
Project of implementing an intelligent system into a
Raspberry Pi based on deep learning for face

detection and recognition in real-time

Eduard Sulé Armengol

The School of Industrial, Aerospace and Audiovisual Engineering of Terrassa. ESEIAAT

Supervisor: Fatos Xhafa

Department of Computer Science, ESEIAAT, UPC

June 10, 2019

Contents

1 Introduction, Scope and Objectives 9

1.1 Problem definition . 9

1.2 State of art . 10

1.3 Proposed solution . 12

1.4 Relevance of the project . 12

1.5 Goal of the project . 13

1.6 Scope of the project . 14

1.7 Functional requirements of the project . 14

1.8 Non-functional requirements of the project 15

2 Development of the proposed solution 16

2.1 Machine learning basics . 16

2.1.1 The Task, T . 16

2.1.2 The Performance Measure, P . 17

2.1.3 The experience, E . 17

2.2 Work-flow of a deep learning project . 18

2.3 The data set: images . 18

1

CONTENTS 2

2.4 Data gathering . 20

2.4.1 Targeted person (positive case) . 20

2.4.2 Random people (negative case) . 20

2.4.3 EU General Data Protection Regulation [Cou16b] 21

2.4.4 Labelling the data . 22

2.5 Data preparation . 24

2.5.1 Open source computer vision (OpenCV2) 24

2.5.2 Viola-Jones algorithm . 26

2.5.3 Normalisation . 28

2.6 Data augmentation . 30

2.7 Data split (train, valid and test sets) . 32

2.8 Model selection . 34

2.8.1 Why deep learning? . 35

2.8.2 Multilayer perceptron neural network (MLP) 37

2.8.3 Convolutional Neural Networks . 43

2.8.4 Model selected . 47

2.9 Model training . 49

2.9.1 TensorFlow . 49

2.9.2 Training the model . 49

2.10 Model evaluation . 50

2.11 Model implementation into the Raspberry Pi 51

2.11.1 Raspberry Pi 3 model B . 51

2.11.2 PiCamera module . 52

2.11.3 Pi-Traffic lights . 53

CONTENTS 3

2.11.4 Input signal . 55

2.11.5 Pipeline of the system . 56

2.12 Experimental results and performance evaluation 57

2.12.1 Performance in terms of accuracy . 58

2.12.2 Performance in terms of speed . 60

3 SUMMARY OF RESULTS 62

3.1 Summary of the budget and study of economic viability 62

3.1.1 Costs of the device and its components 62

3.1.2 Cost of labor . 62

3.1.3 Total cost . 63

3.2 Analysis and assessment of environmental implications 63

3.3 Conclusions and recommendations for future work 63

Bibliography 65

A Appendix 68

A.1 Codes . 68

A.1.1 VIOLA Jones data prep negative . 68

A.1.2 VIOLA Jones data prep positive . 69

A.1.3 Data augmentation . 72

A.1.4 CNN . 73

A.1.5 Raspberry . 76

A.2 Experimental results . 79

List of Figures

1.1 Probabilistic model of recognition for binary classification 10

1.2 Example of HOG. Source: "https://hypraptive.github.io/2017/02/02/find-
the-bears-dlib.html" . 11

1.3 Example of search selective. Source: J.R.R. Uijlings and al. (2012) 11

2.1 Deep learning workflow. Source: https://towardsdatascience.com/workflow-
of-a-machine-learning-project-ec1dba419b94 18

2.3 RGB function. Source: http://ai.stanford.edu/ syyeung/cvweb/tutorial1.html 19

2.4 Example of RGB. Source: http://ai.stanford.edu/ syyeung/cvweb/tutorial1.html 19

2.2 Representation of a greyscale image. Source: http://ai.stanford.edu/ syye-
ung/cvweb/tutorial1.html . 19

2.5 The model will assign the correct label depending on the source folder of
each image. 23

2.6 Raw data . 23

2.7 OpenCV2. Source:https://opencv.org/ . 24

2.8 Haar Feature that looks similar to the bridge of the nose is applied onto the
face.- Source: https://en.wikipedia.org/wiki/ViolaJones 27

2.9 Haar Feature that looks similar to the eye region which is darker than the up-
per cheeks is applied onto a face.
Source: https://en.wikipedia.org/wiki/ViolaJones 27

4

http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html
http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

LIST OF FIGURES 5

2.10 Data preparation pipeline for a positive case 29

2.11 Data preparation pipeline for a negative case 30

2.12 Distribution of the data . 31

2.13 Data augmentation example . 32

2.14 Data split . 34

2.15 Illustration of a deep learning model. Source: "Deep learning" by Ian Good-
fellow . 36

2.16 Linear threshold unit. Source: "Hands-On Machine Learning with Scikit-
Learn and TensorFlow" by Aurélien Géron 38

2.17 Perceptron diagram. Source: "Hands-On Machine Learning with Scikit-
Learn and TensorFlow" by Aurélien Géron 38

2.18 Perceptron learning rule. Source: "Principles of Neurodynamics: Percep-
trons and the Theory of Brain Mechanisms" by Frank Rosenblatt 39

2.19 Multi-Layer Perceptron. Source: "Hands-On Machine Learning with Scikit-
Learn and TensorFlow" by Aurélien Géron 40

2.20 ReLU vs sigmoid. ReLU is faster to compute and doesn’t compromise the
performance of the mode. Source: "https://towardsdatascience.com/activation-
functions-neural-networks-1cbd9f8d91d6" 41

2.21 A modern MLP (including ReLU and softmax) for classification. Source:
"Hands-On Machine Learning with Scikit-Learn and TensorFlow" by Au-
rélien Géron . 42

2.22 Flattening operation in a grey scale image (1 channel).
Source: "https://towardsdatascience.com/activation- functions-neural-networks-
1cbd9f8d91d6" . 43

2.23 A RGB image. Source: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 44

2.24 Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved fea-
ture (step1). Source: "https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53" 45

LIST OF FIGURES 6

2.25 Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved fea-
ture (step2). Source: "https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53" 45

2.26 Convolution operation on a MxNx3 image matrix with a 3x3x3 Kernel.
Source: "https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53" 46

2.27 Types of Pooling. Source: "https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53" 47

2.28 Final model . 48

2.29 Parameters of the neural network . 48

2.30 Train accuracy by epoch . 50

2.31 Confusion matrix of the result of the test set 50

2.32 Raspberry Pi 3 Model B . 52

2.33 PiCamera Module . 53

2.34 Raspberry Pi with the traffic lights . 54

2.35 Button circuit. Source: https://projects.raspberrypi.org/en/projects/physical-
computing/2 . 55

2.36 The Raspberry Pi 3 model B and all the components 56

2.37 Pipeline of the process of detecting and recognising faces in real time in the
Raspberry Pi . 57

2.38 Experimental results from the Viola-Jones algorithm 58

2.39 Experimental results from the convolutional neural network 59

2.40 Histogram of time in seconds used for image caption and reading. Average
= 4.97 seconds . 60

2.41 Histogram of time in seconds used for face detection. Average = 5.02 seconds 60

2.42 Histogram of time in seconds used for face recognition. Average = 0.307
seconds . 61

List of Tables

3.1 Costs of the device and its components . 62

3.2 Total costs . 63

7

Abstract

Artificial Intelligence (AI) is among most important fields of knowledge and applications
in a large variety of domains. Recently however, it has become a trending research topic
propelled by Cloud computing, social networks and alike. Terms like machine learning,
"Big Data" and artificial neural networks very frequently appear not only in scientific
media but even in the mass media.

In this project, we aim to design, implement and evaluate an AI technique, namely, deep
learning, which has become very popular for face recognition. The problem is formulated
from an engineering perspective: to design a small size system based on Raspberry Pi and
an attached camera to it to detect and recognise human faces in real time. It should be
mentioned that while for humans face recognition is a trivial task, we do it every day and
with a full accuracy, for a computer, this is complex task. Recent applications from many
industries show a large potential of intelligent systems that need to recognise faces with
high accuracy.

The thesis is essentially structured into two main parts. In the first part we formulate
the problem, analyse potential solutions and propose a solution for its resolution. In the
second part of the project we develop the proposed solution into an implementation of an
intelligent system for a computationally limited and physical portable device (Raspberry
Pi). The solution is empirically evaluated in terms of accuracy and performance using real
data sets. The relevance of using such a small size intelligent system relies in the fact that
this application can be installed in other devices, such as drones, easily, at low cost and
without compromising the performance and speed of the said intelligent system.

Declaration

I declare that, the work in this Degree Thesis is completely my own work, no part of this
Degree Thesis is taken from other people’s work without giving them credit,all references
have been clearly cited. I understand that an infringement of this declaration leaves me
subject to the foreseen disciplinary actions by The Universitat Politècnica de Catalunya
BarcelonaTECH.

1 | Introduction, Scope and Objec-
tives

1.1 Problem definition

In this thesis we study the problem of detecting and recognising faces in real-time for its
implementation in computationally limited device of Raspberry Pi. The problem has three
main components:

• We need an algorithm that given a certain image, it can detect human faces. It needs
to draw a boundary box and crop them so we can input them into the recognition
system.

• The recognition system, in this case, is a problem of binary classification where the
system has to be able to, given certain pixel values, outputs a probability of that face
belong to the person we want to recognise. In this case, for demonstration purposes,
the targeted person will be Eduard Sulé Armengol the author of the project.

9

CHAPTER 1. INTRODUCTION, SCOPE AND OBJECTIVES 10

Figure 1.1: Probabilistic model of recognition for binary classification

• These two functions will be performed in real-time in a portable device, the Raspberry
Pi. So this function should not be computationally expensive although, maximum
values of accuracy and performance should be achieved.

1.2 State of art

The first part of the problem to be solved is the detection of faces in an image. A human
can do this easily, but a computer needs precise instructions and constraints. The first
algorithm that proved to be functional was the Viola-Jones algorithm proposed in 2001 by
Paul Viola and Michael Jones. The Viola-Jones algorithm works by checking if parts of
the image match certain hand-coded features that Viola and Jones found they conform to
a human face.

The histogram of oriented gradients (HOG) was another algorithm that proved to be
functional. In his core, HOG extracts the gradient of brightness of each pixel in the image
for detecting the face presence. However, HOG is very sensitive to the brightness of the
image, so it made this procedure only functional in controlled occasions were the image
was taken without shadows or dark areas.

CHAPTER 1. INTRODUCTION, SCOPE AND OBJECTIVES 11

Figure 1.2: Example of HOG. Source: "https://hypraptive.github.io/2017/02/02/find-the-bears-
dlib.html"

With the rise of artificial neural networks, which can extract the features that conform
a human face automatically, there was no need for human hand-coded features and this
kind of algorithm was proven to be more robust but computational more expensive. These
artificial neural networks were called convolutional neural networks (CNN) since they con-
volute thought the image searching for spatial correlations between pixels for detecting
faces (more on CNN later in the project). So, the current state of art for object detection
is R-CNN. R-CNN (R. Girshick et al., 2014) uses search selective (J.R.R. Uijlings and al.
(2012)) to find out the regions of interests and passes them to a ConvNet. It tries to find
out the areas that might be an object by combining similar pixels and textures into several
rectangular boxes. The R-CNN paper uses 2,000 proposed areas (rectangular boxes) from
search selective. Then, these 2,000 areas are passed to a pre-trained CNN model. Finally,
the outputs (feature maps) are passed to a suport vector machines(machine learning algo-
rithm) for classification. The regression between predicted bounding boxes (bboxes) and
ground-truth bboxes are computed.

Figure 1.3: Example of search selective. Source: J.R.R. Uijlings and al. (2012)

CHAPTER 1. INTRODUCTION, SCOPE AND OBJECTIVES 12

The main problem is that the search selective algorithm is really computationally expensive
since it has to find 2000 areas with similar textures (possible objects). Additionally, all of
this areas need to be fed into a neural network that will output a prediction determining if
said areas are the object, which the neural network was trained to recognise, or not. All of
this operations can not be computed by small devices such Raspberry Pi so this solution
is not suitable for solving the need of the project.

1.3 Proposed solution

The proposed solution is to divide the problem into two parts. First, all the faces of
the input image are detected, and then each face is fed to a neural network for posterior
recognition (detecting a specific person). To do that we need a lighter face detection
algorithm. We propose the Viola-Jones algorithm since it is specially designed for detecting
faces, and the computational power required to execute is rather low compared to the R-
CNN. Moreover, the Viola-Jones algorithm won’t output 2000 areas to be classified, it
will only focus on the possible faces on the image. Once faces are detected, we train a
personalised neural network for detecting whatever person we want to recognise.

In this project, we are going to recognise the face of the author Eduard Sulé Armengol
since gathering the data of a said person is easy and fast. However, it is worth pointing out,
that if we wanted to train the neural network to recognise multiple persons, the procedures
would be exactly the same, except the training data would need to correspond of data of
each person we want to recognise and, in a single training session, the model would be able
to recognise between the people we have trained on. Instead of binary classification (is the
targeted person or not), we would have a multilabel classification problem.

1.4 Relevance of the project

With this project, we will design software able to do face detection and recognition in
real-time that can run in a Raspberry Pi, without compromising accuracy. Raspberry Pi
is easily installed in other machines such as cars or drones; so thanks to this lighter and
efficient software we could enhance other machines with the said capabilities so they can
interact with the real-world and make human-like decisions.

CHAPTER 1. INTRODUCTION, SCOPE AND OBJECTIVES 13

1.5 Goal of the project

The goal of the project is to design a software that will be executed by a physical portable
device like a Raspberry Pi capable of detecting human faces and classifying them in real-
time:

• Face detection. The way face detection in images is done nowadays is trough an
algorithm called Viola-Jones. This algorithm is based on the fact that some patterns
are repeated in the pixel composition when faces appear in images. The algorithm
convolutes through all the pixels of the image, finding those patterns. The main
advantage of the algorithm is that it is swift compared to others while maintaining
high accuracy.

• Face recognition. This is the part where Artificial Intelligence is needed. For humans,
face recognition is a trivial task, we do it everyday and with an incommensurable
accuracy. However, for a computer this task is presented as an extremely complex
task. This is because it is not a task that it is possible to describe formally. More on
that on the actual project documentation, but to give a brief explanation on what
“describe formally” means, it is a way to describe a task that you cannot specify
the exact sequence of task that the algorithm must do in order to find the solution
because the high variance of inputs.

Deep learning attempts to solve this complexity by using the human approach. With
deep learning a mathematical probabilistic model is built that simulates the be-
haviour of the human brain and it is feed with a lot of human images each one
labelled, so the model is able to learn by example what a face of a young men is (for
example).

• Data collection and preparation. In any AI project, gathering the data is a crucial
aspect. With low data, the model would not learn enough, and with bad data, the
model will learn poorly. So we need to train the model with enough and varied data
so it can perform good predictions. Also, much preparation of this data has to be
done since any model can learn by raw data.

• An efficient of implementation of the software has to be done since any loss of effi-
ciency can result in not meeting the real-time detection and recognition requirement.

• Once everything implemented, we need to perform a lot of empirical tests to see
if we are meeting the desired accuracy. Any machine/deep learning algorithm is a
probabilistic model, so we can’t expect a hundred percent accuracy.

CHAPTER 1. INTRODUCTION, SCOPE AND OBJECTIVES 14

1.6 Scope of the project

The scope of the project is composed by the following points:

• Gather data of human faces, considering the EU GPDR restrictions.

• Implement a face detection algorithm (Viola-Jones algorithm).

• Train and test different neural networks architectures.

• Deploy the final refined and trained neural network in the Raspberry Pi. In addition,
implement the face detection algorithm and all the image pre-processing in the device.

• Evaluate the system integrated on the Raspberry Pi (speed and accuracy).

1.7 Functional requirements of the project

The functional requirements of the project comprise, among others, the following:

• Image reading in real-time. For, this a camera properly attached to the Raspberry
Pi is needed.

• Detecting the faces in the image. We need an algorithm that, after the image is
taken, obtains the faces presents in the image, removing all other areas of certain
image.

• Recognising the face.

• High accuracy. AI systems can incur in error since the task that they are given can
be very broad and they are not ruled by formal instructions. However, designing the
optimal neural network and the correct image pre-processing is key to enhance the
performance of the algorithm. There are also other important metrics that are worth
to check out, like recall and sensitivity.

• Fast response time (low latency). Since real time recognition is a paramount feature
in the project, it is mandatory to optimise all stages of the procedure to ensure the
desired speed.

• Small system size. It is not needed the best camera quality or the most powerful
Raspberry Pi. The minimal size of device that accomplish the requirement would be
enough.

CHAPTER 1. INTRODUCTION, SCOPE AND OBJECTIVES 15

1.8 Non-functional requirements of the project

Economical requirements:

• Low budget project. A Raspberry Pi with basic functions and with camera on it is
needed.

Compliance with legal requirements:

• EU GDPR. Any project that involves AI of some kind, needs data. Data nowadays is
easy to get but it is mandatory to consider the new legislation that regularises data
gathering and use. Otherwise it might be very problematic, particularly in terms of
privacy. Therefore, in this project, there will be a huge emphasis on legal requirement
and the lighthouse will be the EU GDPR.

Open source software requirements:

• Using open software and libraries is considered relevant for this project. For that we
will use open source libraries such as OpenCV2.

2 | Development of the proposed so-
lution

2.1 Machine learning basics

Deep learning is a specific kind of machine learning. To understand deep learning well, one
must have a solid understanding of the basic principles of machine learning. This section
provides a brief introduction to the most important general principles that are applied
throughout the rest of the book. A machine learning algorithm is an algorithm that can
learn from data. However, what do we mean by learning? Mitchell (1997) provides the
definition “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

2.1.1 The Task, T

Machine learning allows us to tackle tasks that are too difficult to solve with fixed programs
written and designed by human beings. From a scientific and philosophical point of view,
machine learning is engaging because developing our understanding of machine learning
entails developing our understanding of the principles that underlie intelligence. In this
relatively formal definition of the word “task,” the process of learning itself is not the task.
Learning is our means of attaining the ability to perform the task. For example, if we
want a robot to be able to walk, then walking is the task. We could program the robot to
learn to walk, or we could attempt to write a program that specifies how to walk manually
directly.

Machine learning tasks are usually described in terms of how the machine learning system
should process an example. An example is a collection of features that have been quanti-

16

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 17

tatively measured from some object or event that we want the machine learning system to
process. For example, the features of an image are usually the values of the pixels in the
image.

In this case, the task consists of a classification problem where the model has to be able
to classify faces through the pixel values of them.

2.1.2 The Performance Measure, P

To evaluate the abilities of a machine learning algorithm, we must design a quantitative
measure of its performance. Usually, this performance measure P is specific to the task
T being carried out by the system. For tasks such as classification, we often measure the
accuracy of the model. Accuracy is just the proportion of examples for which the model
produces the correct output. We can also obtain equivalent information by measuring
the error rate, the proportion of examples for which the model produces incorrect output.
Usually, we are interested in how well the machine learning algorithm performs on data
that it has not seen before since this determines how well it works when deployed in the
real world. We, therefore, evaluate these performance measures using a test set of data
that is separate from the data used for training the machine learning system.

2.1.3 The experience, E

Machine learning algorithms can be broadly categorised as unsupervised or supervised by
what kind of experience they are allowed to have during the learning process.

• Unsupervised learning algorithms experience a dataset containing many features,
then learn useful properties of the structure of this dataset. In the context of deep
learning, we usually want to learn the entire probability distribution that generated
a dataset, whether explicitly as in density estimation or implicitly for tasks like
synthesis or denoising. Some other unsupervised learning algorithms perform other
roles, like clustering, which consists of dividing the dataset into clusters of similar
examples.

• Supervised learning algorithms experience a dataset containing features, but each
example is also associated with a label or target. The term supervised learning
originates from the view of the target y being provided by an instructor or teacher
who shows the machine learning system what to do. In unsupervised learning, there
is no instructor or teacher, and the algorithm must learn to make sense of the data
without this guide.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 18

2.2 Work-flow of a deep learning project

In this section, an overview of the work-flow of a deep learning project is presented. It is
possible to divide this project into 5 stages:

1. Gathering data.

2. Data pre-processing.

3. Researching the model that suits best for the type of data

4. Training and testing the model

5. Evaluation

Figure 2.1: Deep learning workflow. Source: https://towardsdatascience.com/workflow-of-a-
machine-learning-project-ec1dba419b94

Given the general overview of the work-flow, in the next sections, all details and explana-
tions are given by each stage.

2.3 The data set: images

Data can be represented in multiple ways: structured data (tables), text, sound, images,
etc. In this project, images are the data structure that is used, so it is reasonable to explain
the format of it to understand how the neural network is going to work.

In essence, images are matrices of numbers, each number referring to each pixel value.
Each of the pixels that represent an image stored inside a computer has a pixel value which

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 19

Figure 2.3: RGB function. Source:
http://ai.stanford.edu/ syyeung/cvwe-
b/tutorial1.html

Figure 2.4: Example of RGB. Source:
http://ai.stanford.edu/ syyeung/cvwe-
b/tutorial1.html

describes how bright that pixel is, and what colour it should be. In the simplest case of
binary images, the pixel value is a 1-bit number indicating either foreground or background.
For grayscale images, the pixel value is a single number that represents the brightness of
the pixel. The most common pixel format is the byte image, where this number is stored
as an 8-bit integer giving a range of possible values from 0 to 255. Typically zero is taken
to be black, and 255 is taken to be white. Values in between make up the different shades
of gray.

Figure 2.2: Representation of a greyscale image. Source: http://ai.stanford.edu/ syyeung/cvwe-
b/tutorial1.html

To represent colour images, separate red, green and blue components must be specified
for each pixel (assuming an RGB colorspace), and so the pixel ‘value’ is a vector of three
numbers. Often the three different components are stored as three separate ‘grayscale’
images known as colour planes (one for each of red, green and blue), which have to be
recombined when displaying or processing.

http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html
http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 20

To sum up, an RGB image is defined by:

• Width: number of pixels in the x-axis

• Height: number of pixels in the y-axis

• Channels: 3 in case RGB, 1 in case grayscale.

• Pixel values: 0-255 numerical value according to the potency of color.

It is essential to understand the structure of the data since the model selected has to make
decisions only based on those parameters.

2.4 Data gathering

Data gathering is the process of recollecting data to feed them into an intelligent algorithm
so it can perform its task correctly. In this case, both images are needed of the targeted
person (positive case) and random people (negative case).

2.4.1 Targeted person (positive case)

The targeted person is the author of this project, Eduard Sulé Armengol, since gathering
images of himself is an easy and safe task. It is worth pointing out that due to the nature
of this project and the capabilities of deep learning, it is straightforward to generalise and
change the targeted person without changing any basic procedure. These images had been
taken for a long time using several phones or cameras. Also, they have been taken in a
way such, although they belong to the same person, they present different characteristics
(different haircuts, shaves, backgrounds.etc) so the model will be able to generalise better.
A total of 337 images had been gathered.

2.4.2 Random people (negative case)

Images of random people are needed since it is mandatory to teach the model what the
face of the non-targeted person looks like; they act as the negative case. To gather all that
data, a public database of images has been used, Faces in the Wild.

Faces in the Wild is a database of face photographs designed for studying the problem of
unconstrained face recognition. The data set contains more than 13,000 images of faces

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 21

collected from the web. Each face has been labeled with the name of the person pictured.
1680 of the people pictured have two or more clear photos in the data set. For the specific
need, a total of 6500 images are more than necessary.

In the next section, the current regulations (EUGDPR [Cou16b]) are reviewed to verify if
the use of this public database is legal.

2.4.3 EU General Data Protection Regulation [Cou16b]

At a high level, GDPR[Cou16b] requires that the data controller (or data processor, either
a business, non-profit or other organisation) handles the data of users and customer (collec-
tively called data subjects) in a responsible, secure, transparent and non-abusive fashion,
thus allowing the user to be in the control of her/his data or data pertaining to her/his
identity. This means that organisations can only handle your personally identifiable data
at your request, with your consent and must stop using any such data at your request. In
this case, the identity of the people in this dataset is under protection since the purpose of
the project is not to distinguish amongst them instead of the targeted person who, being
the author of the project, gives all the consent to use his data. Another important points
worth of reviewing are the followings:

• Processing of personally identifiable data is lawful if the user gives his explicit consent,
if it’s in the public interest (not to be confused with a private interest of a group,
organisation) or if it’s required by applicable law. (Article 6)

• Processing of personal data revealing racial or ethnic origin, political opinions, re-
ligious or philosophical beliefs, or trade union membership, and the processing of
genetic data, biometric data for the purpose of uniquely identifying a natural per-
son, data concerning health or data concerning a natural person’s sex life or sexual
orientation shall be prohibited, unless the user gives explicit consent. Such explicit
consent must be provable under non-repudiation. (Article 9)

• The data processor is not under any requirement to maintain, process, or acquire
additional information about the user to comply with the GDPR.

• The user has the right to inquire about the information stored or processed by an
organisation (Articles 15: Right of access by the data subject)

• The user has the right to correct or amend any incorrect data stored or processed by
an organisation (Articles 16: Right to rectification)

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 22

• The user has the right to request the complete erasure of her/his data as stored or
processed by an organisation, including but not limited to withdrawal of consent
(Articles 17: Right to erasure, also known as "Right to be forgotten")

• The user has the right to request that stored data is not processed at any point, except
for those purposes mandated by law (Articles 18: Right to restriction of processing)

• Organisations must notify data users of compliance with their requests of inquiry,
deletion, or restriction. (Articles 19)

• The user has the right to request all information held by an organisation about
her/him, "in a structured, commonly used and machine-readable format and have
the right to transmit that data to another controller without hindrance from the
controller (organisation processing the data)" (Article 20)

• The user has the right to object to the processing of her/his data (Article 21)

• The organisation processing personal information shall do so using state of the art
methods for processing only data necessary for each specific purpose (Article 25:
Data protection by design and by default)

• The organisation processing personal information shall do so using state of the art
methods to "ensure the ongoing confidentiality, integrity, availability, and resilience
of processing systems and services" (Article 32)

In this project, any of these points are violated, so it is plausible to conclude that it is
safe to use this database. Finally, it is worth mentioning that this project is aimed for
educational purposes only.

2.4.4 Labelling the data

Once collected all the data, the only thing left is to label the data. Labeling means
classifying each image on the class that they belong so that the model can differentiate
them in the training phase. Labeling the data is crucial since this is a supervised learning
project. Supervised learning is the machine learning task of learning a function that maps
an input to an output based on example input-output pairs. It infers a function from
labeled training data consisting of a set of training examples. In supervised learning,
each example is a pair consisting of an input object (typically a vector) and the desired
output value (also called the supervisory signal). A supervised learning algorithm analyses
the training data and produces an inferred function, which can be used for mapping new
examples. An optimal scenario allows for the algorithm to determine the class labels for

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 23

unseen instances correctly. This requires the learning algorithm to generalise from the
training data to unseen situations in a "reasonable" way.

So, in this case, the input object corresponds to the image vector (pixel values), and the
output value or label is 0 if the negative case and 1 if the positive case.

The way labeling is done in this case is to separate into two folders all the images depending
on if they belong in the positive or negative case. Then, when the model is trained and
depending on the source folder, the model will assign the correct label (0 for the negative
case and 1 for the positive case).

Figure 2.5: The model will assign the correct label depending on the source folder of each image.

Figure 2.6: Raw data

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 24

2.5 Data preparation

Data preparation is key for ensuring a good performance of the model. Although deep
learning is a technique that presents great accuracy, helping the model in tasks that are
possible of automating is preferable. In this case, it is even more important to do so since
images can be very complex for any deep learning model to handle. Two big procedures
are necessary to apply to images before training the model:

• Detecting faces. This is paramount, so the model has to only focus on the relevant
pixels for recognising the person. Selecting only the face results in getting rid of the
background and other noises that result in an improvement of the performance of the
model. That task is performed by the Viola-Jones algorithm, which is an algorithm
designed for detecting faces in images.

• Normalisation. This includes resising the image in a standard form and re-scaling
the pixel values to values between 0 and 1.

All this image pre-processing is done in Python with the open-source library OpenCV2.

2.5.1 Open source computer vision (OpenCV2)

OpenCV2 is a library of programming functions mainly aimed at real-time computer vi-
sion. The main reason we use OpenCV2 is that Opencv runs faster and the space occu-
pied by the software is much lesser than other computer vision-oriented libraries. Also,
Opencv2+python can be installed on a Raspberry Pi.

Figure 2.7: OpenCV2. Source:https://opencv.org/

Some of the function used in this project are the followings:

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 25

• imread: Loads an image from a file.

cv2.imread(filename) → retval

– filename: Name of file to be loaded.

– retval: Matrix of pixel values of the loaded image.

• imwrite: Saves an image to a specified file.

cv2.imwrite(filename, img)

– filename: Name of the file.

– img: Image to be saved

• getRotationMatrix2D: Calculates an affine matrix of 2D rotation.

cv2.getRotationMatrix2D(center, angle, scale) → retval

– center: Center of the rotation in the source image.

– angle: Rotation angle in degrees. Positive values mean counter-clockwise rota-
tion (the coordinate origin is assumed to be the top-left corner).

– scale: Isotropic scale factor.

– retval: Matrix of pixel values of the rotated image.

• resize: Resises an image.

cv2.resize(src, dsize[, dst]) → retval

– src: input image.

– retval: output image with desired size

– dsize: output image size

• cvtColor: Converts an image from one color space to another.

cv2.cvtColor(src, code[, dst[, dstCn]]) → dst

– src: input image

– dst: output image

– code: color space conversion code

– dstCn: number of channels in the destination image

• CascadeClassifier.detectMultiScale: Viola Jones algorithm for detecting faces. In
next section, the algorithm and its application is explained in more detail.

cv2.CascadeClassifier.detectMultiScale(image[, scaleFactor[, minNeighbors[[, minSize[,
maxSize]]]]]) → objects

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 26

– image: Matrix containing an image where objects are detected.

– objects: Vector of rectangles where each rectangle contains the detected object.

– scaleFactor: Parameter specifying how much the image size is reduced at each
image scale.

– minNeighbors: Parameter specifying how many neighbors each candidate rect-
angle should have to retain it.

– minSize: Minimum possible object size. Objects smaller than that are ignored.

– maxSize: Maximum possible object size. Objects larger than that are ignored.

– cascade: Haar classifier cascade. It can be loaded from XML or YAML file using
Load().

2.5.2 Viola-Jones algorithm

The Viola-Jones object detection framework is the first object detection framework to
provide competitive object detection rates in real-time proposed in 2001 by Paul Viola and
Michael Jones.

The problem to be solved is the detection of faces in an image. A human can do this
easily, but a computer needs precise instructions and constraints. To make the task more
manageable, Viola-Jones requires full view frontal upright faces. Thus to be detected, the
entire face must point towards the camera and should not be tilted to either side. While
it seems these constraints could diminish the algorithm’s utility somewhat, because the
detection step is most often followed by a recognition step, in practice these limits on pose
are quite acceptable.

The algorithm maps through all the image searching for features that researchers had
found that resembles a human face. That features are given the name of Haar features.
The features sought by the detection framework universally involve the sums of image pixels
within rectangular areas. As such, they bear some resemblance to Haar basis functions,
which have been used previously in the realm of image-based object detection. However,
since the features used by Viola and Jones all rely on more than one rectangular area,
they are generally more complex. The value of any given feature is the sum of the pixels
within clear rectangles subtracted from the sum of the pixels within shaded rectangles.
Rectangular features of this sort are primitive when compared to alternatives such as
steerable filters. Although they are sensitive to vertical and horizontal features, their
feedback is considerably coarser.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 27

Haar features

All human faces share some similar properties. These regularities may be matched using
Haar Features.

A few properties common to human faces:

• The eye region is darker than the upper-cheeks.

• The nose bridge region is brighter than the eyes.

Figure 2.8: Haar Feature that looks similar to the bridge of the nose is applied onto the face.-
Source: https://en.wikipedia.org/wiki/ViolaJones

Figure 2.9: Haar Feature that looks similar to the eye region
which is darker than the upper cheeks is applied onto a face.
Source: https://en.wikipedia.org/wiki/ViolaJones

Composition of properties forming matching facial features:

• Location and size: eyes, mouth, bridge of the nose

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 28

• Value: oriented gradients of pixel intensities

Rectangle features:

• V alue =
∑

(pixels in black area)−
∑

(pixels in white area)

• Three types: two-, three-, four-rectangles, Viola & Jones used two-rectangle features

• For example, the difference in brightness between the white & black rectangles over
a specific area

• Each feature is related to a special location in the sub-window

The characteristics of the Viola-Jones algorithm which make it a good detection algorithm
are:

• Robust – very high detection rate (true-positive rate) and little false-positive rate
always.

• Real-time – For practical applications, at least 2 frames per second must be processed.

• Face detection only (not recognition) - The goal is to distinguish faces from non-faces
(detection is the first step in the recognition process).

2.5.3 Normalisation

Once detected the human face in the image, the next step remaining is to crop this region
to remove the noise of the background and resize this cropped image to a standard shape
so the model can ingest it. All machine/deep learning model requires the same input shape
for all elements, no matter if they are used for training or testing. In this case, it has opted
for a 50x50x3 input shape.

This decision, although arbitrary, is adjusted through the model training in case of low
accuracy or high complexity. The lower the input shape (width and height), the less
information the model has at his disposal, but the faster is trained since the number of
parameters of the model are lower. Also, it is advisable to re-scale the pixel values to a
range of 0 and 1. The majority of machine/deep learning models prefer values in that
range because they tend to spike with high values resulting in lower accuracy.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 29

All these steps of data preparation are applied to all images. All the codes referring to these
procedures can be found in the annex. More precisely, they can be found in the sections
"VIOLA_JONES_data_prep_positive.py" and "VIOLA_JONES_data_prep_negative.py."

Figure 2.10: Data preparation pipeline for a positive case

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 30

Figure 2.11: Data preparation pipeline for a negative case

2.6 Data augmentation

Before starting training the model, there is still the necessity to deal with another problem
which some may already have noticed: the training set is conformed by 337 positive images
and 6500 negative images. This is a massive imbalanced dataset.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 31

Figure 2.12: Distribution of the data

An unbalanced dataset creates a problem due to three main reasons:

• Not getting optimised results for the class which is unbalanced in real-time as the
model/algorithm never gets sufficient look at the underlying class

• It creates a problem of making a validation or test sample as its difficult to have
representation across classes in case number of observation for few classes is extremely
less

• The model could be biased to the negative class since predicting "negative" has more
chance to be correct by simple probabilities.

There are several ways to solve this issue:

• Undersampling-Randomly deletes the class which has sufficient observations so that
the comparative ratio of two classes is significant in our data. Although this approach
is straightforward to follow, there is a high possibility that the data that we are
deleting may contain important information about the predictive class.

• Collecting more data. That’s a reasonable way to proceed, but it requires much time,
and it is difficult to reach the same samples as the negative case by hand.

• Data augmentation. Since images are the data used in this project, it is possible to
apply transformations to the positive case, so similar images are generated. Common

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 32

transformations used in this procedure are rotations, zooms, stretches, horizontal
flips, etc. All of these transformations are in such a range they don’t distort the
image to be completely illegible for the model. For more information on how these
transformations are implemented, check the annex section "Data_augmentation.py"

Figure 2.13: Data augmentation example

This procedure is applied in the training set of the data. (More on that in next section
Data split (train, valid and test sets)). With this technique, from a single image, it is
obtained 20 new images that help the model by a lot.

2.7 Data split (train, valid and test sets)

The data used to build the final model usually comes from multiple datasets. In particular,
three data sets are commonly used in different stages of the creation of the model.

The model is initially fit on a training dataset, which is a set of examples used to fit the
parameters (e.g., weights of connections between neurons in artificial neural networks) of
the model. The model (e.g., a neural net or a naive Bayes classifier) is trained on the
training dataset using a supervised learning method. In practice, the training dataset
often consists of pairs of an input vector (or scalar) and the corresponding output vector
(or scalar), which is the label as previously explained. The current model is run with

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 33

the training dataset and produces a result, which is then compared with the target, for
each input vector in the training dataset. Based on the result of the comparison, and the
specific learning algorithm being used, the parameters of the model are adjusted. The
model fitting can include both variable selection and parameter estimation.

Successively, the fitted model is used to predict the responses for the observations in a
second dataset called the validation dataset. The validation dataset provides an unbiased
evaluation of a model fit on the training dataset while tuning the model’s hyperparameters
(e.g., the number of hidden units in a neural network).

Finally, the test dataset is a dataset used to provide an unbiased evaluation of a final model
fit on the training dataset. If the data in the test dataset has never been used in training
(for example in cross-validation), the test dataset is also called a holdout dataset.

To recap:

• Training Dataset: The sample of data used to fit the model. In this case, it is
composed of 11140 images (6400 negatives and 4740 positives, which are the images
resulting from the data augmentation technique).

• Validation Dataset: The sample of data used to provide an unbiased evaluation
of a model fit on the training dataset while tuning model hyperparameters. The
evaluation becomes more biased as a skill on the validation dataset is incorporated
into the model configuration. In this case, it is composed of 100 images (50 negatives
and 50 positives).

• Test Dataset: The sample of data used to provide an unbiased evaluation of a final
model fit on the training dataset. In this case, it is composed of 100 images (50
negatives and 50 positives).

The split is performed by the codes "VIOLA_JONES_data_prep_positive.py" and "VI-
OLA_JONES_data_prep_negative.py", so for more details, check the annex. The next
figure shows more clearly the data split made.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 34

Figure 2.14: Data split

2.8 Model selection

The plan is to use deep learning, which is a type of machine learning procedure. In the
next sections, it is going to be explained why deep learning is used in this kind of project
and how exactly deep learning works for this case.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 35

2.8.1 Why deep learning?

Inventors have long dreamed of creating machines that think. When programmable com-
puters were first conceived, people wondered whether such machines might become in-
telligent, over a hundred years before one was built (Lovelace, 1842). Today, artificial
intelligence (AI) is a thriving field with many practical applications and active research
topics.

Intelligent software is used to automate routine tasks, understand speech or images, make
diagnoses in medicine and support basic scientific research. In the early days of artificial
intelligence, the field rapidly tackled and solved problems that are intellectually difficult
for human beings but relatively straightforward for computers—problems that can be de-
scribed by a list of formal, mathematical rules. The true challenge to artificial intelligence
proved to be solving the tasks that are easy for people to perform but hard for people to
describe formally—problems that we solve intuitively, that feel automatic, like recognising
spoken words or faces in images. The solution is based in allowing computers to learn from
experience and understand the world in terms of a hierarchy of concepts, with each concept
defined in terms of its relation to simpler concepts. By gathering knowledge from experi-
ence (data), this approach avoids the need for human operators to formally specify all of
the knowledge that the computer needs. The hierarchy of concepts allows the computer
to learn complicated concepts by building them out of simpler ones.

The performance of these simple machine learning algorithms depends heavily on the rep-
resentation of the data they are given. This dependence on representations is a general
phenomenon that appears throughout computer science and even daily life. In computer
science, operations such as searching a collection of data can proceed exponentially faster if
the collection is structured and indexed intelligently. It is not surprising that the choice of
representation has an enormous effect on the performance of machine learning algorithms.
Many artificial intelligence tasks can be solved by designing the right set of features to ex-
tract for that task, then providing these features to a simple machine learning algorithm.
For example, a useful feature for speaker identification from sound is an estimate of the
size of speaker’s vocal tract. It therefore gives a strong clue as to whether the speaker is
a man, woman, or child. However, for many tasks, it is difficult to know what features
should be extracted. For example in this project, we have the urge to recognise from pixel
values if the faces of the image that all this pixels values represent corresponds to the target
person. We could try to analyse what conforms in terms of the pixel values the face of the
targeted person but finding these patterns is very hard for the programmer since the data
that is not presented in an ordered way and it can have multiple representations of itself.
For example, brightness of the photo can change completely all the patterns we might be
able to find studying the positive cases, or maybe the targeted person changes regularly
his hairstyle so all the patterns found for some cases are going to be useless in others.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 36

Deep learning solves this central problem in representation learning by introducing rep-
resentations that are expressed in terms of other, simpler representations. Deep learning
allows the computer to build complex concepts out of simpler concepts. Next figure shows
how a deep learning system can represent the concept of an image of a person by combining
simpler concepts, such as corners and contours, which are in turn defined in terms of edges.

Figure 2.15: Illustration of a deep learning model. Source: "Deep learning" by Ian Goodfellow

It is difficult for a computer to understand the meaning of raw sensory input data, such
as this image represented as a collection of pixel values. The function mapping from a set
of pixels to an object identity is very complicated. Learning or evaluating this mapping
seems insurmountable if tackled directly. Deep learning resolves this difficulty by breaking
the desired complicated mapping into a series of nested simple mappings, each described
by a different layer of the model. The input is presented at the visible layer, so named
because it contains the variables that we are able to observe. Then a series of hidden layers
extracts increasingly abstract features from the image. These layers are called “hidden”
because their values are not given in the data; instead the model must determine which
concepts are useful for explaining the relationships in the observed data. The images
here are visualisations of the kind of feature represented by each hidden unit. Given the
pixels, the first layer can easily identify edges, by comparing the brightness of neighboring
pixels. Given the first hidden layer’s description of the edges, the second hidden layer
can easily search for corners and extended contours, which are recognisable as collections

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 37

of edges. Given the second hidden layer’s description of the image in terms of corners
and contours, the third hidden layer can detect entire parts of specific objects, by finding
specific collections of contours and corners. Finally, this description of the image in terms
of the object parts it contains can be used to recognise the objects present in the image.

The quintessential example of a deep learning model is the feedforward deep network or
multilayer perceptron (MLP). A multilayer perceptron is just a mathematical function
mapping some set of input values to output values. The function is formed by composing
many simpler functions called perceptrons which resemble the biological neurons in the
human brain. We can think of each application of a different mathematical function as
providing a new representation of the input. In next section, we are going to go in detail of
what are those mathematical operations called perceptrons and how are they connected.

To summarise, deep learning, is an approach to AI. Specifically, it is a type of machine
learning, a technique that allows computer systems to improve with experience and data.
Machine learning is the only viable approach to building AI systems that can operate
in complicated, real-world environments. Deep learning is a particular kind of machine
learning that achieves great power and flexibility by learning to represent the world as a
nested hierarchy of concepts, with each concept defined in relation to simpler concepts,
and more abstract representations computed in terms of less abstract ones.

2.8.2 Multilayer perceptron neural network (MLP)

A multilayer perceptron is just a mathematical function mapping some set of input values
to output values. The function is formed by composing many simpler functions called
perceptrons.

The perceptron

The perceptron is the basic unit of an artifical neural network. It is based on a slightly
different artificial neuron called a linear threshold unit (LTU): the inputs and output are
now numbers (instead of binary on/off values) and each input connection is associated with
a weight. The LTU computes a weighted sum of its inputs (z = w1x1+w2x2+...+wnxn =),
then applies a step function to that sum and outputs the result: hw(x) = step(z) =
step(wTx)

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 38

Figure 2.16: Linear threshold unit. Source: "Hands-On Machine Learning with Scikit-Learn and
TensorFlow" by Aurélien Géron

A single LTU can be used for simple linear binary classification. It computes a linear
combination of the inputs and if the result exceeds a threshold, it outputs the positive
class or else outputs the negative class. Training an LTU means finding the right values
for w0, w1 and w2 (the training algorithm is discussed shortly). A Perceptron is simply
composed of a single layer of LTUs, with each neuron connected to all the inputs. These
connections are often represented using special passthrough neurons called input neurons:
they just output whatever input they are fed.

Moreover, an extra bias feature is generally added (w0 = 1). This bias feature is typically
represented using a special type of neuron called a bias neuron, which just outputs 1 all
the time. A Perceptron with two inputs and three outputs is represented in next figure.
This Perceptron can classify instances simultaneously into three different binary classes,
which makes it a multioutput classifier.

Figure 2.17: Perceptron diagram. Source: "Hands-On Machine Learning with Scikit-Learn and
TensorFlow" by Aurélien Géron

The Perceptron training algorithm proposed by Frank Rosenblatt was largely inspired by

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 39

Hebb’s rule. In his book [HEBB], “The Organization of Behavior", published in 1949,
Donald Hebb suggested that when a biological neuron often triggers another neuron, the
connection between these two neurons grows stronger. This rule later became known as
Hebb’s rule (or Hebbian learning); that is, the connection weight between two neurons is
increased whenever they have the same output. Perceptrons are trained using a variant
of this rule that takes into account the error made by the network; it does not reinforce
connections that lead to the wrong output. More specifically, the Perceptron is fed one
training instance at a time, and for each instance it makes its predictions. For every output
neuron that produced a wrong prediction, it reinforces the connection weights from the
inputs that would have contributed to the correct prediction. Next figure contains the
formula that Frank Rosenblatt proposed for training a perceptron.

Figure 2.18: Perceptron learning rule. Source: "Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms" by Frank Rosenblatt

Where, in the formula:

• wi,j is the connection weight between the ith input neuron and the jth output neuron.

• xi is the ith input value of the current training instance.

• ŷj is the output of the jth output neuron for the current training instance.

• yj is the target output of the jth output neuron for the current training instance.

• η is the learning rate.

In their 1969 monograph titled Perceptrons, Marvin Minsky and Seymour Papertn high-
lighted a number of serious weaknesses of Perceptrons, in particular the fact that they are
incapable of solving some trivial problems. However, it turns out that some of the limi-
tations of Perceptrons can be eliminated by stacking multiple Perceptrons. The resulting
ANN is called a Multi-Layer Perceptron (MLP).

Multi-Layer Perceptron (MLP)

An MLP is composed of one (passthrough) input layer, one or more layers of LTUs, called
hidden layers, and one final layer of LTUs called the output layer. Every layer except the

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 40

output layer includes a bias neuron and is fully connected to the next layer. When an
ANN has two or more hidden layers, it is called a deep neural network (DNN).

Figure 2.19: Multi-Layer Perceptron. Source: "Hands-On Machine Learning with Scikit-Learn
and TensorFlow" by Aurélien Géron

For many years researchers struggled to find a way to train MLPs, without success.But
in 1986, D. E. Rumelhart et al. published a groundbreaking ("Learning representations
by back-propagating errors") article introducing the back propagation training algorithm.
Today we would describe it as Gradient Descent. For each training instance, the algorithm
feeds it to the network and computes the output of every neuron in each consecutive
layer (this is the forward pass, just like when making predictions). Then it measures
the network’s output error (i.e., the difference between the desired output and the actual
output of the network), and it computes how much each neuron in the last hidden layer
contributed to each output neuron’s error. It then proceeds to measure how much of
these error contributions came from each neuron in the previous hidden layer—and so on
until the algorithm reaches the input layer. This reverse pass efficiently measures the error
gradient across all the connection weights in the network by propagating the error gradient
backward in the network (hence the name of the algorithm).

To sum up, for each training instance the back propagation algorithm first makes a predic-
tion (forward pass), measures the error, then goes through each layer in reverse to measure
the error contribution from each connection (reverse pass), and finally slightly tweaks the
connection weights to reduce the error (Gradient Descent step also called epoch).

In order for this algorithm to work properly, the authors made a key change to the MLP’s
architecture: they replaced the step function with the sigmoid function, σ(z) = 1/(1+e˘z).
This was essential because the step function contains only flat segments, so there is no
gradient to work with (Gradient Descent cannot move on a flat surface), while the sigmoid

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 41

function has a well-defined nonzero derivative everywhere, allowing Gradient Descent to
make some progress at every step. The back propagation algorithm may be used with
other activation functions, instead of the sigmoid function.

However, the sigmoid activation function is slow to compute so recently, researchers have
found a new activation function that works better, the ReLU functionReLU(z) = max(0, z).
It is continuous but unfortunately not differentiable at z = 0 (the slope changes abruptly,
which can make Gradient Descent bounce around). Although, in practice it works very
well and has the advantage of being fast to compute. Additionally, the fact that it does
not have a maximum output value also helps reduce some issues during Gradient Descent.

Figure 2.20: ReLU vs sigmoid. ReLU is faster to compute and doesn’t compromise the
performance of the mode. Source: "https://towardsdatascience.com/activation-functions-neural-
networks-1cbd9f8d91d6"

AnMLP is often used for classification, with each output corresponding to a different binary
class (face of the targeted person or not). When the classes are exclusive , the output layer
is typically modified by replacing the individual activation functions by a shared softmax
function. The output of each neuron corresponds to the estimated probability of the
corresponding class. Note that the signal flows only in one direction (from the inputs to
the outputs), so this architecture is an example of a feed forward neural network (FNN).

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 42

Figure 2.21: A modern MLP (including ReLU and softmax) for classification. Source: "Hands-
On Machine Learning with Scikit-Learn and TensorFlow" by Aurélien Géron

In the use case of recognising a single person from the face image, the neural network has
one output neuron with the probability of given specific input pixel values; they belong
to the targeted person that it is needed to recognise. Therefore, the softmax function
isn’t needed, and it is perfectly reasonable to apply the sigmoid activation function to the
output neuron to normalise the output value in the range between 0 and 1. Additionally,
assigning a threshold is needed since we need to decide on which confidence we assume that
the value outputted from the NN corresponds to the reality. In any probabilistic model,
the decision of the value of the threshold is arbitrary since it depends on each problem. In
this case, we are going to start with a value of 0.95 of threshold. So, if the model outputs
a lower probability of 0.95, this prediction is considered as a negative case (value 0).

Some might say that the model is ready to train, but another important problem arises from
the fact that the input data of this project are images. In all the examples above the input
value was the vector of features (x1,x2,x3,...,xn). However, since images are a matrix, as
discussed in section 3, how do we transform an image into a one-dimensional vector? One
possible answer is applying the flatten operation to the matrix. The flattening operation
is to arrange the pixel values of the matrix by spatial position in a single vector. However,
by doing that, all the spatial correlation between pixels is lost, and the model suffers a
negative impact inaccuracy since, in images, the position of pixels is crucial information.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 43

Figure 2.22: Flattening operation in a grey scale image (1 channel).
Source: "https://towardsdatascience.com/activation- functions-neural-networks-1cbd9f8d91d6"

Fortunately for us, a revolutionary paper named "Object Recognition with Gradient Based
Learning" by LeCun et al. presenting a way of transforming image matrix into vector of
features maintaining the spatial correlation between pixels: the convolutional operation
layer.

2.8.3 Convolutional Neural Networks

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can
take in an input image, assign importance (learnable weights and biases) to various aspect-
s/objects in the image and be able to differentiate one from the other. The pre-processing
required in a ConvNet is much lower as compared to other classification algorithms. While
in primitive methods filters are hand-engineered, with enough training, ConvNets have the
ability to learn these filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons
in the Human Brain and was inspired by the organization of the Visual Cortex. Individual
neurons respond to stimuli only in a restricted region of the visual field known as the
Receptive Field. A collection of such fields overlap to cover the entire visual area.

A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an
image through the application of relevant filters. The architecture performs a better fitting

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 44

to the image dataset due to the reduction in the number of parameters involved and
reusability of weights. In other words, the network can be trained to understand the
sophistication of the image better.

The input image

In the figure, we have an RGB image which has been separated by its three color planes
(Red, Green, and Blue).

Figure 2.23: A RGB image. Source: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

You can imagine how computationally intensive things would get once the images reach
dimensions, say 8K (7680×4320). The role of the ConvNet is to reduce the images into
a form which is easier to process, without losing features which are critical for getting a
good prediction. This is important when we are to design an architecture which is not
only good at learning features but also is scalable to massive datasets.

Convolution Layer: The Kernel

The element involved in carrying out the convolution operation in the first part of a Con-
volutional Layer is called the Kernel/Filter, K, represented in the color yellow in the next
figure. We have selected K as a 3x3x1 matrix with random values of filters. The Kernel
shifts 9 times because of Stride Length = 1 (Non-Strided), every time performing a matrix

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 45

multiplication operation between K and the portion P of the image over which the kernel
is hovering.

Figure 2.24: Convoluting a 5x5x1 im-
age with a 3x3x1 kernel to get a 3x3x1
convolved feature (step1). Source:
"https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-
3bd2b1164a53"

Figure 2.25: Convoluting a 5x5x1 im-
age with a 3x3x1 kernel to get a 3x3x1
convolved feature (step2). Source:
"https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-
3bd2b1164a53"

In the case of images with multiple channels (e.g. RGB), the Kernel has the same depth
as that of the input image. Matrix Multiplication is performed between Kn and In stack
([K1, I1]; [K2, I2]; [K3, I3]) and all the results are summed with the bias to give us a
squashed one-depth channel Convoluted Feature Output.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 46

Figure 2.26: Convolution operation on a MxNx3 image matrix with a 3x3x3 Ker-
nel. Source: "https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53"

All this filters values are going to be trained the same way the weights of the neurons are
trained, by gradient descent. That’s the strength of convolutional networks, they train
themselves on how to extract the important features so they can feed a MLP that will
output a prediction based on those features.

Pooling Layer

Similar to the Convolutional Layer, the Pooling layer is responsible for reducing the spatial
size of the Convolved Feature. This is to decrease the computational power required to
process the data through dimensionality reduction. Furthermore, it is useful for extracting
dominant features which are rotational and positional invariant, thus maintaining the
process of effectively training of the model.

There are two types of Pooling: Max Pooling and Average Pooling. Max Pooling returns
the maximum value from the portion of the image covered by the Kernel. On the other
hand, Average Pooling returns the average of all the values from the portion of the image
covered by the Kernel.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 47

Max Pooling also performs as a Noise Suppressant. It discards the noisy activations al-
together and also performs de-noising along with dimensionality reduction. On the other
hand, Average Pooling simply performs dimensionality reduction as a noise suppressing
mechanism. Hence, we can say that Max Pooling performs a lot better than Average
Pooling.

Figure 2.27: Types of Pooling. Source: "https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53"

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a Con-
volutional Neural Network. Depending on the complexities in the images, the number of
such layers may be increased for capturing low-levels details even further, but at the cost
of more computational power.

After going through the above process, we have successfully enabled the model to under-
stand the features. Moving on, we are going to flatten the final output and feed it to a
regular Neural Network for classification purposes. In the next section, we are going to
present how the final model looks like.

2.8.4 Model selected

The model is composed of a convolutional layer plus an MLP because of all the reasons
previously discussed. The next figure shows a detailed view of the model of each operation
with their parameters:

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 48

Figure 2.28: Final model

In the next figure, it is shown all the parameters for operation that the gradient descent
will need to adjust in the training phase:

Figure 2.29: Parameters of the neural network

For more information on why that number of neurons or why those filters in the convolu-

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 49

tional layer, check the annex. Adjusting those parameters (often called hyperparameters),
it’s achieved by doing a grid search (trial and error) until the models result in a good
accuracy of the validation set.

2.9 Model training

In order to train the model, a very famous open source library is going to be used: Ten-
sorflow.

2.9.1 TensorFlow

TensorFlow is a free and open-source software library for dataflow and differentiable pro-
gramming across a range of tasks. It is a symbolic math library, and is also used for
machine learning applications such as neural networks. It is used for both research and
production at Google.

TensorFlow was developed by the Google Brain team for internal Google use. It was
released under the Apache License 2.0 on November 9, 2015. The main reason TensorFlow
is used is because it allows you to save the trained model and loaded with ease in other
machine such a Raspberry Pi.

2.9.2 Training the model

As said previously, now we need to feed the model with the training images and apply
gradient descent so the weights of the neurons and the values of the filters can be optimised.
At first all of these values are randomised. For more information on the code of the training
phase, please check "CNN.py" in the annex. Next figure, the accuracy of the training and
validation set is displayed by epoch (gradient descent step). A 99.6 percent accuracy of
the training set is achieved by the 5th epoch.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 50

Figure 2.30: Train accuracy by epoch

2.10 Model evaluation

Let’s test the model with images that it has never seen before: the test. Those are the
results:

Figure 2.31: Confusion matrix of the result of the test set

Looking at the results, the model achieved 100 percent accuracy in the test set. Considering

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 51

these results, it is plausible to say that the model can recognise the targeted person.
Although the model performed very well in the test set, another evaluation of the model
implemented in the Raspberry Pi is done. Please check the section "Experimental results
and evaluation of performance."

2.11 Model implementation into the Raspberry Pi

The next step is to implement the Viola-Jones algorithm and the model into the Raspberry
Pi. First, we will present all the components that conform to the system for achieving the
face detection and recognition in real-time.

2.11.1 Raspberry Pi 3 model B

The Raspberry Pi is a series of small single-board computers developed in the United
Kingdom by the Raspberry Pi Foundation. In this project, we are going to use the newest
model the raspberry Pi 3 model B. This new model holds the following specifications:

• SoC: Broadcom BCM2837

• CPU: 4× ARM Cortex-A53, 1.2GHz

• GPU: Broadcom VideoCore IV

• RAM: 1GB LPDDR2 (900 MHz)

• Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

• Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

• Storage: microSD

• GPIO: 40-pin header, populated

• Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera
Serial Interface (CSI), Display Serial Interface (DSI)

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 52

Figure 2.32: Raspberry Pi 3 Model B

The Raspberry Pi is the responsible of executing the Viola-Jones and the pre-trained
convolutional neural network that we trained and saved so we can load it in the Raspberry
Pi. Tensorflow saves the pre-trained model as a file (CNN.h5 file). For more information
on how a pre-trained model is loaded in another device, refer to the code Raspberry in the
annex. However, how the Raspberry Pi obtains the picture to analyse. For that, we use
the PiCamera module.

2.11.2 PiCamera module

The Raspberry Pi Camera v2 is the new official camera board released by the Raspberry
Pi Foundation. The Raspberry Pi Camera Module v2 is a high quality 8 megapixel Sony
IMX219 image sensor custom designed add-on board for Raspberry Pi, featuring a fixed
focus lens. It’s capable of 3280 x 2464 pixel static images, and also supports 1080p30,
720p60 and 640x480p90 video. It attaches to Pi by way of one of the small sockets on the
board upper surface and uses the dedicated CSi interface, designed especially for interfacing
to cameras. Those are the specifications of the PiCamera module:

• Fixed focus lens on-board

• 8 megapixel native resolution sensor-capable of 3280 x 2464 pixel static images

• Supports 1080p30, 720p60 and 640x480p90 video

• Size 25mm x 23mm x 9mm

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 53

• Weight just over 3g

• Connects to the Raspberry Pi board via a short ribbon cable (supplied)

• Camera v2 is supported in the latest version of Raspbian, Raspberry Pi’s preferred
operating system

Figure 2.33: PiCamera Module

The PiCamera meets all the requirements in terms of image resolution, and it is easy to
install and use in the Raspberry Pi. With these two components, the algorithm is up and
running. However, it would be nice to see the output of it (no faces, face of the targeted
person,etc.) so traffic lights connected to the GPIO are used to show the results. We use
Pi-Traffic lights.

2.11.3 Pi-Traffic lights

The Pi-Traffic light provides an easy way to add three 10mm LEDs to your Raspberry Pi
project. The red, yellow and green LEDs give visual feedback to the Raspberry Pi GPIO.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 54

The Pi-Traffic light can also be used as a tool to learn about controlling the Raspberry Pi
GPIO pins.

Features:

• Red, Yellow and Green 10mm LEDs

• Compatible with Pi Models A, B, A+, B+, 2, 3 and Zero

• Uses only four of the Raspberry Pi GPIO pins leaving the remaining GPIO pins for
your project

• LEDs connected to GPIO pins 9,10 and 11

• Mounts vertically to the Raspberry Pi GPIO header

The Pi traffic lights will be connected in the Raspberry Pi as shown in the next picture.

Figure 2.34: Raspberry Pi with the traffic lights

The way these traffic light works is:

• Green light if at least one face corresponds to the targeted person

• Red light is all faces detected belong to the negative class (non-targeted person)

• Yellow light if zero faces are detected

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 55

However, there is still the need for a final component. We need a way to input a signal to
the Raspberry Pi, so it starts the process and executes the PiCamera to take a photo. We
use a simple button structure.

2.11.4 Input signal

To give the system an input signal we will use the following subcomponents:

• A solderless breadboard

• 2 male-to-female jumper leads

• 1 male-to-male jumper lead

• A button

In order to connect the button to Raspberry Pi we will use the following circuit:

Figure 2.35: Button circuit. Source: https://projects.raspberrypi.org/en/projects/physical-
computing/2

Finally, all the components are connected and the system is assembled and ready to func-
tion.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 56

Figure 2.36: The Raspberry Pi 3 model B and all the components

2.11.5 Pipeline of the system

The pipeline of the system is very straightforward. Right after the Raspberry Pi is powered
on, it executes the Raspberry.py (check annex to see the full code), and it remains in
standby until the user presses the button. At this point, the PiCamera takes a photo, and
the Viola-Jones algorithm detects all the faces of that image. For each face detected, the
convolutional neural network outputs a prediction, and the traffic lights light up according
to the results of those predictions.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 57

Figure 2.37: Pipeline of the process of detecting and recognising faces in real time in the Rasp-
berry Pi

Finally, with the system functioning, we need to run tests to extract results and verify
that the system is accomplishing the goal of detecting and recognising faces in real-time.
In the next character, performance in terms of speed of the process and accuracy of the
algorithm is evaluated.

2.12 Experimental results and performance evaluation

In this section, we are going to evaluate the performance of the project from the results
taken by executing the pipeline of the system 113 times in different situations. We are
going to evaluate the performance in terms of accuracy and speed. All these results can
be found in the appendix, section "Experimental results."

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 58

2.12.1 Performance in terms of accuracy

Face detection

These are the results of the face detection algorithm Viola-Jones in images taken by the
Raspberry Pi integrated camera (numbers in the matrix correspond to number of images.
Respective percentages are computed below):

Figure 2.38: Experimental results from the Viola-Jones algorithm

• True positives (faces detected that were actual faces): 91 (83 percent of faces were
detected)

• False negatives (faces not detected that were real faces): 19 (17 percent of faces were
not detected). From this, 12 (63 percent) were due to the faces being rotated more
than 10 degrees. This can be explained because the Haar Cascades features can’t
match rotated faces since they were hand-coded using not rotated images. Also, 3
faces were not detected due to low illumination, and the remaining false negatives
(4) were not detected for unknown reasons.

• False positives (faces detected that were not real faces): 3. All of them for unknown
reasons.

• The study of true negatives cannot be performed in a detection based algorithm.

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 59

Face recognition

These are the results from the face recognition algorithm in images taken by the Raspberry
Pi integrated camera (numbers in the matrix correspond to number of images. Respective
percentages are computed below):

Figure 2.39: Experimental results from the convolutional neural network

• True positives: 48 (79 percent of times was the targeted person recognised)

• False negatives (the model not recognised the targeted person when it really was the
actual person): 10 (20 percent of times was the targeted person not recognised)

• False positives (the model recognised the targeted person when it wasn’t the actual
person): 3. (1 percent of times a non targeted person was treated as the targeted
person)

• True negatives: 30 (percent of times 70 percent of times a non targeted person was
recognised as negative)

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 60

2.12.2 Performance in terms of speed

Image caption and reading

Figure 2.40: Histogram of time in seconds used for image caption and reading. Average = 4.97
seconds

Face detection

Figure 2.41: Histogram of time in seconds used for face detection. Average = 5.02 seconds

CHAPTER 2. DEVELOPMENT OF THE PROPOSED SOLUTION 61

Face recognition

Figure 2.42: Histogram of time in seconds used for face recognition. Average = 0.307 seconds

Total time spent by the algorithm

On average the time the whole pipeline will take 10,297 seconds.

3 | SUMMARY OF RESULTS

3.1 Summary of the budget and study of economic viability

Next, the budget for the project is presented. This budget is divided into two main parts:
the cost of the device and its components and the cost of labor.

3.1.1 Costs of the device and its components

In this section, the cost of the device that achieves face detection and recognition in real-
time is presented.

Raspberry Pi 61 e
Picamera 20 e

Traffic lights 5 e
Solderless board 6 e
Power charger 20 e

Buttons and jumper leads 20 e
TOTAL 115 e

Table 3.1: Costs of the device and its components

3.1.2 Cost of labor

In this section, the cost of labor related to the realisation of the project is presented.
Assuming that the worker will work 600 hours1 at 10 e/hour, it amounts to 6000 e as
total cost of labor.

1Computed from the number of 24 ECTS of this project: 24 ECTS X 25 h = 600h.

62

CHAPTER 3. SUMMARY OF RESULTS 63

3.1.3 Total cost

Costs of the device and its components 115 e
Cost of labor 6000 e

TOTAL 6115 e

Table 3.2: Total costs

3.2 Analysis and assessment of environmental implications

This project has very little environmental implications. However, it is worth mentioning
that the Raspberry Pi is being manufactured according to the EU regulations regarding the
supply of electronic/computer equipment [Cou16a]. This regulation constrains electronics
manufacturers to reduce the amount of e-waste entering the refuse chain that ends up in
landfill.

3.3 Conclusions and recommendations for future work

We can extract several conclusions from this project:

• The Viola-Jones algorithm performs well in most cases, except when faces suffer from
big rotations. Even though the Viola-Jones is fast to compute so for machines with
low computation power is the best option.

• In terms of recognition, deep learning achieved high accuracy, and therefore, we can
say that it is a powerful technique at least in the field of computer vision. The only
disadvantage is the data is needed to train the model, which sometimes is not easily
obtained.

Looking at the results obtained in the facial recognition part, we could push the limits of
the convolutional neural network and, in future work, we could train the model to recognise
between several people. Instead of outputting the single probability of being the targeted
person, our new model will output a vector of probability for each person we train the
model to recognise. The procedures would be very similar to the ones being done in this
project. However, the training phase would be done using images adequately labeled of
the people we want to identify. The experimental study would have to be conducted again
to conclude on multi-person case for accuracy and performance.

CHAPTER 3. SUMMARY OF RESULTS 64

It would also be interesting to consider the case of a camera not attached to RPi, which
would communicate remotely through wireless communication. Again, studying the real-
time response would be interest to empirically study and conclude on its usefulness on real
time applications that need face detection.

Bibliography

[Heb49] Donald O. Hebb. The organization of behavior: A neuropsychological theory.
New York: Wiley, June 1949. isbn: 0-8058-4300-0.

[Le+11] Quoc V Le et al. “On optimization methods for deep learning”. In: Proceedings
of the 28th International Conference on International Conference on Machine
Learning. Omnipress. 2011, pp. 265–272.

[FSL15] Sachin Sudhakar Farfade, Mohammad J Saberian, and Li-Jia Li. “Multi-view
face detection using deep convolutional neural networks”. In: Proceedings of the
5th ACM on International Conference on Multimedia Retrieval. ACM. 2015,
pp. 643–650.

[HS15] Kaiming He and Jian Sun. “Convolutional neural networks at constrained time
cost”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 5353–5360.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), p. 436.

[Liu+15] Ziwei Liu et al. “Deep learning face attributes in the wild”. In: Proceedings of
the IEEE international conference on computer vision. 2015, pp. 3730–3738.

[Lon+15] Mingsheng Long et al. “Learning transferable features with deep adaptation
networks”. In: arXiv preprint arXiv:1502.02791 (2015).

[Aba+16] Martın Abadi et al. “Tensorflow: A system for large-scale machine learning”. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 2016, pp. 265–283.

[Cou16a] Council of European Union. Commission guidelines: Ecodesign requirements
for computers and servers (June 2014). 2016.

65

BIBLIOGRAPHY 66

[Cou16b] Council of European Union. Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance). 2016.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[Ren+16] Shaoqing Ren et al. “Object detection networks on convolutional feature maps”.
In: IEEE transactions on pattern analysis and machine intelligence 39.7 (2016),
pp. 1476–1481.

[Wit+16] Ian H Witten et al. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2016.

[Cho17] François Chollet. Deep Learning with Python. Manning, 2017.

[Gér17] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems. " O’Reilly Media,
Inc.", 2017.

[GP17] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing Ltd,
2017.

[Hua+17] Jonathan Huang et al. “Speed/accuracy trade-offs for modern convolutional
object detectors”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 7310–7311.

[Ket17] Nikhil Ketkar. “Introduction to keras”. In:Deep Learning with Python. Springer,
2017, pp. 97–111.

[TM18] H Taud and JF Mas. “Multilayer perceptron (mlp)”. In: Geomatic Approaches
for Modeling Land Change Scenarios. Springer, 2018, pp. 451–455.

[Gru19] Joel Grus. Data science from scratch: first principles with python. O’Reilly
Media, 2019.

[OAZ19] Ebenezer Owusu, Jamal-Deen Abdulai, and Yongzhao Zhan. “Face detection
based on multilayer feed-forward neural network and Haar features”. In: Soft-
ware: Practice and Experience 49.1 (2019), pp. 120–129.

[Sto+19] Catalin Stoean et al. “On classifying images using Keras and Tensorflow in
Python”. In: (2019).

[ONLa] ONLINE. A Comprehensive Guide to Convolutional Neural Networks-the ELI5
way. url: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

BIBLIOGRAPHY 67

[ONLb] ONLINE. Having an Imbalanced Dataset? Here Is How You Can Fix It. url:
https://towardsdatascience.com/having-an-imbalanced-dataset-here-
is-how-you-can-solve-it-1640568947eb.

https://towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-you-can-solve-it-1640568947eb
https://towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-you-can-solve-it-1640568947eb

A | Appendix

A.1 Codes

A.1.1 VIOLA Jones data prep negative

1

2 # coding : utf−8
3

4 # In [1] :
5

6

7 get_ipython () . run_line_magic (’ matp lo t l i b ’ , ’ i n l i n e ’)
8

9 import numpy as np
10 import cv2
11 import os
12 import matp lo t l i b . pylab as p l t
13 from os . path import i s f i l e , j o i n
14

15 DIM = (150 , 150)
16

17 mypath = r "raw_data\ negat ive "
18 o n l y f i l e s = [f f o r f in os . l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]
19 savepath = r " face_data \ negat ive "
20

21 face_cascade = cv2 . Ca s c ad eC l a s s i f i e r (r " haarcascade_fronta l f ace_a l t2 . xml")
22

23 i=0
24 f o r image_path in o n l y f i l e s :
25 image = cv2 . imread (mypath + "\\" + image_path)
26

27 gray = cv2 . cvtColor (image , cv2 .COLOR_BGR2GRAY)
28

29 f a c e s = face_cascade . de t e c tMu l t iS ca l e (gray , s c a l eFac to r = 1 . 1 ,
minNeighbors = 5 , minSize =(80 , 80))

68

APPENDIX A. APPENDIX 69

30 pr in t ("Found {0} f a c e s ! " . format (l en (f a c e s)))
31 f o r (x , y ,w, h) in f a c e s :
32 roi_gray = gray [y : y+h , x : x+w]
33 r o i_co l o r = image [y : y+h , x : x+w]
34 res ized_image = cv2 . r e s i z e (ro i_co lor , DIM)
35 img_item = " negat ive { i } . png" . format (i=i)
36 cv2 . imwrite (savepath + "\\" + img_item , res ized_image)
37 #img = cv2 . r e c t ang l e (image , (x , y) , (x+w, y+w) , (0 , 0 , 255) ,8)
38 #img = img . astype (’ f l o a t 3 2 ’)
39 #img /= 255
40 #pl t . imshow (cv2 . cvtColor (img , cv2 .COLOR_BGR2RGB))
41 #pl t . show ()
42 i+=1
43

44

45 # In [2] :
46

47

48 mypath = r " face_data \ negat ive "
49 o n l y f i l e s = [f f o r f in os . l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]
50 savepath = r " f ina l_data "
51 pr in t (l en (o n l y f i l e s))
52 import random
53 number_test = 50
54 number_valid = 50
55 t e s t_se t = random . sample (o n l y f i l e s , number_test)
56 pr in t (l en (t e s t_se t))
57 o n l y f i l e s = [i f o r i in o n l y f i l e s i f i not in t e s t_se t]
58 pr in t (l en (o n l y f i l e s))
59 va l id_set = random . sample (o n l y f i l e s , number_valid)
60 pr in t (l en (va l id_set))
61 o n l y f i l e s = [i f o r i in o n l y f i l e s i f i not in va l id_set]
62 pr in t (l en (o n l y f i l e s))
63

64

65 # In [3] :
66

67

68 f o r image_path in te s t_se t :
69 image = cv2 . imread (mypath + "\\" + image_path)
70 cv2 . imwrite (savepath + "\\" + " t e s t " + "\\" + image_path , image)
71 f o r image_path in va l id_set :
72 image = cv2 . imread (mypath + "\\" + image_path)
73 cv2 . imwrite (savepath + "\\" + " va l i d a t i o n " + "\\" + image_path , image)
74 f o r image_path in o n l y f i l e s :
75 image = cv2 . imread (mypath + "\\" + image_path)
76 cv2 . imwrite (savepath + "\\" + " t r a i n " + "\\" + image_path , image)

A.1.2 VIOLA Jones data prep positive

APPENDIX A. APPENDIX 70

1

2 # coding : utf−8
3

4 # In [2] :
5

6

7 get_ipython () . run_line_magic (’ matp lo t l i b ’ , ’ i n l i n e ’)
8

9 import numpy as np
10 import cv2
11 import os
12 import matp lo t l i b . pylab as p l t
13 from os . path import i s f i l e , j o i n
14

15 DIM = (150 , 150)
16 mypath = r "raw_data\ p o s i t i v e "
17 o n l y f i l e s = [f f o r f in os . l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]
18 savepath = r " face_data \ p o s i t i v e "
19

20 face_cascade = cv2 . Ca s c ad eC l a s s i f i e r (r " haarcascade_fronta l f ace_a l t2 . xml")
21

22 i=0
23 f o r image_path in o n l y f i l e s :
24 image = cv2 . imread (mypath + "\\" + image_path)
25

26 gray = cv2 . cvtColor (image , cv2 .COLOR_BGR2GRAY)
27

28 f a c e s = face_cascade . de t e c tMu l t iSca l e2 (gray , s c a l eFac to r = 1 . 1 ,
minNeighbors = 5 , minSize =(80 , 80))

29 pr in t (f a c e s)
30 pr in t ("Found {0} f a c e s ! " . format (l en (f a c e s [0])))
31 f o r (x , y ,w, h) in f a c e s [0] :
32 pr in t (x , y ,w, h)
33 roi_gray = gray [y : y+h , x : x+w]
34 r o i_co l o r = image [y : y+h , x : x+w]
35 #img_item = "my−image{ i } . png " . format (i=i)
36 #img = cv2 . r e c t ang l e (image , (x , y) , (x+w, y+w) , (0 , 0 , 255) ,20)
37 #img = img . astype (’ f l o a t 3 2 ’)
38 #img /= 255
39 #pl t . imshow (cv2 . cvtColor (img , cv2 .COLOR_BGR2RGB))
40 #pl t . show ()
41 i+=1
42 res ized_image = cv2 . r e s i z e (ro i_co lor , DIM)
43 img_item = " po s i t i v e { i } . png" . format (i=i)
44 cv2 . imwrite (savepath + "\\" + img_item , res ized_image)
45 pr in t ("−−")
46

47

48 # In [5] :
49

APPENDIX A. APPENDIX 71

50

51 mypath = r " face_data \ p o s i t i v e "
52 o n l y f i l e s = [f f o r f in os . l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]
53 savepath = r " f ina l_data "
54 pr in t (l en (o n l y f i l e s))
55 import random
56 number_test = 50
57 number_valid = 50
58 t e s t_se t = random . sample (o n l y f i l e s , number_test)
59 pr in t (l en (t e s t_se t))
60 o n l y f i l e s = [i f o r i in o n l y f i l e s i f i not in t e s t_se t]
61 pr in t (l en (o n l y f i l e s))
62 va l id_set = random . sample (o n l y f i l e s , number_valid)
63 pr in t (l en (va l id_set))
64

65

66 # In [6] :
67

68

69 f o r image_path in te s t_se t :
70 image = cv2 . imread (mypath + "\\" + image_path)
71 cv2 . imwrite (savepath + "\\" + " t e s t " + "\\" + image_path , image)
72 f o r image_path in va l id_set :
73 image = cv2 . imread (mypath + "\\" + image_path)
74 cv2 . imwrite (savepath + "\\" + " va l i d a t i o n " + "\\" + image_path , image)
75

76

77 # In [1 4] :
78

79

80 de f p l o t s (ims , count , f i g s i z e =(12 ,6) , rows=1, i n t e rp=False , t i t l e s=None ,
savepath = r "face_augmented_data\ p o s i t i v e ") :

81 i f type (ims [0]) i s np . ndarray :
82 ims = np . array (ims) . astype (np . u int8)
83 i f (ims . shape [−1] != 3) :
84 ims = ims . t ranspose ((0 , 2 , 3 , 1))
85 f = p l t . f i g u r e (f i g s i z e=f i g s i z e)
86 c o l s = len (ims) // rows i f l en (ims) % 2 == 0 e l s e l en (ims) // rows +1
87 i=0
88 f o r i in range (l en (ims)) :
89 sp = f . add_subplot (rows , co l s , i +1)
90 sp . ax i s ("Off ")
91 i f t i t l e s i s not None :
92 sp . s e t_ t i t l e (t i t l e s [i] , f o n t s i z e =16)
93 p l t . imshow (ims [i] , i n t e r p o l a t i o n=None i f i n t e rp e l s e "none")
94 img_item = " po s i t i v e { i }_{count } . png" . format (i=i , count=count)
95 image_f inal=cv2 . cvtColor (ims [i] , cv2 .COLOR_BGR2RGB)
96 cv2 . imwrite (savepath + "\\" + img_item , image_final)
97

98

APPENDIX A. APPENDIX 72

99 # In [] :
100

101

102 count = 0
103 from keras import backend as K
104 from keras . p r ep ro c e s s i ng . image import ImageDataGenerator
105 from sc ipy import misc , ndimage
106 f o r image_path in o n l y f i l e s :
107 gen = ImageDataGenerator (rotat ion_range = 20 , zoom_range=0.2)
108 image_path= r " face_data \ p o s i t i v e " + "\\" + image_path
109 image = np . expand_dims (ndimage . imread (image_path) ,0)
110 p l t . imshow (image [0])
111 aug_iter = gen . f low (image)
112 aug_images = [next (aug_iter) [0] . astype (np . u int8) f o r i in range (20)]
113 p l o t s (aug_images , count , f i g s i z e =(20 ,7) , rows = 2)
114 count = count + 1
115

116

117 # In [] :
118

119

120 mypath = r " face_data \ p o s i t i v e "
121 o n l y f i l e s = [f f o r f in os . l i s t d i r (mypath) i f i s f i l e (j o i n (mypath , f))]
122 savepath = r " f ina l_data "
123 pr in t (l en (o n l y f i l e s))

A.1.3 Data augmentation

1

2 # coding : utf−8
3

4 # In [1] :
5

6

7 get_ipython () . run_line_magic (’ matp lo t l i b ’ , ’ i n l i n e ’)
8

9 import numpy as np
10 import cv2
11 import os
12 import matp lo t l i b . pylab as p l t
13 from os . path import i s f i l e , j o i n
14 import keras
15 from keras import backend as K
16 from keras . p r ep ro c e s s i ng . image import ImageDataGenerator
17 from sc ipy import misc , ndimage
18

19

20 # In [2] :
21

22

APPENDIX A. APPENDIX 73

23 de f p l o t s (ims , f i g s i z e =(12 ,6) , rows=1, i n t e rp=False , t i t l e s=None , savepath = r
"face_augmented_data\ p o s i t i v e ") :

24 i f type (ims [0]) i s np . ndarray :
25 ims = np . array (ims) . astype (np . u int8)
26 i f (ims . shape [−1] != 3) :
27 ims = ims . t ranspose ((0 , 2 , 3 , 1))
28 f = p l t . f i g u r e (f i g s i z e=f i g s i z e)
29 c o l s = len (ims) // rows i f l en (ims) % 2 == 0 e l s e l en (ims) // rows +1
30 i=0
31 f o r i in range (l en (ims)) :
32 sp = f . add_subplot (rows , co l s , i +1)
33 sp . ax i s ("Off ")
34 i f t i t l e s i s not None :
35 sp . s e t_ t i t l e (t i t l e s [i] , f o n t s i z e =16)
36 p l t . imshow (ims [i] , i n t e r p o l a t i o n=None i f i n t e rp e l s e "none")
37 img_item = " po s i t i v e { i } . png" . format (i=i)
38 image_f inal=cv2 . cvtColor (ims [i] , cv2 .COLOR_BGR2RGB)
39 cv2 . imwrite (savepath + "\\" + img_item , image_final)
40

41

42 # In [4] :
43

44

45 gen = ImageDataGenerator (rotat ion_range = 20 , zoom_range=0.2)
46 image_path= r " face_data \ p o s i t i v e \ po s i t i v e 1 0 . png"
47 image = np . expand_dims (ndimage . imread (image_path) ,0)
48 p l t . imshow (image [0])
49 aug_iter = gen . f low (image)
50 aug_images = [next (aug_iter) [0] . astype (np . u int8) f o r i in range (20)]
51 p l o t s (aug_images , f i g s i z e =(20 ,7) , rows = 2)

A.1.4 CNN

1

2 # coding : utf−8
3

4 # In [9] :
5

6

7 import g lob
8 import numpy as np
9 import os

10 import s h u t i l
11 np . random . seed (42)
12 import numpy as np
13 import matp lo t l i b . pyplot as p l t
14 from keras . p r ep ro c e s s i ng . image import ImageDataGenerator , load_img ,

img_to_array , array_to_img
15

16

APPENDIX A. APPENDIX 74

17 # In [1 0] :
18

19

20 f i l e s = glob . g lob (’ f ina l_data / t r a i n /∗ ’)
21

22 p o s i t i v e _ f i l e s = [fn f o r fn in f i l e s i f ’ pos ’ in fn]
23 n e g a t i v e_ f i l e s = [fn f o r fn in f i l e s i f ’ neg ’ in fn]
24 l en (p o s i t i v e _ f i l e s) , l en (n e g a t i v e_ f i l e s)
25

26

27 # In [1 1] :
28

29

30 IMG_DIM = (50 ,50)
31

32 t r a i n _ f i l e s = glob . g lob (’ f ina l_data / t r a i n /∗ ’)
33 train_imgs = [img_to_array (load_img (img , t a rg e t_s i z e=IMG_DIM)) f o r img in

t r a i n _ f i l e s]
34 train_imgs = np . array (train_imgs)
35 t r a i n_ l abe l s = [fn . s p l i t (’ \\ ’) [1] . s p l i t (’ . ’) [0] . s t r i p () [0] f o r fn in

t r a i n _ f i l e s]
36

37 v a l i d a t i o n_ f i l e s = glob . g lob (’ f ina l_data / va l i d a t i o n /∗ ’)
38 val idat ion_imgs = [img_to_array (load_img (img , t a rg e t_s i z e=IMG_DIM)) f o r img

in v a l i d a t i o n_ f i l e s]
39 val idat ion_imgs = np . array (va l idat ion_imgs)
40 va l i d a t i on_ l ab e l s = [fn . s p l i t (’ \\ ’) [1] . s p l i t (’ . ’) [0] . s t r i p () [0] f o r fn in

v a l i d a t i o n_ f i l e s]
41

42 pr in t (’ Train datase t shape : ’ , train_imgs . shape ,
43 ’ \ tVa l i da t i on datase t shape : ’ , va l idat ion_imgs . shape)
44

45

46 # In [1 2] :
47

48

49 train_imgs_scaled = train_imgs . astype (’ f l o a t 3 2 ’)
50 val idat ion_imgs_sca led = val idat ion_imgs . astype (’ f l o a t 3 2 ’)
51 train_imgs_scaled /= 255
52 val idat ion_imgs_sca led /= 255
53

54

55 # In [1 3] :
56

57

58 batch_size = 100
59 num_classes = 2
60 epochs = 10
61 input_shape = (50 , 50 , 3)
62

APPENDIX A. APPENDIX 75

63 # encode text category l a b e l s
64 from sk l ea rn . p r ep ro c e s s i ng import LabelEncoder
65

66 l e = LabelEncoder ()
67 l e . f i t (t r a i n_ l abe l s)
68 t ra in_labe l s_enc = l e . trans form (t r a i n_ l abe l s)
69 va l idat ion_labe l s_enc = l e . trans form (va l i d a t i on_ l ab e l s)
70

71

72 # In [1 4] :
73

74

75 from keras . l a y e r s import Conv2D , MaxPooling2D , Flatten , Dense , Dropout
76 from keras . models import Sequent i a l
77 from keras import op t im i z e r s
78

79 model = Sequent i a l ()
80

81 model . add (Conv2D(50 , ke rne l_s i z e =(3 , 3) , a c t i v a t i o n=’ r e l u ’ ,
82 input_shape=input_shape))
83 model . add (MaxPooling2D (poo l_s ize =(3 , 3)))
84 model . add (Flat ten ())
85 model . add (Dense (128 , a c t i v a t i o n=’ r e l u ’))
86 model . add (Dense (64 , a c t i v a t i o n=’ r e l u ’))
87 model . add (Dense (1 , a c t i v a t i o n=’ s igmoid ’))
88

89

90 model . compi le (l o s s=’ b inary_crossentropy ’ ,
91 opt imize r=opt im i z e r s .RMSprop () ,
92 metr i c s =[’ accuracy ’])
93

94 model . summary ()
95

96

97 # In [1 5] :
98

99

100 h i s t o r y = model . f i t (x=train_imgs_scaled , y=tra in_labels_enc ,
101 va l idat ion_data=(val idat ion_imgs_scaled ,

va l idat ion_labe l s_enc) ,
102 batch_size=batch_size ,
103 epochs=epochs ,
104 verbose=1)
105

106

107 # In [2 0] :
108

109

110 f , (ax1 , ax2) = p l t . subp lo t s (1 , 2 , f i g s i z e =(12 , 4))
111 t = f . s u p t i t l e (’CNN Performance ’ , f o n t s i z e =12)

APPENDIX A. APPENDIX 76

112 f . subplots_adjust (top =0.85 , wspace =0.3)
113

114 epoch_l i s t = l i s t (range (1 ,11))
115 ax1 . p l o t (epoch_l i s t , h i s t o r y . h i s t o r y [’ acc ’] , l a b e l=’ Train Accuracy ’)
116 ax1 . s e t_xt i cks (np . arange (0 , 11 , 5))
117 ax1 . s e t_y labe l (’ Accuracy Value ’)
118 ax1 . s e t_x labe l (’Epoch ’)
119 ax1 . s e t_ t i t l e (’ Accuracy ’)
120 l 1 = ax1 . l egend (l o c=" best ")
121

122 ax2 . p l o t (epoch_l i s t , h i s t o r y . h i s t o r y [’ l o s s ’] , l a b e l=’ Train Loss ’)
123 ax2 . p l o t (epoch_l i s t , h i s t o r y . h i s t o r y [’ va l_los s ’] , l a b e l=’ Va l idat i on Loss ’)
124 ax2 . s e t_xt i cks (np . arange (0 , 11 , 5))
125 ax2 . s e t_y labe l (’ Loss Value ’)
126 ax2 . s e t_x labe l (’Epoch ’)
127 ax2 . s e t_ t i t l e (’ Loss ’)
128 l 2 = ax2 . l egend (l o c=" best ")
129

130

131 # In [] :
132

133

134 get_ipython () . run_line_magic (’ matp lo t l i b ’ , ’ i n l i n e ’)
135 import cv2
136 t e s t _ f i l e s = glob . g lob (’ f ina l_data / t e s t /∗ ’)
137 test_imgs = [img_to_array (load_img (img , t a rg e t_s i z e=IMG_DIM)) f o r img in

t e s t _ f i l e s]
138 test_imgs_display = [img_to_array (load_img (img , t a rg e t_s i z e =(200 ,200))) f o r

img in t e s t _ f i l e s]
139 test_imgs_display = np . array (test_imgs_display)
140 test_imgs_display = test_imgs_display . astype (’ f l o a t 3 2 ’)
141 test_imgs_display /=255
142 test_imgs = np . array (test_imgs)
143 test_imgs_scaled = test_imgs . astype (’ f l o a t 3 2 ’)
144 test_imgs_scaled /= 255
145

146 f o r i in range (l en (test_imgs)) :
147 pr in t (model . p r ed i c t (np . expand_dims (test_imgs_scaled [i] , a x i s =0)))
148 p l t . imshow (test_imgs_display [i])
149 p l t . show ()
150

151

152 # In [] :
153

154

155 model . save ("models /simpleCNN . h5")

A.1.5 Raspberry

1 import RPi .GPIO as GPIO

APPENDIX A. APPENDIX 77

2 import time
3 import cv2
4 import matp lo t l i b . pylab as p l t
5 from picamera import PiCamera
6 from time import s l e e p
7 import datet ime
8 import os
9 import keras

10 from keras . models import load_model
11 import numpy as np
12 from gp ioze ro import Button
13 import time
14 import subproces s
15 import RPi .GPIO as GPIO
16

17 button = Button (2)
18

19 de f rotate_image (image , ang le) :
20 i f ang le == 0 : re turn image
21 height , width = image . shape [: 2]
22 rot_mat = cv2 . getRotationMatrix2D ((width /2 , he ight /2) , angle , 0 . 9)
23 r e s u l t = cv2 . warpAff ine (image , rot_mat , (width , he ight) , f l a g s=cv2 .

INTER_LINEAR)
24 re turn r e s u l t
25

26 #GPIO. setwarn ings (Fa l se)
27 # Pin Setup :
28 GPIO. setmode (GPIO.BCM) # Broadcom pin−numbering scheme . This uses the pin

numbers that
29 # match the pin numbers on the Pi T r a f f i c l i g h t .
30

31 GPIO. setup (9 , GPIO.OUT) # Red LED pin s e t as output
32 GPIO. setup (10 , GPIO.OUT) # Yellow LED pin s e t as output
33 GPIO. setup (11 , GPIO.OUT) # Green LED pin s e t as output
34

35 GPIO. output (9 , True) # Turns on the Red LED
36 GPIO. output (10 , True) # Turns on the Red LED
37 GPIO. output (11 , True) # Turns on the Red LED
38

39 time . s l e e p (1)
40

41 GPIO. output (9 , Fa l se) # Turns on the Red LED
42 GPIO. output (10 , Fa l se) # Turns on the Red LED
43 GPIO. output (11 , Fa l se) # Turns on the Red LED
44 model = load_model (r "/home/ pi /Desktop/simpleCNN . h5")
45

46 camera = PiCamera ()
47

48 face_cascade = cv2 . Ca s c ad eC l a s s i f i e r (r "/home/ pi /Desktop/
haarcascade_f ronta l f ace_a l t2 . xml")

APPENDIX A. APPENDIX 78

49 s e t t i n g s = {
50 ’ s c a l eFac to r ’ : 1 . 1 ,
51 ’ minNeighbors ’ : 5 ,
52 ’ minSize ’ : (20 , 20)
53 }
54

55 #setup GPIO us ing Broadcom SOC channel numbering
56 f o r t imes in range (30) :
57 pr in t ("System Ready")
58

59 button . wait_for_press ()
60 camera . start_preview ()
61 s l e e p (3)
62 now = datet ime . datet ime . now() . s t r f t ime ("%Y_%m_%d%H:%M:%S")
63 newpath = r ’ /home/ pi /Data/{now} ’ . format (now=now)
64 i f not os . path . e x i s t s (newpath) :
65 os . makedirs (newpath)
66

67 pr in t (newpath)
68 img_path = r ’ /home/ pi /Data/{now}/ o r i g i n a l pho t o . png ’ . format (now=now)
69 camera . capture (img_path)
70 camera . stop_preview ()
71

72

73

74 i=0
75 image = cv2 . imread (img_path)
76 image2 = cv2 . imread (img_path)
77 i s_po s i t i v e = 0
78 no_faces = 0
79

80 f o r ang le in range (0 , 1) :
81 image_ro = rotate_image (image , ang le)
82 cv2 . imwrite (r "/home/ pi /Data/{now}/image_{ angle } . png" . format (ang le=

angle , now=now) , image_ro)
83 gray = cv2 . cvtColor (image_ro , cv2 .COLOR_BGR2GRAY)
84

85 DIM = (50 ,50)
86 f a c e s = face_cascade . de t e c tMu l t iS ca l e (gray , ∗∗ s e t t i n g s)
87 pr in t ("Found {0} f a c e s ! " . format (l en (f a c e s)))
88

89

90 f o r (x , y ,w, h) in f a c e s :
91 no_faces = 1
92 roi_gray = gray [y : y+h , x : x+w]
93 r o i_co l o r = image_ro [y : y+h , x : x+w]
94 res ized_image = cv2 . r e s i z e (ro i_co lor , DIM)
95 img = res ized_image . astype (’ f l o a t 3 2 ’)
96 img /= 255
97 p r ed i c t i on = model . p r ed i c t (np . expand_dims (img , ax i s =0))

APPENDIX A. APPENDIX 79

98 cv2 . imwrite (r "/home/ pi /Data/{now}/ face_{ i }_{ p r ed i c t i o n } . png" .
format (i=i , now=now , p r ed i c t i on=pr ed i c t i on) , r o i_co l o r)

99 pr in t (p r ed i c t i on)
100 #pl t . imshow (cv2 . cvtColor (resized_image , cv2 .

COLOR_BGR2RGB))
101 #pl t . show ()
102 i+=1
103 i f p r ed i c t i o n >= 0 . 9 :
104 i s_po s i t i v e = 1
105 cv2 . r e c t ang l e (image2 , (x , y) , (x+w, y+h) , (0 , 255 ,0) , 2)
106 e l s e :
107 cv2 . r e c t ang l e (image2 , (x , y) , (x+w, y+h) , (0 , 0 , 255) , 2)
108

109 cv2 . imwrite (r "/home/ pi /Data/{now}/ experiment . png" . format (now=now) , image2
)

110 i f i s_po s i t i v e == 1 :
111 GPIO. output (11 , True) # Turns on the Red LED
112 #GPIO. output (11 , True) # Turns on the Red LED
113

114 time . s l e e p (10)
115 # Set the pin LOW
116

117 GPIO. output (11 , Fa l se) # Turns on the Red LED
118 #GPIO. output (11 , Fa l se) # Turns on the Red LED
119

120 e l i f no_faces == 0 :
121 GPIO. output (10 , True) # Turns on the Red LED
122 time . s l e e p (10)
123 GPIO. output (10 , Fa l se)
124

125 e l s e :
126 GPIO. output (9 , True) # Turns on the Red LED
127 #GPIO. output (11 , True) # Turns on the Red LED
128

129 time . s l e e p (10)
130 # Set the pin LOW
131

132 GPIO. output (9 , Fa l se) # Turns on the Red LED
133 #GPIO. output (11 , Fa l se) # Turns on the Red LED

A.2 Experimental results

Viola Jones

Experiment number Ground truth Algorithm prediction Reason

experiemnt1 TRUE TRUE
experiemnt2 TRUE TRUE
experiemnt3 TRUE TRUE
experiemnt4 TRUE FALSE Too dark
experiemnt5 TRUE TRUE
experiemnt6 TRUE TRUE
experiemnt7 TRUE TRUE
experiemnt8 TRUE FALSE Rotation
experiemnt9 TRUE TRUE
experiemnt10 FALSE TRUE
experiemnt11 TRUE TRUE
experiemnt12 TRUE TRUE
experiemnt13 TRUE FALSE Rotation
experiemnt14 TRUE TRUE
experiemnt15 TRUE TRUE
experiemnt16 TRUE TRUE
experiemnt17 TRUE TRUE
experiemnt18 TRUE TRUE
experiemnt19 TRUE TRUE
experiemnt20 TRUE TRUE
experiemnt21 TRUE TRUE
experiemnt22 FALSE TRUE
experiemnt23 TRUE FALSE Rotation
experiemnt24 TRUE TRUE
experiemnt25 TRUE FALSE Rotation
experiemnt26 TRUE TRUE
experiemnt27 TRUE TRUE
experiemnt28 TRUE FALSE NA

experiemnt29 TRUE TRUE
experiemnt30 TRUE TRUE
experiemnt31 TRUE TRUE
experiemnt32 TRUE TRUE
experiemnt33 TRUE TRUE
experiemnt34 TRUE TRUE
experiemnt35 TRUE TRUE
experiemnt36 TRUE TRUE
experiemnt37 TRUE TRUE
experiemnt38 TRUE TRUE
experiemnt39 TRUE FALSE Rotation
experiemnt40 TRUE TRUE
experiemnt41 TRUE TRUE
experiemnt42 TRUE TRUE
experiemnt43 TRUE TRUE
experiemnt44 TRUE TRUE
experiemnt45 TRUE FALSE NA
experiemnt46 TRUE TRUE
experiemnt47 TRUE TRUE
experiemnt48 TRUE FALSE Too dark
experiemnt49 TRUE TRUE
experiemnt50 TRUE TRUE
experiemnt51 TRUE TRUE
experiemnt52 TRUE TRUE
experiemnt53 TRUE TRUE
experiemnt54 TRUE FALSE Rotation
experiemnt55 TRUE TRUE
experiemnt56 TRUE TRUE
experiemnt57 TRUE TRUE
experiemnt58 TRUE TRUE
experiemnt59 TRUE TRUE

experiemnt60 TRUE TRUE
experiemnt61 TRUE TRUE
experiemnt62 TRUE FALSE Rotation
experiemnt63 TRUE TRUE
experiemnt64 TRUE TRUE
experiemnt65 TRUE TRUE
experiemnt66 TRUE FALSE Rotation
experiemnt67 TRUE TRUE
experiemnt68 TRUE TRUE
experiemnt69 TRUE FALSE NA
experiemnt70 TRUE TRUE
experiemnt71 TRUE TRUE
experiemnt72 TRUE TRUE
experiemnt73 TRUE TRUE
experiemnt74 TRUE FALSE Rotation
experiemnt75 TRUE TRUE
experiemnt76 TRUE TRUE
experiemnt77 TRUE TRUE
experiemnt78 TRUE TRUE
experiemnt79 TRUE TRUE
experiemnt80 TRUE TRUE
experiemnt81 TRUE TRUE
experiemnt82 TRUE TRUE
experiemnt83 FALSE TRUE
experiemnt84 TRUE TRUE
experiemnt85 TRUE TRUE
experiemnt86 TRUE FALSE Rotation
experiemnt87 TRUE TRUE
experiemnt88 TRUE FALSE Too dark
experiemnt89 TRUE TRUE
experiemnt90 TRUE TRUE

experiemnt91 TRUE TRUE
experiemnt92 TRUE TRUE
experiemnt93 TRUE TRUE
experiemnt94 TRUE TRUE
experiemnt95 TRUE TRUE
experiemnt96 TRUE TRUE
experiemnt97 TRUE TRUE
experiemnt98 TRUE TRUE
experiemnt99 TRUE FALSE NA
experiemnt100 TRUE TRUE
experiemnt101 TRUE TRUE
experiemnt102 TRUE TRUE
experiemnt103 TRUE TRUE
experiemnt104 TRUE TRUE
experiemnt105 TRUE TRUE
experiemnt106 TRUE TRUE
experiemnt107 TRUE TRUE
experiemnt108 TRUE TRUE
experiemnt109 TRUE TRUE
experiemnt110 TRUE FALSE Rotation
experiemnt111 TRUE TRUE
experiemnt112 TRUE TRUE
experiemnt113 TRUE FALSE Rotation
experiemnt114 TRUE TRUE

Convolutional Neural Network

Experiment numberGround truth Algorithm prediction

experiemnt1 TRUE TRUE
experiemnt2 TRUE FALSE
experiemnt3 TRUE TRUE
experiemnt4 TRUE TRUE
experiemnt5 TRUE TRUE
experiemnt6 FALSE FALSE
experiemnt7 FALSE FALSE
experiemnt8 FALSE FALSE
experiemnt9 FALSE FALSE
experiemnt10 FALSE FALSE
experiemnt11 FALSE FALSE
experiemnt12 FALSE FALSE
experiemnt13 FALSE FALSE
experiemnt14 FALSE FALSE
experiemnt15 FALSE FALSE
experiemnt16 FALSE FALSE
experiemnt17 FALSE FALSE
experiemnt18 FALSE FALSE
experiemnt19 FALSE FALSE
experiemnt20 FALSE FALSE
experiemnt21 FALSE FALSE
experiemnt22 FALSE FALSE
experiemnt23 FALSE FALSE
experiemnt24 FALSE FALSE
experiemnt25 FALSE FALSE
experiemnt26 FALSE FALSE
experiemnt27 TRUE TRUE
experiemnt28 TRUE TRUE

experiemnt29 TRUE TRUE
experiemnt30 TRUE TRUE
experiemnt31 TRUE FALSE
experiemnt32 TRUE TRUE
experiemnt33 TRUE TRUE
experiemnt34 TRUE TRUE
experiemnt35 TRUE TRUE
experiemnt36 TRUE TRUE
experiemnt37 TRUE TRUE
experiemnt38 TRUE TRUE
experiemnt39 FALSE FALSE
experiemnt40 FALSE TRUE
experiemnt41 FALSE TRUE
experiemnt42 FALSE FALSE
experiemnt43 TRUE TRUE
experiemnt44 TRUE TRUE
experiemnt45 TRUE TRUE
experiemnt46 TRUE TRUE
experiemnt47 TRUE TRUE
experiemnt48 TRUE TRUE
experiemnt49 TRUE TRUE
experiemnt50 TRUE TRUE
experiemnt51 TRUE FALSE
experiemnt52 TRUE TRUE
experiemnt53 TRUE TRUE
experiemnt54 TRUE TRUE
experiemnt55 TRUE TRUE
experiemnt56 TRUE TRUE
experiemnt57 TRUE TRUE
experiemnt58 TRUE TRUE
experiemnt59 FALSE FALSE

experiemnt60 FALSE FALSE
experiemnt61 FALSE FALSE
experiemnt62 FALSE FALSE
experiemnt63 FALSE TRUE
experiemnt64 FALSE FALSE
experiemnt65 FALSE FALSE
experiemnt66 TRUE TRUE
experiemnt67 TRUE FALSE
experiemnt68 TRUE TRUE
experiemnt69 TRUE TRUE
experiemnt70 TRUE FALSE
experiemnt71 TRUE TRUE
experiemnt72 TRUE TRUE
experiemnt73 TRUE TRUE
experiemnt74 TRUE FALSE
experiemnt75 TRUE TRUE
experiemnt76 TRUE FALSE
experiemnt77 TRUE TRUE
experiemnt78 FALSE FALSE
experiemnt79 TRUE TRUE
experiemnt80 TRUE TRUE
experiemnt81 TRUE TRUE
experiemnt82 TRUE TRUE
experiemnt83 TRUE TRUE
experiemnt84 TRUE TRUE
experiemnt85 TRUE TRUE
experiemnt86 TRUE FALSE
experiemnt87 TRUE TRUE
experiemnt88 TRUE TRUE
experiemnt89 TRUE FALSE
experiemnt90 TRUE TRUE

experiemnt91 TRUE FALSE

Speed

Experiment num Image Detection Recognition

experiemnt1 4.95 4.79 0.38
experiemnt2 5.36 5.19 0.15
experiemnt3 5.65 5.52 0.15
experiemnt4 5.11 3.43 0.28
experiemnt5 4.41 5.49 0.16
experiemnt6 6.03 4.99 0.16
experiemnt7 6.92 4.09 0.29
experiemnt8 6.05 5.36 0.29
experiemnt9 7.29 6.22 0.62
experiemnt10 6.20 4.84 0.24
experiemnt11 5.40 6.35 0.24
experiemnt12 4.13 3.23 0.26
experiemnt13 5.44 5.55 0.30
experiemnt14 5.22 5.86 0.27
experiemnt15 5.96 5.03 0.38
experiemnt16 4.16 5.23 0.12
experiemnt17 3.25 5.25 -0.01
experiemnt18 5.82 5.18 0.25
experiemnt19 4.24 5.11 0.33
experiemnt20 3.32 5.03 0.31
experiemnt21 4.02 4.71 0.34
experiemnt22 5.84 3.73 0.35
experiemnt23 3.28 4.36 0.37
experiemnt24 6.87 5.88 0.28
experiemnt25 3.81 4.57 0.14
experiemnt26 3.90 5.13 0.21
experiemnt27 4.49 4.57 0.34
experiemnt28 3.49 5.20 0.29

experiemnt29 5.65 4.68 0.23
experiemnt30 5.78 5.81 0.36
experiemnt31 4.54 4.07 0.41
experiemnt32 5.53 4.37 0.37
experiemnt33 5.50 5.27 0.33
experiemnt34 4.51 5.48 0.33
experiemnt35 2.62 6.09 0.45
experiemnt36 0.23 5.83 0.40
experiemnt37 3.72 5.78 0.17
experiemnt38 4.39 5.30 0.38
experiemnt39 5.48 3.64 0.27
experiemnt40 5.45 6.25 0.16
experiemnt41 4.58 6.31 0.23
experiemnt42 8.70 4.55 0.21
experiemnt43 4.48 4.88 0.11
experiemnt44 5.20 4.72 0.26
experiemnt45 4.54 4.31 0.35
experiemnt46 6.61 3.43 0.20
experiemnt47 5.12 3.34 0.52
experiemnt48 4.49 6.23 0.35
experiemnt49 9.67 3.63 0.16
experiemnt50 6.05 5.00 0.34
experiemnt51 5.19 5.02 0.34
experiemnt52 3.64 6.68 0.25
experiemnt53 3.88 6.53 0.33
experiemnt54 4.53 4.71 0.22
experiemnt55 4.53 5.79 0.43
experiemnt56 4.73 3.60 0.15
experiemnt57 4.83 5.62 0.28
experiemnt58 5.92 6.56 0.25
experiemnt59 4.50 4.58 0.22

experiemnt60 4.77 4.22 0.28
experiemnt61 3.54 3.93 0.35
experiemnt62 4.25 4.23 0.20
experiemnt63 8.16 4.56 0.20
experiemnt64 4.27 4.28 0.41
experiemnt65 5.42 4.36 0.20
experiemnt66 7.43 4.35 0.23
experiemnt67 5.36 3.71 0.38
experiemnt68 5.27 5.15 0.28
experiemnt69 5.96 5.25 0.31
experiemnt70 4.10 3.99 0.38
experiemnt71 6.14 4.54 0.49
experiemnt72 5.65 4.99 0.52
experiemnt73 5.69 5.26 0.41
experiemnt74 5.53 4.26 0.34
experiemnt75 4.38 5.28 0.28
experiemnt76 5.88 6.19 0.37
experiemnt77 5.97 6.41 0.53
experiemnt78 6.72 3.81 0.28
experiemnt79 4.94 3.24 0.27
experiemnt80 5.53 3.75 0.32
experiemnt81 2.75 3.39 0.17
experiemnt82 4.51 3.46 0.31
experiemnt83 7.54 3.46 0.22
experiemnt84 6.65 4.68 0.47
experiemnt85 3.63 4.16 0.26
experiemnt86 6.87 4.36 0.30
experiemnt87 5.65 4.30 0.32
experiemnt88 7.23 4.99 0.33
experiemnt89 6.45 4.22 0.20
experiemnt90 5.05 3.22 0.29

experiemnt91 4.42 4.66 0.33

	Introduction, Scope and Objectives
	Problem definition
	State of art
	Proposed solution
	Relevance of the project
	Goal of the project
	Scope of the project
	Functional requirements of the project
	Non-functional requirements of the project

	Development of the proposed solution
	Machine learning basics
	The Task, T
	The Performance Measure, P
	The experience, E

	Work-flow of a deep learning project
	The data set: images
	Data gathering
	Targeted person (positive case)
	Random people (negative case)
	EU General Data Protection Regulation eu-269-2014
	Labelling the data

	Data preparation
	Open source computer vision (OpenCV2)
	Viola-Jones algorithm
	Normalisation

	Data augmentation
	Data split (train, valid and test sets)
	Model selection
	Why deep learning?
	Multilayer perceptron neural network (MLP)
	Convolutional Neural Networks
	Model selected

	Model training
	TensorFlow
	Training the model

	Model evaluation
	Model implementation into the Raspberry Pi
	Raspberry Pi 3 model B
	PiCamera module
	Pi-Traffic lights
	Input signal
	Pipeline of the system

	Experimental results and performance evaluation
	Performance in terms of accuracy
	Performance in terms of speed

	SUMMARY OF RESULTS
	Summary of the budget and study of economic viability
	Costs of the device and its components
	Cost of labor
	Total cost

	Analysis and assessment of environmental implications
	Conclusions and recommendations for future work

	Bibliography
	Appendix
	Codes
	VIOLA Jones data prep negative
	VIOLA Jones data prep positive
	Data augmentation
	CNN
	Raspberry

	Experimental results

