arXiv:1910.11874v2 [hep-th] 31 Oct 2019

PREPARED FOR SUBMISSION TO JHEP

N =4 conformal supergravity: the complete actions

Daniel Butter,® Franz Ciceri,® and Bindusar Sahoo®

*George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas
AEM University, College Station, TX 77843, USA

b Maz-Planck-Institut fiir Gravitationsphysik (Albert-Einstein-Institut) Mihlenberg 1, D-14476 Pots-
dam, Germany

¢Indian Institute of Science Education and Research, Vithura, Thiruvananthapuram - 695551, India
E-mail: dbutter@tamu.edu, franz.ciceri@aei.mpg.de,
bsahoo@iisertvm.ac.in

ABSTRACT: The most general class of 4D N = 4 conformal supergravity actions depends
on a holomorphic function of the scalar fields that parametrize an SU(1,1)/U(1) coset space.
The bosonic sector of these actions was presented in a letter [1]. Here we provide the complete
actions to all orders in the fermion fields. They rely upon a new A’ = 4 density formula, which
permits a direct but involved construction. This density formula also recovers the on-shell
action for vector multiplets coupled to conformal supergravity. Applications of these results
in the context of Poincaré supergravity are briefly discussed.


http://arxiv.org/abs/1910.11874v2
mailto:dbutter@tamu.edu
mailto:franz.ciceri@aei.mpg.de
mailto:bsahoo@iisertvm.ac.in

Contents
1 Introduction

2 Superform action principle
2.1 Solving the 1® Bianchi identities
2.2 Solving the ey)* Bianchi identities
2.3 Solving the remaining Bianchi identities
2.4  Summary

3 Building all N = 4 conformal supergravity actions
3.1 Ansatz for CY;; and A9y,
3.2 SU(1,1)/U(1) coset fields and derivatives
3.3 Solving for C%}; and A9},
3.4 Uniqueness of the conformal supergravity action

4 Presentation of results

5 A possible origin of the action principle and on-shell N/ = 4 SYM
5.1 A more fundamental action principle
5.2  Deriving the on-shell SYM action

6 Conclusions and outlook
A The Weyl multiplet in A/ = 4 superspace

B Analysis of the Bianchi identities
B.1 Higher Bianchi identities from SUSY closure: an explicit example
B.2 The Bianchi identity of the Bianchi identity

oo

11
12

13
14
15
15
18

19

23
23
24

27

29

37
37
40

1 Introduction

It is well-known that local supersymmetry imposes stringent restrictions on the higher-

derivative structure of supergravity theories. Studying the allowed invariants is directly

relevant to understand the effective actions arising in supersymmetric compactifications of

string theory. The latter play an important role, for instance, in computing corrections to

the entropy of certain extremal black holes. Constructing these higher-derivative actions is

however notoriously difficult. This is because the addition of higher-derivative terms typically

triggers the start of an iterative procedure where the transformation rules, and consequently



the action, have to be repeatedly modified to ensure closure of the supersymmetry algebra
on the fields modulo the equations of motion. A major exception is when supersymmetry
is realized off-shell, since in this case the supersymmetry algebra closes independently of the
dynamics considered. The transformation rules are then fixed and supersymmetric higher-
derivative actions can be analyzed on their own.

A standard method for constructing off-shell supergravity actions is to employ a descrip-
tion in which the theory is invariant under local superconformal transformations and coupled
to various compensating matter multiplets. These compensating matter fields can optionally
be used to fix the extraneous conformal symmetries, and in this way, ensure gauge equivalence
with the original Poincaré supergravity [2, 3]. In the superconformal formulation, the local
Weyl symmetry implies that the conformal mode of the metric, along with its superpartners,
must be absent. The resulting so-called Weyl multiplet, turns out (when it exists) to be a
unique off-shell multiplet, which contains fewer fields than its Poincaré analogue.

In four dimensions, the Weyl multiplet exists up through A/ = 4, which means it can
in fact provide an off-shell formalism even in cases when its Poincaré counterpart does not.
There is one type of action which involves the Weyl multiplet alone with no other matter
multiplets or compensators — this is the conformal supergravity action which corresponds to
the supersymmetrization of the square of the Weyl tensor. This particular action can be
considered either as an off-shell action in its own right, or as a higher-derivative correction to
Poincaré supergravity. It will be the main focus of this paper.

Conformal supergravity actions in four dimensions were first constructed for ' < 2 forty
years ago [4-6]. In the N' = 4 case, while the full non-linear superconformal transformations
of the Weyl multiplet fields were already determined in [6], the conformal supergravity action
remained largely unstudied beyond the linearized level until this decade.! Some results were
first obtained for the purely bosonic sector of the action by computing the conformal anomaly
of N = 4 vector multiplets in a background of conformal supergravity [15]. All the terms
up to quadratic order in the fermion fields were then derived in [16] by starting with the
linearized action and iteratively adding terms required by supersymmetry. Proceeding to all
orders in this manner would however seem practically impossible. This has to do the fact
that, unlike for N' < 2, the N/ = 4 Weyl multiplet contains a dimension-1/2 fermion field A,;.
This means that the complete action should be fairly involved, with terms up to O(A%).

Another singular feature of the NV = 4 Weyl multiplet is the presence of dimensionless
scalar fields ¢ parametrizing an SU(1,1)/U(1) coset space. It is therefore possible to consider
a whole class of conformal supergravity actions, where the leading Weyl squared term is

'"Even the 4D N = 3 Weyl multiplet was terra incognita until recently [7, 8], when its transformation laws
were first written down, and the action remains unstudied. In three dimensions, the conformal supergravity
actions are Lorentz-Chern-Simons and their complete form for ' < 6 were constructed in [9-11]. The half-
maximal N' = 8 multiplet possesses at most a pseudo-action [12]. In six dimensions, there are three conformal
gravity actions, but (1, 0) supersymmetry selects out two [13, 14]; the unique (2, 0) supersymmetric combination
was partly constructed in [14] by lifting from (1, 0). In five dimensions, there is no pure conformal supergravity
action although the Weyl multiplet exists for N = 1.



multiplied by a function of the coset scalars. This modification was already mentioned in [17],
and represents a deviation from the N < 4 cases for which there is a unique action. Such
“non-minimal” couplings later emerged in the effective action of type IIA strings compactified
on K3xT? [18] in the form of a modular function multiplying the square of the Weyl tensor, as
well as in the semiclassical approximation of the microscopic degeneracy formula for certain
dyonic N/ = 4 black holes [19, 20]. In the context of on-shell Poincaré supergravity, an
analysis of higher-derivative invariants [21, 22] established the existence of similar couplings
where the Riemann tensor squared is multiplied by a generic holomorphic function. The
corresponding class of conformal supergravity actions however remained entirely unknown,
even at the purely bosonic level.

This was resolved in a recent letter [1], in which we reported on the construction of the
full N = 4 conformal supergravity action for the case of a generic holomorphic function. This
is the most general case, which encompasses all possible actions, including the “minimal”
action partially constructed in [16] which is recovered by setting the function to a constant.
The complete set of bosonic terms was presented, but the mechanism for its construction was
only briefly sketched. The aim of this paper is to fill in the gaps by presenting the fermionic
terms and describing in detail the method that was used. The complete action turns out to
be significantly complicated, and the computer algebra program Cadabra [23, 24| played an
essential role in its construction. In the following, we sketch the main lines of our approach.

In general, the problem of constructing off-shell supersymmetric actions can be tackled
in various ways. A first option is to build the action by iteratively adding terms to impose
supersymmetry order by order in the fields. As mentioned above, this method was used for
the minimal N/ = 4 conformal supergravity action in [16]. Another common approach is
to employ superspace, which guarantees supersymmetry but requires integration over Grass-
mann (fermionic) coordinates. The integration must be over the entire superspace or some
invariant subspace (e.g. chiral superspace), but for sufficiently many supercharges this leads
to rather high dimension expressions corresponding to terms with a large number of bosonic
derivatives. While there are ways to reduce the number of fermionic dimensions, for exam-
ple, by introducing an auxiliary bosonic manifold as with harmonic/projective superspace or
pure spinor superspace, these typically require infinite numbers of auxiliary fields or other
complications.

In this paper, we take a more pragmatic approach which relies on the construction of
a generic supersymmetric action principle, also known as a density formula, directly at the
component level. Such a density formula is built upon an abstract multiplet whose component
fields appear linearly in the expression, along with some of the supergravity fields such as the
vielbein. The multiplet in question is typically required to obey only very mild supersymmetry
constraints (e.g. chirality), and it is in this sense that the action principle is generic. If one
can build such a multiplet, for example by combining more fundamental constituents, the
action principle can be applied. This approach is not distinct from superspace: whenever an
invariant superspace exists, the corresponding component action always falls into this type,
where the multiplet in question is identified with the superspace Lagrangian. The converse



does not generally hold, and a density formula may exist in the absence of a corresponding
superspace.

As we will show, there exists such a density formula for four-dimensional N' = 4 theories
with local superconformal symmetry. It is based on an abstract multiplet involving super-
conformally primary fields C%;, CY}; = (C’klij)*, and AV}, = (Aklij)*, each in the 20’ of the
SU(4) R-symmetry group, and whose supersymmetry transformations into the 60 and 60 are
constrained. That is,

0eC" = €M EY o + € By

S Ay = @™ V0 + & Q9 (1.1)
for fermions = and () whose traceless parts are fixed as
[E%mlge = RAmA rlgg ,  E7Mleo =0,  [Q7xmleo = AmCVulgg (1.2

in terms of the dimension-1/2 fermion A; of the Weyl multiplet. This implies that the fields
C",; and AY;,; must be intricately related. The density formula is

6_1£ =F+ 27;#@'(9!“‘ + VHQi) + Z@ui(gui + VHQZ')
1~ i oVt Ly - v i i vpo 7 i
+ gw[uﬂu%}] & J g (Z 1/@'7“ wujg I+ 55“ p wmwujgpa 7+ h.C.)
i vpo (.7, n igrs n n ij
+ ggﬂ r <¢ui¢uj ¢pk70prsk gl 42 ¢ui¢uj ¢pk70’f T+ h-C-)

- iguvm <1/_}ui1/}uj1;pkwcrl eMrs O Lo 4+ 29D 0, et A g + h-C-) . (1.3)
The fields C%; and A%}, of lowest Weyl weight multiply four gravitini v, while higher
weight fields of the abstract multiplet appear with fewer gravitini: these include fermions
pijk, kY, Qi and €, as well as bosons Eaij, Ep, EY and F. They descend from the
fields C%}; and A%}, via supersymmetry in a manner that will be described in due course.
Their superconformal transformations, which leave (1.3) invariant, turn out to be determined
entirely by the basic supersymmetry constraints (1.2). Provided such fields can be constructed
out of more fundamental constituents, invariant actions follow. The composite field F' then
contains all the bosonic terms of these actions.

This is by no means the only possible density formula for N’ = 4, but it turns out to
be sufficient for our needs. Once one specifies the form of the basic fields C%;; and A9y,
in terms of the A = 4 Weyl multiplet fields, it allows the direct construction of the class of
superconformal Weyl squared actions which depend on a generic holomorphic function. As a
bonus, we will show that the locally superconformal super Yang-Mills (SYM) action [25, 26]
can also be described by the same density formula, albeit at the on-shell level only.

The paper is arranged as follows. In section 2, we describe the superform action principle
that leads to the density formula (1.3). In section 3, we explain how to apply the density
formula to build the conformal supergravity actions, by explicitly solving the supersymmetry



constraints on the basic fields C%;; and A%;. We also give a proof that this must lead to the
most general class of actions. In section 4 we review the bosonic action presented in [1] and
give the covariant (non-gravitino) two-fermion contributions. These terms already are quite
substantial in number. Because of the sheer complexity of the full action, we cannot present
it explicitly here. Instead, we include an addendum file in the arXiv submission that contains
the full set of terms. In section 5, we speculate on the origin of the density formula and show
how it can recover the on-shell SYM action, suggesting that it may have broader applications
than conformal supergravity alone. Two appendices are included. The first summarizes the
conventions we use and gives technical details on the N' = 4 superspace we employ. The
second elaborates on certain details of the analysis of superspace Bianchi identities.

2 Superform action principle

The superform action principle is a common method to construct supersymmetric invariants.
In the superspace literature, it was proposed by Gates et al. under the name “ectoplasm”
[27, 28], but is equivalent to how actions are built in the rheonomic or group manifold approach
to supersymmetric theories, see [29] and the review in [30]. The approach itself has nothing
to do with supersymmetry per se, but can be applied to any local symmetry that can be
interpreted as a diffeomorphism in some higher dimensional spacetime. The basic approach
is as follows. Suppose one has some D-dimensional manifold M and some d-dimensional
submanifold M over which one wants to integrate a d-form J. The action integral

S = /M J (2.1)

transforms under arbitrary diffeomorphisms on M as
0¢J =1edJ +dieJ = 65 :/ zsdJ—i-/ 1 . (2.2)
M oM

The second term vanishes if M is closed, or if we put fall-off conditions at infinity. In
either case, the condition for invariance is that the d-form J should be closed, dJ = 0.
Schematically, we may decompose a general diffeomorphism into pieces normal and tangent
to M. Invariance under tangent diffeomorphisms follows if M is closed, while invariance
under normal diffeomorphisms means that the precise embedding of M into M is irrelevant:
this latter condition is what requires J to be a closed form on M.

The key idea is to think of the submanifold M as the full spacetime and M as a larger
manifold where we have geometrized some gauge symmetry (such as supersymmetry). Finding
a gauge invariant Lagrangian is then translated into finding a closed d-form J. This is
distinct from the procedure of superspace integration, where one integrates over the anti-
commuting 6 coordinates of chiral or full superspace. Such actions typically exist only for
simple superspaces; but where they do, they can always be identified with some appropriate
closed d-form J.



Let us now consider the supersymmetric case in some detail. Superspace comes equipped
with a supervielbein E4 = (E¢, E2), which generically has coordinate legs in all of superspace,

EA = dat B, 4 d0™ Ep? (2.3)

where 8™ are Grassmann coordinates. For now, we will use o to denote a general tangent
space spinor index, which will later decompose into an irreducible spinor and an R-symmetry
index. When restricted to § = df = 0, E® is identified with the vielbein 1-form e“, while
< is identified with %1/12 where ¥2 is the gravitino 1-form in spacetime. For the rest of this
section, we will abuse notation somewhat and identify e* = E* and %1/1@ = E< without taking
0 = df = 0 so that these 1-forms live on the entire superspace.

We are interested in supersymmetric actions in d = 4 spacetime corresponding to 4-forms
J that possess a covariant expansion in terms of E4,2

1

J4!

EAEBECEP Jpopa , (2.4)
where Jpopa are covariant superfields. The action is constructed by integrating the four-form
J over the bosonic spacetime manifold at 6 = 0,

1
S — 4 /dx“dzn”d:npd:ng EuAEuBEpCEUDJDCBA‘azo

=4 | A B AR ECE,  Inopa| (2:5)

We use conventions where 4.9 and €,,,, are imaginary, see appendix A. The 4-form J is
assumed to be invariant under the other gauge symmetries. In the case of N = 4 conformal
supergravity, this means .J should be a Lorentz scalar, inert under Weyl transformations, a
singlet under the SU(4) x U(1) R-symmetry, and a conformal primary — that is, annihilated by
S-supersymmetry and conformal boosts (K). All but the last condition are easy to realize, by
taking the terms Jpopa to transform in the obvious way under Lorentz transformations and
homogeneously under Weyl and R-symmetries with certain weights. Because the one-forms
e? and Y® are K-inert, the components Jpcpa will also be K-inert; however, because <
transforms into e® under S-supersymmetry, some of the components Jpopa will transform
into each other in a complementary way to leave J unchanged. We will elaborate on this in
due course.

In the superform approach, invariance of the action follows if J is a closed form in
superspace. Because J is assumed to be gauge-invariant, closure is equivalent to covariant
closure, VJ = 0, where V carries all of the gauge connections, except for the gravitino which
is now interpreted as part of the supervielbein. For N/ = 4 conformal supergravity, these
connections are associated with the local symmetries mentioned above. For further details on

2This precludes Chern-Simons type actions, which would require other connections to appear explicitly,
but these can straightforwardly be included. For the actions we will be discussing, there will be no need to
consider such cases.



the Weyl multiplet fields and their superconformal transformation rules, we refer to appendix
A.
Defining the torsion 2-form as the covariant exterior derivative of the supervielbein,

1
TA=VEA = 5EBECTCBA , (2.6)
the condition of covariant closure of J amounts to

1
VJ = B EPECEPET <VFJDCBA + 2TFDGJGCBA> ~0. (2.7)
The construction of a supersymmetric action principle then amounts to finding covariant
tensors Jpopa that satisfy this equation.

Let us focus our attention on the lowest Weyl weight terms, corresponding to Js,g+, and

make the extremely restrictive ansatz that only Lorentz scalars appear at this level. This
implies the following three structures in terms of the gravitino one-forms v,’ = da* Yua',
with SU(4) index ¢ = 1,--- ,4 and chiral spinor index av = 1, 2:

1 " rS j i vpo 7 7 TS g
Jlﬁ}lg = sz¢] Yy 5kl CY,s = _Z d4$ ghvp wuiwuj¢pk¢al 5kl CY ) (2'83)

1 78,09 .1kl TS i 4., _pvpo g4, g1 kol TS
Jd}% = Zw Pl 1/} Eklrs C ij = _Z d*ze % Uy wp 1/10 Ektrs C ij (28b)
T2z = i PRt Ay = —id" &P ity b, et AV (2.8¢)

We will frequently as above employ Dirac notation to suppress spinor indices. The fields C%},;
and A%}, are assumed to be supercovariant and S-invariant. The four gravitini of like chirality
multiplying C%}; imply that it transforms only in the 20’ representation. We shall further
assume the same is true for A%;;.3 While we have made a number of strong assumptions
about the form of the action principle (2.5), we will find that it nevertheless leads to the most
general conformal supergravity action (see section 3.4) .

We now derive the supersymmetry transformation properties of these fields in order to
construct an invariant action principle. In principle, this can be done directly using a tangent
space decomposition as in (2.7), but this can become unwieldy with the (anti)symmetrizations
on the tangent space indices. An abstract form-based approach is more efficient. The idea is
to decompose the covariant exterior derivative into formal pieces corresponding to the various
torsion tensors and covariant derivatives that appear in (2.7). For example, if ® is a covariant
superfield (such as Jpopa), we may decompose

1 . 1 .
VO = e"Vo® + S9"Vai® + 590 VI = V1@ + Vip®+ Vo, (2.9)

with the numerical subscripts on V denoting the Weyl weights of the operators in tangent
space. We use L and R superscripts to denote the left and right-handed spinor derivative

3A contribution to A% in the 15 or 1 could be removed by adding an appropriate total derivative.



operations. For the one-forms, e%, ¥,", and ¥%;, exterior covariant differentiation generates
the torsion tensors,

1

Ve = —§¢ak(7a)aa7/)/? = tge” , (2.10)
o T o1 _
qual = §eaebR(Q)baaZ - Z abwec(/yab/yc)adwaj + Zeljklwdj¢akAal
= t5yta’ + V0’ + 900’ (2.11)

and similarly for V9. In both expressions above, the first equality gives the expansion
of the superspace torsion tensors as defined in Appendix A. The second equality introduces
shorthand ¢,, for the various torsion components, with subscripts denoting their Weyl weights.
Note the appearance of the covariant fields Aa;, Ty, and the gravitino curvature R(Q)apa’
of the Weyl multiplet. Their properties as well as those of the other supercovariant fields of
the Weyl multiplet are also summarized in Appendix A.

On a given four-form .J decomposed in tangent space, the closure condition (2.7) can now

be written
(Vi + Vhg + Vi 4 to + thy + tfl + ¢+t 4ty +28,) T =0 (2.12)

The advantage of this formalism is that it lets one more easily decompose the five-form
VJ into terms with five gravitini, four gravitini, etc., and check that each batch of terms
separately vanishes.

2.1 Solving the 1% Bianchi identities

We begin by solving the part of (2.12) involving five dotted spinor indices. In form notation,
this corresponds to the part of VJ involving five right-handed gravitini, which is simply

0= Vil - (2.13)

It is easy to check that the five gravitino term appearing in this expression is in the 60, so
the content of this identity is

[V CY 60 = 0, (2.14)

which implies V&™CY,, = 5[",; Y )+ 5[[2 Tdﬂml] for some spinor Y49, in the 20. This field
will not appear in the action principle, although it is part of the multiplet that is used to
define it.

The ¢L¢j§ Bianchi identity reads

L L
0 == V1/2Jw4R + tl/zjw%w% + tOJew% . (215)
Projecting onto the 60, only the first two terms contribute, leading to

[VamC,sles = 2ham A7 sl5 (2.16)



We solve this constraint by introducing a fermion p, ijk in the 20,

vozmcvijrs = 5%%{ rsj] + 5[2 pas}mj] +2 AamAijrs + 45%Aapf4ﬂprs + 4Aap o

[r

AT (2.07)

[r

We have included a certain factor of Ay, AY,, in the 20 on the right-hand side so that the
remaining part of the Bianchi identity (2.15) implies that

1 - . ..
Jewt, = — g Pty Yk € (30) 27" pays (2.18)

There is a subtlety at this stage associated with the cohomology of the operators appear-
ing in (2.12). In particular, tq satisfies (t9)? = 0, so Jeys, can be shifted by terms that are
to-exact.® Such terms generally correspond to parts of total derivatives, so they can be dis-
carded. This is also incidentally the reason to take A%}, in the 20’ as smaller representations
lead to tg-exact contributions.

The final Bianchi identity at this dimension involves 1/)%1/)%:

0=t dys + Vivadyz y2 +todey, g3 - (2.19)
This implies that
(VY™ A% 160 = [AY™C )60 (2.20)

which we solve as
VT ATy = NS 4 8l (k8 — apSPCIm ) o (68— 4ASPC ) (2.21)
for some fermion k%%, in the 20, which appears at the next level in the action principle
1_ L
Jepryz = —ZT/Jﬂﬁj Ve (Ya)aa K7 (2.22)

The other Bianchi identities follow by complex conjugation.

At this point, we emphasize that the supersymmetry constraints (2.14), (2.17), and (2.20)
amount to the basic constraints (1.2) mentioned in the introduction. It will turn out that all
the other constraints we encounter are consequences of these.

2.2 Solving the evy? Bianchi identities
The ewj{z Bianchi identity reads

0= Vidys + Vindeys + 0z - (2.23)

Because the expression involves only quantities we have already defined, it leads only to new
constraints on the fields:

%(’Ya)davd[kparsl] + 2vacklr5 - %(’Ya)adAﬁ«ﬁdkls] 20/ =0, [Vﬁ(mpaijk)]‘m =0. (2'24)

4Actually, the terms need only be to-closed, but one can show for ' = 4 supersymmetry that all to-closed
terms are to-exact [31].



It turns out that these conditions (as well as other ones we will find shortly) are not indepen-
dent of the basic constraints (1.2). They actually follow using closure of the supersymmetry
algebra, which is a welcome result. Establishing this result is rather technical, so we delay
an explicit discussion to appendix B.

The €¢L¢?1’3 Bianchi identity is a bit more involved:

L R L R L
0 — V1/2Jew3R + V1/2J€¢L¢%ﬁ + tOJezw% + t1/2J5w%7/1R + tl Jw% + tl Jw%w% . (225)

It possesses a tg term, which can be used to determine Je%/;%, up to a tg-exact piece. This
term generically involves the 6 and the 10, so constraints can be found by first requiring the
64 to vanish. No other SU(4) representations are present. Because the Lorentz structure of
e¢L¢§’% is already quite complicated, a number of constraints emerge when projected upon
irreducible representations:

[5ijrsv(alpﬁ)rsk - €ijrsA(al’{5)rsk + 8(7bc)a5TbcmkAijlm] 64 =0 (2.26)
{V(dkﬁﬂ.)ijl + 2(7bc)d6TbclmEklr8Cijrs] 64 =0 ) (227)
[gijrsv?parsk — €N Kgrs” + 2Vf§/~i‘j‘ijl] o 0 (2.28)

For the 6 and the 10, there are two Lorentz representations each, one leading to a constraint
and one that allows the determination of Jezy2 - The constraints are

39T pors” + 4 Vf//i"y G+ 26N ks =0 (2.29)
(V(amﬁ)m(’“ + 2A(azﬁ/3)r5(’“>6j)lrs =0. (2.30)

The representations appearing in Je%% are
Ty, = =ity €€ €9 + it el £, (2:31)
YR 16 J 16"

where the fields £9 = £) and &,," = Elab) i3] are determined by supersymmetry as

Eap” = —%(%b)aﬁ (3 ETTN st + 26T A qpkigrs” — 16 Tog™ (YY) A”rs>
_ g(’Yab)aﬁ' (Valﬂﬁzjl _ 3Tcdkl(’}/6d)aﬁ EklrsCUm) 7 (2'32)
ij 1 @ © @ (i \ ~9)lrs
EY = 5 \Vi Pars' + 2AT Kars'' )€ . (2.33)

Note that £, is a complex tensor with both self-dual and anti-self-dual parts.
Finally, we have the e¢%¢% Bianchi identity:

L R L R
0=V1odeyruz, T Viyadeyzyp + Vidyz g2 +todezy pp + 10 deys + 10 ey - (2.34)

— 10 —



The terms in the 45, 45, and the 20’ cannot be cancelled by toJe2y, - These lead to the
constraints
o . o .. A k l ) k l

{Vﬁ(klﬁlaml) - Aﬁ(kpawl) 15 =0, |:Vﬁ( Raij ) — Aﬁ( Paij )} 45 =0, (235)
1 .
1_6(,7[1)0404 [Vailidklj + Vﬁmaijl — 3Am’pdk j 3Ak Pazy :|20/ + VaAklij =0. (2.36)

The terms in the 15 that cannot be cancelled by tgJ.2y, 4, require
VE bk’ + 3ME par;’ + Varka®; + 3Maxpa”; = 0. (2.37)

The remaining terms are cancelled if we choose

) . ) )
JezdedJR = ﬁeaeb ¢z”YCW Eabed gd Zj (238)

for a pseudoreal field &,° ;j in the 15 given by
Z'('Va)adgaij = vgﬁakji + 3A]g¢pakji - vak’fa j 3Ao¢k/0a J - (2'39)

2.3 Solving the remaining Bianchi identities

At this point, we trust that the procedure is fairly clear, if tedious. As we have already
mentioned, new constraints that emerge at each level turn out to be consequences of the
closure of the superconformal algebra and the basic constraints (1.2). The only independent
information we determine at each level is the specific form of the new terms that we need to
add and how they are related by supersymmetry to terms that have already appeared.

The 621[)% Bianchi identity only leads to constraints, so we omit its discussion. The
e%ﬁm{% Bianchi requires the introduction of new terms

Je3ypp = %eaebec QZdek Eabed T %e“ebec ZEk’dek Eabed (2.40)

where ,% is gamma-traceless. These fermions are determined to be

& i & ijkm c &
Qa b= _256 (’7 ’7a) Bvﬁlgbclk + 2565]k gbcij(’yb 'Va) BABm ) (2'41)
1 a i
Q. = —40Va151k - @(’Y et Vﬁlga 1 — 4_0Tab I(v)oP K gis* . (2.42)

The last piece of the action principle is a Lorentz scalar,

Jo = 42' e®ebeed Feqpeq | (2.43)

and it is determined from the e3¢ 11 r Bianchi identities as

F= —i (vakQa’f n deQ‘j‘k) - gabij _ abijgabij> . (2.44)

5(1
32 abij

— 11 —



2.4 Summary
The full 4-form J, rewritten as a Lagrangian, gives the density formula
e 'L=F+ ZT/;M(QM + VMQi) + 27;;](9“@' + 7€)
1 - o 1/ - g - -
+ g@b[uw“%f E'y — 3 <z Vi b €Y + 56“”” VuithujEps™ + h.c.>
i _ _ . _ _ .
+ gguupa (%ﬂ/h/j wpk’}’aprsk e 42 wuiwuj wpk’YaH/”k + h'C-)

i _ _ g _ _ 5
- f”upa <%i¢uj7/)pk7/)az NS O Lo+ 29D 0, et ATy + h-C-) : (2.45)

The basic constraints are imposed on the constituents C' and A, which must obey

0= [VYCY 1 le0 = [VE™AY 1 — AO™MCY lg0 = [VOMCY g — 209 A Jgo ,  (2.46a)
0= [vaméijkl]@ = [VamAijkl - Aaméijkl]% = [vamcijrs - 2AamAijrs]@ (246b)

The other fields appearing in the density formula are defined by

Pars' = VarCrs + 2 Aap A, (2.47a)
Kars' = VarAM s + 3 AaiCF g (2.47b)
Eup' = —%(%b)aﬁ <3 ETTN qpPprs” + 269 A qpkigrs® — 16 Tog™ (v°%) o5 AY rs)
- é(%b)ds (Vo7 = 8 Teapa ()2 M, ) (2.47d)
'y = —%(Va)daviﬂakji — %(%)““A’& pak; — hec. | (2.47¢)
Q%% = _%Wm%)dﬁ VaiEne'" + %eijkmgbcijﬁl’c%)dﬁf\ﬁm , (2.47F)
Qo = V™ - %(ya)aﬁ-vmeﬁl = %(fyab)ambij@jk : (2.47g)
F= —i (V”‘kQak n vﬂz%) - 312 (Tabijgabij - Tabijgabij> . (2.47h)

Their Weyl (w) and chiral (¢) weight as well as their SU(4) representation and algebraic
properties are summarised in Table 1.

There is one final important check that is necessary. In the construction of J, we assumed
that it was gauge invariant in order to exchange closure for covariant closure. While it
is manifestly invariant under Lorentz, Weyl, and R-symmetry transformations, invariance
under S-supersymmetry and conformal boosts must be verified. These are consequences of
closure of the superconformal algebra. Provided C%;; and A%}, are S and K-invariant, one
can show that each of their descendants appearing in the Lagrangian are also K-invariant.
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Type Fields Properties SU4) w ¢
Ay Al = (AN 200 2 0
Cyy 200 2 -2

Bosonic 52] . p 10 b
Eap¥ 5(ab)” =0 6 1 -1

& 15 1 0

F F=F~ 1 0 O

Pij'; V5 Pz‘jl; = Pijlz 20 % —1%

.| R Y5 R = K 20 5 3
Fermionic QJZ s sz —Q ’ 4 ; _2%
Q,° Y5 0, = -0, , Y 0,'=0 4 % —%

Table 1. Fields appearing in the density formula.

Their S-supersymmetry transformations are given by
Sspijt =8m Oy dgkdy, =8nt Ay,
SsEab™ = 39 Myapprs” + AT Yk, 3T = 27 ppsiekTs
05" = 8ifpvak®; — 8i T yakins’
05 = =& i+ oo V"
) - 3 .. 1 . )

5 Cabed ghetdyy; — o) o'+ 3—25ij Yab 1’
0sF = =830 — 87°€Y; . (2.48)

059" = ~18 'Yy —

3 Building all N/ = 4 conformal supergravity actions

In this section, we provide the foundation for the construction of all A = 4 conformal su-
pergravity actions. Making use of the density formula built in the previous section, we only
need to specify the lowest Weight covariant fields C%; and A% };. Our goal will be to build
candidates for these composites, using only the fields of the Weyl multiplet (summarized in
Appendix A) as our constituents. Once such composite fields are specified, the supersymmetry
transformations (2.47) can be used to build all of the other composite fields appearing in the
density formula. Invariance under local superconformal transformations is then guaranteed.

This approach is however not a priori guaranteed to lead to all possible conformal su-
pergravity actions. To establish that the class we construct is actually exhaustive, we show
in section 3.4 that its supercurrent (the multiplet containing the energy-momentum tensor)
corresponds to the most general supercurrent of conformal supergravity.
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3.1 Ansatz for C¥; and A%y,

Let us attempt to construct C%;; and A%, out of the constituent fields of the N' = 4
Weyl multiplet. We will need basic “building blocks” X%}, corresponding to S-invariant
combinations of Weyl weight two in the 20’. It turns out that there are essentially four possible
combinations which we denote X,,, with n = 1,--- ,4 indicating the degree of homogeneity
in the covariant Weyl multiplet fields appearing within:’

X1 =Dy,
g . o 1 ..
Xo" = 20Xy + 25[[,1Amxﬂmu = 18" Emi B

1 .. 1
+ §T” . Tmneklmn - 55;[55{}7””1 : Trsgpqrs 5

g 1. 1 . 1 oo
X3 = = AkvealiTea” + 555@/\117@51\1% T.gm — 551[; S A YeaAnTog™

1 iymn A
+ ZE J Em[k A”An s
.. 1 .. _ _
X4wkl = _ﬁgwmn AN, ALA (31)

X is real, and we simply denote it as D%}, from now on. X, X3, and X, are complex. We
then choose the following ansatz for C%;; and A% ,:

Cliy =P Dy, Aty = A9 Dy,
+ 02(0)X2ijkl + 05_4)5(2“1@1 + A§+2)X2ijkz + Aé‘z’fb%
(+2) v ij (—6) v ij (+4) v ij +(—4) 5 ij (3.2)
+C5 X3+ Cy 7 X3y + Ay X3+ Ay U X3
+ C§+4)X4ijkl + Ci_s))ﬁijkz : + Ai+6)X4ijkz + lei_ﬁ))ﬁijkz ;
with C%}; given by complex conjugation. The factors Cf_z), A(O), Aé”), etc., are functions

of the coset scalars ¢q ,¢®, and their superscript correspond to their U(1) charge. Their
complex conjugates are denoted by C£+2), flgo), flg_z), etc.

The supersymmetry constraints (1.2) on C%; and A%}, should then become constraints
on these functions of the coset scalars. This is indeed the case since the four combinations X,
turn out to transform into each other under supersymmetry when we restrict to the largest
SU(4) representations:

[vamDijkl]GO

[VamX2” ki + Aam D7 1ileo
(VamX57 5 + Aam X2 1]
]
]

0 ?

0, [V X57p — 28" X3 jy]g5 = 0
0, [V X394 —6A" X4 ]60
0
0

60 , (3.3)

=0
[Vam X1k + Aam X357 kileo , [V X4 g = 0

[AamX4Z] k1|60

®The X,, combinations (3.1), which obey (3.3) below, should coincide with the similarly-named functions
in eq. (3.59) of [22], in the context of on-shell N" = 4 supergravity.
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The final condition arises because five A;’s cannot be placed into the 60. From these results,
one can derive a set of differential equations on the coset functions and search for a solution.
To explain these conditions, we first make a brief detour to discuss the structure of the coset
space geometry.

3.2 SU(1,1)/U(1) coset fields and derivatives

The coset scalar fields ¢ and ¢ present in the A/ = 4 Weyl multiplet may be understood as
constrained coordinates describing an SU(1,1) group manifold. In addition to the constraint,
0*da = 1, they are related by complex conjugation ¢* = naﬁ(qﬁg)* with n®8 = diag(1, —1),
which ensures that the coordinates describe a three-dimensional real manifold. Because they
may be identified up to a local U(1) transformation, ¢* ~ e*¢®, they actually describe an
SU(1,1)/U(1) coset space.

Let us introduce the three derivative operators associated with the group manifold. It is
convenient to define these as

0 0
Cea—— , DT =ae™P—
gﬁﬁgbg’ Dl

The first two derivatives were denoted D = D+ and D' = D~ in [1]. We will return to this
notation later on, but in the next few subsections, it will be useful to keep the U(1) charge
explicit. D” measures the U(1) charge of the fields, while D** and D~ convert ¢ to ¢
and vice-versa. These satisfy the SU(1,1) algebra

DY = ¢ai — %i . (3.4)

++ —
br=-¢ 968 ° 965~ 56a

[D°, DT+ =2DF+ | [D°, D] =-2D [DYT, D] =D". (3.5)

It is sometimes convenient to work with complex coordinates on the coset space SU(1,1)/U(1)
directly. We define S = ¢2/¢ and S = —¢?/¢' and introduce the phase e*¥ = ¢'/p1 to
describe the U(1). The coset space, parametrized by S with 0 < |S| < 1, is the Poincaré disk.

In these coordinates,

Dt — 2 ((1 —58)0s + %Saﬁ , DT =), D'=-id,.  (3.6)

DTt and D™~ may be thought of as modified holomorphic and anti-holomorphic derivatives.
For example, a function that has vanishing U(1) charge that is also annihilated by D™~ is
necessarily holomorphic in S. We will abuse terminology somewhat and refer to a function
of any U(1) charge that is annihilated by D™~ as a holomorphic function.

3.3 Solving for Cy and A%y,

Let us now analyze the conditions for supersymmetry (2.46a), (2.46b) on C%; and A%y,
The condition [V4™C%)e5 = 0 implies that

p—c® =0, Do = —ofY |
pc{™ =20 | DS = —c{Y | (3.7)
pci™=6c{™, D c{Y=_c{.
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(0)

The first equation implies that C'y”” must be holomorphic in S. Let us denote

5’?[(5’) . (3.8)

The holomorphic function H(.S) will turn out to govern the conformal supergravity action.

o =—sH(©S), )=

The numerical factor has been chosen to give the same normalization as [1].
The second column of equations defines C§_4), Cg()_G) and Ci_s) as successive derivatives
of C£_2). The remaining equations for C§+2) and CAE+4) imply that
) 1
—sH(S) =0y = (e (3.9)
2 12
and so C(+ ) can be interpreted as a potential for H(S).
The other constraints are a bit more involved. The constraint [V a,mC%slé0 = [2Aam AY s]60
and its complex conjugate imply the following set of coupled equations

—pttel V) =240 = _p—ctP _ o (3.10a)
—pttel® — ot =24 = _p——c{t (3.10b)
—pttoft — ot =240 = —p——¢{t9 4 20 (3.10¢)
240 = —p—cft 460l . (3.10d)
The constraint [VY™AY;]go = [AY"C g0 leads to
) = —p— At oY = —pal® — A5 (3.11a)
CSt = —p= A 245 of Y = —p ALY ALY (3.11b)
e = —p==A peal™ | oY =—pATY - A9 (3.11c)
To disentangle these equations, it is helpful to start with the second equation of (3.11a)

as the definition of C£_2) and insert it into (3.10a). The result reads
pr+p—4Y 4 %(”H ) =24, (3.12)

) =B+1i (7-[ H) where B is a real function obeying

This suggests to write Ag
DYTDTTB=2B. (3.13)

We will discuss this equation shortly, but one immediate implication is D=~ (D**)2B = 0.
Next, we need to equate both solutions for A§+2) in (3.10b). This implies that

e e I
To disentangle B from this equation, we write
ot = —6iz(H — Z(D++)2H+2(D++)215’ (3.15)

— 16 —



in terms of a new quantity Z(+%). Then (3.14) and (3.9) are equivalent to the two equations

7(+4) — _%D++D——I(+4) _ %(D++)2(D__)QI(+4) , (3.16)
H = (D)2 . (3.17)

Furthermore, one can show that provided Z(+%) obeys (3.16), the quantity (3.17) is automat-
ically holomorphic.

One finds using the remaining equations that each of the coset scalar functions is de-
termined and all of the required equations are satisfied. It is actually remarkable because
the system is overdetermined, with numerous overlapping differential equations. The coset
functions appearing in C%}; are

ci =D B+ iD“ﬁ + éD++i(‘4) , (3.18a)

c? = —%”H : ci = -—p—c? | (3.18b)

c{t — —ip~ Tt 4 %DHH : oy =) (3-18¢)

OfFY = 6100 D prrpy o, oY = Pl (3asa)
while those in AY}; become

A — gy E(H ) (3.19a)

ALY = %D“I(H) : (3.19b)

A§+4) = —(DT)2B —iDTTDT(HY — i(p++)2H , (3.19¢)

AT = 2D 3B+ %(D++)3H + %(DH)zD“I(H) : (3.19d)

There are two linearly independent solutions described above. One involves a function
B obeying (3.13). This equation is just the massive Laplace equation on SU(1,1)/U(1).
Remarkably, the action generated from B turns out to be a total derivative, which is not at
all obvious at this stage. We will justify this claim via a formal argument in section 3.4 below.
We have also checked this by analyzing the bosonic part of the action it generates.

The second solution involves a function Z(+%) obeying (3.16), which is used to construct
a holomorphic function H(S) from (3.17). At first glance, this does not quite match our
expectations as it is not at all obvious that a suitable Z(*%) can be constructed for any
given H(S), nor is it clear that the action will depend on #H(.S) alone. The latter claim will be
justified in the next subsection. For the former claim, observe that if we can find some function
K obeying DY+D~~K = H for any H(S), then ZHY can be chosen as Z(HY) = —1(DF+)2K.
The required equation for X is simply the inhomogeneous Poisson equation on the coset
space SU(1,1)/U(1): in Poincaré disk coordinates, it reads (1—55)20505K = H(S). We have
denoted the function I because, although complex, it is defined up to Kéhler transformations
where it is shifted by purely holomorphic or anti-holomorphic functions.
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3.4 Uniqueness of the conformal supergravity action

Before moving on to construct the explicit action based on the Weyl multiplet fields, let us
first justify an important claim that was made previously: the most general action of N' = 4
conformal supergravity is parametrized by a single holomorphic function of the coset scalars.
Our path to this result involves establishing the uniqueness of the corresponding supercurrent.
A similar line of argument was used in [13] to establish the uniqueness of the 6D N = (1,0)
conformal supergravity actions.

Any classically superconformal theory possesses a supercurrent, which is the multiplet
containing the stress-energy tensor. The bottom component of this multiplet is a S-invariant
pseudoreal field J%}; transforming in the 20’ representation with Weyl weight w = 2. The
defining constraint is that [V9™.J¥]go = 0, and similarly for its complex conjugate [6].

When the theory is coupled to conformal supergravity — or in this case is itself conformal
supergravity — then J%;; may be identified with the functional variation of the action with
respect to Dklij. Its weight and the restriction on its supersymmetry variation follow rather
easily.

Suppose the theory in question involves the Weyl multiplet alone. Then J%; can only
have an expansion of the form

Jy = Jl(O)Dijkl
+ IS X+ T Xy
+ IS X+ TRy
+ J£+6)X4ijkz + x5, (3.20)
involving the same tensors X,, appearing in (3.1). These constitute the S-invariant combi-

nations that are of Weyl weight 2. If we require that the supersymmetry transformation of
J%},; does not involve either the 60 or the 60, we find a sequence of equations

I = —prt g0 D =0,
K = @20 gt =2
I = (g O p gt — g gt (3.21)

The two equations involving J2(+2) imply that D~~D** Jl(o) = 0, which means Jl(o) is the sum
of a holomorphic and anti-holomorphic piece. Calling these pieces J(S) and J(S), we have

W=g+7, BP=-prg, =@ Pg, =027, 322

The supercurrent is parametrized by a single holomorphic function. This implies that the
action whose variation yields this supercurrent must also be parametrized by a single holo-
morphic function. Since J%}; can be identified as the functional variation of the action with
respect to D%y, the action we are discussing must possess the term (J + J) D% leklij.
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It is then enough to show that for the class of actions we have constructed, the coefficient
of DY leklij involves only H(S) and not Z (+4) or B. The apparent dependence on Z(+4) must
just be an artefact of how we built the conformal supergravity action and can be removed by
extracting a total derivative. Similarly, the independent action that can be constructed out
of B must be a total derivative, since that action has no supercurrent.

4 Presentation of results

From the expressions of the lowest dimension composite (3.2) in terms of the Weyl multiplet
fields and the supersymmetry transformations rules (2.47), we use the computer algebra
package Cadabra [23, 24] to generate the full N' = 4 conformal supergravity Lagrangian. The
resulting complete expression is attached as a separate file. The purely bosonic part Lp of
the Lagrangian was already presented in [1] and can be written as®

e Ly =H [% R(M)™™ R(M) ., + R(V)™; R(V)7; + £ Dy DM, + 1 B, D*E"
— 4T DD T — P*Do Dy P’ + P> P? + (P P,)* — £ PP, E;; EV
—~ 8P, P°T; Ty — & By B By B" + & (BEyj EY)? + T Top i T T,q™

— T Tod* Tap it T = § EV T R(V) )" €jkim + 5 Eij Tkt R(V) gy 7M™
— & Eij By T, Tappg ¥ 3P0 — L U EF 7m0 TP e €ig
— 2T (PuDg Ty + § PPDT o + § Ty Do P?) £
— 27 (PuDgTy ki — % P°DeTop 1) Eijkl}
+ DH [ LT T R(M) ™ e + Eiy T®* R(V) f 5 + TP T, R(V), ™k €ijim
— & Eij BI TR T ey — & B9 T T T Pl € pan
— LD (T T M e — L By By €M )]
LDy [ % Tabij pedpq mn o K €1kl Emnpq — ﬁ Tabij pedpq ko mn €4jkl Emmpg
+ 1, T, pocil b mn gL L B Byt Eyn g cikmp _jlng
— L B By Ty™ Tabjl}
+2H el £ Neb [P“ P’ — plp, n“b] + h.c. (4.1)

The coset derivatives D = DT+ and DI = D™~ are defined in (3.4); here we use the nota-
tions of [1] where the U(1) charges are suppressed. D, is the fully supercovariant derivative
(including the gravitino connection) and it coincides with the projection to components of

5The Lagrangian has been rescaled by a factor of 2 relative to [1].
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the superspace derivative V, defined in (A.5). All covariant fields of the Weyl multiplet play
a role in the action, including E% and D%, as well as the SU(4) curvature R(V)q'; and
the Lorentz curvature R(M)apeq- Py is the supercovariant vielbein on the coset space and is
defined in (A.18).

From the point of view of the density formula (2.45), this Lagrangian corresponds to the
bosonic part of the composite field F'. As explained in section 3.3, the conformal supergravity
Lagrangian obtained from our action principle a priori depends on the real and complex
functions of the coset scalars B and Z, respectively. It was further argued in section 3.4 that
the dependence on these functions can be removed by extracting a total derivative. The
elimination of Z in this way however typically generates terms that depend on H through
(3.17). These terms can modify the structure of the density formula (2.45). In particular, at
the purely bosonic level this total derivative introduces a dependence on the bare K-gauge
field. This explains the last term in (4.1) whose presence also ensures the invariance of the
kinetic term for the coset scalars under conformal boosts. The expression (4.1) is then fully
invariant all the bosonic symmetries.

A very stringent check of our result can be performed by setting the function H to a
constant. The Lagrangian is then invariant under rigid SU(1,1) transformations and the
bosonic terms (4.1) reduce precisely to the result of [16]. In this case, the bare K-gauge field
can also be eliminated by extracting a total derivative and writing a kinetic term for the
coset scalars which is invariant under conformal boosts up to fermionic terms. For any other
holomorphic function, the rigid SU(1,1) invariance is broken.

Let us now present all the supercovariant terms which are quadratic in the fermion fields.
They are still all contained in the field F' and for legibility we will decompose them according
to the number of coset derivatives acting on the holomorphic function H. Once again, all the
terms depending on the function Z can be eliminated by splitting off a total derivative. The
terms which do not depend on derivatives of H read

H|R(Q)k RS = 3XTkDxis* — dxi Py — 38 (PD? + D2 - ) A,
— A (DD? 4 D2~ ') N — X"y DT M ey — 455y - DT A
+ X"y - T DA i + 2 X 1y - Tij D ARET™ — 1B ™ s tmn
— LB X kX i €M = AR(Q) DT M NMejjiy — LR(Q)P DT Aj 7™
— DeR(Q)™ e N T eijis — 3 DeR(Q) I Yo Tup 11 €% + 2 Do Ay R(Q)™ ' P,
+ 3Ty - Ty A X €9 + 3T - TR A " ijmm + 3P Ay - T vax"s
+ 1P ARy Tiyaxs — S ETEF A ™ € jtmn — 15 Bij B A X €9
— BT PNy ™ e jtim — B P Ao X i €M™ — LBV DBy Ay AF
— wEYD,Ejj Ay AF — L EijDoEV Ny AY — L EVE; Ay D AR
+ wEYEjj DMy A* + LB E;j Ay Do — LEj BV D, A jy* A
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+ SDGEYPNNj + S Do Eij PYA'AN — LEY P*Niryap, DyAj + S EY Do P*AiA;

+1E;; D,P°N'N — NN, Dy P, P* — 5 A" N; Dy P, P* + A" DyA; P, P°

— 2D Ay N PO PP + LA A D, P P? — 5ANPA; D, PP’ — 2D, A"y A; PP P,

+ 3Ri7a Dy N PoPye®™ — 2T 1 T Ay’ DN — 2135 DT AP A

— 2T T DAy P AF — 2 DT T AyyP AR + L P, T Ap Dy Ay

+ AP, TP I NDyN ejpy — L P.D T 1Ay Ny — L Pe DT Aoy Nl

— EDPTj Ayac Mg "™ — D BT Noryge N ey + 2 EY Dy "™ Niya A i,

- %EiijTablm]\k'VaAigj kim _ %EijTabksz]\m%Aiej kim 1EY TR A iy DyA™ i,

— LDy EF T A vy e yjim + Dy BT Ao A e'™ — L BT 4 T% 0 A Ay

— By TP T ™ N N e — 2By POT 0 AP AT + LB PO Ty 0 Ay A"

— AP P.T W T A" Nj — L PP T Ay N — LT T T Ay A" Pleyjiy

o E T T A A Poe — LR AT DPR(V)at's] + . (4.2)
This result can once more be checked by setting the function H to a constant. In this case,
the above expression indeed reduces again to the result of [16]. The remaining terms which

are quadratic in fermions depend on derivatives of H. Those with a single derivative can be
written as

DH[%Xijk’Yanijpa — I B — XMy X T eijin — $Eij R(Q)%, R(Q)™7
- %Tabin(Q)akalmkgijlm - %Dijkl]\ixklj - %R(V)abjk]\ﬂabxikj - ﬁEijEik]\lXﬂk
— 2B A DX 1M+ L ETT W A A ™™ e i + %EijTabklf_\m’Yame"iEjkln
1Ay TR — Xy - T PAR i + 3 - T PARe™ — 3R, DA, P
+ BT M A R(Q)™ et + $T™ 5 P Ak R(Q) e — 3T PPR(Q)™ FeAleijiy
+ 1NR(Q)o PP — INR(Q)™IR(V)w'y — SN, - R(S)j + 1A R(Q)™ " R(M) gped
+ AN YA R(V) o i Pee™ 4 LA AT R(V) g '™ + 8NN A PO Py Py + 55 DAy DA Pye™?
— LAY DDy P* — 1NN D, P — LAY DyA; D P’ + LA~ D?A'P,
+ 5 D’Ay*DyA' P, — 5 A~ Dy DyA P — LA, DA'D, P — LAy DyA'D, PP
— D APA' P + LD AN PA P — LAY A; Do Dy P’ — LAy A; P, PP,
+ 2B Ty AP AT Poe¥m + LEUT MNP A P jpgm + £ By Top'® DP Ay A
+ AD Ej Ty " Ay A + L B3 Ty " Apy* DN — LBy DT, Ay A
— Tupij Ay DD je* + LDy DTy jg Aiy™ A je ™ — 17, Dy Ay Dy Aje™!
— DT Ak DyNe™ + LD The i Ay DN — &5 DT e Agy™ Dy g™
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— 3T D Ajy* DM + 2P, T N; DyAj — A DT}, P A A,

— 2 P DTy " Ay Aj + S P, T T Ay DA + 5 P Ty Ay Do A

— 8Tacij]3“1—:’bj_&k’ybCAl€ijkl + %TabiijPcAk’y“CAl&?UM - %EijEikj_Xk’yaAjP“

+ R Ey BNy AP, — 2T, M T Ny, DOA™ 1y + ST T A, DA™ 2451

+ AT, M T DNy A i, — T TTA™ DA meijin — 3 Tac” DyT M Ay A™e 1,

+ 1T, DyT K Ay A™e 1 + 1T,Y D T M Ay N e 1, + 1T D T A, 7 A1
+ iD?EYNAj + SPP,EGA'N — LPUP,EYAA; — Ay - R(V)" jAEY

+ 5 By EVEM AN — By BB A A — 55 BV EM T ™ Ay ™ Age jrmn,

+ T i T Ted? Ny Ny e™™™ + LT T 1y Tog™ Ay Ay

B %EijTableabmnApAqgiklpgjmnq] +h.c., (4'3)

while those with two and three derivatives of the function read

DQH[iEijTabikf\wabxﬂk — 3BT * ALR(Q)™7 — LEij By x* pe?™

+ LA T TR e + A X Tab T T e 1 + S My R(Q) iy T T g1
+ SNR(Q)p T T, M e — Ny Dy P P — SN DA PPy — SN 3, AP Dy PP

— ANAPN P D, Py + 5 A" DA P, P — LA DA PP, — LB PPAy AT, "

— %TabijP“AkaAlsijkl + ﬁPaDCTbcij,/_Xk’y“bAlaijkl — %Tabijpcﬁk’y“DbAlaijkl

— ATpij D PP Ay MM + LT, T PO P A N g + Ty I T P Ay A e

— AW ARV )a 5T + SN R(V ) 5T + 5 Ay N R(V ) o' i

+ LRy A R(M ) gped T — LRy AT DIy 4 LKA, By DY ekt

— wEG BT M Ay Ay + B BT Ay ™ Ay — 5 BT H T, Ry A jeimn

1 rijrpabkl A
- EEZ]TG TacmnAi’chAkEjlmn]

+D3H [%TabijpaPcAkaCAlEijkl — S EG BT Ay Ape?'™ — LT UT, KT N A

1 bij kl A d 1 ij kl A~ bd

+ ga T T Tea™ MY " Njerimn — 55T T Tea™ MV Njerimn

+ 1 T ijTacle mnA bdA . 1 E..EwE A A ikmp _jlng 3Ai AP papb
39 tab cd kY 1€ijmn + 192 ij HklE=mnidp q€ € -8 TviNilq

+h.c (4.4)

We emphasize that (4.2),(4.3) and (4.4) correspond to all the terms quadratic in the super-
covariant fermion fields. The remaining fermionic terms at this order then necessarily involve

bare gravitini and/or S-supersymmetry gauge fields. From the perspective of the density
formula (2.45), these bare gravitini terms are associated with the composite fields ¢, Q,°,
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U, &Y, and Saij. However, there will also be contributions coming from the various total
derivatives we have extracted in order to write the result as above.

5 A possible origin of the action principle and on-shell N/ = 4 SYM

A curious feature of the action principle we have uncovered is the requirement that it should
be built from three separate superfields C%;, C*},;, and A%y, constrained according to (1.2).
In this section, we first show that they can be derived from a single superfield, provided we
are willing to introduce explicit dependence on the coset scalars. Then we demonstrate that
the on-shell action for A' = 4 super Yang-Mills can be recovered using this approach.

5.1 A more fundamental action principle

Suppose ®%}; is a pseudoreal superfield in the 20’ for which
0= [VPDY e = [V, @7 1160 - (5.1)
Let us take
Cljy =20y | Ay =00y, Clijy =2y, (5.2)

where the functions ¢*2) and ¢(%) are built from the SU(1,1)/U(1) coset fields ¢ alone. We
have labelled them with their U(1) charge. In order for the constraints (1.2) to follow from
those on ®%};, the coefficient functions must be chosen to obey

D" =0, D = 72 D) = 2.0
DD = 20 DT = 2 prr 2 — (5.3)

It is not hard to show that the above conditions are uniquely solved by
A = cago®d®, T =P adp, AV =—caf 6%p (5.4)

where ¢®? is symmetric, and where we use NW-SE conventions for lowering indices, i.e.
CaB = Ea,ysg(;c’y‘s and ¢, = AP E~va- In order for ®;; to be pseudo-real, ¢®® must be
pseudoreal, i.e.

na’)’nﬁts(cﬂﬂs)* = Cap = Ea'ygﬁécﬁyé . (5.5)
This implies that (c!')* = ¢?? and (c!?)* = ¢!2, so that the SU(1,1) invariant
Pepg =2c1?? — 212612 (5.6)

can be any real number. Naturally, the triplet ¢®? may be identified with a vector of
SO(2,1) = SU(1,1), and this vector may be spacelike, null, or timelike. This means that
any ®¥;; subject to the condition (5.1) along with a choice of triplet ¢®? defines an invariant
action.
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A natural question to ask is whether the converse relation holds. Can one build a field
®%,; out of CY;; and AYy;, and is it related to the field ®Y;,; given above? The answer is
yes, and it is given by

4y = a0y — 240 AT, 4+ o0y (5.7)

where a¥2), a9 are built out of a pseudoreal a®? in the same manner as for the ¢’s. In fact,
if C%y; and AYy; are given by (5.2), it is easy to show that

Py, = (a(+2)c(_2) — 2000 4 a(_2)c(+2))<1)ijkl = aaﬁcagtﬁijkl , (5.8)

and so ® = ® up to an overall constant. Given any ¢®?, one can always find an a®? (not
necessarily unique) so that this overall constant is unity.

We want to apply this observation to two cases. One case is the vector multiplet action of
de Roo [25], which will be discussed in the next subsection. The other case is the Weyl mul-
tiplet action constructed in the previous sections. Here, the only choice for ¥, is to build it
out of the fields X,,%;; defined in (3.1). Its Weyl weight and supersymmetry properties dic-
tate that it be structurally identical to the supercurrent (3.20) for some holomorphic function
J(S). We also must make a choice for ¢*?. Once this choice is made, it is straightforward
to use (5.2) to show that

—17-[ = —C(_2)D++\7
2 9
B=c0g— %c(_z)DH'j +h.c.,
] 3 1
—%IM — ) ptt g 5C(O) (D27 + ZC(_z) (D37 . (5.9)

These in turn obey the required identities (3.13), (3.16) and (3.17). Inverting the relationship
for ao"@cag =1, one can write

J+J = —ia(_z)DJ’JrH - %a(O)H _ %a(_z)D__I+4
1

— §(a(+2)D__ +2a% + oD B 4 hee. (5.10)

While this approach can be considered more fundamental since it relies on a single superfield,
in the case of conformal supergravity it does not facilitate the construction of the action
because it introduces a spurious dependence on ¢®? and obscures the fact that the action
depends only on H.

5.2 Deriving the on-shell SYM action

Let us now address how a suitable ®%;; may be constructed for the on-shell super-Yang-Mills
action. We first briefly review the structure of on-shell super-Yang-Mills in N = 4 superspace.
This is a relatively straightforward extension of the flat superspace result [32] and will lead to
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the component result of de Roo [25]. Let F be a covariantly closed field strength associated
with a non-abelian superspace one-form. We impose the constraints (as in flat superspace)

Foip;=4deasWij ,  FOPI = 4000 (5.11)

where (W%)* = W;;. Requiring that the lowest dimension Bianchi identity is satisfied leads
to the conditions

[VarWijl2o =0, [V¥*Wijlag = [FA esjpgW g5 - (5.12)

In flat superspace, one would take W% = —%sij kY1, and identify its lowest component with
the six scalars ¢% of the vector multiplet. In curved superspace that is not possible because
the two superfields carry differing U(1) charges, and the constraints (5.12) are inconsistent
with such an assignment. Instead, one takes”

_ .. — i ii " 1 ii
Wij =056, WI=0"¢7, ¢V =(dy)" =—5e"on (5.13)

where @+ = (®7)* is a function of the coset scalars with U(1) charge +1. The superfield ¢*/
here, which is U(1) neutral, will have its lowest component identified with the scalars of the
vector multiplet, so we use the same name for it. As a consequence of the constraints (5.12),
one can show that

D et =9, DT =t (5.14)
provided that ¢¥ obeys the same constraint as in flat space
Vard20 =0,  [V¥*¢)55=0. (5.15)

This puts the vector multiplet on-shell. The conditions on ®* and ®~ imply that they are
linear in ¢ and ¢4, respectively,

Ot = dyo™ , O =d%pq . (5.16)

and that the constants d® and do obey

do = AP gy = Nap(d®)* . (5.17)

The supersymmetry algebra given in [25] corresponds to the choice do = (1,1), and & =
o' + ¢2. It is easy to show that the most general choice for d* is

do = (ei‘;,e_i‘s) , d* = (e_i‘s, —ei‘s) (5.18)

as an overall normalization of d® can always be absorbed into a rescaling of ¢%.

"We follow the same pseudoreality convention for ¢¥ as de Roo [25], but we denote his ® and ®* as ®*
and ¢~ respectively.
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Now we may attempt to construct an action involving the above on-shell multiplet. Be-
cause of the constraint (5.15), it’s easy to check that the superfield

Oy = [Tr ¢ dry]a0r = Tr ¢¥ ¢y — traces (5.19)

obeys the constraint (5.1). One can then go about constructing an action for it as in the
previous subsection, by choosing C%; and A%y, to obey (5.2) in terms of some P and
then applying the density formula. However, because the multiplet is on-shell, the action is
recovered only modulo equations of motion. Let us focus only on the bosonic part of the
action and for simplicity take the abelian limit. The Lagrangian recovered in this way is

L= = ) — 2 B 4 S0 P i) — i L
*C(”)[(cw) (Fib) ”Z(qi) bK“b“EDQWW’P“)—i<K;b>2+i<K:b>2%]
+C(0)[£iF Foabt ;Z b +22%(K;5)) B ii—t(K&f (5.20)

where

Ko =Ta ¢,  Kj=Twio" . (5.21)

A conspicuous feature about this on-shell Lagrangian is that no kinetic terms for ¢%
appear. This is a necessary consequence of working with an on-shell multiplet — it is blind to
such terms. However, we have recovered the A, kinetic terms correctly; this is because there
is no way to exploit the equation of motion for A, without exposing the naked connection
and breaking manifest gauge invariance.

Actually, we can reconstruct all of the A,-dependent terms. The full Lagrangian should
formally possess the structure

1 1
L= SAOIA+ A0y + 56056 . (5.22)
for operators O;. Putting ¢ on-shell leads to
1 1

Therefore, the terms linear in A, in (5.20) should be doubled to recover the corresponding
terms in the original Lagrangian. In principle, we could also reconstruct O3 using the equation
of motion that follows from supersymmetry.®

This observation raises an important point. The conditions (5.13) together with (5.15)
imply that the vector multiplet obeys on-shell constraints following from the closure of the
supersymmetry algebra. These have the structure of equations of motion, but they are not

8This argument implies that the O(¢?) terms in (5.20) must vanish. This is indeed the case (up to a total
derivative) provided the additional constraint (5.26) holds.
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necessarily the field equations that follow from the Lagrangian (5.20). In particular, the on-

shell constraints depend only on d® while the field equations depend on ¢*?, too. Focusing on

the A, on-shell constraint (and for simplicity dropping terms involving the vector multiplet
scalars), we find

_, ®t

0=DVF,+ 2FC;,PbF

i

+2F PP o

+O(¢Y) . (5.24)

The field equation that derives from (5.20) is on the other hand proportional to

C(_2) C(+2)

1 C(+2) 1 C(_2) b —p ..
= (= = DYFy — F, P D++< F+PbD_‘< i)
0 <2 (BF)2 + 2 (q)—)z) b ab (q)_)2) + Lo (q>+)2) +0(¢")
(5.25)
It is not hard to show that these two equations are equivalent only if
Bdpdzg =0 = B =dpP (5.26)

where 0™ obeys the same pseudoreality condition (5.17) as d®. We can parametrize it as
ba = (NeP XeT) b= (Ne P NP (5.27)

The action given by de Roo [25] corresponds to the choice b* = —£(1,1) and d* = (1,—1).
This can be seen both by looking at the leading bosonic terms (5.20) or by examining the
four gravitino terms.? Note that if b o< d®, then the Lagrangian becomes a total derivative.
We should add that the physical significance of b® is that it parametrizes the on-shell dual
field strength G, constructed by taking e,peq OL/OF g, just as d* parametrizes Fgp.

While this appears to be a generalization of de Roo’s action, this is not actually the
case. What is happening is that we have parametrized the action and the supersymmetry
transformations in terms of the three real parameters 8, A and J, which are precisely the
same degrees of freedom associated with an SL(2,R) duality transformation. In other words,
we have constructed the duality orbit of de Roo’s action.

6 Conclusions and outlook

In this paper, we have explicitly constructed an N = 4 density formula using the superform
method. Invariance under the local N' = 4 superconformal symmetries is ensured provided
the lowest Weyl weight fields satisfy the set of constraints (2.46), and that the remaining
fields are defined via the supersymmetry transformation rules (2.47). We then showed that,
by expressing these fields in terms of those of the N/ = 4 Weyl multiplet such that the
constraints are satisfied, the density formula leads to a class of N' = 4 conformal supergravity

9The Lagrangian given in eq. (3.16) of [25] appears to have a typo. We believe the last four gravitino term
should be removed to match the four gravitino terms we have found. This can also independently be checked
by reconstructing the equation of motion of ¢;;.
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actions parametrized by a holomorphic function of the coset scalars. Based on the uniqueness
of the N/ = 4 supercurrent, we further argued that this must correspond to the most general
class of maximal conformal supergravity actions. We presented its expression up to terms
which are quadratic in the covariant fermion fields. A stringent check of this result is that
when the function is set to a constant, it recovers [16]. For ergonomic considerations, the
complete action is given explicitly in an addendum file. As a second application of the density
formula, we also re-derived an on-shell sector of the action constructed in [25] for a vector
multiplet in a background of conformal supergravity.

An intriguing feature of the density formula we employed is that it seems it could be
derived from a single superfield ®9;; and a constant ¢®?. The properties of this superfield
resemble those of a G-analytic superfield in (4,2,2) superspace [33, 34], but it cannot be a
Lagrangian in that superspace because it has the wrong dimension. Perhaps it can be used
to build an action principle in (4,2, 2) superspace along the lines of [35].

The construction of the full class of N/ = 4 conformal supergravity actions opens up
various perspectives on the higher-derivative structure of the Poincaré theory. As was shown
already long ago in [25], N' = 4 Poincaré supergravity at the two-derivative level can be
described as a system of six vector multiplets coupled to conformal supergravity. The standard
Poincaré action is recovered after gauge fixing the conformal symmetries and integrating out
the various auxiliary fields of the Weyl multiplet. It is now possible to consider the class
of actions constructed in this paper as a deformation of the two-derivative conformal setup.
In this case the transition to the Poincaré theory is non-trivial as the field equations of the
auxiliary fields have now become non-linear. This requires to integrate out the fields through
an iterative procedure, which will result in an infinite power series of the spin-1 field strengths
and their derivatives. We will show in an upcoming paper that this procedure can be carried
out consistently and leads to a class of supersymmetric higher-derivative Poincaré invariants
which depends on the holomorphic function of the coset scalars. The procedure can also be
applied to describe Poincaré supergravity coupled to vector multiplets.

These higher-derivative Poincaré couplings are relevant from several point views. When
considered on-shell, they could be directly compared with the results obtained in [22]. Tt would
also be interesting to see if they could be embedded in the formalism of [36] where higher-
derivative corrections are described as deformations of the twisted self-duality constraint
relating the spin-1 field strengths to their magnetic duals. Another application concerns the
matching of subleading corrections to the microscopic entropy of N' = 4 black holes obtained
via state counting. From the supergravity point of view, some of these corrections are known
to originate from the class of couplings considered in this paper, and could be calculated by
considering the induced modifications to the area law as in [37, 38] or [39, 40], or perhaps by
using more recent localization techniques along the lines of [41, 42]. These approaches have
so far relied on a truncated N' = 2 setting and it should be interesting to reconsider these
results in a fully AV = 4 supersymmetric formalism.

Finally, these invariants might clarify the ultraviolet properties of the Poincaré theory.
Explicit loop computations have revealed a divergence at four loops [43] which is believed to
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be connected to the presence of a potential anomaly in the duality symmetry of the theory.
It was however shown recently that there exists a finite counterterm, whose leading term
includes the square of the Riemann tensor multiplied by a holomorphic function of the coset
scalars, and which cancels the anomalous contribution of the graphs up to two loops [44-46].
The consequences of this counterterm for the finiteness of the Poincaré theory at four loops
however remain to be explored. While these amplitude computations rely on a description
of the counterterm via the double copy construction, its explicit supersymmetric expression
should follow from the class of invariants constructed in this paper, provided the correct
holomorphic function is chosen.
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A The Weyl multiplet in N' = 4 superspace

The Weyl multiplet of N' = 4 conformal supergravity was introduced in [6]. The gauge field
content involves a vielbein e,*, gravitino 1/1/, spin connection w,ﬂb, dilatation connection
by, SU(4) x U(1) R-symmetry gauge fields V,,'; and a,, S-supersymmetry connection ¢,
and a special conformal (K) connection f,*. Together these fields gauge the superconformal
algebra su(2,2]4). Constraints are imposed on the various curvatures such that the spin
connection, U(1) gauge field, S-supersymmetry connection, and special conformal connection
are algebraically determined in terms of the other fields. This leaves the vielbein, gravitino,
and SU(4) gauge field as the independent connections; the dilatation connection, while also
independent, is pure gauge and can be eliminated by a special conformal transformation (i.e.
a conformal boost).

Additional supercovariant fields are required to complete the multiplet. The scalar fields
b parametrize the coset SU(1,1)/U(1), obeying ¢* = n®3(¢g)* for n®P = diag(1, —1) and
0%po = 1 with a = 1,2. Under supersymmetry, they transform into a chiral fermion A;.
This in turn transforms into two bosonic fields: a scalar field £;; and an anti-self-dual field
T," in the 10 and the 6 of SU(4), respectively. At a higher Weyl weight, one finds a chiral
fermion y%} in the 20. At the top of the multiplet lies a scalar field D%, transforming
in the 20’. The field content consists of 128-+128 degrees of freedom and is summarized in
Table 2, where we also give the Weyl weight w and the U(1) chiral weight ¢. Note that
only the positive chirality fermions are presented in the table; the negative chirality fermions
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Field SU4) w c
e,  vierbein 1 -1 0
Gauge fields w,f gravitino 4 —% —%
(Independent) b,  dilatation gauge field 1 0 0
V' SU(4) gauge field 15 0 0
wu“b spin connection 1 0 0
Gauge fields a,  U(1) gauge field 1 0 0
(Composite) bui  S-gauge field 4 : 3
fu®  K-gauge field 1 1 0
b 1 0 -1
x i) 3
Covariant fields | Ej; 10 1 -1
Top” 6 1 -1
X7k 20 5 3
Dy 200 2 0

Table 2. Independent and composite fields of the ' = 4 Weyl multiplet.

transform in conjugate SU(4) representations and with opposite chiral U(1) weights. The
superconformal transformation rules of the various fields can be found in [6].

Below we will discuss a formulation of N' = 4 superspace that corresponds precisely to the
superspace version of the N'= 4 Weyl multiplet. The result, which we call N' = 4 conformal
superspace, is constructed in direct analogy with the N’ = 1,2 cases [47, 48], to which we
refer for further details such as the construction of superspace torsion tensors and curvatures.
This superspace can be shown to be equivalent, via a degauging procedure and a redefinition
of the U(1) connection, to the N = 4 superspace introduced by Howe [49], up to differences in
conventions and some field redefinitions. Our conventions are similar to the original reference
[6]. We take ng, = diag(—1,1,1,1) and e4pcq imaginary with Yapeq = Eaped 75- We also employ
two-component notation. The dictionary for gamma matrices is

N 5045 0 o 0 (’Ya)a'
7 ( 0 —5%) L <(%)°"5 0 B) (A1)

where o« = 1,2 and & = 1, 2 denote left-handed and right-handed spinor indices. The matrices
(Va) 4 are equivalent to i(oq), 5 where o, obey the same relations as in Wess and Bagger [50].

A 4D N = 4 superspace is a supermanifold parametrized by local coordinates z™ =
(x#,0™, 05). Along with superdiffeomorphisms (which include spacetime diffeomorphisms and
supersymmetry at the component level), the superspace admits additional structure group
symmetries — Lorentz transformations (Mg,), Weyl dilatations (D), chiral U(1) rotations (A),
SU(4) transformations (I';), special conformal transformations (K,), and S-supersymmetry

(Sa! and S%;). Connection one-forms are associated with each of these generators. These
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include a supervielbein Ej4 associated with covariant superdiffeomorphisms. The full su-
percovariant derivative in superspace is given by

1 o
V= EAM<8M — 5" Map = Byl — Ay = Var' I

— 30 ST~ JBua’ §Y — FuK,) (A.2)
There is no explicit gravitino connection as it has been absorbed into the supervielbein. To
recover the action of V, on a component field ¢, one identifies

M =dz* A.
dz" Vo 4—0. do0 dz" V¢ (A.3)
with

1 . 1 g
EAVA¢ =0, d6—0 = dx”e,ﬂ Va¢ + §dxuwualvai¢ + §dxuwudivaz¢ .
Here we have chosen E,%|p_g = 2

= 59, as the definition of the gravitino. The factor of 1is
to match conventions. From this expression, one finds

(A.4)

at

1 ~ 1 s
euava(b = vu(b - §wumvai¢ - §wudivm¢ (A5)
where V, carries all the connections other than the gravitino. It is V, rather than V, that
corresponds to the supercovariant derivative D, in the component formalism [6]

The gauge transformations of the various connections are defined so that V 4 transforms
under Lorentz, dilatation, and SU(4) x U(1) R-symmetry transformations as

[Maby Vc] = _nbcva + nacvb )

[Mab7 v’*{l]
[Dv va] = vaa [D7 vai]

L)y Vi s [Man, V7] = =3 ()59
%Vab [D, ?m] = %val ,

[Aa Vai] = %ivai, [A, ?‘j‘i] — _%i?di 7
(73, Var] = =01V i + 267V i,

[17;, V] = +6, VY — 150V (A.6)

The (anti)commutators involving the special conformal and S-supersymmetry generators in-
clude

{So‘i’ S‘j‘j} = _6§ (7)aa Ka [Ka, V] = —napD — My
{Sa', Vg;} = —OleasD + 20° Mog — 2€apl’;

{59,999} = ~§1e%D 4+ 267 1% 4 29,
[Ka, Vai] .

- (7{1)065 gﬁb [Ka,vdi] = (%l)dﬁ SBZ ) (A7)
(yab)agMab and M8 = %(yab)dﬁ. M, are the anti-self-dual and self-dual parts
of the Lorentz generator. These coincide with the commutators of the superconformal algebra

where M,z = L

4
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su(2,2|4). Field-dependent deviations are found in the S-supersymmetry transformations of
the covariant derivatives, or equivalently, in the transformations of the connections, so that

[Sa’, Val = =3 (V)0 V' = 15T0c” (" Va)0p S5 + 1R(Q)aba’ K
(5%, Va] = =3(7)* Vi — 55 Theij (7"72)*? Sg7 + 1R(Q)wp®: K" |
o 1 .. . 1 . 36
{Sg7, V4 = —553““11&51@ S+ ETbcjz('VbCVa)gB K,

; 1 ; 1
(8%, Vai} = _§5jiklABk So! + gTbcji(WbCWG)ﬁﬁ €a Ko - (A.8)

Here we are using covariant superfields T, and R(Q)ap o' whose # = 0 pieces correspond
to the identically named component fields. The deformation of the above (anti)commutators
from the flat su(2,2[4) superalgebra is necessary for A = 4, but not for N’ < 2.10

The anti-commutators of the spinor covariant derivatives are

{Vai, Vj} = €ap (61'3'1@117\57” — 2T Moy + eijin EPF T, — Leijin(v¢) 74 VAT S, F
+ QXBiijBk — (B 4+ 2(7)5 Pal) ST + %VbT“bz'jKa> :
(Vi VPIY = o8 <6ijklA°‘kVal — 2T M, — M TP, — 1R (1), 7V A, 5,
+2x77 S, — Z(EMIAY 4 2(4) 75 PAT) S, 7] 4 gvbTabina) ,
[Vais Va'} = (1)aaf = 207 Va + S (A7 — 8 K700
+ 3 (AP N 1) — N yo A% + Ny A7 + 6] Ny A I
+ €5 <%(’Ya):wX'ykji — 16" (Y90 M) T Thecip
+ 4067 (7 (ay)” + 2P (1 °A)) ) S°
+ € <%(7a)~/*/X:ykij — Zenip (Y Ya )y Tye?
+ 10060 (B ("), + 2P (1), )) 85"
+ (%&zbcdR(V)Cdji — Lol eapedF — 2(Tog Ty ki + dejkTadki)>Kb} :
(A.9)

While the first two anti-commutators mirror the constraint structure of super-Yang-Mills
(5.11), as in the N' < 2 case, the third anti-commutator does not involve only §/V, on
the right-hand side. The additional terms can be decomposed into a singlet and a traceless
operator in the 15. While the singlet operator could be absorbed into a redefinition of V,
the operator in the 15 cannot be.'!

10Corresponding deviations are also required for the N = (2,0) theory in six dimensions [51] but not for
N = (1,0).

1We leave the singlet operator unabsorbed in order to maintain contact with the conventional constraints
chosen in [6]. Note that this is in contrast to the choice made in A/ = 2 where a corresponding singlet operator
was absorbed [48].
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The commutators between spinor and vector derivatives are

Vi, Val = =3 Their (707")35 V¥ = 3(70) 55 R(Q)*7s M
+ iE; (%A N A+ P (V" M) A + Eeiju Do (7P ) g A
(’Ya)ggx i+ SeripToe? (V' valP) I — dEje(vaA") 5 s — 2P (vay°Aj) sl
+ A T Tad™ (177" 3557 — 35 (R(V)bcji — L Fyeo! ) (7*va — 3747557,
+ 35 ViTepis (1) (1"% — 30r™) 87
+ Leiji R(Q)pes” € (37" Al — Wbc%l\l) Sa’
+ (Beabea R(S) 51 = (1) g5V R(Q)a”s — 2T R(Q)ans ) K

[V, Vo] = =3T3 (1a7") V1 — (70)% R(Q)™ 5 My
- iEij(’yaA‘)BA — 113 (’ya’ycAi)BA 85”MTbckl(’y “Yal\j )BA
+ ()P x5 IF; — LRI Ty (4 ya )P Ty + %E]k(’YaAk)ﬁ I + %Pc(’Ya’YcAj)B I'
AT T (17°97™) P S5* + 35 (R(OV o'y = 5Foed}) (177 — 39™)™ S,
+ 2 VT (rey )P (V0 — 39075457,
+ L8 R(Q)ne veas (377" A — v val)) TS
+ (= deaaB(S)™ = (1) PV RQ)evs’ — 2T R(Q)’s ) K (A.10)

Finally, the purely vector commutator defines the various curvatures

(Va, Vo] = =2 R(Q)ap* Vi — L R(Q)apai VY — LR(M) o™ Mg — R(V )b’ I
— Fp A — 2R(S)wiS" — AR(S)apa' S — R(K) Ko . (A.11)

The torsion tensor T,;¢ has been constrained to vanish.

The superfield content exactly mirrors the component field content of [6] summarized in
Table 2. Their superconformal transformations are exactly the same in superspace. Below
we give these transformations in our conventions.

Recall the lowest dimension covariant superfields of the N' = 4 Weyl multiplet are a
doublet of superfields ¢ describing an element of SU(1,1). ¢4 carries U(1) charge —1. It is
natural to introduce three vielbeins for the group manifold

P = cqpd™de® | P=-c*P¢,dog , A=i¢%oq = —i1dd%¢q , (A.12)

so that the exterior derivative on SU(1, 1) becomes d = i AD°+ PD~~+ PD**. The one-forms
obey

dP=2iPAA, dP = -2iPAA. (A.13)
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On the coset space SU(1,1)/U(1), P and P are the vielbeins and A is the U(1) connection.
The pullback of these one-forms to superspace gives superconnections obeying identical equa-
tions. For P and P, the expressions are unchanged if one replaces the exterior differential d
with the covariant one V so that the expansion in tangent space reads

Py = EMAPA = EMAEQQ(ﬁaVA(bﬁ , pM = EMAPA = —EMAsaﬁgbavA(b/@ . (A.14)

However, in order to match the conventions for the U(1) connection A used in [6], it is
necessary to shift A by a fermion bilinear,

Ay = Ay — iEM“N%Ai . (A.15)

From a superspace perspective this complicates the basic equations above but simplifies the
gravitino torsion tensor. Note that the standard N' = 4 superspace reference [49] does not
make this redefinition, along with other differences.

The superspace one-form P in (A.14) is constrained so that

pdi:(), paiE_Aaiy
Py=0, PY=_A%, (A.16)

By choosing the spinor component of the U(1) connection appropriately, one can ensure that
¢q is chiral, with

V%6 =0,  Vaita = —Aaicapd’ . (A.17)
The remaining vector component is defined (as in the component formalism) to be
P.=capd®VadP,  Po=—e*P$poVaos . (A.18)
The spinor superfield A,; is S-invariant. It transforms under supersymmetry as

vaiABj = —EQBEZ'j - %ijlTbckl('VbC)aﬁ )
VA" =265 (7")s" Fa - (A-19)

E;j is symmetric in its SU(4) indices while T,," is antisymmetric in its SU(4) indices and
anti-self-dual in its Lorentz indices. These and their complex conjugates transform as

VakEij = -2 Xars(i Efkrs »
Va9 =260 (1), 5 VA — ATAY Mgy, + 204" A0 A,
Ver T = 268 R(Q)apa” + (%b)ﬁ(%mijk —LENsIA + %512(/70)ﬁBPCABj) ,

VakTapij = %Ekijl(’YC’Yab)ancABl - (A.20)
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Complex conjugation gives the other transformations. y,"j is in the 20 of SU(4). R(Q)apo’
is anti-self-dual and gamma-traceless, meaning it can be written

1

5(7a) R(Q)yp0’ (A.21)

R(Q)abaj - 2

in terms of a totally symmetric R(Q)Vgaj. Their supersymmetry transformations are given
by

Vaxa s = (1) asR(V )b 467 iy €apD g1+ Lerrst(V)as BT 65 + 5lj]TabSt)
+ Leap 0 BV B + teap 0} (2 857 (1) TV ek + Ak (76)43 VA )
+ 1(7™)ag 0 (2 047 (1) TV pAn g, — A3 (70)45 VAT
+ 2€as 5l[i A,-Yj]AVm A7 Ay, — traces |

Vax®i* = 51 (V"7 ey5V Tapij + 5””11(7 ) VB
— e im (YY) T ers P Top™ — L (%)
125p52jlmAam(EpnAB +2(7%) g5 PeAT?)
L oFeijpm A (EP" Ay, + 2(7°) g3 PeAY )
(V“bvc)ao‘eaﬁTabij(@ ()33 AT = 07 AT () A7)
(’Yab’YC)aaeaﬁTame(‘sl AT (’Yc)WAﬁ{m A;Yj(’Yc)WAé{k)

— traces ,

2eijmX ™ = €igmn X" ) (Ya)y5 AT

vﬁjR(Q)abai = %5; (’7cd)a5 R(M)ade + i('VCd’Vab + %'Vab’VCd)afye'yB(R(V)cdij - %chCS;) 5
Vi R(@Q)w® = (v ya + ’Yab’YCd’Ye)mﬁfyﬁVeTcdij . (A.22)
The superfield D%y, is pseudo-real and in the 20’ of SU(4). It transforms as
Vomv,Dijkl = 57”[@ { o 4( C) VCX ki’ d + 2( )aﬁxﬁker:Yﬂ (’YQ)P%/A’YT’
+ Eklrs(_2 Ej} Xarst + 1 (,Yab,YC) VCAB]] T — (,Yab,YC) Aﬁﬂ VT
+ %Ej}TEStAat - 5(7 )OCBPCAﬁTEj}S + %AB’}AW (yab)aﬁTabrsAgt)
+ 2Pe(vY™) oy Takt A+ SA Gk Bl A5/IAT — S A0y By A57IATT
— —(’y“b’yc) PCABJ] (Yap) 2 Asp Ay — 2Ej]stT“bleabmAam} — traces . (A.23)
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The SU(4) curvature R(V)q'; and the Lorentz curvature R(M )., transform as
Vet RV )ap'j = =2 Tupkr Xa™' 5 + 0 R(S)apa + 2 (’Y[a)aavb]xdjki - %EilTabjkAal
+ 3€jkim EilR(Q)abam - 152Ej1(7[a)aavb}1\dl — 2Tk Pe(V) ac A
+ 30050 R(Q)ar s — 3hakA S R(Q)a’; —% 1 (Va)aa Vi Ej A
- l(skAajA' R(Q)ab 1+ 15kAalA lR(Q)ab i %5 (’Y[a’y ) Aﬁj vb]Pc

+ Seikim (V° V[Q)aavb}TdmAal 1’lm"Td]zTefkm(7[ﬂef7 M)a” Apn
- g(sch( VaY ) Vb]Aﬁj E]klmTcd (’y ’y[a)aavb}A — trace ,

VaiR(M)abed = — 3 (Yab)a" R(S) ry5i — l(’ch) PR(S) i
+ %(’Y ’Yab)aﬁv R(Q)cd 7 + 3 (’Y ’ch)aﬁv R(Q)ab i - (A24)

The Lorentz curvature is purely self-dual or anti-self-dual and traceless in its indices, meaning

R(M)abcd = (Vab)aﬁ (IVcd)PY&R(M)OcB—y(S + h.c. (A'25)

-

where R(M)aps is totally symmetric.
The S-supersymmetry curvature decomposes as

R(S)abai = R(S);bai + ( )aav R(Q)ab i (A26)

where its anti-self-dual part is gamma-traceless,

_ 1
R(S)abai = g(yab)ﬁ’yR(S)'yﬁai . (A27)
It transforms as

véjR(S);bai - %Evé(’}ﬁd’}/ab + %’}’ab’}/“l)oﬂ(4 cheTedij + 2TcdlkTefilTefkj)
- %Eijkl(’Yc)agchékR(Q)abél — Leijresa NS (V) TTVR(Q) aby!
+ deiint (Y Yab7) o5 Ve (Aék R(Q)des ) ,

VajR(S);—baz — 251( ) & \V4 R( )+ cd
+1 (’Y ’Yab’y + 3’Yab’YCd’Ye)a eﬁa(veR(v)cdlj - %Vchd(S;‘
— AT R T — 2V Togni Ty ™)
— R(Q)a kXa™j — E* Ak R(Q)abj + 25 EM Ao R(Q)ap™:
— 1(19) g LA R(Q) ot + 105 (19) 0 g PA R(Q)
+ %6 (Vab) TCd]kAalR(Q)cd m
5™ ()’ 5(1°) 5 (¢ I ToirAat R(Q)es®m - (A.28)
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For reference, we give the supersymmetry transformations of P,,
Vi P = _%(%yfm)aﬁ/\ﬁj Theji Vails = —Valai — 30 ABJ (va)PAg; . (A29)
The S-supersymmetry transformations of all the independent fields are
k k
S5 Tap = =47 (van) 5 A
SBlXaijk = _%(’Yab)aﬁéngabij - %(’Yab)aﬁ(S]BTabj]l - %eaﬁgijmlEkm )
Sglxdijk = %5fiA5j]A‘j‘k — traces ,
S5 Tapij =0, S,FEY =0, So™DYy =0, (A.30)
while the transformations of the curvatures are

SaiPa = %('Va)adAdi s SaiPa =0 5
SﬁjR(Q)abai = %(Vab’ym + %’7Cd7ab)55€a6Tcdija SBjR(Q)abdi =0 5

SakR(V)abij - _5§€R(Q)abai + EiklmTableam + (’Yab)oaBXBkij
+ %5;‘?(%1,)&5 (2?0(76)66A5i + EilABl) — trace ,

Sa'R(M)aped = —3 (Yab)a" R(Q)eas” — 3 (Vea)a” R(Q)abs’
ST R(S) 5% = 3eTH A R(Q) ™
S5 R(S) pai = —2(v"Mab + 377D €48 (R(V )ed’s — 5 Fead?)
+ 56/ (7)o R(M abed (A.31)
The K-curvature R(K) is given by
R(K)p° = —VaR(M) g . (A.32)

In analyzing the superspace Bianchi identities, we have corrected some minor typos that
have appeared earlier in the literature. In [6], the definition of a,, in eq. (4.8) should have —1/4
for the coefficient of the fermion bilinear rather than —1/2. Also in eq. (4.13), SoR(Q)a",
the “+ h.c.” appearing in the A bilinear should be “-h.c.” A few minor typos in [16] have
also been corrected. In eq. (2.8), the sign of dgP, was incorrect. In eq. (B.2), dgR(S) and
dsR(S) did not include terms quadratic in fermions.

B Analysis of the Bianchi identities

B.1 Higher Bianchi identities from SUSY closure: an explicit example

Below we use the closure of the superconformal algebra to derive the full supersymmetry
transformations of the fields p and x of the abstract multiplet defining the action principle.
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The resulting transformations can be shown to obey the various supersymmetry constraints
we encountered in section 2.2.

Let us start with ng,om-jk . This decomposes into a singlet and triplet of the left-handed
part of the Lorentz group and into the 6, 10 and 64 of SU(4). Schematically,

Vgmpais” = (6,1) + (10,1) + (64,1) + (6,3) + (10, 3) + (64,3) . (B.1)
Now observe that the condition for closure of V,; on C%}; decomposes as
(Vir, Vas } Oy = <(6, 1) + (10, 3)) ® (20',1)
=(6,1) +(50,1) + (64,1) + (10, 3) + (64, 3) + (126, 3) . (B.2)

When one actually computes the explicit terms in {VBT,VQS}C’U xl, the leading terms will
be of the form Vg,,pai;. The terms therein corresponding to the (10,1) and the (6,3) are
undetermined by supersymmetry — they involve the new fields 5&)’7 and £Y. All the others
are determined. Solving for these and recombining all the various representations gives:

V ipais” = —%sabmnaf(yab)aﬁsijmn + %ekmeagglijm - %Akmijslmeag + gA'fml[igﬂmeaﬁ
= A ST sy + 54T 6 )
+ %AmnijTab” 951 (V") agEmnpg + %Am"quabp 967 (V") apEijmn
+ gcmnijg’weaﬁslmw — gcmnl[ig’fpeaﬁsﬂmnp + %Cm"p[isﬂmnquqéfeaﬁ

14 ~km 2 ~km 4 ~km 20 ~km
- ?C ijAalABm - gc ijAamABl - gc l[iAaj]ABm + ?O l[i\AamAﬁm

- 2 2 8 2
+20™" 5 Aam A0t = S Mafii )" — 5 Aarrpis” + 3 Asp1Fa)” + A0Rais"
1 1 1, . :
+ gAam(Slkligijm — gAgm(slkliaijm + gAakeagedBTﬁm”[isﬂlmn
1, : 14 :
- gAakeaﬁedﬁ-Tﬁm"laijmn - EAaméfeaﬁedBTﬁnp[iEﬂmnp
13 4 :
+ @Aamdfeagedﬁ-'fﬁnpmaijnp — traces (%;;) . (B.3)
An interesting feature is that Y%7, explicitly appears, even though this fermion does not
appear in the action principle. This is acceptable because when invariance of the action
principle is checked, these terms cancel against similar terms in the spinor derivative of K
Next, let us analyze ?Blpaijk . This is in a vector representation of the Lorentz group, so
let us focus just on the SU(4) group structure: 4 x 20 = 15 + 20’ + 45. To evaluate this,
we use {Vai, VYO, which is generically in the 15 + 20" + 20’ 4 45 + 45 + 175. We
have already checked that the 45 gets set to zero. The 20’ can be solved straightforwardly.
The 15 is complicated: it gives a linear combination between the 15 of % lpozijk and the
15 of Vaﬂ'ﬁklj. In other words, we must introduce a new field in the 15 into which pmjk
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transforms and also declare that is the same 15 (up to additional terms) into which Yhis k
transforms. Schematically, this leads to

vmﬂaz’jk = 2Aa[iﬁslkj} + 5fi|Aam“Bkm\jl - 4(7a)aBVaClkU +15
+ %CkmijAamABl - %ClmijAamABk + gclkijAamABm
_ ? [i|mAaj] + E [i jlmtran — traces ( z'j) . ( 4)

We have left the 15 unspecified. Note that the two terms involving 55 are actually in the
15 and could be absorbed into this term. They correspond to traces that are subtracted out
from other terms, when the 20’ was built. Since this 15 does not appear in the action, we
will not worry about how to precisely define it.

Now let us analyze the supersymmetry transformation of k%¥;,. The V% transformation
is very similar to the calculation of V; on p. Decomposing under SU(4) and the right-handed
part of the Lorentz group gives

VMRS, = (6,1) + (10,1) + (64, 1) + (6,3) + (10,3) + (64, 3) (B.5)
and

(VP ey Ars,, = <(6, 1)+ (10,3)) @ (20, 1)
=(6,1) + (50,1) + (64,1) + (10,3) + (64,3) + (126, 3) . (B.6)

The calculation is essentially identical to the prior one. The difference is that while we
determine the (6,3) to be essentially defined as the self-dual part of £,%, the (10,1) does
not appear in the action. We denote it X;;. We find

P 3 g y a8 8
Vﬁm’%azyk _ _Eélzngabzy (,yab)aﬁ o Xkleaﬁemlzy + gCrzylkEumleozB o gcm[zlkEj}leaB

+ 2AzyrsEkp6aBErsmp + 2CZJT8Tabkp(,Yab)aBErsmp + 56[2nC2jTSTabnp(,yab)aBErsnp
— 207, A ppAgpePetPersmp EAO"”Tﬁ”k — gmwmm + Eé;TAO‘pTB”p

1 . Bt 1 : L 1 L .
+ EABmTaUk o gAB[zTa]]mk o gézlABpTaup o §Aak€a6€aﬁﬁgmm€”m

1 . g g
+ Zé,TAapeo‘Beo‘Blimspe”m — traces (). (B.7)

Now we analyze V,; on k. The steps are quite similar again. We expect something in
the 4 x 20 = 15 + 20’ + 45. To evaluate this, we use {Vai,?gj}Arskl, generically in the
15 + 20" + 20’ + 45 + 45 + 175, which is self-conjugate. We will be able to fix the 45 in this
way and presumably the 20’ since we have two 20’ identities to use between V& and V%k.
Only one real combination of the 15 should be fixed between V ;% and V¥k. The remaining
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15 should be the new field Saij. The calculation leads to

Varrt U = = 2608710 + 2008100t — 40 Va ATy

+ 4AY Aoy AY™ + ACYT 1 Py (7)o — 4CY 1 Py (7)o

+ Aatp™ ) = 0 A p™ ™ + 30) Aum p™

— 20 ) — AL ! + A6 Do) (B.8)
le/{a ijk — %5[ilgakj] ('Ya)ad - éé[ikgalj] (’Ya)ad - 4(7a)advaAlkij

+4AK AN 4 4O P ()0 — AC™ S PO (y,) 0l

+ A paig® = A o + B[ AY Do

— 2806p™ ) = AamOp ™™ )+ Aam0lp ™ (B.9)

One can proceed in a similar way to compute the full supersymmetry transformations of the
fields appearing in the action principle using closure of the algebra.

However, the explicit form of the supersymmetry transformations is not particularly use-
ful. Aside from the relations (2.47) that define the higher dimension components from the
lower ones, the conditions for supersymmetric invariance must be direct consequences of the
basic constraints on C*7; and A%”;. To see this without explicitly building the transforma-
tions, we employ a standard technique in superspace: the Bianchi identity of the Bianchi
identity. We discuss this below.

B.2 The Bianchi identity of the Bianchi identity

It is commonly the case in superspace that checking Bianchi identities involves imposing only
a few independent constraints. Here we will demonstrate this by showing that the higher
dimension constraints are automatically satisfied once the lowest ones are fulfilled.

Let J be a gauge-invariant super-four-form, that is a scalar under Lorentz and R-
symmetry transformations as well as a conformal primary. It follows that I = VJ = dJ
is a gauge-invariant super-five-form, and its various components correspond to the Bianchi
identities that we wish to check. Our goal is to show that if the lowest dimension components
of I vanish, the higher ones necessarily do as well. The key to this computation is to exploit
that I must itself be closed, VI = dI = d?J = 0. The latter equation is the Bianchi identity
of the Bianchi identity.

Our starting assumption is that I,s = 0. This is the basic supersymmetry constraint
(1.2). One easily sees that

0 (VI)wLwSR :t()_[ew% 3
0= (VI)yzys, = toley,y3 -
0= (VI)dJ%lﬁ% = to[ed}%d}% , (B.10)
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with the others following from complex conjugation. The key ingredient is that for NV = 4
supersymmetry, the ty cohomology is (almost) empty. That is, there are no forms that are
to closed that are not also ty exact, except for terms that only contain gravitini (so that
to immediately annihilates it). This is a technical proof found in [31]. Now [, eys, Clearly is
not ty exact as it possesses gravitini of only one chirality; therefore, it must vanish. [ epL v,
and Iew% y2, May both be ty exact. However, if they are ty exact, one can always choose a
different J to make them vanish. That is, qupsz% involves a term toJed,%_{ and Jeu}% can be
chosen to eliminate the tg-exact piece [ewwg . In fact, this is what we did when we solved
Bianchi identities to this order: we used the tg-exact piece to determine the next part of J
and required all the other pieces to vanish. The same argument applies to [, w2 g2 and one
concludes that I+ must vanish. Iterating this argument ultimately leads to the conclusion
that I = 0, and therefore J is closed.
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