevertheless, possible 

side effects of preventing deadlocks by this method are low device utilization or reduced system 

throughput.  

As it has been mentioned, only the fourth and final condition for deadlocks can be preventable. 

This one is the circular-wait condition. One way to ensure that this condition never holds is to 

impose a total ordering of all resources types and to require that each process requests 

resources in an increasing order of enumeration [9].  

In order to see if the system deadlocks are prevented, a reachability graph must be used. This 

representation corresponds to a finite graph that represent all states that can be reached from 

the initial state. 
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Figure 4. Example of a reachability graph 

However, this clearly harms the flexible manufacturing process as the system becomes static 

because of the policies needed to prevent this deadlock. This is known to result in poor resource 

utilization. Additionally, the reachability analysis technique to arrive at deadlock prevention 

policies can become infeasible if the state space is very large. [4] 

 

3.3.2. Deadlock avoidance 

As a consequence of the previous sections, the usage of alternative methods is preferred for 

AGV systems. In deadlock avoidance, falsifying one or more of the necessary conditions 

dynamically is attempted by current state and possible future situations tracking. The idea is to 

let the necessary conditions prevail as long as they do not cause a deadlock but falsify them as 

soon as a deadlock becomes a possibility in the immediate feature. This leads to better resource 

utilization and that is vital for industrial processes [4]. 

AGV are expensive resources and because of that, the total downtime for the system must be 

minimized yet optimizing the resource utilization. Hence, a prediction-avoidance strategy is 

better, since the strategy makes sure that no deadlocks occur, resulting in better operations and 

higher throughput. 

In order to avoid deadlocks, with the knowledge of the complete sequence of requests and 

releases for each process, the system can decide for each request whether or not the process 

should wait in order to avoid a possible future deadlock. The various algorithms that use this 

approach differ in the amount and the type of required information [9]. 

 

3.3.3. Deadlock detection and recovery 

If a systems does not employ either a deadlock-prevention or a deadlock-avoidance algorithm 

then a deadlock situation may occur. In this environment, the system may provide and algorithm 

that examines the state of the system to determine whether a deadlock has occurred and other 

algorithm to recover from the deadlock. 

At this point, however, we note that this scheme requires overhead that includes not only the 

run-time costs of performing the maintenance of the necessary information and executing the 

detection algorithm, but also potential losses inherent in recovering from a deadlock. [9] 
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4. Petri Nets 

Petri Nets have established themselves as a powerful modeling formalism in computer science, 

system engineering and many other disciplines. They are a combination of well-defined 

mathematical theory with a graphical representation dynamism of the behavior of systems. The 

theoretic aspect of Petri nets models precisely the system behavior so as to be analyzed while 

the graphical representation enables the visualization of changes in the modeled system and 

simplifies the visualization of these complex systems. This combination is the main reason for 

the huge spread of the usage of Petri Nets. [10] 

4.1. Basics definition 

A Petri net is a particular kind of graphs compounded by three kinds of objects. These are places, 

represented by circles; transitions represented by bars; and directed arcs, which connect the 

first two ones.   

The dynamic nature of the system is represented by the movement of entities, represented as 

dots, through the net. They can be temporal, in that it moves through the system, or permanent 

in that it serves other entities (normally called resources).  

 

Figure 5. Example of a basic Petri Net 

 
 A Petri net is formally defined as a 5-tuple N = (P, T, I, O, M0), where: 

 P = {P1,P2,P3,.....,Pnp} is a finite set of places; 

 T = {T1,T2,T3,.....,Tne} is a finite set of transitions; 

 A = {A1,A2,A3,.....,Ana} is a finite set of arcs that connect places to events and vice 
versa; 

 W: Ai → {1,2,3,....} ∀ Ai is the weight associated with each arc; 

 M0: Pi → {1,2,3,....} ∀ Pi is the initial number of entities in each place (initial 
marking). 

The current location and distribution of entities in a Petri Net is called a marking of the system.  

 

A transition can be fired if each transition input has the required number of entities specified by 
the weight associated with the arc from the place to the transition. Firing the event removes 
entities from the input places and adds entities to the output places. The number of entities 
removed or added equals the weight of the associated arc. [11] 
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4.2. Timed Petri Nets 
Time is a crucial aspect when dealing with dynamic logistics, manufacturing or transportation 
processes, such as AGV systems. Therefore, it is needed to include the notion of time on the 
Petri Nets. The most used model shows the associated time of delay for enabling a transition to 
be fired. 
 
The firing of a transition in a Petri Net corresponds to an event that changes the state of the 
system, it might be result of a verification of a logical condition in the system, as it happens in 
the previous section (immediate transitions) or can be induced by the completion of an activity, 
which naturally takes some amount of time (timed transitions). 

  
Figure 6. Graphical representation of an immediate transition (up) and a timed one (down) 

As a convention, this document will use the PIPE software representation. Black rectangles for 

immediate transitions and white rectangles for timed ones. For sure, this white rectangle needs 

a time function (tf), which specifies the duration of that transition. [11] 

 

4.3. Colored Timed Petri Nets 
In order to increase the simplicity of the Petri Nets system, entities may acquire a value, often 
referred as “color”. By means of this variable, too-big-to-handle nets get simplified very much. 
Additionally, these entities may be object or resources in the modelled systems and have 
attributes that might be not easily represented by a simple point. [12] 
 
For example, in a manufacturing a process, a machine might process both pieces A and pieces 
B, but each piece have their own processing time. If we assign label (or color) “A” and “B”, the 
Petri Net gets much simplified, as it is seen in Figure 7. Now the different processing times are a 
time function, depending on the color of the entity. 

 

Figure 7. Simplification of a timed Petri Net (left) adding labels (colors) to it, resulting in a colored time Petri Net 
(right) 
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5. Mapping Petri Nets to an FlexSim Model 

Once a Petri net conceptual model has been created and validated with the problem owners, it 

is significant to carry the validity and relevance of the model to the executable model. This is 

achieved by the mapping approaches explained below, and finally confirmed by the verification. 

This state-space and causal or flow process logic expressed in the Petri Net must be mapped into 

a model that uses the FlexSim library blocks. It is convenient to use a table to map the Petri Net 

process model and the transition specifications to a FlexSim Model [13]. 

These Petri Net models can be mapped into equivalent FlexSim model code: 

5.1. Sequential execution 

In the Petri Net shown in Figure 8, transition T1 can only be fired after the firing of T0. This Petri 

net construct models the sequential relationship between activities. The place/timed transition 

pair can be coded in FlexSim using the Delay activity. 

 

Figure 8. Sequential execution in Petri Net (left) and FlexSim (right) 

5.2. Conflict 

Transitions T0 and T1 are in conflict in this Petri Net: both are enabled, but the firing of either 

one disables the other. This situation will arise, for example, when an AGV must choose in an 

intersection between two different routes. The resulting conflict may be resolved in a non-

deterministic way or in a probabilistic way. This situation where the entity must choose between 

two different transitions can be coded in FlexSim using the Decide activity. And it can be resolved 

in both mentioned ways. 

 

Figure 9. Conflict in Petri Net (left) and FlexSim (right) 

Decide activity can have one or multiple inputs as well as one or multiple outputs. Each output 

has assigned a positive integer number (first option is number 1, second option is number 2… 

etc.) All inputs enter in the activity “Decide” and exits to the assigned output. 

Therefore, in order to solve the conflict either in a deterministic or a probabilistic way will 

depend in the number that is “assigned” to each token, as the number assigned for each output 

is not changeable. 
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To solve it with a deterministic decision, labels (equivalent to colors in a colored Petri Net) can 

be used. This labels can be assigned before the Decide activity or they might exist from previous 

processes.  

 

Figure 10. Example of deterministic decision with FlexSim (label version) 

For example, let’s imagine that depending on the weight of the cargo we will choose one option 

or another (deterministic decision). Concretely, if the cargo weights less than 1000 u, it will exit 

by option 1, otherwise if will exit by option 2. There is an option in FlexSim that allows the user 

to do that, if previously those labels were assigned. 

 

Figure 11. Example of deterministic decision with FlexSim (conditional version) 

Conflict can also be solved probabilistically by means of this system, but adding a statistical 

expression. For instance, in Figure 12, the condition is selected by a normal distribution. There 

are several different statistical distributions as Bernoulli, uniform, Poisson, etc. 

 

Figure 12. Example of probabilistic decision with FlexSim 
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5.3. Concurrency with temporal entities 

In Figure 13, both transitions T1 and T2 are concurrent between them. Concurrency is an 

important attribute of system interactions. So as to create concurrent transitions, there must 

exist a forking transition that deposits a temporal entity in two or more output places.  

This might represent, for example, an AGV that transports two packages in its rack and splits the 

cargo anyhow between two different conveyor belts. The Split activity found in FlexSim deposits 

temporal entities at two (or more) output places. 

 

Figure 13. Concurrency with temporal entities in FlexSim 

 

5.4. Synchronization with temporal entities 

In Figure 14, both places P0 and P1 need to receive an entity in order to T0 to be enabled. 

Synchronization is quite usual in a dynamic system for an event.  

This can be represented, for example, by a situation where two pieces need to be assembled 

before being transported. The existence of two different parts makes no sense from the point 

where they have joined into a sole entity. 

 

Figure 14. Synchronization with temporal entities in FlexSim 
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5.5. Concurrency and synchronization with resources 

The Timed Petri Net that is shown in Figure 15 models a single-queue single-server process. 

This is a classic queuing model where arriving entities (T0) wait at a queue (P0) for the 

resource. When that resource is available (T1) it starts to process the entity. It remains at P1 

until T2 is fired. Resource comes back to P2 and final pieces go to P3. As it can be seen, we 

have a synchronization with the resource (P0-P2-T1) and a concurrency (T2-P2-P3) 

 

Figure 15. Queue-server model Petri Net 

This whole Petri Net can be all simulated using Join and Split activities, as it has been explained 

above. However, because resources are so common in Petri Nets and in order to facilitate a 

rapid and comprehensive view of the scheme (imagine using the same resource for several 

different Petri nets), there are specific activities for them. 

Therefore, Figure 15 can be represented in FlexSim software as it is shown in Figure 16. 

 

Figure 16. Resources activities in FlexSim 

This easy scheme is the basic of using a resource in our manufacturing systems. For example, it 

might signify the usage of an AGV (the resource), and the delay is the time of transportation 

from the source to the destination of the product. 
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6. Deadlock cases 

In this section, a number of deadlock cases where AGVs are involved is presented as examples 

of problems that these vehicle systems may encounter during its usage. These problems are 

used as examples for validating FlexSim as a useful tool to study this situations and to come 

across with a solution for these.  

Each problem will have the same structure: Description of the problem, Petri Net and deadlock 

study, possible solutions, and finally, if needed so as to compare different solutions, the FlexSim 

simulation process flow with the correspondent results and discussion. 

 

6.1. Case I: An AGV and a Machine 

A simple case can be seen in Figure 17. A lone AGV is in charge of carrying raw pieces from the 

load station to the machine which processes them, and also from the machine (when eventually 

processed) to the unload station. If the AGV carries the raw piece while the machine still holds 

the processed piece, there will be a deadlock, as both processes cannot happen at the same 

time: 

1. AGV wants to put the pieces into the machine to process them 

2. Machine wants to put the final pieces in the AGV 

 

Figure 17. Case I: Simple manufacturing system composed by an AGV and a Machine 

 

6.1.1. Place Transition Petri Net Model 
Case shown in Figure 17 can be transformed into a Petri Net. Note that each token has the 

variable “loc (location)” assigned. This is because time for transitions T1 and T5, which 

correspond to the part waiting for the AGV, is variable. It depends on where is the AGV in each 

moment (next to the warehouse, loc = 0; or by the machine, loc = 1). 

 

Figure 18. Case I: Initial marking of Petri Net 
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So as to input this system into the PIPE Petri Net Simulator, in order identify the possible 

deadlocks, it needs to be bounded. Infinite states are reachable due to the constant input of 

parts in the system. One easy way to bind the system is to connect the “Finished Products” with 

the input of the raw parts. This can be translated to: whenever a part has been finished and 

processed, automatically means that a new part comes into the system. We will assume that 2 

pieces are entering the system waiting for being processed. 

The obtained result is shown in Figure 19, where it is pointed that “S10” is a terminal state 

(deadlock).  

 

Figure 19. Case I: Reachability/Coverability Graph obtained by PIPE simulator 

S10 represents the following system state: At some point, a new part arrives into the warehouse 

while the machine is processing another part. The AGV picks up this new part and transports it 

to the machine, where a deadlock happens clearly, because the machine is full and cannot put 

the finished piece on the AGV, and AGV is unable to unload its charge into the machine, causing 

the whole manufacturing process to stop. 

 

Figure 20. Case I: Deadlock situation represented in Petri Net 
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6.1.2. Possible solutions 

There is a clear problem with an independent usage of the AGV and the machine. They must be 

dependable between them in order the system not to get deadlocked.  

This is a very simple case where, if no willing to add more resources (more AGVs or machines), 

there is only a feasible solution.  

The easiest solution is to block the AGV next to the machine until the piece has finished. It makes 

no sense that the AGV searches another piece if the machine is already full. Note that this fact 

simplifies the whole Petri Net, as it is shown in Figure 21. No longer is distinction for the AGV 

location needed. 

There are other possibilities, like a buffer zone next to the machine where the AGV can drop 

temporarily parts, but this means change in resources and it would change the premises of the 

problem. 

 

Figure 21. Case I: Possible solution represented in Petri Net 

 

In order to check that this new system does not originate deadlocks, we can plot again the 

reachability graphic. As it can be seen in Figure 22, there are no end states and is totally cyclic, 

so no deadlock is possible. 

 

Figure 22. Case I: Reachability/Coverability Graph obtained by PIPE simulator for proposed solution 
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6.2. Case II: Intersection deadlock 

Another kind of deadlock is produced when both AGVs during their path want to use the same 

intersection at the same time. 

 

 

Figure 23. Case II: Screenshot of a Cross Lane Deadlock example, represented with FlexSim 

In the example shown in Figure 23, there is a situation where both AGVs meet in an intersection, 

and want to use it at the same time. This situation is tricky, since both want to use the same 

resource at the same time, and if they do they might collide. The navigation system on both 

vehicles will tell themselves to stop, which results in a system where two vehicles are waiting 

for each other to move, but no one can. 

As it can be seen in the picture, it is not as easy as to declare the only point of intersection of 

the roads as the resource, since in the situation shown in the image, the system is completely 

deadlocked. Even that one of the AGVs gets the right to pass, it will hit and probably damage 

the other vehicle. This possible scenario is reflected schematically in the following figure, where 

it is easy to see that vehicles aren’t a single point and, therefore, the resource usage must be 

declared taking AGVs dimensions into account. 

 

Figure 24. Case II: Intersection deadlock and possible collision 
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6.2.1. Place Transition Petri Net Model 
There are several kinds of intersections, yet only one of them are represented in Figure 23. 

However, they all can be generalized in one Petri Net, where the intersection areas are resources 

that must be assigned to one of the AGVs. 

First of all, an example of a deadlocked situation in the Petri Net. The road must be sectored in 

order to become a discrete simulation. Just for putting an example, this will be the different 

sectors: 

 

Figure 25. Case II: Different sectors for the AGV network 

The resulting Petri Net is the following one: 

 

Figure 26. Case II: Initial marking of Petri Net 

In order to identify the possible deadlocks, it needs to be bounded so as to input in PIPE 

Simulator. Infinite states are reachable due to the constant input of parts in the system. One 

easy way to bind the system is to delete T7 and T8 transitions and the End State, and supposing 

that after the intersection it enters again into the system, similar to a loop road. It will be 

assumed that only two AGVs are in the system. 
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The obtained result is shown in Figure 27, where it is pointed that “S4” is a terminal state 

(deadlock). This state corresponds to the situation represented in Figure 28, which is the 

previous state to the AGV crashing. 

 

Figure 27. Case II: Reachability/Coverability Graph obtained by PIPE simulator 

 

Figure 28. Case II: Deadlock represented in Petri Net 

6.2.1. Possible solutions 

The main problem here is the resource allocation, or to be clearer, the different assigned sectors 

in Figure 25. There must be a “safe space” before arriving to the intersection so as the vehicles 

cannot collide, and this is obtainable with an adequate road division. Of course, there are other 

structural solutions that may be not feasible, as widening the separation between the roads or 

changing the intersection system. 

Despite that, the easiest solution is to widen the “Intersection” resource, ensuring that the AGV 

along all its movement will not invade the other vehicle space while waiting. In this way, the 

vehicles shall enter the new zone one by one, and they will not collide between themselves.  
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Note that this solution just subtly changes the Petri Net, but this little change allows the system 

to continue and not to get deadlocked. The fact that the pre-intersection roads are now rideable 

by the specific AGV avoids the possible collisions. New road division and Petri Net are displayed 

below: 

 

Figure 29. Case II: Possible solution, represented in Petri Net, changing the road division to solve deadlocks 

So as to check that this new system does not originate deadlocks, we can plot again the 

reachability graphic. As it can be seen in Figure 30, there are no end states and is totally cyclic, 

so no deadlock is possible. 

 

Figure 30. Case II: Reachability/Coverability Graph obtained by PIPE simulator for proposed solution 

This case demonstrates the importance of planning the whole road network when planning AGV 

transportation. Not only the structure itself, but also the vehicle dimensions (keep in mind that 

the whole ride must be thought with the vehicle and cargo shape, not just a single point), the 

safe space declaration and the correct road division in order to avoid deadlocks and collisions. 
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6.3. Case III: Cyclic deadlock 

The last deadlock, which is the most generic one, is the cyclic deadlock shown with a car example 

in Figure 2. This type of situation happens when there is a chain of vehicles requesting for 

resources (in this case, areas) in such a way that these form a cyclic requesting of them. This is 

very common in AGV systems and probably the most difficult situation to solve taking into 

account the whole system, because cyclic deadlocks occur very frequently.  

 

Figure 31. Case III: Screenshot of an example of cyclic Deadlock, represented with FlexSim 

As it can be seen in Figure 31, all 4 AGVs want to move forward to the destination. For example, 

AGV2 wants to transport the blue box to the output that is called “Blue Items”. In order to do 

that, it needs to use AGV4 area, but AGV4 wants to transport green box to the analogous output 

and that area is occupied by AGV1, and this successively till having a cyclic deadlock. 

Each cyclic deadlock might be solved as the previous case, the “intersection” deadlock. In fact, 

this is just a big intersection that gets collapsed if four vehicles enter the road knot. If any of the 

four vehicles would not have entered the system, this cycle deadlock would have not exist. 

Therefore, for this case, Petri Nets and solutions are analogous to case II. 

However, this is the “easy” solution for this cyclic deadlock. Because these deadlocks usually 

originate from a much bigger problem and road network, this is a naïve solution for just this very 

concrete case. Normally, a complex road of intersections originate very different possible cyclic 

deadlocks, comprising a huge number of different possibilities (from two AGV’s involved to all 

the vehicles in the system). In these cases, deadlocks are usually not prevented because they 

are almost impossible to do so, if we want a profitable system. Normally, they enter into a 

deadlock and manual operators recover the system, or in the best cases, the managerial team 

try to avoid deadlocks. 

An example from the automated port of Singapore is sketched in Figure 32, where a tremendous 

number of intersections can be seen in a simple glance [7]. This is where real cyclic deadlocks 

happen and they are a headache, and this proposed solution is not feasible anymore. 
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Figure 32. Sketch from a part from the Automated Port of Singapore. [7] 

 

6.4. Case IV: Bridge crossing deadlock 

The most basic deadlocks in AGV systems would be when two of the vehicles use the same 

bidirectional lane in opposite directions. An example on this is shown in Figure 33. 

 

Figure 33. Case IV: Screenshot of an example of Bridge Crossing Deadlock, represented with FlexSim 

In this example, AGV1 needs to move cargo from Load1 to Unload1 and analogously for AGV2. 

Eventually, a situation might occur where AGV1 and AGV2 would enter in the same lane from 

opposite sides and the whole system will be blocked. That is because AGV1 wants to access to 

Unload1 and AGV2 wants to access to Unload2, but they cannot also collide neither pass over 

other. Two vehicles that want to move and both vehicles have found that its path has been 

blocked. 
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6.4.1. Place Transition Petri Net Model 
Case shown in Figure 33 can be transformed into a Petri Net, although it is not trivial to define. 

While an AGV covers certain part of the tracks, the other AGV cannot. Ideally every inch of the 

tracks should be a resource, but this is neither helpful nor able to be simulated.   

Therefore, the sketch must be divided in different sections regarding the usage of the path by 

the AGVs. It has been decided to divide the different paths like displayed in Figure 34, where are 

represented with different colors. 

 

Figure 34. Case IV: Different sectors for the AGV network 

Now that each path has been labeled, the Petri Net can be constructed as in Figure 35. 

 

 

Figure 35. Case IV: Initial marking of Petri Net 

In this case, we had to assume that there is just one part waiting for being charged in both load 

stations, and when coming back, is again waiting to be charged so as to represent it in PIPE 

simulator. Figure 36 shows the different possible states in which two different systems terminal 

states can be found (S10 and S11). 
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Figure 36. Case IV: Reachability/Coverability Graph obtained by PIPE simulator 

 

Those deadlocks correspond to the following ones, represented in Figure 37. Note that it is really 

easy to understand imagining two vehicles in one lane bridge. They cannot use it at the same 

time because they are going through it in opposite ways. 

 

Figure 37. Case IV: Deadlocks represented in Petri Net (S10 at the left, S11 at the right) 

 

 

6.4.2. Possible solutions 

The system gets deadlocked if both AGVs are using the middle road at the same time by opposite 

sides. Therefore, this situation must be prevented anyhow.  
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Blocking the middle road by one AGV 

One possible solution is that the first AGV that arrives to the middle road, traps all the resources 

until the vehicle gets off from it. The other AGV, if waiting, must wait until the first one releases 

the resource. New Petri Net is displayed in Figure 38. 

 

Figure 38. Case IV: First proposed solution (blocking the middle road) 

Note that the different sub-paths that had been declared for the middle way do not longer exist. 

This is originated because for the new situation it is non-sense to continue describing the path 

as three different resources since one catches them all up at the same time. The obtained 

reachability graph is shown in Figure 39, which shows that the system is totally cyclic which 

means no deadlocks. 

 

 

Figure 39. Case IV: Reachability/Coverability Graph obtained by PIPE simulator for first proposed solution 
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Switching directions of one AGV (road has one entrance and one exit) 

Other smart solution is to switch directions of one of the AGVs, so that both enter the common 

path by the same entrance and use the same exit. This lets both AGVs use the bridge at the same 

time without deadlocking the system. This case might not apply for all situations in bigger 

systems, since it might be structurally difficult or inconvenient to do so. 

 

Figure 40. Case IV: Second proposed solution (same entrance and exit) 

It is also remarkable that for this solution, there is also other extra one where AGVs are even 

more flexible and can use both routes. This happens because the red/blue paths are free when 

both AGVs are using the middle way. This might increase the productivity of the transport 

system, depending on the cases. 
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Figure 41. Case IV: Reachability/Coverability Graph obtained by PIPE simulator for second proposed solution 

 

6.4.3. FlexSim process simulation flow 

In order to compare both proposed solutions, they need to be simulated in FlexSim to get results 

for different state systems so as to compare them. This one is different from the previous cases, 

as it encounters two different alternatives to prevent deadlocks. 

All previous information (Petri Nets) is used along with the explanation exposed in section 5. All 

four cases and solutions will be simulated. To recapitulate: 

- Original case (possible deadlock) 

- Solution 1 (blocking middle way by only one AGV) 

- Solution 2 (both AGVs use the same entrance and exit, changing the direction of the 

original configuration) 

- Solution 2b (same approach as solution 2, but with a possible improvement in which 

AGVs are flexible and after unloading, decides which cargo get) 

The constructed diagrams are shown as it follows: 
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Original Case (possible deadlock) 

 

Figure 42. Case IV: Process created in FlexSim for the original problem 

 

Solution 1 (blocking middle way by only one AGV) 

 

Figure 43. Case IV: Process created in FlexSim for the first proposed solution: blocking middle road 
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Solution 2 (both AGVs use the same entrance and exit) 

 

Figure 44. Case IV: Process created in FlexSim for the second proposed solution: same entrance and exit 

Solution 2b (both AGVs use the same entrance and exit + flexible AGVs) 

 

Figure 45. Case IV: Process created in FlexSim for the second proposed solution alternative: same entrance and exit 
along with flexible AGVs 
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The selected algorithm for the activity decide: “Which load station to go?” is based on the flow 

diagram that can be found in Figure 46, as well as the program coded below the mentioned 

diagram.  

This procedure has been selected in order to get a higher usage of the AGVs, avoiding them to 

be stopped in the load stations if there is no cargo, or sending various AGVs if one station is 

overloaded.  

Moreover, it uses a FIFO system in case of draw in both stations, which allows us to improve our 

Key Performance Indicator.  

 

Figure 46. Case IV: Flow Diagram for the second alternative solution, in order to the AGV to decide where to go after 
the intersection 

if (getstat(getactivity(processFlow, "WaitingAGV1"), "Content", STAT_CURRENT, current) >= 2 && 

getstat(getactivity(processFlow, "WaitingAGV2"), "Content", STAT_CURRENT, current) >= 2 && 

getlabel((gettoken(current, getactivity(processFlow, "WaitingAGV1"), 1)),"InitialTime") <= 

getlabel((gettoken(current, getactivity(processFlow, "WaitingAGV2"), 1)),"InitialTime")) 

 return 1; 

else if (getstat(getactivity(processFlow, "WaitingAGV2"), "Content", STAT_CURRENT, current) >= 2 && 

getstat(getactivity(processFlow, "WaitingAGV1"), "Content", STAT_CURRENT, current) >= 2 && 

getlabel((gettoken(current, getactivity(processFlow, "WaitingAGV2"), 1)),"InitialTime") <= 

getlabel((gettoken(current, getactivity(processFlow, "WaitingAGV1"), 1)),"InitialTime")) 

 return 2;  

else if (getstat(getactivity(processFlow, "WaitingAGV1"), "Content", STAT_CURRENT, current) >= 2) 

 return 1; 

else if (getstat(getactivity(processFlow, "WaitingAGV2"), "Content", STAT_CURRENT, current) >= 2) 

 return 2; 

else if (getstat(getactivity(processFlow, "Initial State AGV1"), "Input", STAT_CURRENT, current) > 

getstat(getactivity(processFlow, "ArrivalPart1"), "Input", STAT_CURRENT, current)) 

 return 2; 

else if (getstat(getactivity(processFlow, "Initial State AGV2"), "Input", STAT_CURRENT, current) > 

getstat(getactivity(processFlow, "ArrivalPart2"), "Input", STAT_CURRENT, current)) 

 return 1; 

return token.Way; 
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6.4.4. Results and discussion 

Because this is a generic case with no values for each variable (mostly time arrivals and transport 

times), in order to compare some results, we find the need of present different situations to 

evaluate the different solutions. Results might vary differently depending on the different 

variables, and it is very likely that there is no global solution for all situations. 

First of all, it is easy to demonstrate that it is very likely to originate a deadlock in the system. If 

both AGV’s enter to the “bridge” at the same time, the problem occurs in FlexSim and the 

process cannot continue, as it is seen in Figure 47. 

 

Figure 47. Case IV: Deadlock represented in FlexSim 

The different times to declare are, according to Figure 34: 

Table 1. Case IV: Different time concepts and its variable assignation 

Concept Variable Concept Variable Concept Variable 

Arrival 1 tarrival1 Green Path tgreen Arrival 2 tarrival2 

Load 1 tload1 Yellow Path tyellow Load 2 tload2 

Unload 1 tunload1 Pink Path tpink Time Unload 2 tunload2 

Red Path tred1   Blue Path tblue1 

Red Path (back) tred2   Blue Path (back) tblue2 

 

Now, different cases can be presented and studied depending on the different solution systems.  

There are different ways to study how well the transportation system works. For example, the 

utilization of the AGV’s, the time that lasts between the arrival of the piece and its unloading, 

the amount of pieces that have been unloaded, etc.  

The main objective in this problem is to optimize the transportation between the arrival and the 

unloading. Therefore, the only key performance indicator would be the time between the piece 

arriving to the system and its exit, taking into account all possible idle times (AGV is stopped or 

unavailable). 

Subsequently, different times are proposed in order to see which solution might fit the best. 

Scenario 1: Underused system, where arrival times are significantly longer than the vehicle 

operational times. 

tarrival1 = tarrival2 = exp(15) min tred1 = tblue1 = tred2 = tblue2 = 1 min 

tload1 = tunload1 = tload2 = tunload2 = 1 min tgreen= tyellow = tpink = 0,33 min 
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Table 2. Case IV: Results for Scenario 1, simulations for a horizon time = 1 day 

 

Blocking middle way by 
only one AGV 

Both AGVs use the same 
entrance and exit 

Both AGVs use the same entrance 
and exit + flexible AGVs 

Min. Lead Time (min) 4,0 3,3 3,3 

Max. Lead Time (min) 16,2 15,8 15,8 

Avg. Lead Time (min) 5,8 5,2 5,2 

Number of batches 191 191 191 

As it can be driven from these results, if the system is underused, it does not really matter which 

of the three solutions are used, as there is not a high difference between all of them. We get 

better statistics for the flexible AGV system, as expected, but the cost of configuring this system 

may not be worth it economically.  

 

Scenario 2: Slow-driving bridge, where the AGVs cannot drive through the middle way in a fast 

way. 

tarrival1 = tarrival2 = exp(15) min tred1 = tblue1 = tred2 = tblue2 = 1 min 

tload1 = tunload1 = tload2 = tunload2 = 1 min tgreen= tyellow = tpink = 2 min 

 

Table 3. Case IV: Results for Scenario 2, simulations for a horizon time = 1 day 

 

Blocking middle way by 
only one AGV 

Both AGVs use the same 
entrance and exit 

Both AGVs use the same entrance 
and exit + flexible AGVs 

Min. Lead Time (min) 9,0 5,0 5,0 

Max. Lead Time (min) 137,0 86,2 49,2 

Avg. Lead Time (min) 35,8 16,8 13,2 

Number of batches 186 188 189 

Since the middle way is now a bottle-neck resource, it is important to be sharable as possible. 

The main difference from solution 1 to solutions 2 is the usage of the middle way. If the middle 

way is blocked by only one AGV, the resource is not as efficient as if both AGVs could use it. 

 This can be seen in the average lead times, where both solutions where the middle way is used 

by both AGVs are less than half than the first solution. Therefore, if the time that the AGV stays 

in the “bridge” is high, it is advisable to use just one entrance and one exit to improve the 

efficiency of the system. 

 

Scenario 3: Overused system, where arrival times are shorter than the vehicle operational 

times. 

tarrival1 = tarrival2 = exp(5) min tred1 = tblue1 = tred2 = tblue2 = 1 min 

tload1 = tunload1 = tload2 = tunload2 = 1 min tgreen= tyellow = tpink = 0,33 min 
 

Table 4. Case IV: Results for Scenario 3, simulations for a horizon time = 1 day 

 

Blocking middle way by 
only one AGV 

Both AGVs use the same 
entrance and exit 

Both AGVs use the same entrance 
and exit + flexible AGVs 

Min. Lead Time (min) 4,0 3,3 3,3 

Max. Lead Time (min) 103,1 100,1 71,8 

Avg. Lead Time (min) 37,3 36,0 34,9 

Number of batches 551 552 553 



Study for the design of a management system for AGV networks   Page 43 

 

 

 

 

In this case, we can start to see more differences between the three solutions. As it is expected, 

using flexible AGVs improves notoriously the system. This happens because the unload stations 

receive lots of cargo in comparison with the first scenario, and as they are random functions, 

one station might be hugely overloaded while the other one may be empty. The fact that both 

AGVs can work with both unload stations makes the cargo have lower lead times in the system. 

 

Scenario 4: Unbalanced system, where parts “1” arrive faster than parts “2” 

tarrival1 = exp(5) min / tarrival2 = exp(15) min tred1 = tblue1 = tred2 = tblue2 = 1 min 

tload1 = tunload1 = tload2 = tunload2 = 1 min tgreen= tyellow = tpink = 0,33 min 
 

Table 5. Case IV: Results for Scenario 4, simulations for a horizon time = 1 day 

 

Blocking middle way by 
only one AGV 

Both AGVs use the same 
entrance and exit 

Both AGVs use the same entrance 
and exit + flexible AGVs 

Min. Lead Time (min) 4,0 3,3 3,3 

Max. Lead Time (min) 69,8 63,1 38,2 

Avg. Lead Time (min) 22,2 19,9 10,4 

Number of batches 362 362 363 

This scenario demonstrates even a more unbalanced situation, where one unload station 

receives much more cargo than the other. Flexible AGVs are the best solution in this case.  

As it can be seen in Table 5, the average lead time is half than the other two solutions. This 

happens because both AGVs are going to the unload station 1 frequently, as it gets often 

overloaded. In the other situations, the AGV that is waiting in the other station remains idle for 

some time. Additionally, it is shown in Figure 48 than in the long run, the difference between 

the flexible solution and the other ones gets notorious, which partially explains the effort of the 

current industries into get more flexible plants. 

 

Figure 48. Case IV: Accumulated Lead time for the three proposed solutions in Scenario 4 – Unbalanced System 
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6.5. Case V: Shop deadlock 

Shop deadlocks can occur when the vehicles are dispatched carelessly in an overloaded “shop”.  

 

Figure 49. Case V: Screenshot of an example of Shop Deadlock, represented with FlexSim 

In this area, illustrated in Figure 49, both storage areas (“input” and “output”) have a limited 

amount of capacity of nine boxes. If all the storage space is used, AGV1 (Introducer) which 

introduces boxes into the input buffer is waiting for this to be liberated, and AGV2 (Withdrawer) 

cannot withdraw any box from the output place. The painter, which transforms the boxes from 

the input to the output, cannot also liberate any new box neither the box that has already been 

processed, keeping busy the machine. [7] 

6.5.1. Place Transition Petri Net Model 
As all previous cases where there are AGVs and roads involved, the road separation and 

assignation is important to simulate finitely the case. Again, every inch of the tracks should be a 

resource, but this is neither helpful nor able to be simulated.   

Therefore, this case is no different and it must be divided in different sections regarding the 

usage of the path by the AGVs. It has been decided to keep it as simple as possible. As it is seen 

in Figure 50, the road can be divided in the “red path” which corresponds to the input area and 

the “blue path” to the output area.  

 

Figure 50. Case V: Possible different sectors for AGV network 

Now that each path has been labeled, the Petri Net can be constructed. Even that the process 

seems easy, in the previous figure, if the system is analyzed with detail it can be seen that three 

different sub-processes are happening in this simple diagram. The Introducer AGV is in charge 

of loading cargo in the input station, the Withdraw AGW is in charge of unloading the output 

one, and finally the painter paints the cargo. This whole process gives as a result the diagram 

shown in Figure 51. 
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Figure 51. Case V: Initial marking of Petri Net 

As usual, this system is not bounded because of the constant entry of cargo into the system. In 

Moreover, in order to reduce the number of states to get a more visible reachability graph, the 

capacity of the existing unload and load stations will be reduced to 1 each one.  

In order to get the deadlock, will need to cover all possible places with cargo, so 4 pieces will be 

introduced at first (that corresponds to 1 piece for the introducer AGV, 1 piece for the load 

station, other one for the unload station, and finally one being painted). Additionally, when the 

AGV withdrawer gets the piece from the output station, a new piece will become available to be 

painted again. This way, the system gets bounded. 

These changes are represented in Figure 52, marked with the pink color. Even using that 

reduction the PIPE software is not able to represent the whole reachability graph (There are 219 

states with 468 arcs. The graph is too big to be displayed properly). More reduction has to be 

performed, and that is only achievable if we change the problem approach a little bit. 
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Figure 52. Case V: Initial marking of Petri Net, when the problem is bounded and reduced 

The first step could be to reduce the problem grouping some activities in the diagram. Grey 

paths are no longer considered separate activities but just transition times. This makes more 

difficult to see in which state the whole process is in each time, yet it has the advantage of 

making an equivalent diagram that is smaller. 

However, in this case, this equivalency is needed because of the PIPE software limitation in order 

to obtain the reachability graph. If the reduced system gets a deadlock, the original one will 

certainly have also the same phenomena. 

The mentioned step reduces considerably the Petri Net from 16 states (+ 7 resources) to 9 + 7. 

The new studied diagram is located as it follows in Figure 53, along with the correspondent 

reachability graph represented in Figure 54.  

In this last figure, S36 is clearly a deadlocked state, which confirms the suspected problem 

imagined for the initial situation drawn in Figure 49. As predicted, the problem comes when the 

AGV introducer is trying to load cargo for being painted, while the input area is full, the painter 

is being used and the output space is also full. AGV introducer waits the input area to be freed 

somehow, but the AGV withdrawer cannot reach the output area because the introducer is 

blocking it. Therefore, a deadlock is occurring. 
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Figure 53. Case V: Initial marking of reduced Petri Net 

 

 

Figure 54. Case V: Reachability/Coverability Graph obtained by PIPE simulator 
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6.5.2. Possible solutions 

The system gets deadlocked when the system is full (9 boxes in the load station, 9 boxes in the 

unload station and 1 box in the painter) and the first AGV that enters is the introducer. This is 

the only situation where the deadlock can happen, and this situation must therefore be avoided. 

Note there are several structural solutions in this case (which might fit the best). For instance, 

an additional parallel lane for the AGV withdrawer to advance the stuck AGV introducer. Other 

possible solutions are changing the route in a way in which both AGVs do not interact between 

themselves. However, in the scope of this work, no structural solutions can be proposed. 

Before proposing solutions, a little assumption must be made to concrete the problem. Figure 

50 show the studied system in this case, but what exists out of it might influence in the 

capabilities of using one solution or not. All proposed solutions are based on the following 

premises that take place outside the system: 

- There is a space where the AGV Introducer can remain still without blocking the 

Withdrawer  

- There is a space where the AGV Withdrawer can remain still without blocking the 

Introducer  

An example of this system could be this one: 

 

Figure 55. Case V: Example of system outside the painting boundaries 

Here are some possible solutions: 

Input Area Not full 

Let the AGV introducer in if the input area is not full. This happens when the input area contains 

less than 9 boxes. If this is not the case, the AGV introducer shall wait outside until this 

conditional happens. 

System not full 

Let the AGV introducer in if the system has < 19 boxes. The vehicle might occasionally have to 

wait to the painter to finish its job and free one space in the input area, but for sure it will 

eventually happen because the system is not completely full. 
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Try while not blocking 

This approach works the same as the previous one, but if the withdrawer arrives and the 

introducer is idle waiting for the cargo unload, the introducer should exit the system and try 

again later to let the withdrawer do its job. 

Try-and-repeat 

If the input area is full and the AGV introducer is trying to unload boxes, let the AGV introducer 

get out the system and try again later. This means that the vehicle might exit the system with 

the cargo that is needed to be painted and enter again with the same box. 

6.5.3. FlexSim process simulation flow 

So as to compare all proposed solutions FlexSim will be used to get results for different state 

systems as the previous case.  

All previous information (Petri Nets) is used along with the explanation exposed in section 5. All 

five cases and solutions will be simulated. To recapitulate: 

- Original case (possible deadlock) 

- Solution 1 (Input Area not full) 

- Solution 2 (System not full) 

- Solution 3 (Try while not blocking) 

- Solution 4 (Try-and-repeat) 

The constructed diagrams are shown as it follows: 
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Original Case (possible deadlock) 

 

Figure 56. Case V: Process created in FlexSim for the original problem 
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Input Area not full 

 

Figure 57. Case V: Process created in FlexSim for the first proposed solution: input area not full 
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System not full 

 

Figure 58. Case V: Process created in FlexSim for the first proposed solution: system not full 
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Try while not blocking 

 

Figure 59. Case V: Process created in FlexSim for the first proposed solution: try while not blocking 
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Try-and-repeat 

 

Figure 60. Case V: Process created in FlexSim for the first proposed solution: try and repeat 
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6.5.4. Results and discussion 

As the previous case, this problem comes across the same “issue”. As a generic case there are 

no stipulated time values. So, in order to get some results, various cases with different values 

must be studied.  

At first, it is relatively easy to get a deadlock in our system. If the AGV withdrawer is significantly 

slower than the AGV introducer, and there is enough input of unpainted boxes, the deadlock 

can be encountered as it is shown in Figure 61. What this figure shows is the detected deadlock 

from before, where the AGV introducer cannot acquire input space because is full, but the AGV 

withdrawer cannot withdraw any box from the system since the previous vehicle is blocking the 

road. 

 

Figure 61. Case V: Deadlock represented in FlexSim 

The different times to declare can be stipulated to be quite parallel between themselves, as it is 

shown in Figure 62 and summarized in Table 6. Note that the figure is not in scale and the shape 

of the factory is not even represented. 

 

Figure 62. Case V: Different time concepts with the final sectors of the AGV network represented in a diagram 
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Table 6. Case V: Different time concepts and its variable assignation 

AGV Introducer (1) AGV Withdrawer (2) 

Concept Variable Concept Variable 

Load Unpainted Box t1load Unload Painted Box t2unload 
Unload Unpainted Box t1unload Load Painted Box t2load 

Go to intersection t1A Go to intersection t2A 
Go to Input Point t1B Go to Input Point t2B 

Go to Output Point 
(Cross Input Area) 

t1C 
Go to Output Point 
(Cross Input Area) 

t2C 

Cross Output Area t1D Cross Output Area t2D 
Go to starting point t1E Go to starting point t2E 

Painting the box tpaint Painting the box tarrival 

 

As the Bridge crossing deadlock, different ways exist to see the good planning of the whole 

system. For example, the idle time of the AGV’s, or the time that a box is not being used (neither 

painted nor transported). However, the same key performance indicator will be used as the 

previous case, since the better output of this system is to optimize the time that passes from 

when the unpainted box is picked by the AGV introducer and the exiting of the same box but 

painted. 

Even that Figure 49 shows nine boxes in both input and output areas, the simulated scenarios 

will have just space for two boxes. This is done to reach the deadlock situation in a shorter time, 

and to not record unnecessary lead times. 

 

Scenario 1: Underused system, where the arrival of boxes can be assumed by the system 

tarrival = exp(15) min t2unload = t1unload = t1load= t2load =1 min 

t1X, 2X = 1 min for X= A, B, C, D, E tpaint = 1 min 

Boxes in input area = Boxes in output area = 2 

 

 

Table 7. Case V: Results for Scenario 1, simulations for a horizon time = 4 days 

 
Original case Input Area not full System not full 

Try while not 
blocking 

Try-and-repeat 

Min. Lead Time (min) 12,00 12,00 12,00 12,00 12,00 

Max. Lead Time (min) 12,00 12,00 12,00 12,00 12,00 

Avg. Lead Time (min) 12,00 12,00 12,00 12,00 12,00 

Number of batches 365 365 365 365 365 

As it is expected, if the system is way underused, the system will not encounter any deadlock, 

and therefore all deadlock-solving systems are equivalent to the original problem. If this were 

the case, there would be no need to create a deadlock avoidance algorithm although this is not 

recommended since the system become susceptible to any deadlock if there is an unexpected 

alteration. 
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Scenario 2: AGV Withdrawer has a longer path than the Introducer outside the main process 

tarrival = exp(15) min t2unload = t1unload = t1load= t2load =1 min 

t1X = 1 min for X= A, B, C, D, E = t2B,2C,2D 

t2A,2E = 4 min 30 sec  

tpaint = 1 min 

Boxes in input area = Boxes in output area = 2 

 
Table 8. Case V: Results for Scenario 2, simulations for a horizon time = 4 days 

 
Original case Input Area not full System not full 

Try while not 
blocking 

Try-and-repeat 

Min. Lead Time (min) 

Deadlocked at 
box number 14 

19,00 19,00 19,00 19,00 

Max. Lead Time (min) 85,50 85,50 92,50 85,62 

Avg. Lead Time (min) 56,33 56,33 63,49 55,23 

Number of batches 364 364 356 364 

 

In this scenario the first deadlock is encountered. This happens because the AGVs are no longer 

balanced, as the Introducer works at a higher rate than the withdrawer, which originates a bottle 

neck in the input area. This makes the AGV introducer to be blocked in the input road until some 

cargo is liberated, and as a consequence, the times for the “Try while not blocking” system are 

higher than the rest, since the AGV introducer remains still until the other vehicle arrives. 

Even it has been taken into account that the same number of batches were delivered at the end 

of the period, it is bad for the system to have higher lead times for the boxes. Additional boxes 

arriving at higher rate will make the differences between algorithms grow. 

It can also be noted than there are no notorious differences between the other three algorithms, 

so each solution will be appropriate for the system. 

 

Scenario 3: Higher loading and unloading times for a painted box 

tarrival = exp(15) min t1unload = t1load = 1 min 

t1X, 2X = 1 min for X= A, B, C, D, E t2unload = t2load = 4 min 

Boxes in input area = Boxes in output area = 2 

 

tpaint = 1 min 

Table 9. Case V: Results for Scenario 3, simulations for a horizon time = 4 days 

 
Original case Input Area not full System not full 

Try while not 
blocking 

Try-and-repeat 

Min. Lead Time (min) 

Deadlocked 
at box 177 

18,00 18,00 18,00 18,00 

Max. Lead Time (min) 79,00 79,00 86,00 80,00 

Avg. Lead Time (min) 41,40 41,40 46,28 41,11 

Number of batches 364 364 364 364 

 

This is a similar scenario than before, but the higher times correspond to the unload/load 

process of the AGV withdrawer. For the same reason, the “Try while not blocking” is also 

punished to be the worst algorithm. The other solutions are also pretty similar between 

themselves, almost tied. 
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Scenario 4: First realistic case (random times for scenario 3 except for transport)  

tarrival = exp(15) min t1unload = t1load = exp(1) min 

t1X, 2X = 1 min for X= A, B, C, D, E t2unload = t2load = exp(4) min 

Boxes in input area = Boxes in output area = 2 

 

tpaint = exp(1) min 

Table 10. Case V: Results for Scenario 4, simulations for a horizon time = 4 days 

 
Original case Input Area not full System not full 

Try while not 
blocking 

Try-and-repeat 

Min. Lead Time (min) 

Deadlocked 
at box 15 

10,38 10,38 9,10 9,10 

Max. Lead Time (min) 112,42 112,42 115,45 112,72 

Avg. Lead Time (min) 46,61 46,61 49,22 47,51 

Number of batches 363 363 363 363 

 

In order to represent a more real case, exponential distributions have been applied to all times 

except for transport in scenario 3. Even though the times have changed considerably, there is 

no difference in the drawn conclusion. “Try while not blocking” is still the worst algorithm for 

the same reason as the previous scenario. 

 

Scenario 5: Scenario 4 + High painting times 

tarrival = exp(15) min t1unload = t1load = exp(1) min 

t1X, 2X = 1 min for X= A, B, C, D, E t2unload = t2load = exp(4) min 

Boxes in input area = Boxes in output area = 2 

 

tpaint = exp(10) min 

Table 11. Case V: Results for Scenario 5, simulations for a horizon time = 4 days 

 
Original case Input Area not full System not full 

Try while not 
blocking 

Try-and-repeat 

Min. Lead Time (min) 

Deadlocked 
at box 9 

13,13 13,13 12,01 12,01 

Max. Lead Time (min) 143,83 143,24 143,55 145,72 

Avg. Lead Time (min) 63,45 67,70 65,98 64,17 

Number of batches 362 362 359 360 

 

Now that the painting process is high enough, differences can be spotted now from the “System 

not full” algorithm to the “Input Area not full”, being the first the worst of all of them, even that 

the “Try while not blocking”. 

This is because of the high idle time of both AGVs waiting until the painter finishes its work. Even 

that this situation does not originate deadlock, it is not very optimized because the AGV 

Withdrawer could withdraw cargo while the Introducer is waiting for the painter to get a new 

box in order to unload the unpainted box. 

Therefore, no matter what times are proposed for transportation and processes, but “Input Area 

not full” is a better algorithm than “System not full” since it avoids this situation.  
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Scenario 6: Scenario 5 + Longer AGV Paths  

tarrival = exp(15) min t1unload = t1load = exp(1) min 

t1X, 2X = 4 min for X= A, B, C, D, E t2unload = t2load = exp(4) min 

Boxes in input area = Boxes in output area = 2 

 

tpaint = exp(10) min 

Now, with the complete scenario, where optimizing transportation is vital (now it is four minutes 

each track), an unlikely solution is driven. The “Try-and-repeat” algorithm is better than the 

“Input Area not full, regarding the average lead time (Note that, however, the “Input Area not 

full” achieves more number of batches. It happens even for the very long run, as it is seen in 

Table 12.  

Table 12. Case V: Results for Scenario 6, simulations for a horizon time = 100 days 

 
Original case Input Area not full System not full 

Try while not 
blocking 

Try-and-repeat 

Min. Lead Time (min) 

Deadlocked 
at box 23 

42,84 42,84 44,37 44,37 

Max. Lead Time (min) 228,51 228,51 237,38 228,11 

Avg. Lead Time (min) 160,62 163,11 166,15 151,61 

Number of batches 5120 5099 5017 5055 

 

The reasons for the better results are multiple: first of all, they are originated because of the 

definition of “Lead Time”. For the “Input Area not full”, the box remains idle more time in the 

system, whereas for the other algorithm the box remains idle more time in the arrival station 

(which does not count for the Lead Time). Other reasons are that AGVs sync better between 

themselves and the painter in some occasions (for instance, the AGV introducer arrives when 

the painter has just grabbed an unpainted box recently). 

This is a clear example of the importance of simulating the processes and proposing different 

approaches in order to see which the best algorithm is. As it is plotted in Figure 63, lead times 

remain the same until the deadlock is reached (box 22), from where the “Try-and-repeat” 

algorithm gets better Lead Times for most boxes. 

 

Figure 63. Case V: Lead time of each box, from the 15th to the 50th 
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6.6. Case VI: Manufacturing system 
The system consists of three machines, an AGV and twelve local stations, as shown in Figure 64. 
Each load-unload station has a capacity of one part and also serves as a pallet storage location. 
We will assume that each part requires only one. We will also assume that the vehicle can carry 
only one pallet at a time. Thus, the main assumptions are as follows: 
 
1. The vehicle has only one load carrying position 
2. Each part requires only one operation 
3. Operations can be performed by any machine 
4. Machines do not break down 

 
Figure 64. Case VI: Diagram of a Flexible Manufacturing System 

The flow of actions is as follows: 

 The operator loads the part on to the pallet placed in the corresponding load-unload 
station 

 The vehicle moves the pallet with the part to any machine 

 The machine processes the part 

 The vehicle takes the pallet with the part back to the load-unload station 

 The operator unloads the part 
 

We assume that the system works 20 days a month, three shifts per day a 480 min for each shift. 
Table 1 shows each part number arrival rate for the 20 days period. The time between arrivals 
is an exponential distribution whose mean has been obtained from the data is in Table 1. This 
data is also used to compute the discrete probability for each part number. 
 

Table 13. Case VI: Monthly forecast for arrivals 

Part Number Quantity per Month Machining Time Probability 

1 320 18 0.19 

2 270 60 0.16 

3 260 36 0.15 

4 180 40 0.11 

5 140 36 0.08 

6 120 24 0.07 

7 100 32 0.06 

8 80 28 0.05 
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9 72 20 0.04 

10 64 20 0.04 

11 48 30 0.03 

12 40 32 0.02 

TOTAL 1694 -  

 
The operator part loading or unloading time is 3 minutes. The vehicle transportation time is 
negligible but the vehicle part loading or unloading time is 30 seconds. 
 

6.6.1. Place Transition Petri Net Model 

This system can be modelled using the Place Transition Petri Net formalism. This system is 

necessary in order to have a more general and schematic view of the system, but more 

importantly, the detection of the existence of deadlocks. 

 

Figure 65. Case VI: Initial marking of Petri Net 

In order to model this system using PIPE Petri Net Simulator, so as to detect the possible 

deadlocks, it needs to be bounded. The system can reach infinite states because of the constant 

input of parts in the system. One easy way to bind the system is to connect T10 to T1 with a 

middle place between them. By means of this, whenever a part has been finished and processed, 

automatically means that a new part comes into the system. We will assume that 16 pieces are 

entering the system waiting for being processed. This can be shown in Figure 66.Figure 66.  
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Figure 66. Case VI: Initial marking of Bounded Petri Net 

Even that now the system has limited states, according to the simulator, there are 23929 states 

with 46183 arcs. This graphic is impossible to be read by a human in order to find any possible 

deadlock. 

The complexity of the net can be reducing lowering the number of resources to a minimum, in 

order to minimize the number of states. So as to respect the proportion, there needs to be more 

stations than machines, and a possible deadlock may occur when all parts are using one resource 

each one. 

Therefore, a possible equivalent situation (deadlock-study-speaking) is the one presented in 

Figure 67. Using the reachability graphic, we are able to find the node that is shown in Figure 68, 

which corresponds to a deadlock state that corresponds to this situation: 

- 2 pieces waiting for being loaded to the stations 

- 2 pieces waiting in the stations for AGV 

- 1 piece in the machine waiting for AGV 

The AGV cannot unload the piece to the unload station because there are both occupied by 

pieces that are waiting to be loaded to the already busy machine. This deadlock is scalable to 

the original problem, since what this means is that if all machines and all stations are busy at the 

same time, a deadlock occurs. 
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Figure 67. Case VI: Initial marking of Bounded and Reduced Petri Net 

 

Figure 68. Case VI: Deadlock state in a section from the reachability graph 

6.6.2. Possible solutions 

There is a clear problem with the capacity of the system regarding the load/unload units. If these 

units get full while the three machines need to unload in the stations, the system gets 

completely blocked. Therefore, the way of solving this problem is to prevent deadlocks 

categorizing the stations, or avoiding deadlocks searching for conditions so as not to block the 

whole system. 

Assigning part number per station 

In order to prevent the formation of deadlocks, each station can be associated with a part 

number. That means: station 3 is blocked by part 3 during all its process (from the loading until 

the unloading, passing through the processing part).  

Assigning part arrival per station 

In a more general way, a station can be blocked during all its process by a part, regardless of the 

part number. This system adds more flexibility to the process as well as prevents the formation 

of deadlocks. 
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Assigning “n” load stations and “12 - n” unload stations 

Separating the loading stations and the unloading stations is also a way to categorize these 

resources and preventing systems deadlocks. The operator loads all the parts from certain 

preassigned stations, and unloads them from the other ones.  

Block a station if there are already 3 parts at the machines and 11 on the stations 

This possible solution is different from the previous ones, since the system deadlocks are not 

prevented yet avoided. The deadlock occurs when a piece enters into the system when 11 

stations have pending-to-load pieces and 3 parts are at the machines (future unload). An 

operator can still have all the stations loaded, but only if not all machines are in use. Because of 

this condition, the circular wait is eliminated dynamically with a condition. 

 

6.6.3. FlexSim process simulation flow 

In order to identify the different parts that arrive to the system, a label will be assigned 

corresponding to the “part number” that belongs to. As it is shown in Table 13, 1694 pieces 

arrive each month, which corresponds to a piece each 17 minutes. 

All different situations correspond to different resources labeling, so all process flows are 

different among them. The different options are presented as it follows. 

Original Case (possible deadlock) 

 

Figure 69. Case VI: Process created in FlexSim for the original problem 
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Assigning part number per station 

 

Figure 70. Case VI: Process created in FlexSim for the first proposed solution: assign part number per station 

 

Assigning part arrival per station 

 

Figure 71. Case VI: Process created in FlexSim for the first proposed solution: assign part arrival per station 
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Assigning “n” load stations and “12 - n” unload stations 

 

Figure 72. Case VI: Process created in FlexSim for the first proposed solution: assign “n” load stations and “12-n” 
unload stations 

Block a station if there are already 3 parts at the machines and 11 on the stations 

 

Figure 73. Case VI: Process created in FlexSim for the first proposed solution: block station if 3 parts in machine and 1 
on the stations 
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6.6.4. Results and discussion 

Once simulated all the processes mentioned in the previous section, some results can be 

obtained in order to see the performance of the different solution proposals. 

But first of all, it can be demonstrated by FlexSim that Case VI originates a deadlock. If we 

simulate as the problem states (20 days), the system seems to flow correctly until certain point 

where a deadlock is found, which is unbreakable: 

 

Figure 74. Case VI: Deadlock represented in FlexSim 

Because of this, it makes sense to study different solutions for studying the performance of the 

system. There might be different ways to study the performance in this system, as the utilization 

of the different resources, or the waiting time for each part before being processed. However, 

for this system, the idle time for each part has been selected (Time that the piece is in the system 

and is not being processed, transported nor loaded/unloaded) 

After performing the simulations, the obtained results are the ones showed in Table 14. As it 

can be seen, the Part Number per Station method is the worst solution, since the average lead 

time is significantly higher than the other ones. Ensuring always 1 unload station is also 

inefficient, if it is compared with having 2 unload stations. The other cases are practically 

equivalent, since the difference among them is just some minutes. 

As it is said in 3.3.2 Deadlock avoidance, deadlock avoidance should have been better than the 

other systems since it signifies better resource. This is not seen in the first sight because the 

optimizable resource is just one station out of twelve and the system is pretty equilibrated and 

underused.  In fact, most of the systems, in this case, will give similar outputs. 

As a manner of fact, according to the simulations, this system has avoided 6 deadlock situations. 

 

Table 14. Case VI: Results for simulations for a horizon time = 20 days 

 

Part Number 
Per Station 

Part Arrival 
Per Station 

11 Load and 
1 Unload 

10 Load and 
2 Unload 

9 Load and 3 
Unload 

8 Load and 
4 Unload 

Avoid 
Deadlocks 

Total Idle Time 
(h) 

748 391 423 391 391 391 391 

Avg. Idle Time 
(min) 

26,15 13,7 14,8 13,7 13,7 13,7 13,7 
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In order to see more statistical difference between the deadlock prevention and avoidance, it 

has been decided to change the number of resources. If we suppose that the system is only 

composed by 4 stations, and counting a horizon time of 200 days, scenarios are pretty different. 

This is because optimizing one resource out of four is more critical. The results can be seen in 

Table 15. 

Table 15. Case VI: Results for simulations, modifying number of stations to 4, for a horizon time = 200 days 

 Part Arrival Per Station 3 Load and 1 Unload 2 Load and 2 Unload Avoid Deadlocks 

Total Idle Time (h) 4653 4279 4071 4010 

Avg. Idle Time (min) 16,5 15,1 14,4 14,2 

 

With these simulations, it can be seen that in the long run, deadlock avoidance usually works 

better than deadlock prevention. 
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7. Conclusions 

It is totally possible to map Petri Nets into FlexSim, so it is a very useful simulation software for 

manufacturing system processes. The software can detect deadlocks with an appropriate 

mapping of the real process by simulating the different cases; but more importantly, the whole 

process diagram can be easily changed and understand thanks to its user-friendly environment. 

It has shown several successful cases in which different detailed solutions have been obtained. 

All times and entities are trackable and the user can see where and when a problem rises, and 

study its causes and consequences.  

It is a user friendly software similar to Arena, which is the currently used software in ESEIAAT. 

Inside the scope of work of this project it is demonstrated that both software’s are equivalent 

because of the possibility of both to assume Petri Nets mapping.  

However, FlexSim is quite complete and can also be synchronized with visual and location-based 

simulation. It is possible to model directly in 3D, which can be tremendously useful when 

translating a real plant into a simulation model. 

It has also its own pseudocode which is not very difficult to interpret, which is highly useful for 

conditionals that can afterwards be applied in the program logic controller on the AGV systems, 

so as to improve the flexible manufacturing systems.  

To sum up, it is possible to use FlexSim as a simulation tool in order to solve deadlocks with AGV 

systems. Moreover, it was demonstrated that mapping Petri Nets into this software was possible 

so that many parallelisms with Arena could be observed. 

 

8. Future work 

It is possible to use FlexSim for deadlocks associating the cases to a 3D modelling. The software 

also has a special AGV package module, so as to get an even more user friendly scenario. Using 

this modelling offers a visual representation and the user can see immediately what is 

happening, and is also able to determine if the process was correctly simulated seeking for its 

similarities to the real world process. 

Other future work that can be done is using FlexSim for handling deadlocks by more cases of 

“deadlock avoidance”. This field is really interesting but requires some expertise on 

programming.
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