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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Carbon dioxide geosequestration into deep unmineable coal seams is a technique which can mitigate anthropogenic greenhouse 
gas emissions. However, coal composition is always complex, and some minerals such as calcite chemically react when exposed 
to the acidic environment (which is created by scCO2 mixing with formation water). These reactive transport processes are still 
poorly understood. We thus imaged a water-bearing heterogeneous coal (calcite rich) core before and after scCO2 injection in-
situ at high resolutions (3.43 µm) in 3D via X-ray in-situ microCT flooding system. Indeed, the calcite-coal mixed layer was 
partially dissolved, and absolute porosity and connectivity significantly increased. We thus suggested that such process could be 
used as an acidizing method in CO2 ECBM. However, such dissolved damage also can significantly affect the rock mechanical 
properties and potentially induce geohazards. 
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1. Introduction 

CO2 injected into deep unmineable coal seams for enhanced coalbed methane recovery and combine with carbon 
storage have gained substantial interest in recent years [1- 6]. Technically, CO2 migrates into coal matrix micro/nano 
pores and displaces the original methane, at the same time, the CO2 traps inside the matrix by adsorption trapping 
mechanism and closes the potential leakage route (cleats/factures) by swelling effect. Such coal matrix – CO2 
interaction induced swelling is complex and can significantly change the physical properties of the host rock, e.g. 
many studies proved that the CO2 injection reduces the coal seam permeability [7-12]. Zhang et al., 2016 [12] 
injected scCO2 into coal sample with permeability dramatically reducing recorded and micro fractures closed were 
observed by X-ray tomography. However, most of the experiments were conducted in the dry conditions and the 
previous models did not care about the existed formation water influence [13-16]. 

Note that the injected CO2 dissolved into formation water called CO2 – saturated brine is acidic at reservoir 
conditions where the pH values could be dropped to 3-4 [17, 18]. Moreover, the coal material is always 
heterogenous and consists of organic carbon and inorganic materials such as carbonate, quartz and clay [19, 20]. 
Especially for the coal from the low to medium rank group, such inorganic materials are abundant. However, such 
inorganic materials (mainly carbonates) may sensitive to the acid environment and the effect to the sample and the 
related petrophysical properties change need to be clarified. In this study, we thus used the newly in-situ microCT 
flooding system [21-23] has been used to investigate how the coal microstructure change by scCO2 injected into 
water-bearing coal medium rank coal (calcite rich) sample in reservoir condition. 

2. Methodology 

2.1. Materials 

The special coal sample which contained calcite was selected in this experimental study, obtained from the 
Pingdingshan coal mine, China. The coal had been identified as sub-bituminous containing 36 % (± 1%) volatile 
matter and 54 % (± 2%) fixed carbon content by Chinese standard GB/T 212 -2008 and DL/T 1030-2006. Fig. 1 
showed the SEM image of the coal microstructure. A cylindrical coal plug (5 mm diameter and 10 mm length) was 
drilled for the following microCT in-situ flooding test. 
 

 

Fig. 1. The SEM image of the coal sample; (A) the calcite particles inside the coal matrix, (B) the coal matrix, (C) the micro fractures. 
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2.2. MicroCT in-situ flooding test 

The microCT in-situ scanning techniques developing in recent years give us the opportunity to observe the 
microstructures change by fluid-rock interaction in 3D at reservoir conditions, where the resolution could achieve as 
high as less than 10 μm voxel size (e.g. [24-30]). Such technique successfully overcomes the shortcomings of the 
traditional imaging tools such as SEM which only can obtain 2D surface images at laboratory conditions. Here the 
cylindrical coal plug was mounted inside an novel X-ray transparent core holder [12, 22, 23], which as a part of the 
microCT in-situ imaging core flooding system in Curtin University, Australia, see Fig. 2. This core flooding system 
included two parts: the microCT instrument itself (Xradia VersaXRM instrument, a 2000 × 2000 pixel detector was 
used and the X-ray accelerating voltage set as 60 kV in this experiment), and the high pressure – high temperature 
(HPHT) flooding system. The in-situ microCT core flooding test was then conducted by the below steps (also see 
[21, 23]): 

1. The coal plug was saturated with 5 wt% NaCl brine before the coal sample amounted into the coal holder 
(coal plug merged into the brine water with vacuumed 1 week). 

2. After coal plug mounted into core holder, the tubes and coal plug were injected 5 wt% NaCl brine by 
backpressure pump (Teledyne ISCO 500D, B in Fig. 2), then the coal plug and tubing system were 
vacuumed for 24 hours to air removed; all flow tubes and pumps were continuously isothermally heated to 
50oC (323 K) with heat jackets by continuously circulating warm water. The core holder was heated by 
electric tape.  

3. Initially the saturated coal plug was imaged (voxel size: 3.43 μm) under a confining pressure of 5 MPa 
(without fluid injection, thus 5 MPa effective stress). The confining pressure was applied by compressing 
deionized (DI) water by pump C in Fig. 2. 

4. Then the coal plug was flooded by supercritical CO2 (scCO2) at 10 MPa pore pressure (backpressure pump, 
B in Fig. 2), and a 15 MPa confining pressure was applied (i.e. the experiment was conducted at a constant 
effective stress of 5 MPa). The injection flow rate was 0.25 ml/min with approximately 100 pore volumes 
were flooded. 

5. The sample was then microCT imaged again at the same condition with 15 MPa confining pressure, 10 
MPa pore pressure, and temperature of 50oC / 323K. 

All the obtained grayscale tomograms were then filtered by 3D non-local means filter [31] method to image 
denoising, and the watershed algorithm [32] was used for phase segmentation according to their (different) relative 
radio-densities. Finally, the different phase could be extracted in 3D for the further qualitative and quantitative 
analysis [24]. All the images processing used the Avizo 9.2 software which provided by the Pawsey 
Supercomputing Centre, Australia. 
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Fig. 2. High pressure-High temperature (HPHT) in-situ microCT coreflooding apparatus: (A) CO2 injection pump, (B) back pressure pump, (C) 
confining pressure pump, (D) microCT (Xradia VersaXRM instrument), (E) the photo for inside microCT, (F) the X-ray transparent core holder 

assembly, (G) microCT image processing, (H) CO2 cylinder. 

3. Results and discussion 

The microCT images showed a very highly heterogenous morphology for such coal sample. In the water 
saturated tomography (see Fig. 3), it can be distinguished as three parts: the coal matrix (dark grey – low CT 
number), the calcite mineral (white – high CT number), and calcite-coal mixed layer (grey – medium CT number). 
Not that, this CT image did not show any micro fractures/cleats system which were presented in the former studies 
for dry coal sample [33, 34] and also the dry SEM image (Fig. 1), this may due to the micro fractures/cleats are 
closed due to water adsorption by coal matrix swelling effect [24]. 
 

 

Fig. 3. The microCT image (3.43 μm voxel size) for the coal sample (brine saturated) where coal matrix is dark grey (low CT number), the calcite 
mineral is white (high CT number), and calcite-coal mixed layer is grey (medium CT number). 
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After scCO2 injected into the water-bearing coal sample, the chemical– dissolved effect was significant (see Fig. 

4). The dissolved wormhole clearly presented in the 3D images (B in Fig. 4). Obviously, the CT scanning results by 
scCO2 flooded into water-bearing coal were totally different with the previously dry coal – scCO2 injection (see [12] 
where scCO2 induced swelling effect on same coal sample at dry condition); the significant dissolution happed from 
our experiments. The calcite minerals chemical reacted during the carbon geosequestration by the following 
equations [35, 36]: 
𝐻𝐻2𝑂𝑂 +  𝑠𝑠𝑠𝑠𝑠𝑠𝑂𝑂2 ↔ 𝐻𝐻2𝑂𝑂 +  𝑠𝑠𝑂𝑂2(𝑎𝑎𝑎𝑎)  
𝐻𝐻2𝑂𝑂 +  𝑠𝑠𝑂𝑂2(𝑎𝑎𝑎𝑎) ↔ 𝐻𝐻2𝑠𝑠𝑂𝑂3 
𝐻𝐻2𝑠𝑠𝑂𝑂3 ↔ 𝐻𝐻𝑠𝑠𝑂𝑂3

− + 𝐻𝐻+  
𝐻𝐻𝑠𝑠𝑂𝑂3

−
 ↔ 𝑠𝑠𝑂𝑂3

2−+ 𝐻𝐻+ 
𝑠𝑠𝑎𝑎𝑠𝑠𝑂𝑂3 + 𝐻𝐻+ ↔ 𝑠𝑠𝑎𝑎2+ + 𝐻𝐻𝑠𝑠𝑂𝑂3

− 
𝑠𝑠𝑎𝑎𝑠𝑠𝑂𝑂3 + 𝐻𝐻2C𝑂𝑂3 ↔ 𝑠𝑠𝑎𝑎2+ + 2𝐻𝐻𝑠𝑠𝑂𝑂3

− 
The dissolved area showed the heterogenous characteristics where most located in the calcite-coal mixed layer. 

This could be explained by the less consolidated of this phase in nature. The 3D segmented dissolved hole presented 
in Fig. 5, which represented 2.78% volume fraction. 

 

Fig. 4. The microCT image (3.43 μm voxel size) for the coal sample after scCO2 flooding where the dissolved area is black (lowest CT number), 
coal matrix is dark grey (low CT number), the calcite mineral is white (high CT number), and calcite-coal mixed layer is grey (medium CT 

number); (A) is the 2D slice, (B) is the 3D cut view. 
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Fig. 5. The 3D segmented microCT image (3.43 μm voxel size) for the coal sample after scCO2 flooding, (A) dissolved area, (B) coal matrix and 
calcite-coal mixed layer, (C) calcite mineral phase. 

In summary, such dissolved area largely increasing the porosity and improved the connectivity of the coal 
sample. We thus suggested such process could be an environmental friendly acidizing method in the CO2 ECBM. At 
the same time, such damaged can significant affect the rock mechanical properties of the coalbed – may cause 
geohazards, e.g. the layer collapse and fault reaction – which has been seriously considered at the carbon 
geosequestration in carbonate reservoir.  

4. Conclusion 

Carbon geosequestration in deep geological formations has been suggested as the most efficient ways to mitigate 
climate change with reducing the CO2 concentration from the atmosphere [37-40]. The deep unmineable coal seams 
are some of the main targets; however, the injected CO2 with formation water induce an acidic environment – may 
impact some acidic sensitive minerals (such as calcite) in coal seam, which are still poorly investigated. 

We thus investigated such interactions in pore-scale by 3D microCT in-situ core flooding experiments, the scCO2 
was injected into a heterogeneous water-bearing bituminous coal at reservoir conditions (15 MPa confining pressure, 
10 MPa pore pressure, and 323 K). The coal’s microstructure (calcite-coal mixed layer) partially dissolved after the 
flooding test. We thus concluded that such dissolved area largely increasing the porosity and improved the 
connectivity of the coal seam. We also suggested such process could be an environmental friendly acidizing method 
in the CO2 ECBM in some calcite rich coal seams. Moreover, such dissolved damage also can significant affect the 
rock mechanical properties of the coalbed which can induce potential geohazards, e.g. the layer collapse and fault 
reaction 
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