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Synchronization of weakly coupled nonlinear oscillators is a ubiquitous phenomenon that has been observed
across the natural sciences. We study the dynamics of optomechanical arrays—networks of mechanically
compliant structures that interact with the radiation pressure force—which are driven to self-oscillation. These
systems offer a convenient platform to study synchronization phenomena and have potential technological
applications. We demonstrate that this system supports the existence of long-lived chimera states, where parts of
the array synchronize while others do not. Through a combined numerical and analytical analysis we show that
these chimera states can only emerge in the presence of mechanical frequency heterogeneity.
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I. INTRODUCTION

The synchronization of weakly coupled oscillators is a
common feature of nonlinear dynamics that arises in various
disciplines ranging from engineering to neuroscience [1]. The
paradigmatic Kuramoto model [2] explains how an ensemble
of phase oscillators can exhibit collective synchronization in-
duced by identical all-to-all coupling, in spite of differences in
their natural frequencies. Aside from realizations in biological
systems [3,4], synchronization of coupled oscillators finds
technological applications, e.g., in high-power laser diode
arrays having high efficiency and low divergence [5-7].

Kuramoto [8] discovered that the same type of nonlinear
interaction can lead to emergent phenomena for identical
phase oscillators upon relaxing from a global identical cou-
pling to a nonlocal coupling topology. These arrangements
can be used to implement finite state machines [9], for ex-
ample. However, they are also known to fail to synchronize
completely, but rather to support coexistence of coherence
and incoherence—Ilater dubbed chimera states [10]—under
specific conditions that are still being investigated. While the
Kuramoto model is known to be analytically reducible with
the Watanabe—Strogatz ansatz [11], further results on general-
ized Kuramoto models with finite degrees of freedom or in the
continuum limit gave insight into the relevant order parame-
ters and their evolution in time [12—15]. Additional analyses
were conducted showing that chimera states can be transient
[16] or stable [17,18], as well as robust to heterogeneities
in natural frequencies [19-21], coupling topologies [22,23],
and noise [24,25]. Theoretical work [26,27] also motivated
successful experimental observations of such states in arrays
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of coupled chemical oscillators [28-30], spatial light mod-
ulators [31], optoelectronic networks [32], and metronomes
on swings [33]. Of contemporary interest in the study of
network dynamics are the effects of phase interactions that
include higher harmonics, as well as next-to-nearest-neighbor
and triadic interactions in theory and experiment [34].

The study of the dynamics of micromechanical systems
has undergone tremendous growth in recent years under the
guise of optomechanics [35]. The prototypical optomechani-
cal system consists of a single mode of the electromagnetic
radiation field, e.g., within a high-finesse optical cavity [36],
interacting with the motion of a harmonic oscillator by means
of the radiation pressure force [37]. The moving element
variously takes the form of one of the end mirrors of a
cavity [38], a semi-transparent membrane inside a cavity [39],
one plate of a capacitor [40], a micro- or nano-particle in a
cavity [41,42], or the cavity itself in the case of micro-toroids
supporting whispering gallery modes of the radiation field
[36]. Various experimental techniques make these systems
tunable in their optical [43] and mechanical properties [44].
The optomechanical interaction has been used to cool the
motion of the mechanical system down to its ground state
[40,45], generate quantum entanglement between mechanical
oscillators [46,47], and produce proof-of-concept isolators
and directional amplifiers for microwave radiation [48-51].
Recent work has started exploring the many-body dynamics
of systems of coupled optomechanical networks, including
the possibility of obtaining stronger coupling at the single-
photon level [52,53], topological physics [54-56], dynamical
gauge fields [57], and synchronization phenomena [58—66].
Such systems may also find technological use; synchronized
optomechanical arrays, for example, could act as high-power
and low-noise on-chip frequency sources [65].

Synchronization is especially interesting as a many-body
phenomenon since it requires only a few optomechanical cells
and its experimental observation [65,66] raises the question of
its robustness against heterogeneity in the natural frequencies
of the mechanical oscillators, as well as potential interactions
of multiple arrays on one chip. Only recently, chimera states
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were hypothesized to arise in optomechanical arrays [66].
To explore this question we employ a model of two arrays
of optomechanical oscillators subject to global mechanical
coupling within each as well as with the other array. Our
theoretical analysis reveals that chimera states arise in two
indistinguishable arrays, each composed of as few as four
oscillators, in contrast to other collective effects [54-57] that
require very large numbers of oscillators. Furthermore, our
work identifies limitations for the large-scale integration of
optomechanical arrays on a chip.

Following the introduction of our model, we describe
the results of exhaustive numerical experiments that identify
the region of parameter space where chimera states arise in
our model. We then analyze the continuum limit to obtain
analytical results, and conclude by discussing the implications
of our results for applications of optomechanical arrays.

II. MODEL

We consider the collective dynamics of two identical op-
tomechanical arrays, 8 = 1, 2, each of which consists of N
mechanical modes coupled to one global laser-driven optical
mode of amplitude o, which is described by the equations of
motion [58,64,65]

m(E + i + Q) = Flp@+ Y F. and (la)
0'=1,2

o = |:i(A — Swop) — K}oﬁ + St (1b)
2 2

Here, x?, QY m, and T' denote the displacement, natural
frequency, effective mass, and damping rate of the mechanical
modes. We assume that the arrays contain identical sets of
oscillators, i.e., Q} = le =: ; such that the two arrays are
indistinguishable. Each optical mode is characterized by its
decay rate « and its detuning from the driving laser A =
Olaser — Wopt, Which we assume are independent of 6. The
optomechanical interaction shifts the resonance frequency by
Swopt = — Y fo- as a result of the mechanical displacements

and imparts a force F}, | = iG|a”|* on the mechanical modes.
For blue detuning (A > 0) and large-enough optical power,
there exists a Hopf bifurcation leading to synchronized self-
oscillation [37,58,65].

The focus of this work is the analysis of additional mechan-
ical coupling between the arrays and its effects on their syn-
chronization. The mechanical coupling Fg = Y, k%' (x% —
x?) is assumed to be global: k?;" = (1 —8;;800 )1/N, ie.,
every pair of oscillators is coupled with strength ©/N. Such
global springlike coupling was shown theoretically [58] and
realized experimentally for two oscillators [64] with an
optomechanical coupling driven with a red-detuned laser
(A < 0). We assume the mechanical parameters m, I', and G
to be identical to retain the symmetry of the arrays; chimera
states are a result of spontaneous symmetry breaking in cases
where the oscillator populations are identical. Additionally,
we have verified that our numerical results still hold for small
variations of these parameters (for details, see Appendix A).

Figure 1 presents a schematic illustration of a realization
of this model, i.e., a system consisting of two arrays of
microtoroidal optomechanical systems that allows for optical

(a) b Q2 Q
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FIG. 1. A test-bed for investigating chimera states. (a) Optome-
chanical microtoroids are arranged in two identical arrays. Excitation
of optical modes delocalized over each array causes self-sustained,
synchronized mechanical oscillation at large optical powers. A third
optical mode introduces springlike coupling between both arrays
allowing chimeras to emerge in the compound system. (b) Driving
scheme, where each optical mode is driven coherently with a specific
detuning. Further detail is given in the text.

modes delocalized [65] over either one array or both arrays.
Driving each array with an optical mode delocalized over it
with blue detuning allows the excitation of the mechanical
oscillators and self-sustained synchronized oscillation at large
powers. Driving another optical mode delocalized over both
arrays with red detuning introduces global springlike coupling
adjustable via the input power and the detuning.

The behavior of this system depends sensitively on the
magnitude of the heterogeneity in the natural frequencies of
the mechanical elements, and on the input optical power. An
overview of this behavior is depicted in Fig. 2, which is the
main numerical result of this work. The statistical evaluation
we used to construct Fig. 2 is based on the classification of
60 random initial conditions for the uncoupled system p = 0,
varying the maximal photon number |am.x|? in steps of 500
and the standard deviation o in steps of 0.2T". The natural
frequencies we obtained from Fig. S5 of Ref. [65] were 132.1,
132.35, 132.7, and 133.2 MHz. We shifted these to obtain
Q = 133.0 MHz as the mean frequency and rescaled them
around Q to obtain the desired standard deviation o, always
keeping the mean frequency unchanged. The classification
of the initial conditions in the one-array system was per-
formed based on the power spectral densities of the long-time
dynamics of the four mechanical oscillators comprising the
array. If the respective dominant peaks in the power spectral
densities were found to be at different frequencies, the initial
condition was classified as not synchronized. If all mechanical
frequency peaks coincided at some Fourier frequency f;, the
initial condition is classified as synchronised to the frequency
fi- A low-frequency cut-off was imposed at 0.76 MHz due
to the presence of numerical noise in this frequency range.
For trajectories that exhibited no self-sustained oscillations,
the maximum in the power spectral density occured around
the cutoff frequency.

This procedure resulted in a probability distribution
according to the relative occurrences of each of the
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FIG. 2. Two-dimensional parameter-space diagram of the syn-
chronization behavior, plotted as a function of the standard deviation
of the natural frequencies, o (horizontal axis), and the maximal num-
ber of photons |oma,|? (vertical). The statistical evaluation process
yielding the color of the smooth diagram is detailed in the text. Upon
increasing the optical input power P, o< |oiqx|? distinct behaviors are
observed depending on o, characterizing the heterogeneity: No self-
sustained oscillation (region A, black); self-sustained, synchronized
oscillation at one frequency (region B, green); self-sustained, unsy-
chronized oscillation (region C, blue); self-sustained, synchronized
oscillation always attained at multiple frequencies (region D, red).
This plot can be seen as a two-dimensional projection of a three-
dimensional parameter space, with the third axis corresponding to
the mechanical coupling strength. In the hatched region, additional
global mechanical coupling of two arrays leads to chimera states.

above outcomes. For every configuration, the color of the
corresponding pixel in Fig. 2 was computed by adopting the
following procedure. The blue value is the relative proportion
of unsychronized initial conditions. To obtain the red and
green values, we computed the entropy S of the relative
occurrences O; of the synchronized attractors with respect
to the occurrence of synchronized initial conditions Og: S =
— Zi(Oi/OS)ln(O,-/OS). If there is only one synchronized
frequency, all occurrences happen at the same frequency and
we have S = 0. If the occurrences of synchronized oscillation
are distributed evenly among all N possible frequencies, we
find § = Smax = In(V). The green value of each pixel is given
by (1 — S/Smax)Os and the red value by (S/Snax)Os. In this
scheme, therefore, a green pixel represents a situation where
all trajectories synchronized to the same attractor, and a red
pixel where trajectories synchronized to all possible attractors
with equal probability.

For weak heterogeneity on the scale of a mechanical
linewidth, we find that below a threshold input power P,
|otmax |* there is no self-sustained oscillation (region A). Above
this threshold, we find synchronized oscillation of all me-
chanical oscillators for arbitrarily small additional mechanical
springlike interaction (region B). The relative phase between
the two arrays in the absence of the springlike coupling is arbi-
trary and depends on the initial condition as required for self-

sustained oscillation [1]. In accordance with the analytical
insight as discussed below, one finds phase synchronization
of the two arrays upon increasing the mechanical interaction.

For large-enough heterogeneity, increasing the optical in-
put power above the oscillation threshold leads to unsyn-
chronized self-sustained oscillation of the arrays (region C).
Increasing the input power even further (region D), one finds
that both arrays always synchronize separately to one of the
natural frequencies €2; in absence of interaction of the two
arrays. Introducing the mechanical interaction between the
two arrays can drive one of the arrays out of the synchronized
state while the other one is not affected. Since this coexistence
of synchronization in one array and lack of sychronization
in the other depends crucially on the mechanical coupling
between the two arrays, and since the two arrays are identical,
we can label these chimera states. Increasing the mechanical
interaction between the arrays even further will eventually
lead to in-phase or anti-phase synchronization of the two
arrays.

III. NUMERICAL RESULTS WITH SMALL ARRAYS

Under realistic circumstances, state-of-the-art optome-
chanical arrays consist of at most a few separate oscillators
[65]. Typically, their natural frequencies are spread beyond a
linewidth (cf. Fig. S5 in Ref. [65]), but with mechanical tuning
procedures [44], one may achieve two indistinguishable arrays
experimentally. To address the effect of additional mechanical
coupling, we conducted numerical investigations of Egs. (1)
using parameters from Ref. [65]. We consider two identical
arrays, each consisting of four oscillators whose natural fre-
quencies are centered around Q/2m = 133 MHz, and which
have a mechanical quality factor Q/T" = 1000 and an effective
mass megr = 70 pg. The optical modes interact with each array
with a coupling strength G/27 = 49 MHz/nm and have a
decay rate k = Q. They are driven by a blue-detuned laser
with A = Q. The mechanical coupling between the arrays is
set to be global; we explore coupling strengths up to |max| =
4.1 x 1073 mQ2.

We next turn to examples that illustrate the preceding
discussion. Figure 3 shows the behavior of the arrays for the
parameters at the white diamond in Fig. 2 with zero (top and
middle) and dominant (bottom) mechanical coupling. Without
mechanical coupling, collective oscillation of each array takes
place at one of the natural frequencies, showing the exis-
tence of coherence. Due to the large heterogeneity, the phase
difference between pairs of mechanical oscillators will be
nonzero. When the mechanical coupling dominates, collective
oscillation of the arrays takes place at an arbitrary frequency
with the two arrays oscillating in phase, in agreement with the
analytical results presented below.

Figure 4 shows sample trajectories of the two arrays for
different mechanical coupling strengths with the parameters
at the white circle in Fig. 2. The phase reconstructions ¢! are
based on the analytical signal representation of the mechanical
motion x? (for details, see Appendix B) and their derivatives
are represented below as phase velocities. The classification of
chimera states is based on the evolution of phase differences
A}, = ¢f — ¢! in the respective array. Two oscillators x/
0

and x; are considered mutually synchronized if their phase
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FIG. 3. Numerical analysis of the behavior of two optomechan-
ical arrays consisting of four oscillators and light field each in
the absence of (upper and middle row) and with large mechanical
coupling (lower row). The chosen parameters correspond to the white
diamond in Fig. 2. (a) Time evolution of the mechanical oscillator
positions (orange, magenta, green, blue) and light field amplitude
(black) (b) Mechanical power spectral densities. In all cases, we find
synchronization to one frequency, which in the case of no mechanical
coupling is one of the natural frequencies of the oscillators. These
natural frequencies are indicated by the vertical lines. In the large-
coupling case, both arrays are synchronized in frequency and phase
as can be seen by the evolution of the arrays, which are presented on
the same plot.

difference Aqbfi in the tested time interval, which is taken
to be significantly longer than any characteristic time period,
varies less than 27, and mutually unsynchronized otherwise.
An array is considered synchronized if all oscillators are
mutually synchronized and unsynchronized otherwise. A state
is considered a chimera state if there is a combination of
synchronized initial conditions for each individual array and
at least one mechanical coupling ¢y such that one array is
synchronized and the other is not, as it is the case for the
example illustrated in Fig. 4. The top (bottom) row represents
the first (second) array, and the columns represent zero (left),
intermediate (middle), and dominant (right) mechanical cou-
pling. For zero mechanical coupling, the two arrays synchro-
nize independently of each other to one of the natural frequen-
cies of their oscillators. This is indicated by all the phases of
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FIG. 4. Sample trajectories of the mechanical motion (orange,
magenta, green, blue) for both arrays (white circle in Fig. 2).
(a) Phase reconstruction via analytic signal representation and
(b) phase velocities extracted from the reconstructed phases. The top
(bottom) row refers to the first (second) array in both subfigures. In
the absence of mechanical coupling (left), the two arrays synchro-
nize, indicated by the same slope of all phases and the convergence of
the phase velocities to horizontal lines. At intermediate mechanical
coupling strengths (middle) the oscillators in the second array are
synchronized to one frequency while in the first array the phases
diverge and the phase velocities stay distinct. This is a chimera state,
where the first array oscillates incoherently while the second array is
synchronized. When mechanical coupling dominates (right), the two
arrays synchronize to the same frequency.

each array evolving with the same slope, whereas phases of
different arrays evolve with different slopes; equivalently, the
phase velocities corresponding to different arrays converge
to different horizontal lines. For large mechanical coupling,
we again find that both arrays synchronize, although this time
they both synchronize to the same frequency since all phases
share a common slope and the phase velocities collapse to
the same horizontal line. However, at intermediate coupling
strengths we find that the phases of the first array diverge
while the second array remains synchronized. Moreover, we
observe that the phase velocities of the first array stay distinct
while they converge for the second array. This indicates
that there is a stable coexistence of synchronization in one
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array and incoherent oscillation in the other, mediated by the
mechanical coupling of the arrays.

IV. CONTINUUM LIMIT

In the regime of self-sustained oscillations, the light field
can be adiabatically eliminated and the radiation pressure
force F, pl(t) is then a periodic function with fundamental
frequency Q. Note that we can neglect the harmonics of the ra-
diation pressure force and approximate F:;ﬁ(t) ~ Fysin(Qt +
#?). By averaging over time and only considering the slow
contributions one finds a generalized Kuramoto-like model for
the phase evolution [58,59]

¢! = —Qi + K;sin (¢! + Q1 + )

09’
-l-ZZ U cos ¢0)
90” 90’
+ XS sin o+ 0f —260)
0',0" keo"”
jeo’
L %- ! !
T i 0y 00) s 07 001

where we have defined K; = Fo/(2mS%A;) and éi"}e/ =
KA/ (mSuA).

Aiming to obtain analytical insight by using the Kuramoto-
like model, we follow the analysis of Ref. [14]. Thus we re-
quire that the coupling constants K; and 539' can be considered
global. Performing the continuum limit N — oo requires the
conservation of the number of oscillators for consistency. This
results in continuity equations for the probability densities
FO2L @, 1) = g(Q)f%(¢, 1) to find oscillators with natural
frequency €2 to have phase ¢ at time 7:

Afe(Q b, 1)
ot

Following the method of Ref. [14], we assume (i) a Lorentzian
natural frequency distribution g() = {w[(2 — Q)* + &]} !
and (ii) that the f?(¢, t) are periodic in ¢:

P = !1 + [Zf“(t)eXp(lnrb)nLcc“ 3)

n=1

+f[f (2,6, 00°(Q,6,0]1=0. (2)

with the Ott—Antonsen property f (¢) = [ag(¢)]". This family
of probability distributions contains the limiting cases of
the uniform distribution for f,f(t) = 0, which signifies no
knowledge about the phases, and §(¢ — W) for f7(t) = ™Y,
51gn1fy1ng perfect synchronization of all phases to W. Conve-
niently, Fp, 1) converges for all ag(t) = pge™' € C with
po < 1to

(1= po)(1 + pg)
2m (1 — po)? + 4pg sin® [1(¢ — Wp)]
To satisfy Eq. (2), the ag(¢) have to follow a nonlinear evolu-
tion (for details, see Appendix C).

In absence of mechanical coupling, i = 0, the phases W
decouple. The solution to the dynamics is Uy = —(Qt + ¢?),

.t = “)

and the corresponding stable fixed point is py = 28 +

V14 (2 )z LASN 1, i.e., perfect synchronization which is in
accordance with the numerical results for the small arrays
as depicted in the top and middle row of Fig. 3 and the left
column of Fig. 4.

If the mechanical coupling dominates u/(2mQ) > ¢, T,
we can describe the dynamics of the system in terms of the
phase difference AW := W; — W,. We find the fixed points
(o1, p2, AW) = (1,1, nr) with n € Z, which describe two
cases—either (i) the two arrays synchronize perfectly or
(ii) each array synchronizes separately but in antiphase with
the other array. The sums in the phase evolution are con-
stant for ¢ = Wy and AW = nxr. This result generalizes
the findings for two optomechanical oscillators in Ref. [58],
extending its applicability to two arrays of many oscillators
analytically. For few oscillators we find this behavior numer-
ically in the bottom row of Fig. 3 and the right column of
Fig. 4.

When all terms are relevant, analytical insight can be
gained by assuming that array 1, without loss of generality, is
synchronized (p; = 1) and stays synchronized (p; = 0). We
obtain

1 —eT2mQ/pn)?
p2=\/8(’n/“)_ (5)

cos(2AVW)

Since cos(2AW) < 1 for the relevant cases (|AV| K w/4
mod 1), we find that /1 — eI’'(2m$/1)? < po < 1. There-
fore, when the mechanical coupling dominates the hetero-
geneity (u? > 4eT'(m2)?) the arrays synchronize in phase
or antiphase. Importantly, this also means that if there is no
heterogeneity (¢ = 0) there can be no chimera states (o, = 1)
which coincides with our numerical findings for small arrays
summarized in Fig. 2 and demonstrated in the middle column
of Fig. 4.

To sum up, we find that the analytical results for large
arrays contain the essential features of our numerical findings
for small arrays. Moreover, these results show that in contrast
to breaking the symmetry in the coupling topology, chimera
states require heterogeneity to exist in this system.

V. CONCLUSIONS

Our investigation shows that highly complex nonlinear
classical dynamics emerges in globally coupled strongly-
driven optomechanical arrays. The fascinating pattern forma-
tion leading to the coexistence of coherence and incoherence
in two interacting arrays is found to be enforced by the com-
petition between two synchronization mechanisms and break-
ing the symmetry of identical oscillators to indistinguishable
arrays. Since heterogeneity in the natural frequencies of oscil-
lators in realistic setups is of the order of a few linewidths, the
physics we describe is of technological relevance. Our study
further shows that this complex behavior is readily accessible
to experiments.

In closing, we note that to our knowledge establishing
a springlike interaction between optomechanical oscillators
based on the optomechanical interaction was shown experi-
mentally for only two oscillators so far [64]. However, op-
tomechanics is not the only mechanism to couple the two
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arrays mechanically. Such interactions can also be introduced
by strain coupling if the arrays are connected by a substrate,
or sound waves if they are in close proximity to one another.
Because of their generality, the effects we describe must be
accounted for in systems with multiple nonlinear oscillators
in close proximity. If chimera states are to be avoided, our
results imply a limit to the packing density of such arrays; if
chimera states are to be sought, we have shown that a certain
amount of heterogeneity must be present.
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APPENDIX A: STUDY OF PARAMETER VARIATIONS

To study the effect of random perturbations in the optome-
chanical coupling G, the mechanical decay rate I', and the
mass m we generated different realizations of the two arrays
such that one of the three parameters varies for every oscillator
with a given standard deviation oy around the mean value X.
The initial conditions and mean values were chosen to give
rise to a chimera state. We used values of ox up to 5% of the
mean value, and checked how many of the realizations still
yield chimera states. The resulting behavior is documented in
Fig. 5. Additionally, we considered breaking the symmetry
between the two indistinguishable arrays by perturbing the
mechanical frequencies Qf for one of the arrays (0 = 2) by
adding a constant shift AQ2 while keeping the frequencies of
the other array (6 = 1) unchanged such that Q? = Q! + AQ.
This procedure allows us to verify that the indistinguishability
of the two arrays is only required approximately, which is
an important consideration for experimental implementations.

PCh ’___1" ...... m G

Theoo

0.8 1 o

0.6 1 . Teee

0.4 1 el e .‘-““...::.'—"\"_"T:.T-‘-

02 |

001 002 003 004 005

ox
X

FIG. 5. Stability analysis of chimera states upon variation of the
mechanical decay rate I' (dashed), motional mass m (dotted), and
optomechanical coupling G (dash dotted). We see that variations on
the scale of percent in each parameter still yield a large proportion of
chimera states. This indicates that the symmetry of the indistinguish-
able arrays is only required approximately for an experiment.
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FIG. 6. Stability analysis of chimera states upon variation of the
mechanical oscillation frequencies. We see that variations on the
scale of a linewidth still result in a significant proportion of chimera
states. Thus the symmetry of the indistinguishable arrays can also be
broken slightly and still yield chimera states.

The results for variations on the scale of a linewidth I" are
depicted in Fig. 6.

APPENDIX B: NUMERICAL ANALYSIS PROCEDURE

To simulate sample trajectories of our model such as those
in Fig. 3, we employ the PYTHON library SCIPY. The numerical
algorithm used is the Adams-Moulton method which we
employ to evolve random initial conditions with the system
parameters indicated in the main text for 0.1 ms with 4 x 10°
steps. We tested convergence of the trajectories for chimera
state initial conditions by doubling the steps while keeping the
simulation time constant. The phase reconstructions ¢! lead
to variations in phase differences A¢i9j of less than 10~ rad,
which confirms convergence for our purposes.

Our phase reconstruction scheme is based on the analytic
signal representation [1] of the time series of the mechan-
ical degrees of freedom x?(t). To specify our problem, we
have a real signal u(t) = xf’ (t) which we want to express as
a(t)cos[¢(t)] where the real functions a(t) and ¢(¢) are the
so-called instantaneous amplitude and phase. Equivalently,
we want to construct a complex representation s, () = u(t) +
iv(t) such that s,(t) = a(t)e®® holds. There is a unique
solution to this problem under the following conditions [67]:
(1) the imaginary part v(¢) is constructed from u(¢); (2)
amplitude continuity and differentiability: a continuously dif-
ferentiable u(¢) shall result in a continuously differentiable
a(t); (3) phase invariance under scaling: the phase ¢(¢) shall
be invariant under a scaling of u(z) by a real number; and (4)
harmonic correspondence: u(t) = ag cos(wt + @) shall result
ina(t) = ap and ¢(t) = wt + O.

The imaginary part v(¢) is then the Hilbert transform of
u(t),

u(mn) dn,

v(t) =H[ul(t) = %P.V./ BD

—00
where P.V. denotes the Cauchy principle value. These require-
ments seem natural, considering that rephrasing the model in
terms of differential equations for the amplitude and the phase
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leads to the Kuramoto-like phase evolution. For numerical purposes it is desirable to have sufficient data in the time series
in the past and the future. Thus, for all evaluation purposes we discard the final 50 000 data points and used the preceding
219 = 524288 samples to compute the Fourier transform and perform phase reconstruction.

APPENDIX C: ANALYTICAL RESULT FOR OTT-ANTONSEN ORDER PARAMETER

Performing the continuum limit to obtain dynamics for the Ott-Antonsen order parameters requires solving

aff (2, ¢.1) 0
at + %

for the velocity field v/ (2, ¢, 1) given by

(f7 (2, ¢, " (Q,¢,1) =0 (C1)

2 2 2w
v =—Q+Ksin@+Q +¢°)+) 0 / d¢' cos(@' —$)f" @'.0)+ ) E"E” / d¢" / d¢'T" " (¢". ¢, ),
o 0 0 0

0.0”
(C2)
with the coupling constants @7 = N. éf}e/ /2 and 2% = ©% /T, and second-order contributions
T%%(¢". ¢ ¢) = f'(¢". (@ Dsin2¢’ — ¢" — ¢) — sin(¢” — ¢) + sin(¢” + ¢’ — 2¢)].
79", ¢'.¢) = [ @". O @ . 1)sin(@" + ¢' —2¢) — [*(¢". 1) *(¢'. 1)[sin(¢” — ¢) — sin(2¢' — ¢" — $)],
T70@", ¢ ) = (/7 (@". ) ' (@', ) —sin(@” — ¢) + sinp" — ¢' — P)] + f*(@". )7 (§'. 1) sin(¢" + ¢’ — 2¢)
+ 7@ ) (¢, D)lsin2¢p — ¢" — ¢) — sin(¢” — ¢) + sin(¢” + ¢’ — 2¢)]}, and
999", ¢'. ) =T (@". ¢'. ). (C3)
To satisfy Eq. (C1), the ay(¢) have to follow the nonlinear differential equations rewritten in polar coordinates ag (1) = pge™'¥":
. (1-p)[T C e g EY 4 o
Po =—&pg + |3 cos(Wy + Q1 + @) + 07 py sin(AW) | — po(205 —3p5 +1)
g’g’ 4 2 2(.2 &y 2 2 2
- pg[305 — 505 +2+ pj(pi — 1)] cos(AW) — 0 (205 cOSQAW) — pj — 1), (C4)
and
. . (1402 .
Uy =—Q— (+p9)[r sin(Wy + Q2 + ¢7) — 0% py — 07 py cos(A\IJ)i|
2,09 2
€ 4 202 . & 55
_ T[pe — 0y — 24 p; (05 +1)] sin(AW) — PPy SIN2AW), (C5)

where AV = W, — W,. These equations are the basis for the discussion in the main text.
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