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Artificial magnetic fields and spin-orbit cou-
plings have been recently generated in ultracold
gases in view of realizing topological states of
matter and frustrated magnetism in a highly-
controllable environment. Despite being dynam-
ically tunable, such artificial gauge fields are gen-
uinely classical and exhibit no back-action from
the neutral particles. Here we go beyond this
paradigm, and demonstrate how quantized dy-
namical gauge fields can be created in mixtures
of ultracold atoms in optical lattices. Specifi-
cally, we propose a protocol by which atoms of
one species carry a magnetic flux felt by an-
other species, hence realizing an instance of flux-
attachment. This is obtained by combining co-
herent lattice modulation techniques with strong
Hubbard interactions. We demonstrate how this
setting can be arranged so as to implement lat-
tice models displaying a local Z2 gauge symmetry,
both in one and two dimensions. We also provide
a detailed analysis of a ladder toy model, which
features a global Z2 symmetry, and reveal the
phase transitions that occur both in the matter
and gauge sectors. Mastering flux-attachment in
optical lattices envisages a new route towards the
realization of strongly-correlated systems with
properties dictated by an interplay of dynamical
matter and gauge fields.

Introduction
The realization of artificial gauge fields in ultracold gases
has further promoted these quantum-engineered systems
as versatile quantum simulators [1, 2]. While a syn-
thetic magnetic field can be simply introduced by rotat-
ing atomic clouds [3], more sophisticated schemes were
developed to generate a wide family of gauge field struc-
tures, including spin-orbit couplings [4] or staggered-flux
patterns [5–7]. In fact, the design of magnetic fluxes in
optical lattices, through laser-induced tunneling or shak-
ing methods, has been recently exploited in view of re-
alizing topological states of matter [8, 9] and frustrated
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magnetism [6]. Importantly, these artificial gauge fields
are treated as classical and non-dynamical, in the sense
that they remain insensitive to the spatial configuration
and motion of the atomic cloud: these engineered systems
do not aim to reproduce a complete gauge theory, where
particles and gauge fields influence each other.

In parallel, various theoretical works have suggested
several methods by which synthetic gauge fields can be
made intrinsically dynamical. A first approach builds on
the rich interplay between laser-induced tunneling and
strong on-site interactions, which can both be present
and finely controlled in an optical lattice [2]: Under spe-
cific conditions, the tunneling matrix elements, which
describe the hopping on the lattice but also capture
the presence of a gauge field, can become density-
dependent [10–14]; see Ref. [15] for an experimental im-
plementation of such density-dependent gauge fields. A
second approach aims at implementing genuine lattice
gauge theories (LGTs), such as the Kogut-Susskind or
quantum link models, by directly engineering specific
model Hamiltonians through elaborate laser-coupling
schemes involving different atomic species and well-
designed constraints; see Refs. [16–18] for reviews and
Ref. [19] for an ion-trap realization of the Kogut-Susskind
Hamiltonian. Such quantum simulations of LGTs aim
to deepen our understanding of fundamental concepts of
gauge theories, such as confinement and its interplay with
dynamical charges, which are central in high-energy [20]
and condensed-matter physics [21–23] and go beyond a
mere density-dependence of synthetic gauge fields.

In this work, we connect both approaches and demon-
strate how LGTs can be realized in ultracold gases
through the use of density-dependent gauge fields. As
a central ingredient, we devise a scheme to engineer
flux-attachment for cold atoms moving in an optical lat-
tice. Originally introduced by Wilczek [24, 25], and
then widely exploited in the context of the fractional
quantum Hall (FQH) effect [26], flux-attachment is a
mathematical construction according to which a certain
amount of magnetic-flux quanta is attached to a par-
ticle (e.g. an electron). The resulting composite “flux-
tube-particle” generically satisfies anyonic statistics [25]
and naturally appears in field-theoretical formulations of
FQH states [26]. Specifically, we show that an optical
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FIG. 1. Flux-attachment and dynamical gauge fields
with ultracold atoms. (A) We propose a setup where one
atomic species f becomes a source of magnetic flux Φ (red)
for a second species a. Both types of atoms undergo coherent
quantum dynamics, described by nearest-neighbor tunneling
matrix elements ta and tf , respectively. (B) When realized
in a ladder geometry, the flux-attachment setup has a Z2 lat-
tice gauge structure. By tuning the ratio of the tunneling
elements ta/tf , we find that the system undergoes a phase
transition. The two regimes can be understood in terms of
the elementary ingredients of a Z2 LGT, summarized in (C).
The matter field â has a Z2 charge given by the parity of
its occupation numbers n̂a. It couples to the Z2 gauge field
τ̂z〈i,j〉, defined as the number imbalance of the f -particles be-

tween different ends of a link. When |ta| � |tf | the ground
state is dominated by tunneling of the f -particles, realizing
eigenstates of the Z2 electric field τ̂x〈i,j〉. In the opposite limit,

|ta| � |tf |, the tunneling dynamics of the a-particles prevails
and the system realizes eigenstates of the Z2 magnetic field
B̂p, defined as a product of the gauge field τ̂z` over all links
` ∈ ∂p along the edge of a plaquette p. The Z2 magnetic field
introduces Aharonov-Bohm phases for the matter field, which
are 0 (π) when the f particles occupy the same (different) leg
of the ladder, i.e. if Bp = 1 (Bp = −1). The quantized exci-
tations of the dynamical gauge field correspond to Z2 vortices
of the Ising gauge field, so-called visons.

lattice loaded with two atomic species (a and f) can be
configured in a way that one species (f) becomes a source
of magnetic flux Φ for the other species (a): the magnetic
flux is thus effectively attached to moving particles, see
Fig. 1 (A).

For specific choices of parameters and carefully de-
signed lattice geometries, we demonstrate that this ap-
pealing setting can be used to implement interacting
quantum systems with local symmetries, realizing Z2

LGTs [20]. These types of models, where the matter

field couples to a Z2 lattice gauge field, are especially rel-
evant in the context of high-temperature superconductiv-
ity [22, 27] and, more generally, strongly correlated elec-
trons [28, 29]. A central question in this context concerns
the possibility of a confinement-deconfinement transition
in the LGT [30], which would indicate electron fraction-
alization [22, 31, 32]. The proposed model will allow to
explore the interplay of a global U(1) symmetry with
local Z2 symmetries, which has attracted particular at-
tention in the context of cuprate compounds [33, 34].

Moreover, we will discuss in detail the physics of a toy
model characterized by a global U(1) × Z2 symmetry,
which consists of a two-leg ladder geometry and can be
directly accessed with state-of-the-art cold-atom experi-
ments. We demonstrate that the toy model features an
intricate interplay of matter and gauge fields, as a result
of which the system undergoes a phase transition in the
Z2 sector depending on the ratio of the species-dependent
tunnel couplings ta/tf , see Fig. 1 (B). While this tran-
sition can be characterized by the spontaneously broken
global Z2 symmetry, we argue that an interpretation in
terms of the constituents of a Z2 LGT, see Fig. 1 (C),
is nevertheless useful to understand its microscopic ori-
gin. We also predict a phase transition of the matter field
from an insulating Mott state to a gapless superfluid (SF)
regime, associated with the spontaneously broken global
U(1) symmetry. For appropriate model parameters, an
interplay of both types of transitions can be observed,
which resembles the rich physics of higher-dimensional
Z2 LGTs at strong couplings.

The paper is organized as follows. We start by intro-
ducing the flux-attachment scheme which is at the heart
of the proposed experimental implementation of dynam-
ical gauge fields. Particular attention is devoted to the
case of a double-well system, which forms the common
building block for realizing Z2 LGTs coupled to mat-
ter. Next we study the phase diagram of a toy model
with a two-leg ladder geometry, consisting of a matter
field coupled to a Z2 gauge field on the rungs. Realistic
implementations of the considered models are proposed
afterwards, along with a scheme for realizing genuine Z2

LGTs with local instead of global symmetries in two di-
mensions. This paves the way for future investigations of
strongly correlated systems, as discussed in the summary
and outlook section.

Flux-attachment
The recent experimental implementations of classical
gauge fields for ultracold atoms [35–39] combine two key
ingredients [40]: First, the bare tunnel couplings t are
suppressed by large energy offsets |∆| � t, realized by a
magnetic field gradient or a superlattice potential. Sec-
ond, tunneling is restored with complex phases φ, by
proper time-modulation of the optical lattice [41, 42] at
the resonance frequency ω = ∆ (with ~ = 1 throughout).

Flux-attachment operates in a strongly-correlated
regime, where the energy offsets ∆ = ω from an exter-
nal potential are supplemented by inter-species Hubbard
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interactions of the same magnitude, U = ω [43]. This
provides coherent control over the synthetic gauge fields
induced by the lattice modulation at frequency ω, see
also Refs. [10–14].

We consider a situation where atoms of a first species,
with annihilation operators â, represent a matter field.
The atoms of the second type, associated with annihi-

lation operators f̂ , will become the sources of synthetic
magnetic flux for the matter field, see Fig. 1 (A). Namely,
the magnetic flux felt by the a-particle, as captured by
its assisted hopping over the lattice, is only effective in
the presence of an f -particle. To avoid that – vice-versa
– the f -particles become subject to magnetic flux cre-
ated by the a-particles, static potential gradients affect-
ing only the f -particles are used. In the following, we
assume that both atomic species are hard-core bosons,
although generalizations are possible, for instance when
one or both of them are replaced by fermions.

Model. The largest energy scale in our problem is set
by strong inter-species Hubbard interactions,

Ĥint = U
∑
j

n̂aj n̂
f
j , (1)

where n̂a,fj denote the density operators of a and f -
particles on lattice site j. In order to break the symmetry
between a- and f -particles, we introduce state-dependent
static potentials Vα(j), where α = a, f . We assume
that the corresponding energy offsets between nearest-
neighbor (NN) lattice sites i and j are integer multiples
mα
〈i,j〉 ∈ Z of the large energy scale U , up to small cor-

rections |δV α〈i,j〉| � U which are acceptable; namely,

∆α
〈i,j〉 ≡ Vα(i)− Vα(j) ≈ mα

〈i,j〉U. (2)

A minimal example is illustrated in Fig. 2 (A).
Coherent dynamics of both fields are introduced by NN

tunneling matrix elements in the µ = x, y directions, tαµ
respectively. Thus the free part of the Hamiltonian is

Ĥ0 = −
∑
µ=x,y

∑
〈i,j〉µ

[
taµâ
†
j âi + tfµf̂

†
j f̂i + h.c.

]
+
∑
j

[
Va(j) n̂aj + Vf (j) n̂fj

]
(3)

where 〈i, j〉µ denotes a pair of NN sites along direction
µ. Tunnel couplings are initially suppressed by the ex-
ternal potentials ∆α = mαU and the strong Hubbard
interactions,

U � |tαx,y|. (4)

To restore tunnel couplings with complex phases we
include a time-dependent lattice modulation,

Ĥω(t) =
∑
j

Vω(j, t)
(
â†j âj + f̂†j f̂j

)
. (5)

FIG. 2. Z2 LGT in a two-well system. (A) We con-
sider a double-well setup with one atom of each type, a and
f . Coherent tunneling between the two orbitals at j1 and
j2 = j1 + ey is suppressed for both species by strong Hub-
bard interactions U = ω, and for f -particles by the energy
offset ∆f = ω. (B) Tunnel couplings can be restored by res-
onant lattice modulations with frequency ω. The sign of the
restored tunneling matrix element is different when the a-
particle gains (left panel) or looses (right panel) energy. (C)
This difference in sign gives rise to a Z2 gauge structure and
allows to implement Z2 minimal coupling of the matter field
â to the link variable defined by the f -particles. This term is
the common building block for realizing larger systems with
a Z2 gauge structure. (D) Such systems are characterized by

a symmetry Ĝj associated with each lattice site j. Here Ĝj

commutes with the Hamiltonian and consists of the product
of the Z2 charge, Q̂j = (−1)n̂

a
j , and all electric field lines –

for which τx = −1 – emanating from a volume around site j
(orange).

It acts equally on both species and is periodic in time,
Vω(j, t + 2π/ω) = Vω(j, t), with frequency ω = U res-
onant with the inter-species interactions. Summarizing,
our Hamiltonian is

Ĥ(t) = Ĥ0 + Ĥint + Ĥω(t). (6)

Effective hopping Hamiltonian. From now on we
consider resonant driving, U = ω � |tαµ |, where the lat-

tice modulation Ĥω(t) in Eq. (5) restores, or renormal-
izes, all tunnel couplings of a- and f -particles. As derived
in the Supplements (SM), we obtain an effective hopping
Hamiltonian to lowest order in 1/ω,

Ĥeff = −
∑
µ=x,y

∑
〈i,j〉µ

[
taµ â

†
i âj λ̂

µ
〈i,j〉µ e

iϕ̂µ〈i,j〉µ + h.c.

+ tfµ f̂
†
i f̂j Λ̂µ〈i,j〉µ e

iθ̂µ〈i,j〉µ + h.c.

]
. (7)

The Hermitian operators λ̂µ〈i,j〉µ and ϕ̂µ〈i,j〉µ (respectively

Λ̂µ〈i,j〉µ and θ̂µ〈i,j〉µ) in Eq. (7) describe the renormaliza-

tion of the tunneling amplitudes and phases, for a (resp.



4

f) particles; they are mutually commuting and depend

only on the number imbalance n̂fj −n̂
f
i (resp. n̂aj−n̂ai ) as-

sociated with the respective complementary species. Our
result in Eq. (7) is reminiscent of the models discussed
in Ref. [13].

Explicit expressions for λ̂, ϕ̂, Λ̂, θ̂ can be obtained by
considering their matrix elements on the relevant many-
body states |ψr〉 and |ψs〉 in the Fock basis that are in-
volved in the various hopping processes. For an a-particle
transitioning from state |ψs〉 to |ψr〉, corresponding to
a relative potential and / or interaction energy offset
∆rs = nrs ω with integer nrs ∈ Z, the matrix elements
are given by

〈ψr|â†i âj λ̂
µ
〈i,j〉µ |ψs〉 = |Jnrs(x)|. (8)

Here Jn denotes the Bessel function of the first kind,
x = Ai,j/ω is the dimensionless driving strength, and

Vω(i, t)− Vω(j, t) = Ai,j cos (ωt+ φi,j) . (9)

Without loss of generality, we assume ω,Ai,j > 0
throughout the paper.

The complex phases of the restored tunnelings are also
determined by the many-body energy offsets ∆rs = nrsω.
If nrs ≥ 0 the particle gains energy in the hopping process
and

〈ψr|â†i âj ϕ̂
µ
〈i,j〉µ |ψs〉 = |nrs|φi,j . (10)

In contrast, if nrs < 0 the particle looses energy and

〈ψr|â†i âj ϕ̂
µ
〈i,j〉µ |ψs〉 = |nrs|(π − φi,j). (11)

In this case there is an additional nrsπ phase shift due to
the reflection properties of the Bessel function, Jn(−x) =
(−1)nJn(x), see Fig. 2 (B). This nrs π phase shift is at
the core of the LGT implementations discussed below.

Similar results are obtained for Λ̂µ〈i,j〉µ and θ̂µ〈i,j〉µ by ex-

changing the roles of a and f , see SM. Note, however,
that the symmetry between a and f can be broken by a
careful design of the potentials Va and Vf , and this will
be exploited in the next paragraph.

As illustrated in Fig. 1 (A), our scheme allows to imple-
ment effective Hamiltonians [Eq. (7)] describing a mix-
ture of two species, where one acts as a source of mag-
netic flux for the other, see also Ref. [13]. A detailed
discussion of the resulting Harper-Hofstadter model with
dynamical gauge flux is provided in the SM. By analogy
with the physics of the FQH effect [44, 45], we expect that
this flux-attachment gives rise to interesting correlations,
and possibly to quasiparticle excitations with non-trivial
statistics.

Z2 LGT in a double-well. Now we apply the result
in Eq. (7) and discuss a minimal setting, where one a
and one f -particle tunnel between the two sites j1 and
j2 = j1 + ey of a double-well potential, see Fig. 2 (A);
ey denotes the unit vector along y. This system forms
the central building block for the implementation of Z2

LGTs in larger systems, proposed below. We assume
Va(ji) ≡ 0 for i = 1, 2 but introduce a potential offset
Vf (j2) = ∆f + Vf (j1) for the f species, breaking the
symmetry between a- and f -particles.

Effective Hamiltonian.– For ∆f = U = ω and lattice
modulations with a trivial phase φj1,j2 = 0, the effective
Floquet Hamiltonian in Eq. (7) becomes

Ĥ2well
eff = −tay λy τ̂z〈j2,j1〉

(
â†j2 âj1 + h.c.

)
− tfy Λ̂ τ̂x〈j2,j1〉,

(12)
with notations defined as follows. We describe the f -
particle by a pseudo spin 1/2,

τ̂z〈j2,j1〉 = n̂fj2 − n̂
f
j1
, n̂fj2 + n̂fj1 = 1, (13)

which becomes a link variable in the Z2 LGT, see Fig. 1

(C). The Pauli matrix τ̂x〈j2,j1〉 = (f̂†j2 f̂j1 + h.c.) describes

tunneling of the f -particle.
As shown in Fig. 2 (B), the interaction energy of the

matter field changes by ±U in every tunneling event.
As a result the amplitude renormalization in Eq. (12)
is λy = |J1(Aj2,j1/ω)|, see Eq. (8), and the phase of the
restored tunnel couplings is eiϕ̂ = τ̂z〈j2,j1〉 by Eqs. (10),

(11). Because the f -particle is subject to an additional
potential offset ∆f = U between the two sites, its en-
ergy can only change by 0 or 2U in a tunneling event.
Hence the phase of the restored tunneling in Eq. (12) is

trivial, θ̂ = 0 as in Eqs. (10), (11), but the amplitude
renormalization

Λ̂ = J0 (Aj2,j1/ω) n̂aj1 + J2 (Aj2,j1/ω) n̂aj2 , (14)

depends on the configuration of the a-particle in general.
The effective Hamiltonian (12) realizes a minimal ver-

sion of a Z2 LGT: the link variable τ̂z〈j2,j1〉 ' eiπÂ pro-

vides a representation of the dynamical Z2 gauge field
Â, which is quantized to 0 and 1. The corresponding Z2

electric field is given by the Pauli matrix τ̂x〈j2,j1〉, defin-

ing electric field lines on the link. The Z2 charges Q̂ji ,
defined on the two sites ji with i = 1, 2, are carried by
the a-particle, Q̂ji = exp(iπn̂aji). These ingredients are

summarized in Fig. 1 (C) and justify our earlier notion
that the a and f -particles describe matter and gauge-
fields, respectively. The Hamiltonian in Eq. (12) realizes
a minimal coupling [30] of the a-particles to the gauge
field, see Fig. 2 (C).

Symmetries.– Each of the two lattice sites ji is associ-
ated with a Z2 symmetry. The operators generating the
Z2 gauge group in the double-well system,

ĝi = Q̂ji τ̂
x
〈j2,j1〉, i = 1, 2, (15)

both commute with the effective Hamiltonian in Eq. (12),

[ĝi, Ĥ2well
eff ] = 0 for i = 1, 2. This statement is not entirely

trivial for the first term in Eq. (12): While τ̂z〈j2,j1〉 and

â†j2 âj1 do not commute with τ̂x〈j2,j1〉 and Q̂ji individually,

their product commutes with ĝi. The second term in
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Eq. (12) trivially commutes with ĝi because [Λ̂, Q̂ji ] = 0,
see Eq. (14).

Physically, Eq. (15) establishes a relation between the
Z2 electric field lines, τx〈j2,j1〉 = −1, and the Z2 charges

from which they emanate, see Fig. 2 (D). Note that the
eigenvalues of ĝ1 and ĝ2 are not independent, because
ĝ1ĝ2 = −1 for the considered case with a single a particle
tunneling in the double-well system.

The model in Eq. (12) is invariant under the gauge
symmetries ĝi for all values of the modulation strength
Aj2,j1 . In general, both terms in the effective Hamil-
tonian couple the Z2 charge to the gauge field. An
exception is obtained for lattice modulation strengths
Aj2,j1/ω = x02 for which

J0(x02) = J2(x02). (16)

In this case, neither of the amplitude renormalizations

Λ̂→ Λ02 = J0(x02) ≈ 0.32, (17)

λy = λ02 = J1(x02) ≈ 0.58, (18)

is operator valued, and the second term in the Hamil-
tonian only involves the Z2 gauge field. The weakest
driving for which Eq. (16) is satisfied has x02 ≈ 1.84.

Matter-gauge field coupling in two-leg ladders
In the following we study the physics of coupled matter
and gauge fields in a two-leg ladder, accessible with nu-
merical density-matrix-renormalization-group (DMRG)
simulations [46]. Our starting point is a model with min-
imal couplings to the Z2 gauge field on the rungs of the
ladder, which is characterized by a global U(1)×Z2 sym-
metry, see Fig. 3 (A). Here we study its phase diagram.
As explained later, the model can be implemented in ex-
isting ultracold atom setups by simply coupling multiple
double-well systems. Generalizations to extended ladder
models with local symmetries and minimal couplings to
a Z2 gauge field on all links are discussed in the SM.

The model. We combine multiple double-well sys-
tems (12) to a two-leg ladder, by introducing tunnelings
tax of the matter field along x. Further, we impose that
the f -particles can only move along the rungs, tfx = 0,
and each rung is occupied by one f -particle. Thus, we
can continue describing the f degrees of freedom by link
variables τ̂〈i,j〉y as defined in Eq. (13). The number of
a-particles Na will be freely tunable.

Effective Hamiltonian.– For a properly designed con-
figuration of lattice gradients and modulations, presented
in detail later, we obtain an effective Hamiltonian

Ĥ2leg = −
∑
〈i,j〉x

(
tax λ̂

x
〈i,j〉x â

†
j âi + h.c.

)
−
∑
〈i,j〉y

[
tay λ

y
(
â†j âiτ̂

z
〈i,j〉y + h.c.

)
+ tfy Λ̂y〈i,j〉y τ̂

x
〈i,j〉y

]
.

(19)

Expressions for the amplitude renormalizations λy ∈ R
and λ̂x, Λ̂y are provided in the SM.

For the specific set of driving strengths x = x02 that
we encountered already in the double well problem, see
Eq. (16), we find that Λ̂y only has a weak dependence on

the Z2 charges, Q̂j = (−1)n̂
a
j . Similarly, the amplitude

renormalization λ̂x depends weakly on the Z2 magnetic
field B̂p only; here

B̂p =
∏

〈i,j〉y∈∂p

τ̂z〈i,j〉y (20)

is defined as a product over all links 〈i, j〉y on the rungs
belonging to the edge ∂p of plaquette p. Hence, for these
specific modulation strengths,

[Λ̂y〈i,j〉y , Q̂l] = [Λ̂y〈i,j〉y , τ̂〈k,l〉] = 0, (21)

[λ̂x〈i,j〉x , B̂p] = [λ̂x〈i,j〉x , â
(†)
l ] = 0. (22)

Symmetries.– Now we discuss the symmetries of the ef-
fective Hamiltonian (19) at the specific value of the driv-
ing strengths x02. In the case of decoupled rungs, i.e.
for tax = 0, every double-well commutes with ĝi, i = 1, 2
from Eq. (15). These symmetries are no longer conserved
for tax 6= 0; in this general case a global Z2 symmetry re-
mains:

V̂i =

Lx∏
j=1

ĝi(jex), i = 1, 2, (23)

with ĝi(jex) = (−1)Q̂jex+(i−1)ey τ̂x〈jex+ey,jex〉y and for

which V̂ 2
i = 1. Using Eqs. (21), (22) one readily con-

firms that [Ĥ2leg, V̂i] = 0 for i = 1, 2.
Summarizing, the effective model is characterized by

the global U(1) symmetry associated with the conser-
vation of the number of a particles, and the global Z2

symmetry V̂1. Note that the second Z2 symmetry, V̂2,
follows as a consequence of combining V̂1 with the global
U(1) symmetry: By performing the global U(1) gauge

transformation âj → −âj for all sites j, V̂2 is obtained

from V̂1. Thus, the overall symmetry is U(1)× Z2.
Physical constituents.– In the following, we will de-

scribe the physics of the ladder models using the ingre-
dients of Z2 LGTs, see Fig. 1 (C). The quantized excita-
tions of the Z2 lattice gauge field are vortices of the Z2

(or Ising) lattice gauge field, so-called visons [22]. They
are defined on the plaquettes of the ladder: If the pla-
quette term in Eq. (20) is Bp = 1, there is no vison on
p; the presence of an additional Z2 flux, Bp = −1, cor-
responds to a vison excitation on plaquette p. Since the
matter field â couples to the Z2 gauge field, the resulting
interactions with the visons determine the phase diagram
of the many-body Hamiltonian, as in higher-dimensional
Z2 LGTs [22, 23].

Quantum phase transitions of matter and gauge
fields. We start from the microscopic model in Eq. (19)
and simplify it by making a mean-field approximation
for the renormalized tunneling amplitudes, which de-
pend only weakly on Q̂j and B̂p. Replacing them by
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FIG. 3. Coupling matter to a Z2 gauge field in a two-leg ladder. (A) We consider the Hamiltonian (24) describing
a-particles which are minimally coupled to the Z2 gauge field τ̂z〈i,j〉y on the rungs of a two-leg ladder. (B) The phase diagram,

obtained by DMRG simulations at t̃fy/t̃
a
x = 0.54, contains a SF-to-Mott transition in the charge sector at a commensurate

density of the matter field, Na = Lx. In addition, we find a transition in the gauge sector, from an ordered region with a
broken global Z2 symmetry where the Z2 magnetic field dominates and the vison excitations of the gauge field are gapped
(red), to a disordered regime where the Z2 electric field is dominant and visons are strongly fluctuating in a condensed state
(blue). This behavior is reminiscent of confinement-deconfinement transitions in higher-dimensional LGTs. Along the hatched
lines at commensurate fillings Na/Lx = 1/2, 1, 3/2, insulating charge-density wave states could exist, but conclusive numerical
results are difficult to obtain. (C) The conjectured schematic phase diagram of Eq. (24) is shown in the µ− t̃fy plane, where µ

denotes the chemical potential for â particles and 2t̃fy corresponds to the energy cost per Z2 electric field line along a rung. Our
numerical data is consistent with two scenarios: In I, the interplay of gauge and matter fields prevents a fully disordered Mott
phase, whereas the latter exists in scenario II. The behavior in scenario I resembles the phase diagram of the more general 2D
Z2 LGT [20–23] sketched in (D). In our DMRG simulations here, as well as in the following figures, we keep up to 1400 DMRG
states with 5 finite-size sweeps; the relative error on the energies is kept smaller than 10−7.

C-numbers, t̃ax = tax〈λ̂x〉, t̃fy = tfy〈Λ̂y〉 and t̃ay = tayλ
y leads

to the conceptually simpler Hamiltonian,

Ĥsimp
2leg = −

∑
〈i,j〉x

t̃ax

(
â†j âi + h.c.

)
−
∑
〈i,j〉y

[
t̃ay

(
â†j âiτ̂

z
〈i,j〉y + h.c.

)
+ t̃fy τ̂

x
〈i,j〉y

]
, (24)

illustrated in Fig. 3 (A). Later, by introducing a more so-
phisticated driving scheme, we will show that this model
can be directly implemented using ultracold atoms. The
simpler Hamiltonian (24) has identical symmetry prop-
erties as Eq. (19). Now we analyze Eq. (24) by means
of the DMRG technique. In the phase diagram we find
at least three distinct phases, resulting from transitions
in the gauge- and matter-field sectors, see Fig. 3 (B).
Here we describe their main features; for more details
the reader is referred to the SM.

Transition in the matter sector.– First we concentrate
on the conceptually simpler phase transition taking place
in the charge sector. When the tunneling along the legs

is weak, t̃ax .
[
(t̃fy)2 + (t̃ay)2

]1/2 − t̃fy , and the number Na
of a-particles is tuned, we observe a pronounced transi-
tion from a SF to a rung-Mott phase [47] at the com-
mensurate filling Na = Lx, where Lx denotes the total
number of rungs in the system. Similarly to the analysis
in Refs. [48–50], this transition can be captured by the

parity operator

Op(l) =

〈
exp

iπ∑
j<l

(
n̂ajex + n̂ajex+ey −

Na
Lx

)〉 .
(25)

In the limit l ' Lx and Lx → ∞ this observable Op
remains finite only in the Mott insulating regime. Our
results in Fig. 4 (A) confirm that Op takes large values
with a weak size dependence for Na = Lx. On the other
hand when Na/Lx 6= 1 is slightly increased or decreased,
the parity Op suddenly becomes smaller and a significant
Lx dependence is observed which is consistent with a
vanishing value in thermodynamic limit.

For larger values of t̃ax (see SM for details), no clear
signatures of a Mott phase are found: The parity oper-
ator Op takes significantly smaller values, the calculated
Mott gap becomes a small fraction of t̃ax, consistent with
a finite-size gap, and we checked that the decay of two-
point correlations follows a power-law at long distances
until edge-effects begin to play a role. Because of the
global U(1) symmetry of the model, a possible SF-to-
Mott transition in the quasi-1D ladder geometry would
be of Berezinskii-Kosterlitz-Thouless (BKT) type. Hence
the gap would be strongly suppressed and the correla-
tion length exponentially large, making it impossible to
determine conclusively from our numerical results if the
ground state is a gapped Mott state or not. Indeed, for
single-component hard-core bosons on a two-leg ladder
it has been shown by bosonization that an infinitesimal
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FIG. 4. Characterizing phase transitions of matter coupled to a Z2 gauge field in a two-leg ladder. (A) In the
charge sector we observe transitions from a SF state, characterized by a vanishing parity correlator Op(Lx → ∞) → 0 in the
thermodynamic limit, to an insulating rung-Mott state at the commensurate filling Na = Lx, characterized by Op(Lx →∞) > 0
and exponentially decaying correlations. Here we present exemplary results for t̃ay/t̃

a
x = 3 and t̃fy/t̃

a
x = 0.54. (B) In the gauge

sector we find a transition from a disordered phase, where the Z2 electric field dominates, to a phase where the Z2 magnetic field
dominates. In the second case, the order parameter 〈τ̂z〈i,j〉y 〉 6= 0 corresponds to a spontaneously broken global Z2 symmetry

(23). In the two phases, the corresponding vison excitations of the Z2 gauge field (C) have different characteristics. The
numerical results in (A) [respectively (B)] are obtained by considering periodic boundary conditions [respectively Lx = 96

rungs with open boundaries]. (D) Analogues of Wilson loops Ŵ (d) in the two-leg ladder are string operators of visons.

inter-leg coupling is sufficient to open up an exponentially
small Mott gap [47, 51].

Similar considerations apply at the commensurate fill-
ings Na/Lx = 1/2, 3/2, where previous work on single-
component bosons in a two-leg ladder [51] pointed out the
possible emergence of an insulating charge density wave
(CDW) for large enough t̃ay/t̃

a
x [hatched areas in Fig. 3

(B)]. Our numerical results indicate that such CDWs may
exist in this regime also in our model, Eq. (24), but a
more accurate analysis is required in order to properly
locate the transition point.

Transition in the gauge sector.– Next we focus on the
gauge sector, described by the f -particles, in which we
observe a phase transition when tuning the ratios of the
tunnel couplings. For example, in Fig. 4 (B) we tune
t̃ay/t̃

a
x while keeping t̃fy/t̃

a
x fixed. We find a transition

from a regime where 〈τ̂z〈i,j〉y 〉 = 0 to a region with a non-

vanishing order parameter 〈τ̂z〈i,j〉y 〉 6= 0. Similar behavior

is obtained when tuning t̃fy/t̃
a
y while keeping t̃ax/t̃

a
y fixed,

see SM for more details.

The observed transition is associated with a sponta-
neous breaking of the global Z2 symmetry (23) of the
model. The f -particles go from a regime where they are
equally distributed between the legs, 〈τ̂z〈i,j〉y 〉 = 0, to

a two-fold degenerate state with population imbalance,
〈τ̂z〈i,j〉y 〉 6= 0. Such behavior occurs in the insulating and

SF regimes of the charge sector, and it is only weakly
affected by the filling value Na/Lx, see Fig. 3 (B). Our
numerical results in Fig. 4 (B) indicate that the transition
is continuous. The critical exponent is in good agreement
with a value of 1/8 as expected for an Ising universality

class, especially in the insulating regime, but it is also
possible that the transition is of BKT type associated
with the opening of a gap in the gauge sector.

The two phases of the Z2 gauge field are easily under-
stood in the limiting cases. When t̃ay = 0, the ground
state is an eigenstate of the Z2 electric field τ̂x〈i,j〉y on

the rungs, with eigenvalues 1. The Z2 magnetic field is
strongly fluctuating and there exist no Z2 electric flux
loops. Thus also the vison number is strongly fluctuat-
ing, and the state can be understood as a vison conden-
sate. In the opposite limit, when t̃ay → ∞, the kinetic
energy of the matter field dominates. In this case the
Z2 magnetic field is effectively static, and its configura-
tion is chosen in order to minimize the kinetic energy
of the a-particles. This is achieved when the effective
Aharonov-Bohm phases on the plaquettes vanish, i.e. for
B̂p = 1, see Fig. 1 (C). In this case vison excitations with

B̂p = −1, see Fig. 4 (C), correspond to localized defects
in the system, which cost a finite energy corresponding
to the vison gap.

Lattice gauge theories with local instead of global sym-
metries are characterized by Wilson loops [30]. Their
closest analogues in our two-leg ladder model are string
operators of visons,

W (d) =

d∏
j=1

〈B̂pj 〉 = 〈τ̂z〈i,j〉y τ̂
z
〈i+dex,j+dex〉y 〉 (26)

see Fig. 4 (D). In the disordered phase (electric field
dominates) we found numerically that W (d) → 0 when
d → ∞, whereas W (d) remains finite at large distances
in the ordered phase (magnetic field dominates), see SM.
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This qualitatively different behavior of the Wilson loop
is reminiscent of the phenomenology known from the
ubiquitous confinement-deconfinement transitions found
in (2 + 1) dimensional LGTs [20, 22, 30]: There, visons
are gapped in the deconfined phase and the Wilson loop
decays only weakly exponentially with a perimeter law; in
the confining phase, visons condense and the Wilson loop
decays much faster with an exponential area law. Al-
though the ordered phase which we identified in the two-
leg ladder geometry is characterized by a spontaneously
broken global Z2 symmetry, this analogy suggests that
it represents a precursor of the genuine deconfined phase
expected in 2D Z2 LGTs with local symmetries.

Interplay of matter and gauge fields.– Finally, we dis-
cuss the interplay of the observed phase transitions in
the gauge and matter sectors. To this end we find it
convenient to consider the phase diagram in the µ − t̃fy
plane, where µ denotes a chemical potential for the a-
particles and t̃fy controls fluctuations of the Z2 electric
field. We collect our result in the schematic plots in
Fig. 3 (C): Deep in the SF phase, realized for small µ
and Na/Lx < 1, t̃fy drives the transition in the gauge
sector. Because of a particle-hole symmetry of the hard-
core bosons in the model, similar results apply for large
µ and Na/Lx > 1. On the other hand, when t̃fy is small,
permitting a sizable Mott gap at commensurate fillings,
µ drives the SF-to-Mott transition.

More interesting physics can happen at the tip of the
Mott lobe, for commensurate fillings Na = Lx. This cor-
responds to the hatched regime in Fig. 3 (B), where we
cannot say conclusively, if the system is in a gapped Mott
phase. To obtain better understanding of the commen-
surate regime, we first argue that a SF cannot co-exist
with the ordered phase of the gauge field at commensu-
rate fillings: In this regime the Z2 gauge field acquires
a finite expectation value, 〈τz〈i,j〉y 〉 6= 0. This leads to

a term in the Hamiltonian ∼ −t̃ay〈τz〈i,j〉y 〉â
†
i âj , which is

expected to open a finite Mott gap, following the argu-
ments in Refs. [47, 51]. Therefore, only the two scenarios
shown in Fig. 3 (C) are possible: In the first case, the
Mott insulator co-exists only with the ordered phase of
the gauge field; in the second scenario the Mott state
co-exists with the disordered phase of the gauge field.

To shed more light on this problem, we consider the
case when the Mott gap ∆ is much larger than the
tunneling t̃ax. When t̃ax = 0, every rung represents
an effective localized spin-1/2 degree of freedom. As
shown in the SM, finite tunnelings t̃ax � ∆ introduce
anti-ferromagnetic couplings between these localized mo-
ments, and in this limit our system can be mapped
to an XXZ chain. It has an Ising anisotropy and the
ground state has a spontaneously broken Z2 symmetry
everywhere, except when t̃fy/t̃

a
y → ∞ where an isotropic

Heisenberg model is obtained and the ground state has
power-law correlations. The transition from the gapped
Mott state, corresponding to the ordered phase of the Z2

gauge field, to a symmetric state of two decoupled SFs
with a disordered gauge field, is of BKT type [52].

Although our last argument is limited to small values of
t̃ax, it indicates that scenario I in Fig. 3 (C) may be more
likely, but more detailed investigations will be required
to draw a final conclusion. At least in the limit of small
t̃ax and large couplings t̃fy of the gauge field, our analysis
proofs that there exists an intricate interplay of the phase
transitions in the gauge and matter sectors. Such behav-
ior, characteristic for scenario I in Fig. 3 (C), is reminis-
cent of the phase diagram of the 2D Z2 LGT [20, 23],
see Fig. 3 (D). In that case, the phase at weak couplings
has topological order as in Kitaev’s toric code [23], and
the disordered phases are continuously connected to each
other at strong couplings.

Implementations: coupled double-well systems
Now we describe how the models discussed above, and
extensions thereof, can be implemented in state-of-art ul-
tracold atom setups. The double-well system introduced
around Eq. (12) constitutes the building block for im-
plementing larger systems with a Z2 gauge symmetry, or
even genuine Z2 LGTs, because it realizes a minimal cou-
pling of the matter field to the gauge field [30], see Fig. 2
(C). We start by discussing the two-leg ladder Hamilto-

nian Ĥ2leg, Eq. (19); then we present a scheme, based
on flux-attachment, for implementing a genuine Z2 LGT
coupled to matter in a 2D square lattice.

FIG. 5. Implementing matter-gauge field coupling in a
two-leg ladder. Multiple double-well systems as described
in Fig. 2 are combined to form a two-leg ladder by includ-
ing hopping elements tax of the a-particles along the x direc-
tion. Coherent tunneling is first suppressed by strong inter-
species Hubbard interactions U and static potential gradients:
∆a
x = U for a-particles along x, and ∆f

y = U for f -particles
along y. The tunnel couplings are restored by a resonant lat-
tice shaking with frequency ω = U , realized by a modulated
potential gradient Vω(j, t) = (jxV

x
ω + jyV

y
ω ) cos(ωt) seen by

both species. We assume that each rung is occupied by ex-
actly one f -particle, which can thus be described by a link
variable, while the number Na of a-particles is freely tun-
able. As shown in the SM, the special choice for the driving
strengths V xω /ω = V yω /ω = x02 leads to an effective Hamil-
tonian with matter coupled to Z2 lattice gauge fields on the
rungs. The gradient ∆a

x = U guarantees that the a-particles
pick up only trivial phases ϕ̂x = 0 while tunneling along the
legs of the ladder. Hence the Aharonov-Bohm phases (red)
associated with the matter field become 0, or π corresponding
to a vison excitation. They are determined by the plaquette
terms B̂p defined in Eq. (20), reflecting the configuration of
f -particles.
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Two-leg ladder geometry. The ladder system
shown in Fig. 3 (A) can be obtained by combining mul-
tiple double-wells (12) and introducing tunnelings tax of
the matter field along x, while tfx = 0. The lattice poten-
tial is modulated along y with amplitude Aj2,j1 = V yω ,
as in the case of a single double-well. As described in
Fig. 5, we introduce an additional static potential gradi-
ent with strength ∆a

x = U = ω per lattice site along x
and modulate it with frequency ω and amplitude V xω .

As shown in the SM, this setup leads to the effective
Hamiltonian (19). For the specific set of driving strengths
V xω /ω = V yω /ω = x02, see Eq. (16), the amplitude renor-
malizations are λy = λ02 and

λ̂x〈i,j〉x =
1

2

(
1− τ̂z〈i±ey,i〉τ̂

z
〈j±ey,j〉

)
J0(x02)

+
1

2

(
1 + τ̂z〈i±ey,i〉τ̂

z
〈j±ey,j〉

)
J1(x02). (27)

Simplified model.– Now we discuss a further simplifica-
tion of the model in Eq. (19), leaving its symmetry group
unchanged. We note that, even for the specific choice of
the driving strengths V xω /ω = V yω /ω = x02, the renor-
malized tunnel couplings of the a-particles along x still
depend explicitly on the Z2 gauge fields on the adjacent
rungs, see Eq. (27). This complication can be avoided, by
simultaneously modulating the gradient along x at two
frequencies, ω and 2ω, with amplitudes V xω and V x2ω; i.e.
we consider the following driving term in Eq. (5),

Vω(j, t) = [jxV
x
ω + jyV

y
ω ] cos(ωt) + jxV

x
2ω cos(2ωt). (28)

Following Ref. [42] we obtain expressions for the re-
stored tunnel couplings along x for an energy offset nω
introduced by the Hubbard interactions U = ω between
a and f -particles; λn =

∑∞
`=−∞ Jn−2`(x

(1))J`(x(2)/2)

where x(1) = V xω /ω and x(2) = V x2ω/ω (see SM). By im-
posing the conditions λ0 = λ1 = λ2, we obtain a simpli-

fied effective Hamiltonian where λ̂x〈i,j〉x → λx ∈ R is no

longer operator-valued, and thus completely independent
of the Z2 gauge field τ̂z. The weakest driving strengths
for which this condition is met is given by

x(1) = x
(1)
012 ≈ 1.71, x(2) = x

(2)
012 ≈ 1.05, (29)

where λx = λ012 ≈ 0.37. A similar approach can be used
to make Λ̂y independent of the Z2 charges, which allows
to implement Ĥsimp

2leg from Eq. (24).
Realizing a Z2 LGT in a 2D square lattice. Now

we present a coupling scheme of double-wells which re-
sults in an effective 2D LGT Hamiltonian with genuine
local symmetries, in addition to the global U(1) symme-
try associated with a-number conservation. We will de-
rive a model with Z2 gauge-invariant minimal coupling

terms ∼ τ̂z〈i,j〉â
†
j âi along all links of the square lattice.

Setup.– We consider the setup shown in Fig. 6 (A) in
a layered 2D optical lattice, which is a particular type
of brick-wall lattice. The a-particles tunnel vertically
between the layers in z direction, with coupling matrix

FIG. 6. Realizing Z2 LGT coupled to matter in 2D.
(A) Multiple double-well systems as described in Fig. 2 are
combined in the shown brick-wall lattice. Each of its four
layers along z-direction is used to realize one of the four links
connecting every lattice site of the 2D square lattice (B) to its
four nearest neighbors. The double-well systems are indicated
by solid lines (colors), and they are only coupled by tunnelings
of a-particles along the z-direction, with amplitudes taz . (B)

The restored hopping Hamiltonian Ĥ2DLGT in the 2D lattice
has local symmetries Ĝj associated with all lattice sites j, i.e.

[Ĥ2DLGT, Ĝj ] = 0.

element taz , and along the links indicated in the figure
with tunnel couplings tax and tay. Every tube consisting
of four lattice sites with coordinates x, y and nez for
n = 1, 2, 3, 4 defines a super-site j = xex + yey in the ef-
fective 2D lattice shown in Fig. 6 (B). The four links con-
necting every super-site to its nearest neighbors i : 〈i, j〉
are realized by double-well systems, with exactly one f -
particle each, in different layers of the optical lattice. The
f -particles are only allowed to tunnel between the sites
of their respective double-wells in the x − y plane, with
amplitudes tfx and tfy , while tunneling along z-direction

is suppressed, tfz = 0.
For the realization of the individual double-well sys-

tems, we consider a modulated potential gradient along
x and y, seen equally by the matter and gauge fields. The
modulation amplitudes V xω /ω = V yω /ω = x02 are chosen
to simplify the amplitude renormalization of f -particle
tunneling. As previously, we consider static potential
gradients along x and y directions of ∆f

x = ∆f
y = U per

site, seen only by the f -particles, and work in a regime
where U = ω � |tνµ|, with µ = x, y, z and ν = a, f .

To realize a-particle tunneling along z which is inde-
pendent of the Z2 gauge fields τ̂z on the links in the
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x − y plane, we add a static potential gradient of ∆a
z

per site along z-direction. It is modulated by two fre-
quency components ω and 2ω, with amplitudes V zω and
V z2ω. These driving strengths are chosen as in Eq. (29),

i.e. V zω /ω = x
(1)
012 and V z2ω/ω = x

(2)
012, such that the re-

stored tunnel couplings with amplitude tazλ012 become
independent of the f -particle configuration.

Effective Hamiltonian.– Combining our results from
the previous section, we obtain the effective hopping
Hamiltonian Ĥ2DLGT for the setup described in Fig. 6,

Ĥ2DLGT = −tfxy
∑
〈i,j〉

Λ̂〈i,j〉 τ̂
x
〈i,j〉

− taxyλ02

∑
〈i,j〉

(
τ̂z〈i,j〉â

†
i,m〈i,j〉

âj,m〈i,j〉 + h.c.
)

− tazλ012

∑
j

3∑
n=1

(
â†j,n+1âj,n + h.c.

)
(30)

using the same notation as introduced earlier. Here we
treat the z-coordinate nez, with n = 1, ..., 4, as an in-
ternal degree of freedom, while j is a site index in the
2D square lattice; m〈i,j〉 ∈ {1, 2, 3, 4} denotes the z-
coordinate corresponding to double-well 〈i, j〉. For sim-
plicity we assumed that tax = tay = taxy and tfx = tfy = tfxy.
The amplitude renormalization for f -particles in the x-y
plane depends on the Z2 charges Q̂j,n (see SM),

Λ̂〈i,j〉 =
1

2
[J0(x02) + J1(x02)]

+ Q̂i,m〈i,j〉Q̂j,m〈i,j〉

1

2
[J1(x02)− J0(x02)] . (31)

Using the multi-frequency driving scheme explained
around Eq. (28), a situation where Λ̂〈i,j〉 becomes in-
dependent of the Z2 charges can be realized.

A simplified effective Hamiltonian, where the internal
degrees of freedom are eliminated, can be obtained when
U = ω � taz and λ012t

a
z � taxy; the first inequality is

required by the proposed implementation scheme. In this
limit, the tunneling of a-particles along z can be treated
independently of the in-plane tunnelings taxy. The ground
state with a single a-particle tunneling along z at super-

site j is â†j |0〉, where â†j =
∑4
n=1 φnâ

†
j,n with φ1 = φ4 =

(5 +
√

5)−1/2 and φ2 = φ3 = (1 + 1/
√

5)1/2/2. It is
separated by an energy gap ∆ε = λ012t

a
z � taxy from the

first excited state, which justifies our restriction to this
lowest internal state.

The ground state energy ε2a with two hard-core a-
particles tunneling along z in the same super-site is larger
than twice the energy εa of a single a-particle, by an
amount Ueff, i.e. ε2a = 2εa + Ueff. By solving the one
and two-particle problems exactly, we find Ueff = λ012t

a
z .

In the effective model restricted to the lowest internal
state, this offset corresponds to a repulsive Hubbard in-
teraction on the super-sites j. Because Ueff � taxy, double
occupancy of super-sites is strongly suppressed, and we

can treat the new operators â
(†)
j as hard-core bosons.

By projecting the Hamiltonian (30) to the lowest inter-
nal state on every super-site, we arrive at the following
simplified model,

Ĥsimp
2DLGT = εa

∑
j

â†j âj − t
f
xy

∑
〈i,j〉

Λ̂〈i,j〉 τ̂
x
〈i,j〉

− taxyλ02|φ1|2
∑
〈i,j〉∈E

(
τ̂z〈i,j〉â

†
i âj + h.c.

)
− taxyλ02|φ2|2

∑
〈i,j〉∈B

(
τ̂z〈i,j〉â

†
i âj + h.c.

)
. (32)

Here we distinguish between two sets of links, 〈i, j〉 ∈ E
or B, which are realized in layers at the edge n = 1, 4 (E)
and in the bulk n = 2, 3 (B) in the 3D implementation,
see Fig. 6 (A). Because the internal state has different
weights |φ1|2 ≈ 0.14 and |φ2|2 ≈ 0.36, they are associated
with different tunneling amplitudes. This complication
can be avoided by realizing bare tunnelings of a-particles
with different strengths on E and B-type bonds.

Symmetries.– In contrast to the two-leg ladder (19),
the models in Eqs. (30), (32) are both characterized by
local Z2 gauge symmetries. The Z2 charge on a super-
site is defined as Q̂j = exp[iπ

∑4
n=1 n̂

a
j,n], which becomes

Q̂j = exp[iπâ†j âj ] when projected to the lowest internal
state. The Z2 gauge group is generated by

Ĝj = Q̂j

∏
i:〈j,i〉

τ̂x〈j,i〉, (33)

where the product on the right includes all links 〈j, i〉
connected to site j.

It holds [Ĥ2DLGT, Ĝj ] = 0 and [Ĥsimp
2DLGT, Ĝj ] = 0 for

all j, using the respective Z2 charge operators. These
results follow trivially for the first line of Eqs. (30), (32)
which contain only the operators τ̂x〈i,j〉 and n̂aj,n (n̂j), see

also Eq. (31). For the last two lines in the effective Hamil-
tonians, it is confirmed by a straightforward calculation.

In addition to the local Z2 gauge invariance, the mod-
els (30), (32) have a global U(1) symmetry associated
with the conservation of the a-particle number. Very
similar Hamiltonians have been studied in the context of
strongly correlated electrons, where fractionalized phases
with topological order have been identified [31]. When
the a-particles condense, effective models without the
global U(1) symmetry can also be realized. These are
in the same symmetry class as Kitaev’s toric code [23].

Discussion
We have presented a general scheme for realizing flux-
attachment in 2D optical lattices, where one species of
atoms becomes a source of magnetic flux for a second
species. For a specific set of parameters, we demon-
strated that the effective Floquet Hamiltonian describing
our system has a Z2 gauge structure. This allows to im-
plement experimentally a dynamical Z2 gauge field cou-
pled to matter using ultracold atoms, as we have shown
specifically for a double-well setup, two-leg ladders and
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in a 2D geometry. Because our scheme naturally goes be-
yond one spatial dimension, the Z2 magnetic field – and
the corresponding vison excitations – play an important
role in our theoretical analysis of the ground state phase
diagram. Moreover, the link variables in our system are
realized by particle-number imbalances on neighboring
sites, making experimental implementations of our setup
feasible using existing platforms (as described e.g. in
Refs. [36, 37, 39]).

Our theoretical analysis of hard-core bosons coupled
to a Z2 gauge field in a ladder geometry revealed a SF-
to-Mott transition in the charge sector, as well as a tran-
sition in the gauge sector. The latter is characterized
by a spontaneously broken global Z2 symmetry, but we
argued that it can be understood as a precursor of the
confinement-deconfinement transitions which are ubiqui-
tous in LGTs, high-energy physics and strongly corre-
lated quantum many-body system. Leveraging the pow-
erful toolbox of quantum gas microscopy, our approach
paves the way for new studies of LGTs with full resolution
of the quantum mechanical wavefunction. This is partic-
ularly useful for analyzing string [49, 53] and topological
[54] order parameters, which are at the heart of LGTs
but difficult to access in more conventional settings.

As we have demonstrated, extensions of our LGT set-
ting to 2D systems with local rather than global sym-
metries are possible. Here we propose a realistic scheme
to implement a genuine Z2 LGT with minimal coupling
of the matter to the gauge-field on all links of a square
lattice. On the one hand, this realizes one of the main
ingredients of Kitaev’s toric code [23, 55, 56] – a spe-
cific version of a LGT coupled to matter, which displays
local Z2 gauge symmetry and hosts excitations with non-
Abelian anyonic statistics. On the other hand, the sys-
tems that can be implemented with our technique are
reminiscent of models studied in the context of nematic
magnets [21, 29, 57] and strongly correlated electron sys-
tems [22, 31, 32]. Other extensions of our work include
studies of more general systems with flux-attachment,
which are expected to reveal physics related to the for-
mation of composite fermions in the FQH effect.

In terms of experimental implementations, we re-
stricted our discussion in this article to ultracold atom
setups. Other quantum simulation platforms, such as ar-
rays of superconducting qubits [58], provide promising
alternatives however. Generalizations of our scheme to
these systems are straightforward, and a detailed analy-
sis of the feasibility of our proposal in such settings will
be devoted to future work.

SUPPLEMENTARY MATERIAL

I. Implementing dynamical gauge fields
Here we describe in detail how synthetic gauge fields with
their own quantum dynamics can be realized, and im-
plemented using ultracold atoms. We begin by quickly
reviewing results for the case of a single particle in a
double-well potential, which we use later on to derive
the effective Hamiltonian in a many-body system.

Single-particle two-site problem. We consider the
following Hamiltonian describing a single particle hop-
ping between sites |1〉 and |2〉,

Ĥ2 = −t (|2〉〈1|+ |1〉〈2|) +
(
∆2,1 + ∆ω

2,1(t)
)
|2〉〈2|. (34)

Here t > 0 denotes the bare tunnel coupling which is
strongly suppressed by the energy offset |∆2,1| � t. Tun-
neling is then restored by a modulation

∆ω
2,1(t) = A2,1 cos (ωt+ φ2,1) . (35)

For resonant shaking, ω = ∆2,1, it has been shown in
Ref. [41] that the dynamics of Eq. (34) can be described
by the following effective Hamiltonian,

Ĥ2,eff = −t̃
(
|2〉〈1|eiφ2,1 + |1〉〈2|e−iφ2,1

)
. (36)

The amplitude of the restored tunneling is given by

t̃ = t J1 (A2,1/ω) (37)

and the complex phase φ2,1 is determined directly from
the modulating potential ∆ω

2,1(t).
More generally, when the offset ∆2,1 = nω is a positive

integer multiple n = 0, 1, 2, 3, 4, .. of the driving frequency
ω, tunneling can also be restored. As shown by a general
formalism in Ref. [42], the effective Hamiltonian in this
case becomes

Ĥ2,eff = −t̃n
(
|2〉〈1|einφ2,1 + |1〉〈2|e−inφ2,1

)
. (38)

For n = 0 the result is independent of the phase φ2,1 of
the modulation. The tunneling matrix element is renor-
malized by

t̃n = t Jn (A2,1/ω) . (39)

The first three Bessel functions, n = 0, 1, 2, are plotted
in Fig. 7 as a function of x = A2,1/ω.

Finally we consider the case when ∆2,1 = −nω, for a
positive integer n = 1, 2, 3, .... In this case we can re-write
the modulation (35) as

∆ω
2,1(t) = A2,1 cos (−ωt− φ2,1) , (40)

i.e. effectively ω → −ω and φ2,1 → −φ2,1. By applying
the results from Eq. (38) and (39) for the system with
−ω, we obtain

Ĥ2,eff = −t̃n
(
|2〉〈1|ein(π−φ2,1) + |1〉〈2|e−in(π−φ2,1)

)
.

(41)
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FIG. 7. Renormalized tunneling amplitudes deter-
mined by Bessel functions. The tunnelings of a and
f -particles, which are initially suppressed by energy offsets
nω for integer n, are restored by resonant lattice modula-
tions. Their renormalized amplitude is proportional to Jn(x),
where x is the dimensionless driving strength A/ω. For
x ≈ x012 = 1.66 the first three Bessel functions are clos-
est to one another, J1(x) ≈ J0(x) ≈ J2(x). This allows to
realize a situation where the renormalized tunneling ampli-
tudes depend only weakly on the configuration n̂a,f of the
particles. For x ≈ x02 = 1.84 the zeroth and second Bessel
functions are approximately equal, J0(x) ≈ J2(x), and one
can construct fully gauge invariant effective Hamiltonians. At
x ≈ x01 = 1.43 the zeroth and first Bessel functions are ap-
proximately equal.

The complex phase of the restored hopping in the ef-
fective Hamiltonian changes sign, because −φ2,1 ap-
pears in Eq. (40). In addition, it contains a π phase
shift which takes into account the sign change of the
renormalized tunneling matrix element ∝ Jn(A2,1/−ω) =
eiπnJn(A2,1/ω) if n is odd.

Multiple driving frequencies. Even more control
over the restored tunnel couplings can be gained by using
lattice modulations with multiple frequency components.
Here we summarize results for the single-particle two-
site problem from above, for the case of driving with
frequency components ω and 2ω. To do so, we modify
our Hamiltonian in Eq. (35) as

Ĥ2 = −t (|2〉〈1|+ |1〉〈2|) + ∆2,1|2〉〈2|+ ∆ω
2,1(t)|1〉〈1|,

(42)
where the 2π/ω-periodic driving term takes the following
form:

∆ω
2,1(t) = A

(1)
2,1 cos

(
ωt+ φ

(1)
2,1

)
+A

(2)
2,1 cos

(
2ωt+ φ

(2)
2,1

)
.

(43)
In order to calculate the effective Hamiltonian, we rewrite
the time-dependent Hamiltonian (42) in a moving frame,
by performing a time-dependent unitary transformation
realized by the operator [42]

R̂(t) = exp
(
i∆2,1tP̂2

)
exp

{
i

(
A

(1)
2,1

ω

)
sin(ωt+ φ

(1)
2,1)P̂1

}

× exp

{
i

(
A

(2)
2,1

2ω

)
sin(ωt+ φ

(2)
2,1)P̂1

}
, (44)

where we introduced the projectors P̂1 = |1〉〈1| and

P̂2 = |2〉〈2|. In this moving frame, the time-dependent
Hamiltonian in Eq. (42) takes the form

H̃2 = −t|1〉〈2|e−i∆2,1t (45)

× e
i

(
A

(1)
2,1
ω

)
sin
(
ωt+φ

(1)
2,1

)
e
i

(
A

(2)
2,1
2ω

)
sin
(
ωt+φ

(2)
2,1

)
+ h.c.

Using the Jacobi-Anger identity,

eiα sin(ωt+φ) =

∞∑
k=−∞

Jk (α) eik(ωt+φ), (46)

and time-averaging the time-dependent Hamiltonian in
Eq. (45) over a period T = 2π/ω of the drive, we obtain
an effective Hamiltonian of the form

Ĥ2,eff = −|1〉〈2|
∞∑

`=−∞

t̃n,` e
i(n−2`)φ

(1)
2,1+i`φ

(2)
2,1 + h.c. (47)

While this effective Hamiltonian is similar to Eq. (38),
the amplitude renormalization now involves a product of
two Bessel functions:

t̃n,` = t Jn−2`

(
A

(1)
2,1/ω

)
J`
(
A

(2)
2,1/2ω

)
. (48)

Two-particle two-site problem. Now we apply the
results from the first paragraph [Eqs. (34) - (41)] to the
problem of a pair of a and f -particles in a double-well
potential, see Fig. 2. In contrast to the main text, we
consider general parameters in our derivation of the ef-
fective Hamiltonian. Our starting point is the model in
Eqs. (1) - (6) for two sites j1 and j2 = j1 + ey. We
assume Va(j1,2) ≡ 0 but introduce a static energy offset
∆f = U between the two lattice sites for the f -particles,
Vf (j2) = ∆f + Vf (j1). Because our analysis is restricted
to the subspace with one a-particle and one f -particle,
the hard-core constraint assumed in the main text is not
required in this case and the statistics of the two species
are irrelevant.

The two-site problem has four basis states, f̂†jm â
†
jn
|0〉

with m,n = 1, 2. Their corresponding on-site energies
are 0, ∆f = U , U , ∆f + U = 2U , see Fig. 8 (A),
which suppress most coherent tunneling processes be-
cause ∆f = U � |tay|, |tfy |. When the resonant lattice

modulation Ĥω(t) with frequency ω = U is included, all
tunnel couplings are restored. Now we will show that the
effective Floquet Hamiltonian is given by

Ĥ2well
eff = −tay λ eiϕ̂ â

†
j2
âj1 − tfy Λ̂ eiθ̂ τ̂+

〈j2,j1〉+h.c. , (49)

where τ̂+
〈j2,j1〉 = f̂†j2 f̂j1 and

ϕ̂ = φj2,j1 +
(

1− τ̂z〈j2,j1〉
)(π

2
− φj2,j1

)
, (50)

λ = J1 (Aj2,j1/ω) , (51)

θ̂ = 2φj2,j1 n̂
a
j2 , (52)

Λ̂ = J0 (Aj2,j1/ω) n̂aj1 + J2 (Aj2,j1/ω) n̂aj2 . (53)
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FIG. 8. Two-site two-particle problem. (A) We consider
one a and one f -type particle tunneling between the sites j1,2
of a double-well potential. The strong potential gradient ∆f ,
seen by f -particles, and inter-species Hubbard interactions U
suppress coherent tunnelings tay and tfy of a and f -particles,
respectively. (B) As described in the text, the resonant lattice

modulation Ĥω(t) with frequency ω = U = ∆f restores the
tunnel couplings between the four two-particle basis states,
with amplitudes and phases indicated in the figure, where
φ = φj2,j1 . This induces a π-flux in the plaquettes of the
many-body Hilbert space, allowing to implement Z2 LGT.

To derive Eqs. (49) - (53), we first consider the effect

of the coherent driving Ĥω(t), characterized by Eq. (9),
on the matter field â. Because the Hamiltonian

Ĥa = −tay
(
â†j2 âj1 + h.c.

)
+
(
n̂aj2 − n̂

a
j1

)
× 1

2

(
Uτ̂z〈j2,j1〉 + Vω(j2, t)− Vω(j1, t)

)
, (54)

governing the dynamics of â, commutes with the link
variable, characterizing the gauge field, [Ĥa, τ̂z〈j2,j1〉] = 0,

we can treat τ̂z〈j2,j1〉 as a C-number with two possible

values, ±1.

When expressed in terms of the two states |1〉a = â†j1 |0〉
and |2〉a = â†j2 |0〉, the Hamiltonian Ĥa is of the same

form as Ĥ2 in Eq. (34). It has an energy difference of
∆2,1 = Uτ̂z〈j2,j1〉 between the two states, which is caused

microscopically by the inter-species Hubbard interaction
U , see Fig. 8 (A).

According to Eqs. (38), (41), the restored tunnel cou-
pling between |1〉a and |2〉a has a complex phase given
by ϕ = φj2,j1 if ∆2,1 > 0, i.e. for τz〈j2,j1〉 = 1, and it

is ϕ = π − φj2,j1 if ∆2,1 < 0, i.e. for τz〈j2,j1〉 = −1.

Because in both cases the magnitude of the energy mis-
match between the two sites is |∆2,1| = ω, the tunneling
is renormalized by λ = J1 (Aj2,j1/ω). These results con-
firm Eqs. (50), (51).

Next we consider the dynamics of the f -particles, or,
equivalently, the link variable τ̂z〈j2,j1〉. It is governed by

the following Hamiltonian

Ĥf = −tfy
(
τ̂+
〈j2,j1〉 + h.c.

)
+ τ̂z〈j2,j1〉

× 1

2

(
∆f + Uδn̂a + Vω(j2, t)− Vω(j1, t)

)
. (55)

Because Ĥf commutes with the matter field, [Ĥf , n̂aj1 ] =

[Ĥf , n̂aj2 ] = 0, we can treat the particle number imbalance

δn̂a = n̂aj2 − n̂
a
j1 (56)

as a C-number now, which can take two values ±1.

When expressed in terms of the two states |1〉f = f̂†j1 |0〉
and |2〉f = f̂†j2 |0〉, the Hamiltonian Ĥf is of the same

form as Ĥ2 in Eq. (34). It has an energy difference
of ∆2,1 = ∆f + Uδn̂a between the two states, which
is caused microscopically by the inter-species Hubbard
interaction U and the potential gradient ∆f which the
f -particles are subject to, see Fig. 8 (A).

In the case of f -particles, the energy offset ∆2,1 can
only take positive values 0 and 2ω if ∆f = U = ω. From
Eq. (38) it follows that the restored tunnel coupling be-
tween |1〉f and |2〉f has a complex phase given by θ = 0
if ∆2,1 = 0, i.e. for δna = −1, and by θ = 2φj2,j1 if
∆2,1 = 2ω, i.e. for δna = 1. Expressed in terms of n̂aj2 ,
in a subspace where n̂aj1 + n̂aj2 = 1, this result confirms

Eq. (52).
The magnitudes of the restored tunneling couplings of

f -particles in the two-particle Hilbert space depend on
the energy offset ∆2,1. In the case when ∆2,1 = 0, i.e.
for δna = −1, it becomes Λtfy = tfyJ0(Aj2,j1/ω). When
∆2,1 = 2ω, i.e. for δna = 1, it is given another Bessel
function, Λtfy = tfyJ2(Aj2,j1/ω). This result, summarized
in Fig. 8 (B), confirms Eq. (53).

Realizations with ultracold atoms. Next we dis-
cuss realizations of the two-particle two-site problem with
ultracold atoms. The proposed implementation needs
two distinguishable particles with strong inter-species
on-site interaction energy U � ty. The particles oc-
cupy a double well with both species-dependent and
species-independent on-site potentials. For the species-
dependent contribution a static potential is sufficient,
which introduces a tilt ∆f = U between neighboring sites
for the f -particles but leads to zero tilt for the a-particles.
On the other hand, the species-independent contribution
must be time-dependent Vω(t), in order to restore reso-
nant tunneling for both particles.

For ultracold atoms a cubic array of lattice sites with
period ds can be created by three mutually orthogonal
standing waves with wavelengths λ = 2ds. When ex-
tending this simple cubic lattice along one axes by an
additional lattice with twice the period dl = 2ds, a super-
lattice of the form Vs sin2(πy/ds + π/2) +Vl sin2(πy/dl +
φSL/2) arises. In the limit Vl � Vs the superlattice
potential resembles a chain of double wells, where tun-
neling between each double well is suppressed and all
dynamics is restricted to two sites. Tuning the rela-
tive phase φSL allows for dynamic control of the on-
site potentials. In principle the time-dependent modu-
lation Vω(t) can be implemented by a fast modulation
of φSL; however, the modulation frequency may be lim-
ited to small values depending on the implementation of
the lattices. For a superlattice with a common retro-
reflector for instance, the phase φSL can only be varied
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FIG. 9. Flux-attachment in a 2D Hofstadter model. (A) We consider a two-component mixture of a-particles tunneling
on a short square lattice (green) and f -type particles hopping between the sites of a long square lattice (blue). These tunnel
couplings are first suppressed by strong inter-species Hubbard interactions, and for f -particles by an additional static potential
gradient ∆f

xy along ex+ey. (B) Using resonant lattice modulations ∆ω
a,µ and ∆ω

f,xy, tunnel couplings are restored. As a result,
the matter field â is subject to synthetic magnetic fluxes localized around the f -particles, as illustrated in the bottom left corner
in (A). The f -particles are not subject to any synthetic gauge fields. (C) The complex phases and renormalized amplitudes of
the restored tunnelings can be inferred by calculating the energy offsets ∆ = nω involved in the elementary hopping processes.
The results in units of the driving frequency ω, n, are indicated in circles on the respective bonds. If n ≥ 0, the restored phase
on bond 〈i, j〉 is nφ〈i,j〉, where φ〈i,j〉 is the phase of the relative modulation between sites i and j; If n < 0, the restored
phase is |n|(π− φ〈i,j〉). The amplitude renormalization is given by J|n|(A〈i,j〉/ω), where A〈i,j〉 is the amplitude of the relative
modulation between sites i and j.

by changing the frequency of the laser. Alternatively, a
second lattice Vmod sin2(πy/dl + φmod/2) with period dl

and phase φmod = ±π/2 can be introduced, such that it
only affects the on-site potential of a single site of the
double well. Therefore, amplitude modulation Vmod(t)
of this additional lattice induces a relative modulation
of the on-site energies. This leads to a non-zero species-
independent, time averaged energy offset, which can be
compensated by the static phase degree of freedom φSL

of the superlattice.

The two distinguishable particles can be encoded in
different hyperfine sublevels with different magnetic mo-
ments, enabling the direct implementation of the static
species-dependent potentials by a magnetic field gradi-
ent. This is especially appealing for bosonic atoms pos-
sessing a hyperfine sublevel with zero magnetic moment,
which directly results in a vanishing, magnetic field in-
dependent tilt for the a-particles in first order. Never-
theless, this is not essential as tilts for the a-particles
can be compensated by the present species-independent
potentials.

II. Flux-attachment in 2D
Here we discuss a situation where the f -particles become
sources of magnetic flux for a-particles in a 2D Hofs-
tadter model, as illustrated in Fig. 1 (A) of the main
text. Specifically we demonstrate how superlattices can
be used to realize the case when the magnetic flux in all
plaquettes including the f -particle becomes Φ = π/2, i.e.
the f -particle is bound to exactly one flux quantum seen
by the matter field â.

We propose a setup as sketched in Fig. 9 (A). The f -
particles are tunneling between the sites of a long square
lattice, with bare tunneling amplitude tf . In addition,
they are subject to a potential gradient

Vf (j) = j · (ex + ey)
∆f

4
, (57)

where j = (2nx, 2ny) for nx,y ∈ Z denotes the sites of the
long lattice. As before we assume that the f -particles
are hard-core bosons, and we note that a generalization
to fermions is straightforward.

The particles a, describing the matter field, tunnel be-
tween the sites i = (nx, ny), for nx,y ∈ Z, of the short
square lattice, with amplitude ta. They interact with
the f -particles by local Hubbard interactions U , and we
assume that they are hard-core bosons; again, a gen-
eralization to fermions is straightforward. For the a-
particles, no external potential is required, i.e. we con-
sider Va(i) ≡ 0.

To restore the tunnel couplings, which are suppressed
by ∆f = U = ω, we consider a state-dependent driving
term

Ĥω =
∑
j

V ωf (j, t)f̂†j f̂j +
∑
i

V ωa (i, t)â†i âi. (58)

Note that this is different from the situation discussed in
the main text, where both species are subject to the same
driving. However the lattice modulation we consider here
is particularly easy to implement: To restore tunneling of
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the matter field, we require oscillating potential gradients
∆ω
a,µ along µ = x, y directions,

V ωa (i, t) =
∑
µ=x,y

∆ω
a,µ i · eµ cos (ωt+ φµa) . (59)

Similarly, the potential gradient in Eq. (57) is modulated
in order to restore tunneling of the f -particles,

V ωf (j, t) =
∆ω
f,xy

4
j · (ex + ey) cos (ωt+ φf ) . (60)

In the following we consider the phase choice,

φya = π/2, φxa = 0, φf = 0. (61)

Moreover we assume that the dimensionless driving
strengths are given by

∆ω
a,µ/ω = x01 ≈ 1.43, ∆ω

f,xy/ω = x02 ≈ 1.84. (62)

For these values it holds J0(x01) = J1(x01) and
J0(x02) = J2(x02), see Fig. 7.

As described above Eq. (7) in the main text, when
ω � ta, tf the system can be described by an effective
hopping Hamiltonian. For the setup described here, we
obtain the following result,

Ĥeff = −tf
∑
〈j2,j1〉

(
f̂†j2 f̂j1Λ̂〈j2,j1〉 + h.c.

)
− ta

∑
〈i2,i1〉

(
â†i2 âi1 λ̂〈i2,i1〉e

iϕ̂〈i2,i1〉 + h.c.
)
. (63)

Expressions for the amplitudes and phases can be derived
from the energy offsets, as sketched in Fig. 9 (C). This
leads to the following results:

(i) The complex phase for tunneling of f -particles is
always zero, and their amplitude renormalization is given
by the expression

Λ̂〈j2,j1〉 = J1 (x02)
(

1− (δn̂a〈j2,j1〉)
2
)

+ J0 (x02) (δn̂a〈j2,j1〉)
2, (64)

where δn̂a〈j2,j1〉 denotes the imbalance of the matter field

on the bond 〈j2, j1〉, i.e.

δn̂a〈j2,j1〉 = n̂aj2 − n̂
a
j1 . (65)

(ii) The complex phase for tunneling of a-particles de-
pends on the density n̂f of f -particles, as illustrated in
Fig. 9 (A) in the left, lower corner. Written out explicitly,
we obtain the following expression,

ϕ̂〈j,j−ex〉 = 0, (66)

ϕ̂〈j,j−ey〉 = n̂fj π/2, (67)

ϕ̂〈j+ex,j〉 = n̂fj π, (68)

ϕ̂〈j+ey,j〉 = n̂fj π/2. (69)

Note that j corresponds to a site from the long lat-
tice in these expressions. In the remaining cases, not
included above, ϕ̂〈i2,i1〉 = 0. For the chosen driving
strength, see Eq. (62), the amplitude renormalization be-

comes λ̂〈i2,i1〉 = J0(x01) ≈ 0.55 on all bonds.
Eq. (63) realizes a situation where f -particles carry

one unit of magnetic flux, seen by the matter field. As
claimed in the main text, this situation can be imple-
mented using the general scheme proposed in this work.
By varying the driving frequency and the phases of the
lattice modulation, many more interesting Hamiltonians
can be realized with our scheme. An interesting exam-
ple corresponds to the choice J0(∆ω

a,y/ω) = 0, for which
a-particles can only move in the presence of f -particles.

III. Implementing matter coupled to a Z2 gauge
field in the two-leg ladder geometry
Here we describe in detail our implementation scheme
how the matter field can be coupled to a Z2 lattice gauge
field in a two-leg ladder geometry. We start by defining
the model parameters of the considered system and spec-
ify all terms in the general Hamiltonian (6). The setup
is summarized in Fig. 5 of the main text.

Model. We consider a situation where every rung
(jex, jex + ey) of the ladder is occupied by exactly one
f -particle, which requires tfx = 0. This can be achieved
directly by a deep state-dependent lattice, or, alterna-
tively, using a very strong gradient |∆f

x| � U to suppress
the bare tunneling tfx. When ∆f

x = nU is a large inte-
ger multiple n� 1 of the resonant modulation frequency
ω = U , the amplitude of the restored tunneling is renor-
malized by Jn(x) which decays exponentially with n. For
example, for the driving strength x02 = 1.84 discussed in
the main text, J5(x02) = 4.8 × 10−3, and already for
n = 10 we have J10(x02) = 1.1 × 10−7 which is prac-
tically zero. Since every rung is occupied by just one
f -particle, the statistics of the latter become irrelevant
and no hard-core constraint is required.

As in the two-site problem the tunneling tfy is freely

tunable and we require a linear potential gradient ∆f
y =

U = ω along the rungs of the ladder; the latter is resonant
with the lattice modulation frequency ω. Summarizing,
we consider the following parameters,

Vf (j) = jx∆f
x + jyU, tfx = 0. (70)

The a-particles are free to move along both directions
of the ladder, with bare tunnel couplings tax,y. We as-
sume that they are hard-core bosons. This can be real-
ized experimentally by very strong intra-species Hubbard
interactions

Ĥaint =
Ua
2

∑
j

n̂aj (n̂aj − 1), (71)

with Ua � U . When Ua = nU is a large integer mul-
tiple n � 1 of the inter-species interactions U = ω, the
tunneling matrix elements from singly occupied states
into states with two a bosons on one site are strongly
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FIG. 10. Derivation of the effective Hamiltonian. We
consider all possible hopping processes of a-particles in the
presence of different f configurations (A), and all hopping
processes of f -particles in the presence of different a configu-
rations (B). The numbers n in circles indicated the energy dif-
ference in units of ω that is restored by the lattice modulation
when a particle tunnels on the respective bond in positive ex
or ey direction. The phases φ and θ of the respective tunnel-
ings are indicated, and the amplitude renormalization is given
by J|n|(x), where x is the dimensionless driving strength on
the corresponding bond.

suppressed. As discussed above for f -particles, the lat-
tice modulation in Eq. (5) leads to tunneling amplitudes
renormalized by the Bessel functions Jn(x). They are
exponentially small for large n and can thus be neglected
in the effective Hamiltonian.

To control the phases ϕ̂x of the tunnel couplings for
a-particles along the legs of the ladder, restored by the
lattice modulation (5), we consider an additional gradient
∆a
x = U = ω in x-direction,

Va(j) = ∆a
x jx, ∆a

x = ω. (72)

The number of a-particles Na in the system is freely tun-
able from Na = 0 to Na = 2Lx.

Finally, the lattice modulation (5) is defined by a time-
dependent gradient seen equally by both species,

Vω(j, t) = (V xω jx + V yω jy) cos(ωt+ φ), φ = 0. (73)

In the following derivation of the effective Floquet Hamil-
tonian we consider arbitrary amplitudes V x,yω , but we as-
sume that the phase of the modulation is trivial, φ = 0.
Later we will show that the model has a Z2 gauge struc-
ture for the specific choice V xω /ω = V yω /ω = x02.

Effective Hamiltonian. Now we apply the general
formalism discussed above and derive the effective Hamil-
tonian Ĥeff of the form Eq. (7) which governs the dynam-
ics of the system in the strong driving limit ω � |tαµ | for

α = a, f and µ = x, y. To derive the phases, ϕ̂ and θ̂,

and amplitudes, λ̂ and Λ̂, of the restored tunneling ma-
trix elements, we consider all possible hopping processes
involving one, two or three particles.

By going through all cases, see Fig. 10, we arrive at

the following expressions for the phases,

ϕ̂y〈i,j〉 = π(1− τ̂z〈i,j〉)/2, ϕ̂x〈i,j〉 = 0, (74)

θ̂y〈i,j〉 = 0. (75)

For the amplitude renormalizations we obtain

λ̂y = J1

(
V yω
ω

)
, (76)

and assuming that i = j + ex, we get

λ̂x〈i,j〉 =
1

2

(
1 + τ̂z〈j,l〉τ̂

z
〈i,k〉

)
J1

(
V xω
ω

)
+

1

4
×{[

1 + (−1)jy τ̂z〈j,l〉

] [
1− (−1)jy τ̂z〈i,k〉

]
J2

(
V xω
ω

)
+
[
1− (−1)jy τ̂z〈j,l〉

] [
1 + (−1)jy τ̂z〈i,k〉

]
J0

(
V xω
ω

)}
.

(77)

Here l = j ± ey and k = i ± ey denote the lattice sites
on the opposite ends of the rungs including j and i. For
the calculation of the amplitude renormalization for f -
particles, we assume that i = j + ey and obtain

Λ̂y〈i,j〉 =
1

4

{[
1 + (−1)n̂

a
j

] [
1− (−1)n̂

a
i

]
J2

(
V yω
ω

)
+
[
1− (−1)n̂

a
j

] [
1 + (−1)n̂

a
i

]
J0

(
V yω
ω

)}
+

1

2

(
1 + (−1)n̂

a
j +n̂ai

)
J1

(
V yω
ω

)
. (78)

In the main text we discuss the effective Hamiltonian
for specific values of the driving strengths,

V xω /ω = V yω /ω = x02 ≈ 1.84. (79)

Because J0(x02) = J2(x02) the expressions (77), (78)
simplify significantly. The amplitude renormalization

λ̂y〈i,j〉 depends only on the product τ̂z〈j,l〉τ̂
z
〈i,k〉, and Λ̂ de-

pends only on the total number of a-particles, modulo
two, on the rung, (−1)n̂

a
j +n̂ai . Because the phase ϕ̂y takes

values 0 or π, see Eq. (74), it follows that

e
iϕ̂y〈i,j〉 = τ̂z〈i,j〉 = ±1. (80)

For the choice of the driving strengths in Eq. (79), the
effective Hamiltonian Eq. (19) of the main text is ob-
tained. Written in terms of the plaquette operators from
Eq. (20), the amplitude renormalizations in Eqs. (77),
(78) become

λ̂x〈i,j〉x =
1

2

(
1− B̂p(〈i,j〉x)

)
J0(x02)

+
1

2

(
1 + B̂p(〈i,j〉x)

)
J1(x02) (81)
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for a-particles, where p(〈i, j〉x) denotes the plaquette in
the ladder which includes bond 〈i, j〉x; in Eq. (27) of the

main text, B̂p(〈i,j〉x) is written out explicitly in terms of
the Z2 gauge field τ̂z on the rungs. For f -particles,

Λ̂y〈i,j〉y =
1

2

(
1− Q̂iQ̂j

)
J0(x02)

+
1

2

(
1 + Q̂iQ̂j

)
J1(x02). (82)

Realizations with ultracold atoms. Here we want
to sketch a realization of the presented ladder model
with ultracold atoms. The proposed realization is a di-
rect extension of the two-site two-particle problem dis-
cussed before, by coupling the double well potentials for
the a-particles along the orthogonal x-direction. Note,
it is essential that tunneling for the f -particles is sup-
pressed. To this end, either the tunneling rates tµx it-
self can be different by using a species-dependent lattice
along x, or the sites can be energetically detuned for
the f -particles by applying a species-dependent gradient
potential ∆f

x � tfx. To engineer the appropriate com-
plex tunneling matrix elements for a-particles, neighbor-
ing sites along x need to be tilted by ∆a

x = U and mod-
ulated in time using dynamic gradient potentials.

IV. Gauge structure of two-leg ladders
In this section we study the Z2 gauge structure of the
effective Hamiltonians Ĥ2leg, Ĥsimp

2leg in the two-leg ladder

geometry, see Eqs. (19), (24). To this end we introduce
generalizations of these models which have local Z2 gauge
invariance on all sites. Using the approach introduced at
the end of the main text, these extended models can also
be directly realized experimentally. We will demonstrate
that their phase diagram is identical to that of the sim-
pler models Eq. (19) and (24), although the local order
parameters of the latter have to be replaced by non-local
gauge-invariant versions in the extended models which
we derive here.

Fully Z2 gauge invariant formulation. Now we
introduce an extended Hilbert space and introduce addi-
tional link variables τz〈i,j〉x on the legs of the ladder.

Effective Hamiltonian.– The original Hamiltonian (19)
is obtained from the more general one,

H̃2leg = −
∑
〈i,j〉x

(
tax λ̂

x
〈i,j〉x â

†
j âi τ̂

z
〈i,j〉x + h.c.

)
−
∑
〈i,j〉y

[
tay λ̂

y
(
â†j âiτ̂

z
〈i,j〉y + h.c.

)
+ tfy Λ̂y〈i,j〉y τ̂

x
〈i,j〉y

]
,

(83)

by fixing the additional link variables and working in the
sector with τ̂z〈i,j〉x ≡ 1. Note that the resulting physics

is unaffected because the additional link variables are all
conserved quantities, [H̃2leg, τ̂

z
〈i,j〉x ] = 0. To obtain the

generalized gauge-invariant expressions for λ̂µ〈i,j〉x from

Eq. (81), B̂p is replaced by the 2D plaquette term,

B̂p =
∏

〈i,j〉∈∂p

τ̂z〈i,j〉, (84)

which includes link variables τ̂z〈i,j〉 on the legs of the lad-

der. Similarly, a generalization of Eq. (24) is obtained,

H̃simp
2leg = −

∑
〈i,j〉x

t̃ax

(
â†j âiτ̂

z
〈i,j〉x + h.c.

)
−
∑
〈i,j〉y

[
t̃ay

(
â†j âiτ̂

z
〈i,j〉y + h.c.

)
+ t̃fy τ̂

x
〈i,j〉y

]
. (85)

Symmetries.– The operators Q̂j and B̂p are both in-
variant under unitary Z2 gauge transformations in 2D,
defined by

Ĝj = Q̂j

∏
i:〈j,i〉

τ̂x〈j,i〉, (86)

where the product on the right includes all links 〈j, i〉
connected to site j. By extending the Hilbert space and
allowing arbitrary configurations τ̂z〈i,j〉x = ±1 of the ad-

ditional link variables on the legs, we promote Eq. (19) to
a genuine Z2 LGT characterized by local instead of global
symmetries: we confirm below that [H̃2leg, Ĝj ] = 0 and

[H̃simp
2leg , Ĝj ] = 0 for all j.

U(1) and Z2 gauge structures.– The simplest cold-atom
setups, with link variables τz〈i,j〉y = ±1 on the rungs only,

implement directly the sector τ̂z〈i,j〉x ≡ 1 of the extended

model (83). If, on the other hand, we want to realize
Eq. (83) in a different sector of the Hilbert space – e.g.

where the Z2 Gauss law Ĝj |ψ〉 = 1 for all j is satisfied –
we need to involve basis states with τ̂z〈i,j〉x = ±1.

Further below we make use of the local U(1) gauge
invariance of the experimentally more easily realizable
model (19) and show that all configurations τ̂z〈i,j〉x = ±1

are equivalent up to re-labelings âj → ±âj and τ̂z〈i,j〉y →
±τ̂z〈i,j〉y on the rungs. We show explicitly that all relevant

observables of the model (83) with the enlarged Hilbert
space can be accessed experimentally by realizing only
the sector with τ̂z〈i,j〉x ≡ 1 on the legs. In this sense,

the physical properties of the fully gauge-invariant model
Eq. (83) can be accessed by implementing the simpler
model in Eq. (19).

Z2 gauge invariant order parameters.– Next we formu-
late the order parameters of the original model (24) in a
fully gauge-invariant way. As shown explicitly below, a
measurement of 〈τ̂z〈i,j〉y 〉 in the sector where τ̂z〈i,j〉x = 1,

corresponds to a measurement of a Z2 Wilson line 〈Ŵj〉
in the gauge invariant sector where the Z2 Gauss law is
satisfied, i.e. Ĝj |ψ〉 = 1 for all j. The Wilson line,

Ŵj =
∏

〈k,i〉∈Cjx

τ̂z〈k,i〉, (87)
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is defined as a product over all links 〈k, i〉 along a contour
Cjx ; specifically, we consider contours which start and
end at the two sites on one of the edges of the ladder
and which are oriented along x except at a single bond
with x-coordinate jx where Cjx points along y-direction.
Indeed, after setting τ̂z〈k,i〉x = 1 on all links 〈k, i〉x along

x in Eq. (87), Ŵj = τ̂z〈i,j〉y reduces to the Z2 gauge field

on link 〈i, j〉y.
Hence, the non-trivial phase in the gauge field sector is

associated with a non-local string order parameter – the
Z2 Wilson line – when the Z2 Gauss law is satisfied. Fully
closed Wilson loops in the gauge-invariant model (85) can
be treated in a similar manner. They can be experimen-
tally accessed in state-of-the-art cold atom experiments
in the sector with τ̂z〈i,j〉x = 1 on the legs, by measur-

ing correlation functions W (d) = 〈τ̂z〈i,j〉y τ̂
z
〈i+dex,j+dex〉y 〉.

These observables are discussed in the main text.
Z2 gauge invariance. Now we provide a proof that

Eq. (83) is invariant under the Z2 gauge transformations

Ĝj introduced in Eq. (86). This property directly carries
over to Eq. (85), which is a special case of the more gen-
eral Hamiltonian (83). First we note that the plaquette

operators B̂p, see Eq. (84), are Z2 gauge invariant,

[B̂p, Ĝj ] = 0 (88)

for all p and j. Every pair of operators B̂p and Ĝj in-
volves either zero or two common links `1,2. In the first
case Eq. (88) is trivially true. In the second case one
obtains products like τ̂z`1 τ̂

z
`2
τ̂x`1 τ̂

x
`2

= τ̂x`1 τ̂
x
`2
τ̂z`1 τ̂

z
`2

, because
Pauli matrices anti-commute. The Z2 gauge invariant
plaquette terms correspond to the Z2 magnetic field.

Using Eq. (88) it is easy to see that [λ̂µ〈i,j〉, Ĝk] = 0 and

[Λ̂y〈i,j〉, Ĝk] = 0 for all 〈i, j〉 and k, because λ̂µ〈i,j〉 and

Λ̂y〈i,j〉 depend only on the Z2 gauge invariant magnetic

field, B̂p, and charge, Q̂j . Obviously [τ̂x〈i,j〉, Ĝk] = 0,

because Ĝk is a function of τ̂x〈k,l〉 and Q̂k only. Fi-

nally, the tunneling terms are also Z2 gauge invariant,

[â†i âj τ̂
z
〈i,j〉, Ĝk] = 0, because the Z2 charges on sites i

and j change sign and τ̂z〈i,j〉 anti-commutes with τx〈i,j〉
appearing in Ĝi and Ĝj . Combining these results, it fol-
lows that Eq. (83) is Z2 gauge invariant.

Auxiliary link variables. In the main text we have
suggested to realize the model Eq. (19) first and intro-
duced additional auxiliary link variables τ̂z〈i,j〉x on the

legs of the ladder by hand; in the physical model they
are fixed to τ̂z〈i,j〉x ≡ 1. Because the effective Hamil-

tonian commutes with τ̂z〈i,j〉x , the additional link vari-

ables are conserved quantities and remain fixed during
time evolution. Now we demonstrate that the model (83)
is experimentally accessible for arbitrary configurations
τ̂z〈i,j〉x = ±1 on the legs, i.e., not only for τ̂z〈i,j〉x ≡ 1

which can be directly implemented experimentally.
Consider the effective Hamiltonian H̃2leg[τz〈i,j〉x ] from

Eq. (83) for a given configuration of the link variables on

the legs, τz〈i,j〉x = ±1. We will now explicitly construct a

unitary transformation Û for which

Û†H̃2leg[τz〈i,j〉x ]Û = H̃2leg[σz〈i,j〉x ], σz〈i,j〉x ≡ 1. (89)

As discussed previously, the Hamiltonian on the right
hand side can be directly accessed experimentally. Hence,
by applying the unitary basis transformation Û to the
results of a measurement in the experimental basis allows
to access observables for the Hamiltonian H̃2leg[τz〈i,j〉x ].

To construct Û , we first define string variables

Σν(jx) =
∏
ix<jx

τz〈(ix+1,ν),(ix,ν)〉x = ±1, (90)

where ν = 0, 1 denotes the y coordinate of the leg on
which the string is defined. Next we perform U(1) gauge
transformations on the a-particles,

ÛU(1)
ν =

∏
jx

(Σν(jx))n̂
a
(jx,ν) , (91)

such that

(ÛU(1)
ν )† â(jx,ν) Û

U(1)
ν = Σν(jx) â(jx,ν). (92)

This is sufficient to bring the hopping terms of the matter
field â on the legs to the desired form,

(ÛU(1)
ν )† â†(jx+1,ν)â(jx,ν)τ

z
〈(jx+1,ν),(jx,ν)〉x Û

U(1)
ν

= â†(jx+1,ν)â(jx,ν), (93)

because Σν(jx+1)Σν(jx) = τz〈(jx+1,ν),(jx,ν)〉x and making

use of (τz〈(jx+1,ν),(jx,ν)〉x)2 = 1.

The U(1) gauge transformations, defined as ÛU(1) =∏
ν=0,1 Û

U(1)
ν , also change the hoppings on the rungs,

(ÛU(1))† â†(jx,1)â(jx,0)τ
z
〈(jx,1),(jx,0)〉y Û

U(1)

= Σ1(jx)Σ0(jx) â†(jx,1)â(jx,0)τ
z
〈(jx,1),(jx,0)〉y . (94)

To cancel the additional term Σ1(jx)Σ0(jx), we perform
another basis transformation, this time involving the link
variables on the rungs,

V̂ =
∏
jx

exp

[
i
π

4

(
1−

∏
ν

Σn(jx)
)
τ̂x〈(jx,1),(jx,0)〉y

]
. (95)

This transformation leads to

V̂ †τ̂z〈(jx,1),(jx,0)〉y V̂ = Σ1(jx)Σ0(jx) τ̂z〈(jx,1),(jx,0)〉y , (96)

i.e. the link variable on the rung changes sign if
Σ1(jx)Σ0(jx) = −1.

Combining these expressions, we obtain the desired re-
sult in Eq. (89): The unitary transformation is

Û = V̂
∏
ν=0,1

ÛU(1)
ν , (97)
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and it consists of a combination of U(1) gauge transfor-
mations of the a-particles and sign-changes of the link
variables on the rungs,

Û†τ̂z〈i,j〉y Û = ±τ̂z〈i,j〉y , (98)

depending explicitly on the configuration of the auxiliary
link variables τz〈i,j〉x on the legs.

Accessing physical observables. Now we demon-
strate how the unitary transformation (97) allows to mea-
sure the most important Z2 gauge invariant quantities in
the subspace of states |ψ〉 obeying the Z2 Gauss law,

Ĝj |ψ〉 = 1, ∀j. (99)

We show that the expectation values of certain observ-
ables specified below, 〈Ô〉, can be obtained, when only
the subspace with τ̂z〈i,j〉x = 1 is experimentally accessible.

For concreteness, we consider a ground state |Ψ0〉 of

Eq. (83) which satisfies Ĝj |Ψ0〉 = 1 for all sites j. Be-

cause τ̂z〈i,j〉x and Ĝk do not commute in general, the

ground state |Ψ0〉 becomes a superposition of all pos-
sible configurations τz〈i,j〉x of the auxiliary link variables

on the legs,

|Ψ0〉 =
∑
τz〈i,j〉x

Ψ0[τz〈i,j〉x ] |τz〈i,j〉x〉 ⊗ |Φ[τz〈i,j〉x ]〉. (100)

Here the wavefunction |Φ〉 involves only the matter
field â and the link variables on the rungs. Proper
normalization requires

∑
τz〈i,j〉x

|Ψ0[τz〈i,j〉x ]|2 = 1 and

〈 Φ[τz〈i,j〉x ] | Φ[τz〈i,j〉x ] 〉 = 1.

Next we make use of the unitary transformations Û
in Eq. (97) to relate all wavefunctions |Φ[τz〈i,j〉x ]〉, which

still explicitly depend on the configuration τz〈i,j〉x , to the

ground state |Φ0〉 = |Φ[σz〈i,j〉x ]〉, with σz〈i,j〉x ≡ 1 for all

links 〈i, j〉x, corresponding to the experimentally relevant
sector of the Hilbert space. After replacing the numbers
τz〈i,j〉x in the definition of Û above with operators τ̂z〈i,j〉x ,

we obtain

|Ψ0〉 =
∑
τz〈i,j〉x

Ψ0[τz〈i,j〉x ] Û |τz〈i,j〉x〉 ⊗ |Φ0〉. (101)

Now we will prove the following statement: Consider
observables Ô in the extended Hilbert space (i.e. includ-
ing link variables on the legs) for which

〈τz〈i,j〉x |〈Φ| Û
†ÔÛ |Φ〉|τz〈i,j〉x〉 =

= δ(τz〈i,j〉x , τ
z
〈i,j〉x) 〈σz〈i,j〉x |〈Φ| Ô |Φ〉|σ

z
〈i,j〉x〉, (102)

with σz〈i,j〉x ≡ 1 the trivial configuration. Then

〈Ψ0| Ô |Ψ0〉 = 〈σz〈i,j〉x |〈Φ0| Ô |Φ0〉|σz〈i,j〉x〉, (103)

i.e. the observable Ô can be measured in the experimen-
tally accessible part of the Hilbert space with τ̂z〈i,j〉x ≡ 1.

For the proof we express 〈Ψ0| Ô |Ψ0〉 using Eq. (101).
Because of the Dirac delta function in Eq. (102), we ob-
tain only one sum over all configurations τz〈i,j〉x of the

auxiliary link variables on the legs. Using the normaliza-
tion condition for the amplitudes |Ψ0[τz〈i,j〉x ]| introduced

above, Eq. (103) follows immediately.
Now we apply the above theorem and show that the

following important observables can be measured in the
experimentally accessible part of the Hilbert space with
τ̂z〈i,j〉x ≡ 1 on the legs of the ladder:

(i) The Z2 electric field on the rungs, Ô = τ̂x〈i,j〉y .

(ii) The number density Ô = n̂aj of the matter field.

(iii) The Z2 magnetic field (plaquette terms), Ô = B̂p.

(iv) Z2 gauge invariant rung tunneling, Ô = τ̂z〈i,j〉y â
†
i âj .

(v) Z2 Wilson loops, Ô =
∏
〈k,i〉∈C τ̂

z
〈k,i〉 for contours C

which are closed or start at the ends of the ladder.

In all cases, we proof that condition (102) is satisfied
for the observables. For cases (i) and (ii) this is triv-

ial, because [Ô, Û ] = 0 and Ô has no effect on the link
variables on the legs. The other cases require more care.

For (iii) consider a plaquette with sites i, j = i + ey,
k = i + ex and l = j + ex. Next we note that, by
construction of the unitary transformation Û ,

Û†τ̂z〈i,j〉y τ̂
z
〈k,l〉y Û = B̂p(〈i,k〉x), (104)

Û†τ̂z〈k,i〉x τ̂
z
〈l,j〉xÛ = τ̂z〈k,i〉x τ̂

z
〈l,j〉x . (105)

Using (τ̂z〈k,i〉x τ̂
z
〈l,j〉x)2 = 1 we thus obtain

〈τz〈i,j〉x |〈Φ| Û
†B̂p(〈i,k〉x)Û |Φ〉|τz〈i,j〉x〉

= 〈τz〈i,j〉x |〈Φ| τ̂
z
〈i,j〉y τ̂

z
〈k,l〉y |Φ〉|τ

z
〈i,j〉x〉

= δ(τz〈i,j〉x , τ
z
〈i,j〉x) 〈Φ| τ̂z〈i,j〉y τ̂

z
〈k,l〉y |Φ〉

= δ(τz〈i,j〉x , τ
z
〈i,j〉x) 〈σz〈i,j〉x |〈Φ| B̂p(〈i,k〉x) |Φ〉|σz〈i,j〉x〉.

(106)

To show (iv), we note that

Û†τ̂z〈i,j〉y Û = Σ̂0(jx)Σ̂1(jx) τ̂z〈i,j〉y , (107)

Û† â†i âj Û = Σ̂0(jx)Σ̂1(jx) â†i âj , (108)

from which the rest follows easily.
The proof of (v) for closed contours C is similar to the

proof of (iii). We consider the contour Cjx starting at
the end of the ladder in more detail; See Fig. 4 (C) in
the main text for an illustration. We start by noting
that the relevant Wilson line Ŵj = Σ̂0(jx)τ̂z〈i,j〉y Σ̂1(jx).

Hence the effect of the unitary transformation Û is

Û† Ŵj Û =
(

Σ̂0(jx)
)2

τ̂z〈i,j〉y

(
Σ̂1(jx)

)2

= τ̂z〈i,j〉y , (109)
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FIG. 11. Wilson loop scaling. Using DMRG we calculate
the ground state expectation value of the Wilson loop oper-
ator Ŵ (d), see sketch, for different sizes d of the loop. The
system has Lx = 96 rungs and is in a rung-Mott phase, corre-
sponding to the commensurate filling Na = Lx of the matter
field â; the ratio t̃fy/t̃

a
x = 0.54 is fixed, and we evaluated Wil-

son loops in the center of the system in order to avoid edge
effects.

because (Σ̂i(jx))2 = 1 for i = 1, 2. From here the result
follows easily.

Wilson loops. In Fig. 11 we present numerical re-
sults for the Wilson loops. We applied the theorem
from above and calculated expectation values W (d) =
〈τ̂z〈i,j〉τ̂

z
〈i+dex,j+dex〉〉 in the sector with τ̂z`x = 1 on links

`x along x-direction.
In the phase with a Wilson-line order parameter at

t̃ay/t̃
a
x = 1.3 (top red curve in Fig. 11), where the Z2

magnetic field dominates, the Wilson loop W (d) quickly
converges to a finite value for distances d ≥ 5. This is
indicative of a deconfined phase of the Z2 gauge field.
In the disordered phase at t̃ay/t̃

a
x = 0.8 (blue in Fig. 11),

where the Z2 electric field dominates, the Wilson loop
W (d) slowly decays to zero at large distances. This be-
havior is reminiscent of a confined phase of the Z2 gauge
field. From the results in Fig. 11, it is difficult to deter-
mine conclusively if the decay of W (d) at large distances
follows a power-law, or has a weak exponential depen-
dence.

V. Phase transitions of gauge and matter fields
In this section, we provide additional details about the
observed phase transitions in the gauge and charge sec-
tors of the two-leg ladder Hamiltonian in Eq. (24). While
these transitions appear independently of each other in
certain parameter regimes, we identify limits in which
their interplay becomes important and they merge into
a single transition point. This behavior is reminiscent of
higher-dimensional realizations of the Z2 LGT [20–22].

Superfluid-to-Mott transition. In addition to the
parity operator Eq. (25), which we used in the main text
to characterize the superfluid (SF) to Mott transition, we
study the behavior of correlation functions at long dis-
tances. In the gapless SF regime, these are expected to

have a power-law decay, with an exponent determined by
the Luttinger constant K. We consider the single par-

ticle correlation function g
(1)
0 (ix, jx) = 〈â†ixex âjxex〉. As

discussed for example in Ref. [47], it is related to the

Luttinger constant by g
(1)
0 (ix, jx) ∼ |ix− jx|−

1
2K . To ob-

tain a fully Z2 gauge-invariant observable, we introduce
a string of τ̂z〈i,j〉x operators on the considered leg of the

ladder. This allows to extract K from

g(1)(ix, jx) = 〈â†ixex

( ix−1∏
lx=jx

τ̂z〈(lx+1)ex,lxex〉

)
âjxex〉

∼ |ix − jx|−
1

2K (110)

in the fully Z2 gauge invariant formulation Eq. (85).
Numerically, we find that the gauge-invariant two-

point correlator g
(1)
0 (ix, jx) exhibits the expected power-

law decay at large distances when Na 6= Lx. The ex-
tracted Luttinger constants K are shown in Fig. 12 for
three different ratios t̃ay/t̃

a
x. At commensurate filling,

Na = Lx, all curves collapse at K = 1/2. In this regime,
and for sufficiently large values of t̃ay/t̃

a
x (small values of

t̃ax/t̃
a
y), we find that the correlation functions g

(1)
0 (ix−jx)

decay exponentially at large distances, see Fig. 13 (A).
In these cases the Luttinger constant K is determined by
a fit to the correlation function at short distances, where
the exponential decay has no effect yet.

The observed exponential decay of the single-particle
correlation function, as expected for a gapped Mott
phase, is consistent with our results for the parity op-
erator. The conclusion that the system is in an incom-
pressible Mott state for sufficiently large values of t̃ay/t̃

a
x

is further supported by the value of the Luttinger con-
stant, which approaches K = 1/2 in the direct vicinity of
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1

FIG. 12. The Luttinger-K parameter, as extracted from

two-point correlators g
(1)
0 (ix, jx). In the immediate vicinity of

the Mott transition, at the commensurate filling Na = Lx, the
Luttinger constant approaches K = 1/2. Exactly at Na = Lx
we extract the exponent from length scales smaller than the
finite correlation length ξ introduced by the Mott gap. We
use DMRG simulations in system with Lx = 96 rungs.



21

10-1 100 101
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
10-8

10-6

10-4

10-2

100

FIG. 13. Rung-Mott state at commensurate filling. (A) The single-particle correlation function g(1)(ix, jx) is shown as a
function of the distance |ix − jx| at the commensurate filling Na = Lx and for different ratios of t̃ax/t̃

a
y; we fixed t̃fy/t̃

a
y = 1. For

t̃ax/t̃
a
y . 1/3, clear exponential decay is found, as expected in an incompressible Mott state. (B) This picture is supported by

the sizable Mott gap ∆ in this regime. For larger values t̃ax/t̃
a
y > 1/3, the observed Mott gap is consistent with being caused

entirely by finite-size effects. (A) We use DMRG simulations in a two-leg systems with Lx = 96. (B) The TDL of the Mott
gap is obtained by performing finite size extrapolation considering Lx = Na = 24, 36, 48, 60, 72, 84, 96.

the commensurate point. Indeed, this is the value of K
expected at the critical point where the Mott transition
takes place [52]. These findings are also in very good
agreement with the results obtained for a single compo-
nent Bose system on a two-leg ladder, both in presence
[51, 59, 60] and in the absence [47] of synthetic magnetic
flux.

The commensurate case Na = Lx. As explained
in the main text, the transition in the gauge field sector
corresponds to a spontaneous breaking of the global Z2

symmetry, see Eq. (23). It is easy to diagnose from the
order parameter 〈τ̂z〈i,j〉y 〉 6= 0. Now we study in more de-

tail its interplay with the superfluid-to-Mott transition,
which takes place at commensurate filling, Na = Lx.

In Fig. 13 (A) we already found clearly exponentially
decaying single-particle correlation functions when t̃ax/t̃

a
y

is small. For values t̃ax/t̃
a
y > 1/3 at t̃fy = t̃ay, the single-

particle correlations are still clearly decaying, but the
decay is also consistent with a power-law which would
be expected in a gapless SF phase. A similar result is
obtained in Fig. 13 (B) where we study the Mott gap,

∆ = E0(Na + 1) + E0(Na − 1)− 2E0(Na). (111)

While a sizable Mott gap is found for small values of
t̃ax/t̃

a
y, the regime where t̃ax/t̃

a
y is large is consistent with

a compressible SF state or with an incompressible Mott
state with a vanishingly small gap. The second scenario
is indeed realized for hard-core bosons in a two-leg ladder
without magnetic flux [47].

To gain more understanding of the phase diagram in
the commensurate case, we performed different parame-
ter scans as indicated in Fig. 14 (A). We found that for
small values of t̃fy/t̃

a
y the system is always in the ordered

phase where the Z2 magnetic field dominates. Around
t̃fy = t̃ay we observe a transition to the disordered phase.
In that regime we find that the Mott gap and the corre-
lation functions are consistent with a gapless SF phase,

or with a Mott phase with a small enough gap. The
conjectured phase diagram is sketched in Fig. 14 (A).

Effective spin model in the Mott regime. To
shed more light on the transition in the gauge field sector
and its interplay with the charge sector we now derive an
effective low-energy spin model which is valid deep in the
rung-Mott regime at the commensurate filling Na = Lx.
To this end we consider small values of t̃ax � ∆, where ∆
denotes the Mott gap, see Eq. (111).

Our starting point is the decoupled rung limit, t̃ax = 0.
We consider the case when every rung is occupied by
exactly one boson, Na = Lx. Because of the Z2 gauge
invariance of the double-well system with sites j1,2, the
single rung ground state is two-fold degenerate. The two
ground states have energy −ε, where

ε =

√(
t̃fy
)2

+
(
t̃ay
)2
, (112)

and they can be written as

|↑〉 =
1

2
√
ε

[
t̃ay√
ε+ t̃fy

(
|L,−〉 − |L,+〉

)

−
√
ε+ t̃fy

(
|R,+〉+ |R,−〉

)]
, (113)

|↓〉 =
1

2
√
ε

[
t̃ay√
ε− t̃fy

(
|L,−〉+ |L,+〉

)

+

√
ε− t̃fy

(
|R,+〉 − |R,−〉

)]
. (114)

Here |µ, τz〉, with µ = L,R denotes the basis states with
an a-particle on the left (L) site j1 [respectively, the right
(R) site j2] and the gauge field in an eigenstate of τ̂z with
eigenvalue τz = ±1.
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FIG. 14. Conjectured phase diagram of the Z2 LGT
on a two-leg ladder. (A) We performed numerical DMRG
simulations along the cuts indicated by gray lines. For small
values of t̃fy/t̃

a
y the system breaks the global Z2 symmetry and

is in an ordered phase dominated by the Z2 magnetic field.
Here we always expect a finite Mott gap, in analogy with
models of hard-core bosons in a constant field [47, 51]. For
larger values of t̃fy/t̃

a
y, the gauge field remains in a disordered

phase and it is unclear whether the system remains in a Mott
phase. Deep in the Mott regime (green shaded) the system
can be mapped onto an effective spin-1/2 chain (B). It is
described by an XXZ model with coupling constants Jx and
Jy = Jz which are shown here as a function of t̃fy/t̃

a
y. In the

inset we plot the anisotropy of the interactions, (Jx−Jy)/Jx,
indicating that the ground state always breaks the global Z2

symmetry deep in the Mott regime.

In the subspace spanned by the two spin states | ↑〉,
|↓〉 the Ŝz operator is identical to the generator ĝ1 of Z2

gauge transformations on the rung, defined in Eq. (15):

ĝ1| ↑〉 = Ŝz| ↑〉 = | ↑〉 and ĝ1| ↓〉 = Ŝz| ↓〉 = −| ↓〉. The
two-fold degeneracy of the rung ground state can thus be
understood as a consequence of the Z2 gauge invariance
of the decoupled rungs.

The ground state energy of a state with two hard-core
bosons on one rung is given by −t̃fy , because only the f -
particles can tunnel between the two sites j1,2. Hence we

obtain an asymptotic expression for the size of the Mott
gap in the limit t̃ax → 0,

∆ =

√(
t̃fy
)2

+
(
t̃ay
)2 − t̃fy . (115)

When t̃fy < t̃ay, we can thus approximate ∆ ≈ t̃ay. When

t̃fy > t̃ay it follows ∆ ≈ 0.5
(
t̃ay
)2
/t̃fy . These estimates de-

termine where the rung-Mott state can be described as
a product of singly-occupied rungs, each representing a
localized magnetic moment with spin S = 1/2 accord-
ing to Eqs. (113), (114). This corresponds to the green
[striped] region illustrated schematically in Fig. 14 (A).

To include the effects of tunneling t̃ax along the legs of
the ladder, we perform second order perturbation theory,
effectively integrating out the virtual intermediate states
with two bosons on one rung. This leads to an effective
magnetic Hamiltonian, which can be formulated in terms
of the spin-operators Ŝαj with α = x, y, z defined for the
two spin states |↑〉, |↓〉 on rung j = 1...Lx. To make our
result more transparent, we perform an additional spin
transformation and introduce

S̃xj = (−1)jŜxj , (116)

S̃yj = (−1)jŜyj , (117)

S̃zj = Ŝzj . (118)

In terms of these operators, the effective Hamiltonian
becomes an anti-ferromagnetic XXZ model,

Ĥeff = −
(
ε+

Jx
4

)
Lx+

+

Lx∑
j=1

[
JxS̃

x
j+1S̃

x
j + Jy

(
S̃yj+1S̃

y
j + S̃zj+1S̃

z
j

)]
. (119)

The coupling constants are given by

Jx =
(
t̃ax
)2 [

η +
(
t̃ay
)2
/ε3
]
≥ 0, (120)

Jy = Jz =
(
t̃ax
)2 [

η −
(
t̃ay
)2
/ε3
]
≥ 0, (121)

where

η =

(
1 + t̃fy/ε

)2
2
(
ε− t̃fy

) +

(
1− t̃fy/ε

)2
2
(
ε+ t̃fy

) . (122)

The couplings Jx, Jy = Jz are plotted as a function
of t̃fy/t̃

a
y in Fig. 14 (B). In the limiting cases t̃fy/t̃

a
y =

0, respectively t̃fy/t̃
a
y = ∞, we obtain an Ising anti-

ferromagnet (AFM), respectively an isotropic Heisenberg
AFM. At intermediate values of t̃fy/t̃

a
y the XXZ model has

an Ising anisotropy with Jx > Jy = Jz, which becomes
small when t̃fy > t̃ay, see inset in Fig. 14 (B).

The ground state of the obtained XXZ model with
Jx ≥ Jy = Jz spontaneously breaks the discrete Z2 sym-

metry, S̃x → −S̃x and S̃y → −S̃y but S̃z → S̃z, unless
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Jx = Jy = Jz. In the symmetry-broken phase, the or-

der parameter (−1)j〈S̃xj 〉 = 〈Ŝxj 〉 corresponds to a non-
vanishing expectation value of the Z2 gauge field 〈τ̂z〈i,j〉y 〉
on the rungs. Therefore we conclude that the Z2 LGT
on the two-leg ladder is in the ordered phase, where the
Z2 magnetic field dominates, whenever the Mott gap is
sizable. The transition to a disordered regime, where the
Z2 electric field dominates, is of Berezinskii-Kosterlitz-
Thouless (BKT) type and takes place when t̃fy/t̃

a
y →∞.

This is also where the Mott gap vanishes, and two de-
coupled SFs, described by Luttinger liquids (LLs), are
obtained. These results, which we summarize in Fig. 14
(A), indicate an interesting interplay of the phase tran-
sitions in the gauge field and the charge sector when the
filling fraction with bosons is commensurate, Na = Lx.
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Eckardt. Floquet realization and signatures of one-
dimensional anyons in an optical lattice. Phys. Rev. Lett.,
117:205303, Nov 2016.

[15] Logan W. Clark, Brandon M. Anderson, Lei Feng,
Anita Gaj, K. Levin, and Cheng Chin. Observation
of density-dependent gauge fields in a bose-einstein con-
densate based on micromotion control in a shaken two-
dimensional lattice. Phys. Rev. Lett., 121:030402, Jul
2018.

[16] U-J Wiese. Ultracold quantum gases and lattice systems:
quantum simulation of lattice gauge theories. Annalen
der Physik, 525(10-11):777–796, 2013.

[17] Erez Zohar, J Ignacio Cirac, and Benni Reznik. Quan-



24

tum simulations of lattice gauge theories using ultracold
atoms in optical lattices. Reports on Progress in Physics,
79(1):014401, 2015.

[18] M Dalmonte and S Montangero. Lattice gauge theory
simulations in the quantum information era. Contempo-
rary Physics, 57(3):388–412, 2016.

[19] Esteban A Martinez, Christine A Muschik, Philipp
Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl,
Philipp Hauke, Marcello Dalmonte, Thomas Monz, Pe-
ter Zoller, et al. Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer. Nature,
534(7608):516–519, 2016.

[20] Eduardo Fradkin and Stephen H. Shenker. Phase dia-
grams of lattice gauge theories with higgs fields. Phys.
Rev. D, 19:3682–3697, Jun 1979.

[21] Paul E. Lammert, Daniel S. Rokhsar, and John Toner.
Topology and nematic ordering. i. a gauge theory. Phys.
Rev. E, 52:1778–1800, Aug 1995.

[22] T. Senthil and Matthew P. A. Fisher. Z2 gauge theory of
electron fractionalization in strongly correlated systems.
Phys. Rev. B, 62:7850–7881, Sep 2000.

[23] A. Y. Kitaev. Fault-tolerant quantum computation
by anyons. Annals of Physics, 303(1):PII S0003–
4916(02)00018–0, 2003.

[24] Frank Wilczek. Magnetic flux, angular momentum, and
statistics. Physical Review Letters, 48(17):1144, 1982.

[25] Frank Wilczek. Quantum mechanics of fractional-spin
particles. Physical review letters, 49(14):957, 1982.

[26] Zyun Francis Ezawa. Quantum Hall Effects: Field The-
oretical Approach and Related Topics Second Edition.
World Scientific Publishing Company, 2008.

[27] Patrick A Lee. From high temperature superconductivity
to quantum spin liquid: progress in strong correlation
physics. Reports on Progress in Physics, 71(1):012501,
2008.

[28] Subir Sachdev and N. Read. Large n expansion for frus-
trated and doped quantum antiferromagnets. Int. J.
Mod. Phys. B, 05(01n02):219–249, January 1991.

[29] Daniel Podolsky and Eugene Demler. Properties and de-
tection of spin nematic order in strongly correlated elec-
tron systems. New Journal of Physics, 7(1):59–, 2005.

[30] John B. Kogut. An introduction to lattice gauge the-
ory and spin systems. Rev. Mod. Phys., 51:659–713, Oct
1979.

[31] R. D. Sedgewick, D. J. Scalapino, and R. L. Sugar. Frac-
tionalized phase in an XY − −Z2 gauge model. Phys.
Rev. B, 65:054508, Jan 2002.

[32] Eugene Demler, Chetan Nayak, Hae-Young Kee,
Yong Baek Kim, and T. Senthil. Fractionalization pat-
terns in strongly correlated electron systems: Spin-charge
separation and beyond. Phys. Rev. B, 65:155103, Mar
2002.

[33] Ribhu K. Kaul, Yong Baek Kim, Subir Sachdev, and
T. Senthil. Algebraic charge liquids. Nature Physics,
4:28–, December 2007.

[34] Subir Sachdev and Debanjan Chowdhury. The novel
metallic states of the cuprates: Topological fermi liq-
uids and strange metals. Progress of Theoretical and Ex-
perimental Physics, 2016(12):12C102–12C102, December
2016.

[35] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch. Realization of the hofs-
tadter hamiltonian with ultracold atoms in optical lat-
tices. Physical Review Letters, 111:185301, 2013.

[36] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Bur-
ton, and W. Ketterle. Realizing the harper hamiltonian
with laser-assisted tunneling in optical lattices. Physical
Review Letters, 111:185302, 2013.

[37] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala,
J. T. Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch,
and N. Goldman. Measuring the chern number of hof-
stadter bands with ultracold bosonic atoms. Nat Phys,
11(2):162–166, February 2015.

[38] Colin J. Kennedy, William Cody Burton, Woo Chang
Chung, and Wolfgang Ketterle. Observation of bose-
einstein condensation in a strong synthetic magnetic
field. Nature Physics, 11:859–, August 2015.

[39] M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert
Schittko, Tim Menke, Dan Borgnia, Philipp M. Preiss,
Fabian Grusdt, Adam M. Kaufman, and Markus Greiner.
Microscopy of the interacting harper-hofstadter model
in the two-body limit. Nature, 546(7659):519–523, June
2017.

[40] D. Jaksch and P. Zoller. Creation of effective magnetic
fields in optical lattices: the hofstadter butterfly for cold
neutral atoms. New Journal of Physics, 5:56, May 2003.

[41] A. R. Kolovsky. Creating artificial magnetic fields for cold
atoms by photon-assisted tunneling. Epl, 93(2):20003,
January 2011.

[42] N. Goldman, J. Dalibard, M. Aidelsburger, and N. R.
Cooper. Periodically driven quantum matter: The case
of resonant modulations. Phys. Rev. A, 91:033632, Mar
2015.

[43] Yu-Ao Chen, Sylvain Nascimbène, Monika Aidelsburger,
Marcos Atala, Stefan Trotzky, and Immanuel Bloch.
Controlling correlated tunneling and superexchange in-
teractions with ac-driven optical lattices. Phys. Rev.
Lett., 107:210405, Nov 2011.

[44] Richard E. Prange and Steven M. Girvin, editors. The
Quantum Hall Effect. Springer - Verlag, 1990.

[45] J. K. Jain. Theory of the fractional quantum hall-effect.
Physical Review B, 41(11):7653–7665, April 1990.

[46] S. R. White. Density matrix formulation for quantum
renormalization groups. Phys. Rev. Lett., 69(2863), 1992.
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