
SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 1

CGPA: Coarse-Grained Pruning of Activations
for Energy-Efficient RNN Inference

Marc Riera, Jose-Maria Arnau, Antonio Gonzalez
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract—Activation pruning has been previously proposed in Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons
(MLPs) to avoid computations by dynamically removing connections whose input value is (almost) zero. However, fine-grained
activation pruning results in sparse computations, reducing the efficiency of the hardware implementation, and heavily relies on ReLU
activation functions that are unpopular in Recurrent Neural Networks (RNNs). RNN cells perform element-wise multiplications across
the activations of different single-layer fully-connected networks, a.k.a. gates, being sigmoid and tanh the activation functions. We show
that a significant percentage of activations are saturated towards zero or one in different gates, which results in a large percentage of
neuron outputs being multiplied by a close to zero value. We propose Coarse-Grained Pruning of Activations (CGPA) to avoid the
computation of entire neurons, rather than individual connections, based on the activation values of the gates. We show that CGPA
results in much less sparse computation and memory access patterns than previous proposals and, hence, it can be easily
implemented on top of a TPU-like architecture with negligible area overhead, resulting in 12% speedup and 12% energy savings on
average for a set of widely used RNNs.

Index Terms—Machine Learning, RNN, Accelerators, Low Energy

F

1 INTRODUCTION

Dynamic operation pruning [1], a.k.a. activation prun-
ing [2], is an optimization technique to reduce the cost
of evaluating CNNs and MLPs. Based on the observation
that ReLU activations tend to generate a large number of
zero values, activation pruning dynamically avoids com-
putations when the synaptic weight is multiplied by a
zero-value input. However, such a fine-grained activation
pruning results in very sparse computations and memory
accesses, since individual connections are selectively com-
puted or skipped [3]. Sparse computations increase the com-
plexity of a hardware accelerator, as it has to handle data
representations based on indexes of non-zero values [4],
which results in sparse memory access patterns that are
challenging for the hardware. On the other hand, ReLU
activations are rarely used in Recurrent Neural Networks
(RNNs) [5], leading to smaller potential for fine-grained
activation pruning.

RNNs represent the state-of-the-art solution for sequence
processing problems such as machine translation [6], speech
recognition [7] or language modeling [8]. Unlike CNNs or
MLPs, RNN units store information from past executions
to improve the accuracy of future predictions. Deep RNNs
consists of multiple RNN layers, a.k.a. cells, stacked on top
of each other. The most successful RNN cell architectures
are the Long-Short Term Memory (LSTM) [5] and the Gated
Recurrent Unit (GRU) [9]. Figure 2 shows the computations
performed in an LSTM cell, whereas Figure 3 shows the
GRU equations. As it can bee seen, in both cases the cell
consists of multiple single-layer fully-connected networks
commonly referred as gates. Furthermore, the evaluation
includes element-wise multiplications across the outputs,
i.e. activations, of different gates. Equation 5 shows the
element-wise operations for LSTM, whereas Equation 10
depicts the GRU’s element-wise computations.

Note that RNN activation functions exhibit a very nar-
row range: sigmoid ranges from 0 to 1, whereas hyperbolic
tangent (tanh) is constrained to the interval [−1, 1]. We
observe that every time a neuron in the input gate (it) of an
LSTM cell is saturated towards zero, evaluation of its peer
neuron in the generate gate (gt) can be safely avoided. In a
similar manner, whenever the tanh activation in Equation 6
of an LSTM cell is zero the corresponding neuron in the
output gate (ot) can be skipped. Our numbers show that
we can avoid more than 18% of the computations and
memory accesses by exploiting these zero-value activations
in LSTMs. On the other hand, GRU cells exhibit similar
behavior: when a neuron is saturated towards one in the
update gate (zt) of a GRU cell, computation of its peer
neuron in the generate gate (gt) can be skipped as the
product (1− zt)× gt is granted to be zero. Our results show
that more than 7% of neuron evaluations can be skipped
based on this observation.

In this paper, we propose to exploit the aforementioned
saturations of activation functions to avoid computation of
entire neurons in LSTM and GRU networks. We term this
method as Coarse-Grained Pruning of Activations (CGPA).

Figure 1 shows the key difference between fine-grained
activation pruning and CGPA. Under fine-grained activa-
tion pruning (Figure 1a), individual connections of a fully-
connected or convolutional layer are dynamically skipped
if their input value is zero, leading to sparse memory
accesses. In this example, we assume x1, h0 and h2 are
almost zero. In this case, neurons in layer 0 require accessing
their respective first and third weights, whereas neurons in
layer 1 only require accessing their respective second weight
(pruned synapses are shown in red). Such fine-grained and
sparse accesses are challenging for hardware. On the other
hand, Figure 1b illustrates CGPA. In this example, neurons



SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 2

x
0

x
1

x
2

Layer 0 Layer 1
h

0

h
1

h
2

(a) Fine-grained activation pruning

x
0

x
1

x
2

Input Gate (i
t
)

x
0

x
1

x
2

 Generate Gate (g
t
)

Element-wise 
multiplications

x

x

x

(b) Coarse-Grained Pruning of Activations (CGPA)

Fig. 1. Fine-grained (a) vs coarse-grained (b) activation pruning. Con-
nections/neurons shown with red dashed lines are dynamically pruned.

zero and two in the input gate of an LSTM cell are satu-
rated towards zero. This means that neurons zero and two
(peer neurons) in generate gate (gt) can be safely skipped,
avoiding all their computations and memory accesses.

Note that CGPA is orthogonal to previous proposals of
fine-grained activation pruning and static weight pruning.
CGPA is applied at the neuron granularity by exploiting
the element-wise operations of RNNs of GRUs and LSTMs
and the saturations of the activation functions of the gates.
CGPA dynamically prunes entire neurons which generates
a compacted pruned model that avoids sparsity, unlike
fine-grained activation pruning and static weight pruning
which are applied at the connection granularity. Previous
works such as Scalpel [10] have shown that in order to
exploit the benefits of sparse models in CPU/GPU the
degree of fine-grained pruning has to be extremely high,
which cannot always be achieved without accuracy loss.
In addition, an specific accelerator design to exploit sparse
models is required, which in turn increases the complexity
of the hardware due the overheads of managing the sparse
data. Both fine-grained activation pruning and static weight
pruning can provide high percentages of pruning, but they
also require the accelerator to be able to manage the sparse
data. On the other hand, our CGPA technique can achieve
speedups and energy savings with lower pruning degrees,
since CGPA requires minor changes to the hardware and
can be used in any dense accelerator like TPU.

In this paper, we implement CGPA on top of a Tensor
Processing Unit (TPU)-like accelerator. Our technique has
a very small area overhead, as it mainly requires a few
additional comparators to detect saturation of activation
functions and small changes to the control unit to selectively
skip entire neurons. In case a neuron is evaluated, all its

it = σ(Wixxt +Wihht−1 + bi) (1)

ft = σ(Wfxxt +Wfhht−1 + bf ) (2)

gt = φ(Wgxxt +Wghht−1 + bg) (3)

ot = σ(Woxxt +Wohht−1 + bo) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � φ(ct) (6)

Fig. 2. LSTM cell Computations. �, φ and σ are element-wise multipli-
cation, hyperbolic tangent and sigmoid function respectively.

zt = σ(Wzxxt +Wzhht−1 + bz) (7)

rt = σ(Wrxxt +Wrhht−1 + br) (8)

gt = φ(Wgxxt +Wgh(rt � ht−1) + bg) (9)

ht = zt � ht−1 + (1− zt)� gt (10)

Fig. 3. Computations performed in a GRU cell. �, φ and σ are element-
wise multiplication, hyperbolic tangent and sigmoid function respectively.

weights and inputs are fetched from memory and injected
into the systolic array, whereas they are completely avoided
in case the neuron can be safely skipped, reducing sparsity
by a large extent compared to fine-grained activation prun-
ing.

This paper focuses on energy-efficient and high-
performance RNN inference. We claim the following con-
tributions:

• We show that a significant fraction of activations are
saturated towards zero or one in popular RNNs.

• We propose Coarse-Grained Pruning of Activations
(CGPA) to avoid the evaluation of entire neurons
whenever the outputs of peer neurons are saturated.
CGPA significantly reduces the amount of computa-
tions and memory accesses while avoiding sparsity
by a large extent.

• We implement our technique on top of a TPU-like
accelerator. Our numbers show CGPA provides a
speedup of 12% and energy savings of 12% on av-
erage while it requires a small area overhead of less
than 0.003%.

2 ANALYSIS OF RNN ACTIVATIONS

Long-Short Term Memory (LSTM) networks and Gated Re-
current Unit (GRU) are the two most successful RNN archi-
tectures. Both employ sigmoid and hyperbolic tangent acti-
vation functions. This section analyzes the activation values
of different RNNs, and introduces a technique that exploits
the activation values that are close to zero or one in order to
save computations and memory accesses. Table 1 shows the
RNNs employed for the analysis. DeepSpeech2 [7] consists
of multiple GRU layers employed to perform end-to-end
speech recognition. We use two models of DeepSpeech2, a
model trained with Librispeech [11] dataset (clean audio
from audiobooks) and a Tedlium trained model for spon-
taneous and noisy speech. NMT [6] is an LSTM network
for neural machine translation based on Google Translator
trained using the WMT16 dataset with texts of newspapers



SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 3

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%
Fr

e
q

u
e

n
cy

 (
%

)

Update Gate (Z) Libripeech Update Gate (Z) Tedlium

Fig. 4. Histogram of activations of the Update Gate (Z) for DeepSpeech2
using Librispeech and Tedlium.

(DE-EN). Finally, PTB-LM [8] is an LSTM network for lan-
guage modeling using the Penn Treebank dataset. Accuracy
is reported as word error rate (WER), bilingual evaluation
understudy (BLEU) and perplexity respectively.

Figure 2 and Figure 3 describe the computations per-
formed in the LSTM and GRU cells respectively. Both are
composed of multiple gates that are implemented as single-
layer Fully-Connected (FC) networks taking two different
inputs: xt, a.k.a. feed-forward input from previous layer,
and ht−1, a.k.a. recurrent input from the same layer. Eval-
uation of FC layers for the different gates takes most of
the computations in an RNN. Careful analysis of the LSTM
equations reveals that if a neuron of the input gate (it)
is saturated to zero, we could save the computations and
memory access of its peer neuron in the generate gate (gt)
and vice versa. Similarly, if the hyperbolic tangent of the
cell state (ct) equals to zero, we could save the computations
and memory access of its peer neuron in the output gate (ot)
needed for computing the cell output (ht) . Note that if the
output gate (ot) is saturated to zero we can only save the
computations related to the activations since the cell state
has to be computed for the next timestep, and if the forget
gate (ft) is saturated to zero, we cannot save computations
since the cell state from the previous timestep has already
been computed. A similar analysis can be done to the GRU
equations where we could save computations and memory
accesses of neurons from the generate gate (gt) when the
peer neuron in the update gate (zt) is saturated to one.
Note that in case that a neuron of the generate gate (gt)
is zero, the update gate (zt) still has to be computed since it
is multiplied by the output cell of the previous timestep.

Figure 4 shows the histogram of activation values of
the GRU’s update gate (Z) for DeepSpeech2 trained with
Librispeech and Tedlium datasets in steps of 0.1. The range
of the histogram is from 0 to 1 since the sigmoid is used as
activation function. We found that between 40− 60% of the
values are near the saturation points of 0− 0.1 and 0.9− 1.0
(i.e. 20 − 30% at each end of the histogram), while the rest
of the values are equally distributed. Therefore, a significant
percentage of the activations of the update gate (zt) are close
to the saturation points (zero or one), pointing out potential
to save computations.

Figure 5a shows the histogram of the activation values
(sigmoid activation) of the LSTM’s input gate (I) for PTB-
LM and NMT. We can see a high concentration of values in
the range of 0−0.1, that is 70% for the PTB-LM and 33% for
the NMT network. On the other hand, Figure 5b shows the

0,00%

20,00%

40,00%

60,00%

80,00%

Fr
e

q
u

e
n

cy
 (

%
)

Input Gate (I) PTB-LM Input Gate (I) NMT

(a) Histogram of activations of the Input Gate (I)

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

Fr
e

q
u

e
n

cy
 (

%
)

Generate Gate (G) PTB-LM

Cell State (C) PTB-LM

Generate Gate (G) NMT

Cell State (C) NMT

(b) Histogram of activations of the Generate Gate (G) and Cell State (C)

Fig. 5. Input Gate (I) (a) and Generate Gate (G) and Cell State (C) (b)
histogram of activations for the NMT and PTB-LM RNNs.

histogram of activations of the generate gate (G) and the cell
state (C) for PTB-LM and NMT. The range of the histograms
is from -1 to 1 since the hyperbolic tangent is used as
activation. We can see that the activation values of the cell
state (C) are concentrated around zero: more than 60% of
activations in PTB-LM and more than 30% in NMT are in
the range [−0.1, 0.1]. Furthermore, the activation values of
the generate gate (G) are concentrated at both ends of the
histogram, with values close to -1 or 1. The large percentage
of near-zero activations in both input gate (I) and cell state
(C) points out significant potential for saving computations
in LSTM cells.

In this paper, we propose to avoid computations of entire
neurons in LSTM and GRU cells whenever the activation of
some gates is close to zero or one. To this end, we define
low and high thresholds so that activation values that are
lower than a small threshold tl are set to zero and all the
activation values that are higher than th in absolute value
are set to one. We apply these thresholds in gates that allow
saving computations, i.e. update gate (zt) in GRU cells and
input gate (it) and cell state (ct) in LSTM cells. We call this
technique Coarse-Grained Pruning of Activations (CGPA)
since it prunes whole neurons from the gates.

Setting appropriate thresholds is key to achieve a good
trade-off between savings in computations and accuracy.
We evaluated different high and low thresholds for our set
of RNNs ranging from 0.9 − 1.0 and 0.0 − 0.1 with steps
of 0.01. In general, a high threshold (th) of 0.95 and a
low threshold (tl) of 0.05 provide significant savings with
negligible accuracy loss across our set of RNNs. However,
we have empirically selected a particular set of thresholds
for each RNN in order to maximize the savings while
maintaining the accuracy.



SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 4

TABLE 1
RNNs employed for the evaluation. Only LSTM and GRU layers are included since these layers take up the bulk of computations in RNNs.

DEEPSPEECH2 (145MB) NMT (800MB) PTB-LM (250MB)
TEDLIUM WER: 29.2% - LIBRISPEECH WER: 10.2% BLEU: 29.8% PERPLEXITY: 78.1%
LAYER INPUT DIM OUTPUT DIM CELL DIM LAYER IN DIM OUT DIM CELL DIM LAYER IN DIM OUT DIM CELL DIM

BIGRU1 1472 800 800 BILSTM1 2048 2048 1024 UNILSTM1 3000 1500 1500
BIGRU2 1600 800 800 UNILSTM2 3072 1024 1024 UNILSTM2 3000 1500 1500
BIGRU3 1600 800 800 UNILSTM3 2048 1024 1024
BIGRU4 1600 800 800 UNILSTM4 2048 1024 1024
BIGRU5 1600 800 800 UNILSTM5 3072 1024 1024

UNILSTM6 3072 1024 1024
UNILSTM7 3072 1024 1024
UNILSTM8 3072 1024 1024

8,2%

5,4%

15,1%

21,3%

12,5%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

DS2
Librispeech

DS2 Tedlium NMT PTB-LM Average

C
o

m
p

u
ta

ti
o

n
 S

av
in

gs
 (

%
)

Fig. 6. Computation Savings for our set of RNNs.

Note that we are introducing a small distortion in the
RNNs to clamp some activations to zero or one. In order
to improve the effectiveness of CGPA, we can include the
thresholds during the training of the RNN, so the models
learns to compensate these small deviations in the activa-
tions. As a proof of concept, we verified that including
CGPA during training results in larger savings: in NMT
the savings in computations are increased by a factor of
approximately 3x with the same negligible accuracy loss.
In other words, training with CGPA allows to use more
generous thresholds in order to increase the savings, since
more activations are clamped to zero or one, while retaining
accuracy by a large extent. Accuracy loss has been computed
in absolute terms for each of our RNNs. The NMT network
accuracy loss is 0.8 in absolute terms which means that the
BLEU has been reduced from 29.8% to 29.0%. The PTB-
LM network accuracy loss is 2.43 in perplexity while the
DeepSpeech2 accuracy loss with Librispeech and Tedlium is
0.92 and 1.65 of the WER respectively.

We have used our selection of thresholds to compute
the number of activations that are saturated layer-wise. We
have observed that the number of saturations in the update
gate (zt) of the RNNs with GRU cells are homogeneous
across most of the layers. DeepSpeech2 with Librispeech
and Tedlium have on average 24% and 15% saturations per
layer respectively. On the other hand, the LSTM networks
have more variance across layers with a minimum of 40%
and a maximum of 60% saturations per layer taking into
account both the input gate (it) and cell state (ct) activations.
Figure 6 shows the computation savings that are achieved
for our set of RNNs. We can see that the computation
savings are directly related to the histograms of the activa-
tions. On average, 12.5% of the computations and memory
accesses can be avoided with a small accuracy loss of less
than 1.5%.

3 IMPLEMENTATION

This section describes the implementation of CGPA on top
of a hardware accelerator and the evaluation methodology.
We have evaluated the baseline RNNs including our CGPA
technique on a well known Google TPU-like architecture
using ScaleSim [12], a cycle accurate simulator for neural
network accelerators. ScaleSim models a systolic array ar-
chitecture which is specialized on CNNs but supports any
kind of neural network, including RNNs, like TPU does.

Figure 7 shows a high-level schematic of the architecture.
The main components are the blocks of SRAM used for the
inputs, outputs and weights, and the systolic array of pro-
cessing elements (PEs). Each PE includes a MAC (multiplier-
accumulator) and some registers. We set the configuration
parameters to match the TPU: a systolic array of 256x256
PEs, 24 MB of total on-chip SRAM and a frequency of 700
MHz. However, we use an output stationary dataflow, as
we empirically found that it is more efficient than weight
stationary (originally used in TPU) for our set of RNNs. In
output stationary, each PE computes the output of a differ-
ent neuron. Therefore, the weights are stored and forwarded
from top to bottom and the inputs are injected in the systolic
array from left to right. As in TPU, the inputs and weights
are quantized to integers of 8/16-bits without any accuracy
loss so that the operations of the convolutional and fully-
connected layers are performed with integers. However,
the intermediate layers and the activation functions are
performed in 32-bit floating point to maintain the accuracy.
Regarding main memory, we model an LPDDR4 of 8 GB
with a bandwidth of 16 GB/s (dual channel). CGPA requires
a floating point comparator to determine which neurons
must be executed depending on the activation values. The
comparator is used for each neuron to determine whether
its activation is smaller/larger than the given threshold. In
addition, a small SRAM buffer of 512B is included to store
the resulting bitmask from the comparisons. The bitmask
contains one bit per neuron indicating whether the peer
neuron in another gate has to be computed or skipped. All
these overheads are taken into account for the area, timing
and energy evaluation of the accelerator.

Regarding area and energy consumption, the array of
MACs is implemented in Verilog and synthesized to obtain
the power using the Synopsys Design Compiler with the
technology library of 28/32nm. On the other hand, we char-
acterize the on-chip SRAM by obtaining the delay, energy
per access and area using CACTI-P. Finally, the energy
consumption of main memory is estimated by using the
MICRON power model for LPDDR4. The results obtained
with the aforementioned tools are combined with the ac-



SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 5

SRAM Weights

PE PEPE PE

SRAM Outputs

PE PEPE PE

PE PEPE PE

PE PEPE PE

SRAM 
Inputs

DRAM

Fig. 7. TPU-like architecture modeled with ScaleSim.

Algorithm 1 Accelerator GRU Execution
High Threshold (th) = Constant
for Timestep (t) do

Compute Update Gate (zt);
Compute Reset Gate (rt);
{Accelerator Executes Multiple Neurons in Parallel}
for Neuron (n) do

if ztn ≥ th then
{Generate Gate (gtn) Computations Avoided}
Cell Output (htn) = htn−1;

else
Compute Generate Gate (gtn);
Compute Cell Output (htn);

end if
end for

end for

tivity factors and memory traces provided by ScaleSim to
obtain the dynamic and static power of the accelerator.

The baseline accelerator has been extended to implement
CGPA for GRU and LSTM cells. The execution of GRU cells
under CGPA is described in the pseudo-code Algorithm 1.
The accelerator starts by computing all the neurons of the
update gate (zt) and reset gate (rt). Each neuron activation
of the update gate is compared with the high threshold to
generate a bitmask that determines which neurons from the
generate gate are executed. The bitmask is stored in a small
SRAM buffer. Finally, the generate gate and cell output are
computed by checking the bitmask from the buffer. If the
activation of the update gate is greater or equal than the
high threshold for a given neuron, its corresponding bit in
the bitmask will be zero indicating that the computations of
the peer neuron from the generate gate can be avoided. In
this case, the output of the cell will be the same as the output
of the previous timestep. Otherwise, the generate gate and
the cell output is computed as usual. The control unit is
modified to schedule multiple neurons of the generate gate
in the array of PEs after checking the bitmask.

The execution flow for a layer of LSTMs is depicted in
the pseudocode Algorithm 2. The accelerator computes all
the neurons of the input (it) and forget (ft) gates. After
each activation of the input gate, a comparison with the
low threshold is performed to generate a bitmask that
determines which neurons from the generate gate are ex-
ecuted. The generate gate and the cell state are computed
by checking the bitmask. If an activation of the input gate
is lower or equal than the low threshold for a given neuron,
the computations of its peer neuron from the generate gate

Algorithm 2 Accelerator LSTM Execution
Low Threshold (tl) = Constant
for Timestep (t) do

Compute Input Gate (it);
Compute Forget Gate (ft);
{Accelerator Executes Multiple Neurons in Parallel}
for Neuron (n) do

if itn ≤ tl then
{Generate Gate (gtn) Computations Avoided}
Cell State (ctn) = ftnctn−1;

else
Compute Generate Gate (gtn);
Compute Cell State (ctn);

end if
end for
for Neuron (n) do
ctn = abs(tanh(ctn));
if ctn ≤ tl then
{Output Gate (otn) Computations Avoided}
Cell Output (htn) = 0;

else
Compute Output Gate (otn);
Compute Cell Output (htn);

end if
end for

end for

are avoided and the cell state is computed as the product of
the forget gate by the previous cell state. The activations
of the cell state are compared against the low threshold
to generate a new bitmask that determines which neurons
from the output gate (ot) are executed. If an activation of
the cell state in absolute value is lower or equal than the
low threshold for a given neuron, the computations of its
peer neuron from the output gate are avoided and the cell
output is set to zero. Otherwise, the output gate and the cell
output is computed as usually. As in the GRU’s execution,
the control unit is modified to schedule multiple neurons in
the array of PEs after checking the bitmasks.

Note that CGPA does not increase the complexity of
the control unit of the accelerator significantly, since we
are skipping entire neurons. We only need to schedule the
neurons that require computations in the array of PEs while
the rest are skipped by checking the bitmask generated from
the comparators. Unlike a sparse accelerator that requires
multiple indices to access the data and a complex control
unit, we just need a constant offset with the size to skip the
weights of an entire neuron, so the control unit computes
the required addresses as indicated by the bitmask.

4 EXPERIMENTAL RESULTS

This section evaluates the performance and energy con-
sumption of CGPA when implemented on top of the TPU-
like accelerator presented in Section 3.

Figure 8 shows the speedups achieved by CGPA. Our
technique provides consistent speedups for the four RNNs
that range from 1.07x (DS2 Tedlium) to 1.21x (PTB-LM),
achieving an average performance improvement of 1.12x.
The reduction in execution time is due to avoiding the
computation of neurons from gates of the recurrent cells
that would be multiplied by an activation value that is close
to saturation. Furthermore, the overhead of performing the
comparison of the activation values with the thresholds is
fairly small, since it is performed per output and not per



SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 6

1,08 1,07

1,12

1,21

1,12

1,00

1,05

1,10

1,15

1,20

1,25

DS2
Librispeech

DS2 Tedlium NMT PTB-LM Average

Sp
e

e
d

U
p

Fig. 8. Speedups achieved for each RNN. Baseline configuration is the
TPU-like accelerator without CGPA.

70%

75%

80%

85%

90%

95%

100%

DS2
Librispeech

DS2 Tedlium NMT PTB-LM Average

N
o

rm
al

iz
e

d
 E

n
e

rg
y 

(%
) 7.6% 6.25% 14.25% 20% 12%

Fig. 9. Normalized energy for each RNN. Baseline configuration is the
TPU-like accelerator without CGPA

connection, and not for all the cell gates. Furthermore, com-
parisons can be done in parallel with useful computations in
the systolic array, hiding their latency by a large extent. As
one output neuron normally requires hundreds of inputs,
performing a comparison to detect whether the output of
the neuron will be multiplied by an almost zero value
can save hundreds of computations and memory accesses.
NMT and PTB-LM exhibit the highest degree of activation
values close to saturation (see Section 2) and, hence, they
obtain the largest computation reduction and performance
improvements.

Figure 9 reports normalized energy. On average, CGPA
reduces energy consumption of the accelerator by 12%. The
energy overhead of the accelerator is less than 0.001% for
all the networks. The most energy consuming component
is the on-chip SRAM memory which represents 60% of the
overall energy of the accelerator while the array of PEs and
the main memory consume 10% and 30% respectively. The
energy savings are strongly correlated with the percentage
of activation values close to saturation and the computation
reduction reported in Figure 6. These energy savings are
due to two main reasons. First, dynamic energy is reduced
due to the savings in computations and memory accesses.
Second, the performance improvements shown in Figure 8
provide a reduction in static energy. Again, NMT and PTB-
LM obtain the largest benefits, achieving a reduction of 14%
and 20% in energy respectively.

The above evaluation includes all the overheads due
to CGPA: accesses to an small SRAM buffer of 512B and
floating point comparisons of the activations. As it is shown
in Figure 8 and Figure 9, these overheads are negligible in
comparison to the savings in computations and memory
accesses, and the net result is an improvement of 1.25x
in energy-delay (1.12x in energy and 1.12x in delay). The
overall area overhead of the accelerator is less than 0.003%,

as it increases from 353.93 mm2 to 353.94 mm2.

5 CONCLUSIONS

In this paper, we show that modern RNNs exhibit a sig-
nificant percentage of activation values saturated towards
one or zero in different gates of LSTM and GRU cells. We
propose CGPA, a technique that exploits these saturated
activation values to save computations and memory ac-
cesses. As the output of neurons from different gates are
multiplied element-wise, CGPA skips the evaluation of a
neuron whenever the output of its peer neuron from a
different gate is saturated. We implement CGPA on top of
a TPU-like accelerator. Our experimental results show that,
on average, our scheme provides 12% energy savings and
1.12x speedup, while it only requires a minor increase in the
area of the accelerator (less than 0.003%). CGPA provides
benefits in performance and energy consumption for RNNs
from different applications, including speech recognition,
machine translation and language modeling.

ACKNOWLEDGMENTS

This work has been supported by the the CoCoUnit ERC
Advanced Grant of the EUs Horizon 2020 program (grant
No 833057), the Spanish State Research Agency under grant
TIN2016-75344-R (AEI/FEDER, EU), and the Spanish Min-
istry of Education under grant FPU15/02294.

REFERENCES

[1] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernndez-Lobato, G. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in
ISCA, 2016.

[2] A. Ardakani, C. Condo, and W. J. Gross, “Activation pruning of
deep convolutional neural networks,” in GlobalSIP, 2017.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” in ISCA, 2016.

[4] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An ac-
celerator for compressed-sparse convolutional neural networks,”
in ISCA, 2017.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv, 2016.

[7] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Batten-
berg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen,
J. Chen, Z. Chen, M. Chrzanowski, A. Coates, G. Diamos, K. Ding,
N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao,
C. Gong, A. Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun,
P. LeGresley, L. Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang,
A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman,
V. Rao, S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram,
H. Tang, L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang,
Z. Wang, S. Wu, L. Wei, B. Xiao, W. Xie, Y. Xie, D. Yogatama,
B. Yuan, J. Zhan, and Z. Zhu, “Deep speech 2 : End-to-end speech
recognition in english and mandarin,” in ICML, 2016.

[8] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural
network regularization,” arXiv, 2014.

[9] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” CoRR, 2014.

[10] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware
parallelism,” in ACM/IEEE ISCA, 2017.



SPECIAL ISSUE ON MACHINE LEARNING ACCELERATION, 2019 7

[11] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an asr corpus based on public domain audio books,” in IEEE
ICASSP, 2015.

[12] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“Scale-sim: Systolic cnn accelerator simulator,” arXiv, 2018.

Marc Riera received his B.Sc. degree in Com-
puter Engineering in 2013, and his M.Sc. degree
in MIRI: High Performance Computing in 2015,
both from Universitat Politecnica de Catalunya
(UPC - BarcelonaTech). He joined the ARCO
(ARchitecture and COmpilers) research group at
UPC in July 2014 and he is currently pursuing a
Ph.D. at UPC. His research focuses on the area
of Low Power Accelerators for Machine Learn-
ing. Contact him at mriera@ac.upc.edu.

Jose-Maria Arnau received Ph.D. on Computer
Architecture from the Universitat Politecnica de
Catalunya (UPC) in 2015. He is a postdoctoral
researcher at UPC BarcelonaTech and a mem-
ber of the ARCO (ARchitecture and COmpil-
ers) research group at UPC. His research inter-
ests include low-power architectures for cogni-
tive computing, especially in the area of auto-
matic speech recognition and object recognition.
Contact him at jarnau@ac.upc.edu.

Antonio González (Ph.D. 1989) is a Full Pro-
fessor at the Computer Architecture Depart-
ment of the Universitat Politcnica de Catalunya,
Barcelona (Spain), and the director of the Mi-
croarchitecture and Compiler research group.
He was the founding director of the Intel
Barcelona Research Center from 2002 to 2014.
His research has focused on computer architec-
ture, compilers and parallel processing, with a
special emphasis on microarchitecture and code
generation. He has published over 370 papers,

and has served as associate editor of five IEEE and ACM journals,
program chair for ISCA, MICRO, HPCA, ICS and ISPASS and general
chair for MICRO and HPCA. He is an IEEE Fellow. Contact him at
antonio@ac.upc.edu.


