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Abstract. In the last decades, the renewable energies have had a
highly positive effect on the daily life. This due to the necessity of
reducing the common fuel energies that have negatively impacted
the environment. Among all the available renewable energies, the
solar energy is one of the most common. This energy is obtained
through Photovoltaic (PV) systems. Thus, in previous years, new
techniques of Maximum Power Point Tracking (MPPT) to raise the
quality of the energy provided by PV panels have been proposed.
Since the energy provided by the PV cells depends on the external
environmental conditions, as temperature or sun irradiance, the
MPPT methods should be adequate to deal with these external
changes by maintaining the desired power level. Hence, this paper
proposes a recent hysteretic dynamic technique to extract the
maximum power from a PV panel array by employing a Boost
DC/DC converter to supply energy to an inductive load. Here,
a comparative study between the results obtained with the well
known Perturb and Observer (P&O) algorithm and by using our
dynamic hysteretic MPPT method is analyzed, specifically when
the PV panel is submitted to fast variations in temperature and
irradiance. It will be proved through numerical experiments realized
in MatLab/Simulink that our hysteretic MPPT algorithm provides
a better achievement of the maximum power of the PV panel in
comparison to the conventional Perturb and Observer method.
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1. Introduction
Within the recent past it has been well known that

conventional energy sources, as petroleum or natural gas,
are not more a good option due to they have negatively
impacted the life on earth [1], [2]. This is why, recently,
the demand of renewable energies has been increased to
deal with the climate change and to reduce the common
use of fuel energy sources. In particular, solar energy
is one of the most common renewable sources and as a
consequence of this, an enormous amount of studies has
been dedicated to it, with the aim of optimizing the power
produced by the photovoltaic systems. Some advantages of
the solar energy with respect other renewable options are

for instance that the energy conversion process does not
need fuel burning or moving parts [2]–[4]. Moreover, PV
panels provide long effective life, low maintenance cost
and high reliability [5]. However, the efficiency of energy
conversion is still considered a challenge to be defeated.
Thus, it becomes necessary to develop new techniques to
extract the maximum power from the PV panels in order
to increase the maximum efficiency operation of the PV
systems. [2], [6], [7].

The energy provided by a PV cell depends on the
operating conditions, mainly the sun irradiance and the
temperature. If these conditions are uniform there is a
unique peak where the PV power is maximized, this
peak is known as Maximum Power Point (MPP) and it is
achieved by invoking an adequate Maximum Power Point
Tracking algorithm [8], [9]. In the state of the art, there is
a considerable amount of Maximum Power Point Tracking
methods, a deep description and comparison of the existent
MPPT methods has been published in several papers [4],
[5], [10]–[26]. Nevertheless, the most common algorithms
are those based on a climbing technique, for instance, the
Perturb and Observer method (P&O) [4], [13], [16], [24];
the Incremental Conductance algorithm (InC) or the Hill
Climbing (HC) technique [27], [28]. In this paper, the P&O
is invoked as a reference algorithm for comparison purpose
since it is the most popular method and a simple one in the
PV field.

In addition to the PV panel and the MPPT algorithm,
a photovoltaic system also requires a suitable power
conversion stage between the terminals of the PV panel
and the user load [11], [23]. For applications that require
DC energy, the conversion stage is realized by a DC/DC
converter, which manipulates the load seen by the PV panel
when its duty cycle is modified through the MPPT algorithm
[29]. Hence, the maximum power point is adapted to the PV
conditions, while the converter output keeps up the voltage
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and the current levels according to the load requirements
[13], [23], [29], [30].

This paper proposes a scheme where the MPPT algorithm
is based on a dynamic hysteresis model. The hysteresis
provides memory effect, among other characteristics that
yield a suitable performance of the PV system. In this
manner, the aim of this paper is to contribute with a scheme
that could be implemented in real photovoltaic applications.
Numerical experiments show that the performance of
the proposed technique stands out over the performance
of the system when the Perturb and Observer method
is invoked. These experiments were realized under fast
changes in irradiance and temperature, which is a notable
contribution of this paper since it is a current issue in the
PV research area [13], [31]. Moreover, it will be seen that
the power extracted from the PV array when our technique
is implemented has a better performance in comparison to
the one obtained with the P&O algorithm, since the natural
oscillation of the P&O is considerably attenuated.

This paper is organized as follows. Section 2 describes the
main design stages of a PV-MPPT system, basically these
are the PV cell and the DC/DC converter. On the other
hand, Section 3 states the Perturb and Observer algorithm
and the hysteretic MPPT method. Meanwhile, the numerical
experiments and the analysis of the corresponding results are
exposed in Section 4. Finally, some concluding remarks are
given in Section 5.

2. Photovoltaic-MPPT System
In this Section, first, the PV electrical and mathematical

model is presented in order to study its basic operation.
Afterwards, the conversion stage is exhibited by emphasizing
the Boost DC/DC converter employed in this paper.

A. Photovoltaic Modelling

The photovoltaic modelling has been the object of study
in the last years since some MPPT algorithms are based
on it [10], [23]. The equivalent electronic circuit of a PV
cell is summarized in Fig. 1. This model can be seen as a
current source with series and parallel resistors connected
to a single diode [2], [5]. From Fig. 1, Rsh is the shunt
resistance, Rs is the serial resistance, IPV , Id, Ish and
Iph are the PV array output current, the current through
the diode, the current in parallel resistance and the current
generated by the sun incident light, respectively. Finally,
VPV is the PV module output voltage [15], [28], [29].

The equation that describes the PV output current (IPV )
of the solar cell yields:

IPV = Iph − Id − Ish, (1)

Furthermore, Id is given by [23]:

Id = I0 · (eq
(V +IRs)

nKT − 1), (2)

Fig. 1. Simplified equivalent circuit of a photovoltaic cell.

where I0 is the saturation current, q represents the electron
charge, and K is the Bolzman constant. Moreover, n is the
diode factor and T is the temperature on the P-N junction of
the diode. The current Iph can be expressed as follows [23]:

Iph =
G

Gstc
· (Isc,ref + µsc(T − Tstc)), (3)

where µsc is the temperature coefficient of the short circuit
current, G is the irradiation effect, Gstc is the irradiation
effect in specific operating conditions (defined as standard
conditions [29]), and Isc,ref is the short circuit current at a
given reference temperature. On the other hand, the satura-
tion current is given by [23]:

I0 = C · T 3 · e(−
Egap
kT ), (4)

where Egap is the band gap of the semiconductor material
and C is the temperature coefficient [23]. Therefore, the PV
current can be rewritten as:

IPV = Iph − I0 · [eq
(V +IRs)

nKT − 1]− V +RsIPV

Rsh
. (5)

B. Boost-Converter

The conversion stage in photovoltaic systems is necessary
to provide quality energy with the characteristics required
by the load. Besides, this stage allows to overcome the
undesired effects on the output PV power imposed by
the environmental perturbations, and to achieve, as well
as possible the maximum power point [12], [29]. This
maximum power production is based on the adjustment
of the load, through the conversion stage, seen by the PV
panel, which is subjected to the mentioned non-uniform
environmental conditions. Depending on the application, the
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Fig. 2. Scheme of a PV system with conversion stage.
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Fig. 3. General power electronic scheme of the Boost converter [34].

conversion stage is realized by a DC/DC converter which
is controlled through a duty cycle adequately adjusted by
the MPPT algorithm [4], [12], [13], [29]. The representative
connection scheme of the converter interacting with the PV
array, the load and the MPPT algorithm is shown in Fig. 2.

In PV systems implementation, the selection of the
suitable DC/DC converter depends on the load requirements.
The most common structures of DC/DC converters are: the
Buck Converter, which steps down the voltage from its
input supply to its output [32]; the Boost Converter, which
will be invoked in this paper and explained later; and the
combined Buck-Boost Converter (Cûk Converter), that is a
fusion between the behavior of both converters [32]. On the
other hand, in some recent papers, emulators of converters
have been used to fulfill the objective of manipulating the
load seen by the panel [29], [33].

By recalling the Boost converter configuration, its general
electric scheme is the one presented in Fig. 3. Where R is the
user load that in some cases, depending on the application,
can be also an inductive load. L is the input circuit induc-
tance, C is the capacitance of the output filter and Vc is the
output voltage in the capacitance [34]. Moreover, E is the
supplied voltage, and in the particular case of PV systems
this voltage is the one given by the PV panel. The basic
principle of the Boost converter is to step up the output
voltage from its input supply.

3. MPPT Algorithms
In this section two MPPT algorithms are described and

analyzed. The first one is the standard Perturb and Observer
method, the second one is our Hysteretic MPPT algorithm.
These both techniques will be employed in our numerical
experiments in order to realize a comparative study between
both methods. These comparisons will be exposed in Section
4.

A. Perturb and Observer Algorithm

One of the most common MPPT algorithms is the Perturb
and Observer method due to its simplicity [35]. Its basic
principle consists of periodically measure the voltage and
current from the PV panel in order to estimate the PV
power. Thus, an adequate perturbation is redefined and the
corresponding output power is compared with the previous
perturbing cycle [16], [23], [36]. Hence, the perturbation is
calculated at every sample time and when the maximum
power point is reached the power oscillates around this

PV Voltage

P
V

P
ow

er

0

MPP

Fig. 4. Characteristic curve voltage vs power for the P&O algorithm.

Fig. 5. Flowchart of the standard Perturb and Observer (P&O) [11].

peak (see Fig. 4). However, due to its nature of constantly
perturbation, this method presents the disadvantages of
important power lose when the maximum power is closely
achieved [4]. Another important disadvantage of this method
is that it normally fails when the PV system is subjected to
fast changes in temperature or sun irradiance [13], which
is a natural situation of the PV panels in general. Figure 5
shows the classical flowchart of the standard P&O algorithm.

B. Hysteretic MPPT Algorithm

The proposed Hysteretic MPPT algorithm incorporates,
as its name says, a dynamic hysteresis model. This employs

Fig. 6. Hysteresis loop.
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information from the PV panel, specifically its voltage
and current [29]. Due to a hysteretic dynamic system has
a memory effect, its output depends on the past state of
its variables and its input. This feature provides greater
stability in the panel terminals. Thus, the output generated
by the algorithm will present fewer oscillations when the
maximum power point is closely achieved.

The model of the dynamic MPPT algorithm employs
signum functions as a representation of a memory action.
Furthermore, it requires information form the PV voltage
VPV and the PV current IPV in order to estimate the PV
power PPV . The dynamic hysteretic equation is as follows
[29]:

ḋ(t) = α[−d(t) + bsgn(∆VPV + asgn(∆PPV )], (6)

where a and b ∈ R+ are the hysteresis loop parameters
and d(t) is the internal variable of the model. For instance,
Figure 6 shows a characteristic hysteresis behavior by
varying ∆PPV and keeping constant ∆VPV with respect to
d(t). In Equation (6), the transition time-rate between b and
−b is governed by the real positive parameter α. Hence,
these parameters can be properly adjusted in order to set
the response time or the hysteresis width. Actually, ∆VPV

and ∆PPV are the inputs to the hysteresis system. Then,
∆PPV and ∆VPV collaborate jointly to drive the hysteresis
loop behavior to fulfill the MPPT objective [29]. Thus, the
equation (6) is presented as a newfangled MPPT algorithm.

4. Numerical Experiment Results
In this section the simulation results are presented. The

numerical experiments were realized in Matlab/Simulink.
First of all, the PV array implemented was the SunPower
SPR serie 305-E built of strings of 66 PV modules connected
in parallel, each string consists of 5 modules connected in
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Fig. 7. Photovoltaic array characteristic curves I −V and P −V for two
irradiance levels.
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Fig. 8. Environmental temperature variation.
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Fig. 9. Environmental irradiance variation.

series. The characteristic curves, I − V and P − V , are
exhibited in Fig, 7, for the specific PV array employed in
the simulations. These curves are very useful to know where
the MPP is located according with the conditions that the
panel is subjected. These graphics were obtained with two
levels of irradiance: 250 W/m2 and 450 W/m2. Note that
for these two levels there are two maximum power points
respectively, the first one is near to 2.5x104 W and the other
one is around to 4.5x104 W. Later on it will be seen that
these power values are closely achieved with the proposed
technique.

Figure 17 and Fig. 18 show the both MPPT schemes
build in Simulink, the one with the P&O method and the
one with the hysteretic proposal, respectively. The first one
contains a MatLab Function block with the P&O algorithm.
The second one has a model diagram block of equation
(6). Furthermore, both systems employ the same Boost

TABLE I
BOOST CONVERTER PARAMETERS.

Component Value
Switching frequency 50kHz
Inductor, La 200µH
Serie resistance of inductor, Ra 0.5Ω
Input and output capacitors, Ci and Co 220µF
Resistance load, Rb 250Ω
Inductance load, Lb 100µH
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Fig. 10. The output generated PV power.

Fig. 11. The output voltage at the user load.

converter parameters exhibit in Table I. On the other hand,
the hysteresis parameters values are: a = 0.5, b = 0.5 and
α = 0.5. These values were fixed by the trial and error
technique.

For the first set of experiments, the conditions of
temperature and irradiance of the PV array are shown in
Fig. 8 and Fig. 9 respectively. The result of this experiment
is depicted in Fig. 10. This highlights the fact that the
proposed scheme with hysteresis has a better performance by
extracting the maximum power of the PV panel. Although
there is a transitory time where the power oscillates, after
this, the quality of the generated PV power is better.
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Fig. 12. Fast environmental temperature variation.

Fig. 13. The output generated PV power.

Fig. 14. The output voltage at the user load.

Besides, it is notable that the value of the maximum power
is achieved, according to the curves presented in Fig. 7. On
the other hand, in the case of the P&O method, the power
is constantly oscillating and it is due to the nature of the
algorithm and the maximum power point is not achieved.
In addition, Fig. 11 gives the output voltage of the Boost
converter. This voltage is important since is the one supplied
to the load. The features that has to have this voltage
depend on the application, but in general, it is expected
that the output voltage is stable without abrupt changes.
Fig. 11 shows that the output voltage obtained with our
method does not have abrupt changes and the quality of
this signal is better than the one obtained by employing the
conventional P&O method.

Additionally, another experiment was realized by
programming the temperature with fast changes as is shown
in Fig. 12, and the employed irradiance is the same than
in the previous experiment. The generated output PV
power is depicted in Fig. 13. In this figure, just like in the
previous case, the maximum power extracted by invoking
the proposed algorithm is higher and with better quality than
the one obtained with the Perturb and Observer method.
Besides, the output voltage, in Fig. 14, provided with the
hysteretic algorithm also has a notable better performance
since the voltage generated by using the P&O algorithm
presents a high overshoot and a long transitory time. Finally,
one more experiment was implemented by using the same
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Fig. 15. Fast environmental irradiance variation.

Fig. 16. The output generated PV power.

temperature profile given in Fig. 12. Moreover, in this case
the irradiance was computed with fast changes as is shown
in Fig. 15. This is an important validation since these
phenomena are very common in PV systems, for instance,
these abrupt changes may be provoked by fast shading
conditions. Hence, an acceptable MPPT algorithm has to
be capable to deal with the perturbations in the PV panel.
The result of this numerical experiment is presented in Fig.
16. In this figure it is possible to observe that the power
extracted by employing our proposal is not the higher one
on each level. Nevertheless, the power extracted by invoking
the hysteresis MPPT algorithm has better quality which is
a significant characteristic required by the PV systems in
general.

5. Conclusions
In this paper was proposed a scheme where the MPPT

algorithm is based on a dynamic hysteretic model. The
characteristics of the dynamic hysteresis applied to an MPPT
algorithm allowed to obtain, in most cases, the maximum
efficiency of the PV panel. Moreover, the quality of the
PV generated power is remarkable in comparison to the
power produced by employing the standard P&O method.
On the other hand, the numerical experiments were realized
by invoking an inductive load in order to perform a reality
PV systems implementation. The experimental results mo-
tivate future work on real applications where the user load

require specific conditions of the voltage provided by the PV
panel. Finally, numerical experimental validation employs
fast changes in the irradiance, which may emulate fast
shading conditions in the PV panel. To the best knowledge
of the authors, this is a current and prevalent objective in the
field of maximum power seeking in photovoltaic systems.
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