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Summary

� Understanding the mechanisms causing phenotypic differences between females and males

has long fascinated evolutionary biologists. An extensive literature exists on animal sexual

dimorphism but less information is known about sex differences in plants, particularly the

extent of geographical variation in sexual dimorphism and its life-cycle dynamics.
� Here, we investigated patterns of genetically based sexual dimorphism in vegetative and

reproductive traits of a wind-pollinated dioecious plant, Rumex hastatulus, across three life-

cycle stages using open-pollinated families from 30 populations spanning the geographic

range and chromosomal variation (XY and XY1Y2) of the species.
� The direction and degree of sexual dimorphism was highly variable among populations and

life-cycle stages. Sex-specific differences in reproductive function explained a significant

amount of temporal change in sexual dimorphism. For several traits, geographical variation in

sexual dimorphism was associated with bioclimatic parameters, likely due to the differential

responses of the sexes to climate. We found no systematic differences in sexual dimorphism

between chromosome races.
� Sex-specific trait differences in dioecious plants largely result from a balance between sexual

and natural selection on resource allocation. Our results indicate that abiotic factors associated

with geographical context also play a role in modifying sexual dimorphism during the plant

life-cycle.

Introduction

Trait differences between females and males (sexual dimorphism)
reflect sex-specific optima related to their different reproductive
roles (Darwin, 1871; Andersson, 1994). In dioecious plants, the
strength and direction of sex-specific selection can vary within
species, providing opportunities to examine the genetic and evo-
lutionary drivers of sexual dimorphism (Lloyd & Webb, 1977;
Delph, 1999; Geber et al., 1999; Barrett & Hough, 2013).
Mechanisms of pollen and seed dispersal may mediate the
strength of sex-specific selection because female and male compo-
nents interact indirectly through biotic or abiotic vectors (Lloyd
& Webb, 1977; Moore & Pannell, 2011). Male-male competi-
tion can be particularly intense in wind-pollinated species, com-
pared with animal-pollinated systems, because flowers are
commonly uniovulate (Friedman & Barrett, 2011). Conse-
quently, conspicuous sexual dimorphism is predicted to evolve
for traits related to pollination success in anemophilous species
including plant height, flower number and inflorescence deploy-
ment (Eppley & Pannell, 2007; Friedman & Barrett, 2009;
Tonnabel et al., 2019). Specifically, males are expected to invest

in fewer, but larger and taller inflorescences, whereas females are
predicted to have flowers spread throughout the air stream and
distributed across more inflorescences. Yet sexual selection may
also interact with the different resource requirements of the sexes
to influence the level and direction of sexual dimorphism. For
example, whereas males may have higher nitrogen demands for
pollen production, females require a greater investment in photo-
synthetic tissues to produce carbon for seeds and fruits (Delph,
1999; Harris & Pannell, 2008), which may result in females hav-
ing higher vegetative investment (Teitel et al., 2016). Conse-
quently, sex-specific trait differences in anemophilous plants may
reflect both wind-mediated selection for proficient pollen and
seed dispersal, and optimal resource allocation between vegetative
and reproductive structures.

Variation in sexual dimorphism within species may occur at
both temporal and geographical scales (Lloyd & Webb, 1977;
Barrett & Hough, 2013). Temporal changes in patterns of sexual
dimorphism during plant life-cycles can result from the timing of
the different reproductive roles of the sexes (Delph, 1999; Hesse
& Pannell, 2011; S�anchez Vilas & Pannell, 2011). For species
with wind-mediated pollen and seed dispersal, males optimise
pollen dispersal during peak flowering, whereas females maximise
pollen receipt during flowering and seed dispersal at reproductive*These authors contributed equally to this work.
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maturity. Therefore, selection is likely to favour taller males at
peak flowering and taller females at reproductive maturity, lead-
ing to temporal changes in sexual dimorphism for plant height
(Pickup & Barrett, 2012). These dynamics highlight the value of
measuring sexual dimorphism at different life-cycle stages to cap-
ture the complexity of sex-specific roles (Harris & Pannell, 2008;
Hesse & Pannell, 2011; S�anchez Vilas & Pannell, 2011; Teitel
et al., 2016).

Differences in sex-specific trait optima among populations can
reflect the balance between sexual and natural selection mediated
by local ecological conditions (Lande, 1980). Sex-specific differ-
ences in reproductive costs and allocation trade-offs (Lloyd &
Webb, 1977; Delph, 1999; Obeso, 2002) may result in differen-
tial responses of each sex to environmental gradients (e.g. rainfall,
temperature, Delph et al., 2011a), thereby contributing to
heterogeneity in patterns of dimorphism, which in some cases
may result in geographical clines. Although sex-specific plasticity
in trait expression across environmental conditions has been
reported in several dioecious plant species (Delph & Bell, 2008;
Teitel et al., 2016), among-population variation in sexual dimor-
phism has not been investigated in detail (but see Delph et al.,
2002). Moreover, to date, no studies have used common gardens
to examine population-level variation in sexual dimorphism in
relation to the environment of source populations.

For wind-pollinated species, demographic factors including
population size and plant density are likely to influence sexual
selection by mediating the degree of male-male competition
(Steven & Waller, 2007; Stehlik et al., 2008; Friedman & Bar-
rett, 2009; Tonnabel et al., 2019). Biased sex ratios can also influ-
ence the strength of sexual selection by varying the degree of
pollen competition (Compagnoni et al., 2017), with less compe-
tition expected in populations with female-biased sex ratios.
Disentangling the relative importance of these processes requires
investigation of patterns of sexual dimorphism in different envi-
ronmental and demographic contexts and for multiple popula-
tions spanning a species’ geographic range, an approach we use
here.

The evolution of sexual dimorphism results from the interplay
between sex-specific selection and the underlying genetic archi-
tecture of traits (Delph et al., 2002, 2010; Ashman, 2003; Weller
et al., 2006). Strong intersex genetic correlations may constrain
the evolution of sexual dimorphism (Lande, 1980; Meagher,
1992) and intertrait correlations can lead to the evolution of sex-
ual dimorphism for traits that are not directly under selection
(Delph et al., 2002). Finally, sex-specific differences in correla-
tion among clusters of traits may impose constraints or result in
trait coevolution in a sex-specific manner (Meagher, 1992; Delph
et al., 2002, 2005). These complexities highlight the importance
of sex-specific intertrait and intersex correlations for predicting
responses to selection and the evolution of sexual dimorphism.

The more recent evolution of dioecy and sex chromosomes in
angiosperms (Charlesworth, 2002; Ming et al., 2011) than in
most animals provides the potential to examine sexual dimor-
phism in relation to sex chromosome variation (Govindarajulu
et al., 2013; Charlesworth, 2018). In dioecious Rumex (Polygo-
naceae), sex chromosome systems vary both within and between

species (Navajas-P�erez et al., 2005; Cu~nado et al., 2007). Rumex
hastatulus possesses two distinct karyotype races with different sex
chromosomes (Texas race XY; North Carolina XY1Y2; Smith,
1963; Bartkowiak, 1971). Karyotype differences may affect diver-
gence between male and female phenotypes in two ways. First,
sex-linked genes may contribute disproportionately to the pat-
terns of phenotypic and genetic differentiation between the races
(Beaudry et al., 2019). Second, sex chromosomes may influence
patterns of sex-specific adaptation and intersex correlations
through differences in dosage compensation and/or unequal
transmission between the sexes (Rice, 1984; Dean & Mank,
2014). This species therefore provides a unique opportunity to
determine whether sex chromosome variation contributes to pat-
terns of sexual dimorphism.

Here, we examine spatial and temporal variation in genetically
based sexual dimorphism in R. hastatulus. We measured quantita-
tive traits under uniform glasshouse conditions across three life-
cycle stages corresponding to prereproduction, peak flowering
and reproductive maturity in 30 populations sampled from across
the geographical range of the species, including the two chromo-
some races. Specifically, we asked the following questions: (1)
does sexual dimorphism in reproductive and vegetative traits vary
among life-cycle stages in relation to the different reproductive
roles of females and males? (2) Does sexual dimorphism vary
among populations across its geographic range and between chro-
mosome races? (3) Can demographic, geographical and biocli-
matic variables explain among-population variation in sexual
dimorphism? Having established the overall patterns of sexual
dimorphism in R. hastatulus we then investigated trait correla-
tions within and between the sexes to ask if intra- and intersex
correlations vary across the life-cycle for reproductive and vegeta-
tive traits. Our findings demonstrate that patterns of sexual
dimorphism vary across the life-cycle associated with differences
between the sexes in reproductive roles, but also vary geographi-
cally, likely because of sex-specific responses to bioclimatic
parameters.

Materials and Methods

Study species and population sampling

Rumex hastatulus (Polygonaceae) is a largely annual coloniser of
open sites distributed across the southern regions of the USA
from Texas to North Carolina and Florida. Both pollen and seed
of R. hastatulus are wind dispersed. The species is cytologically
complex with two main chromosome races (Smith, 1963); the
North Carolina karyotype (females = XX, 2n = 8; males = XY1Y2,
2n = 9) and the Texas karyotype (females XX, males XY,
2n = 10). Populations of the Texas race are distributed across four
states: Texas (TX), Oklahoma (OK), Arkansas (AK) and
Louisiana (LA), whereas populations of the North Carolina race
occur in North Carolina (NC), South Carolina (SC), Georgia
(GA), Alabama (AL) and Florida (FL).

To examine geographical variation in sexual dimorphism we
sampled 30 populations of R. hastatulus, including 15 from each
chromosome race (Supporting Information Fig. S1). The
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populations represent a subsample of 46 populations previously
used to examine sex-ratio variation (see Pickup & Barrett, 2013).
The 30 populations were chosen based on two criteria: (1) seed
was available from at least 20 maternal plants and (2) to span the
observed variation in population size (TX race range = 66 to c.
2 000 000; NC race range = 10 to c. 556 000) and plant density
(TX race range = 0.21–122.4 plants m�2; NC race range = 0.04–
34.3 plants m�2) within each chromosome race. For each popu-
lation, open-pollinated seed families were collected from ran-
domly chosen females along transects (for further details see
Pickup & Barrett, 2013).

Experimental design and traits measured

In June 2010, we germinated six seeds from 15 randomly chosen
maternal plants (90 seeds per population) from each of the 30
populations (2700 seeds in total). Seeds were soaked in water for
24 h at 4°C and transferred to moist filter paper in Petri dishes in
a growth cabinet maintained at 20°C for 12 h and 10°C for 12 h
with continuous light. After c. 14 d we randomly chose and trans-
planted 60 seedlings (four from each of the 15 families) per pop-
ulation individually to 5-cm pots containing Pro-Mix BX (peat
moss, vermiculate and perlite) and NPK fertiliser (20 : 20 : 20)
and these were grown in a glasshouse at 20–24°C. Due to mater-
nal variation in germination, 48–64 seedlings were planted per
population (mean = 59.7; average of 3.4 seedlings per family, all
with male and female representation, with sex determined at
flowering). The 1792 seedlings were positioned in a complete
randomised block design in the glasshouse.

To examine variation in sexual dimorphism among popula-
tions and during the life-cycle, we measured traits at three
growth stages: prereproduction (2 wk), peak flowering (4 wk)
and reproductive maturity (8 wk) from planting date. (1) Plant
height (vertical height from the pot surface to the tallest point
on the plant), (2) number of leaves and (3) leaf size were mea-
sured at each life-cycle stage. At 4 wk and 8 wk, we measured
several reproductive traits: (4) flowering (presence of flowers in
anthesis), (5) number of stems, (6) number of flowering stems,
(7) number of inflorescences, and (8) length of three representa-
tive inflorescences (as a surrogate for the number of flowers per
inflorescence, see Pickup & Barrett, 2013). We additionally cal-
culated: (9) flowering as a binary variable (yes/no), (10) propor-
tion of flowering stems for those individuals flowering and (11)
an estimate of total flower number, by multiplying the number
of inflorescences (7) by average inflorescence length (8). Sex
(male, female), was determined at wk 4 or 8 by flower morphol-
ogy. Nonflowering individuals could not be sexed and were
therefore not considered in the analyses. At reproductive matu-
rity (8 wk) we harvested plants and separated the above-ground
biomass into (12) vegetative biomass (including rosette leaves,
stem leaves and stems), and (13) reproductive biomass (includ-
ing inflorescences, and seeds and fruit for females). Total
biomass (14) was represented as the sum of vegetative and
reproductive biomass. We obtained dried weights for each
biomass component by drying samples at 55°C for 3 d before
weighing them on a four decimal place gram balance.

Statistical analysis

To examine if sexual dimorphism in morphological and repro-
ductive traits varied with chromosome race, population and life-
cycle stage we used generalised linear mixed models (GLMMs,
function ‘glmer’ of the R package ‘LME4’). For overall models of
sexual dimorphism, sex, chromosome race (or population) and
life-cycle stage were included as fixed effects, and maternal parent
(nested within population) as a random effect. In models
analysing temporal variation, life-cycle stage was additionally
included as a fixed effect, and individual as a random effect to
correct for nonindependence of observations across time points.
However, given a significant interaction between life-cycle stage
and sex (particularly strong between the first time point and the
other two – see Table S1), the effect of chromosome race and
population were examined using models for each life-cycle stage
separately. In sex9 chromosome race models, population was
included as a random effect. The probability distribution and
link function used for each specific model were chosen by consid-
ering the: (1) nature of the response variable, (2) relation between
the mean and variance of the response variable, and (3) quantile-
to-quantile plots of the response variable vs data generated under
different candidate distributions. Model choice was based on: (1)
Akaike information criterion (AIC) values, (2) normal indepen-
dent and identically distributed residuals, and (3) low correlation
between residuals and fitted values and high correlation between
predicted and observed values. These are standard criteria to
decide on modeling strategy when using GLMMs (Bolker et al.,
2009). We checked for overdispersion in Poisson and binomial
models, and these were resolved by including ‘individual’ as a
random effect. We determined the overall effects and significance
of the fixed factors using type 2 ANOVA. When there was a sig-
nificant interaction between sex and chromosome race, we used
chromosome race-specific models to examine overall sexual
dimorphism and among-population variation. For each model,
we used the ‘PREDICTMEANS’ (R package) to obtain predicted
means (conditional on all other sources of variation included in
the models) and 95% confidence intervals, which were used for
display and posterior analyses. These analyses, and all subsequent
statistical analyses, were performed using R v.3.4.4 (R Core
Team 2018).

Percent sexual dimorphism To evaluate patterns of sexual
dimorphism we calculated percent sexual dimorphism (%SD) as
1009 (meanF �meanM)/meanM, where meanM and meanF are
the predicted means for males and females, respectively (see Delph
et al., 2002), for each trait and time point, both within and among
populations and chromosome races. Positive values indicate female-
biased sexual dimorphism, while negative values indicate male-bi-
ased sexual dimorphism. We calculated the confidence intervals as
√(minF

2 +minM
2), where minF and minM are the lower (or upper)

boundary of the 95% confidence interval for males and females
given by the ‘predictmeans’ function from the GLM models.

Variation in sexual dimorphism among populations along
demographic, geographical and bioclimatic gradients We used
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multiple linear regression to examine if demographic (population
size, population density and sex ratio), geographical (elevation,
latitude and longitude) and bioclimatic parameters could explain
among-population variation in percent sexual dimorphism. We
measured demographic parameters in the field in May�June
2009. For populations with <200 individuals, total population
size, density (plants m�2) and sex ratio as no. females/(no.
females + no. males) were obtained by direct counts. For large
populations (>200 individuals), demographic parameters were
estimated from stratified quadrats along four randomly posi-
tioned transects (see Pickup & Barrett, 2013 for full details on
sampling and the data obtained). For each population, we
obtained data for 19 bioclimatic variables (see Fig. S4a) from
WorldClim v.1.4. (Hijmans et al., 2005), which provides high-
resolution (c. 1 km) interpolated climate surfaces based on
monthly averages from 1960 to 1990.

To examine if these parameters explained significant varia-
tion in percent sexual dimorphism we used separate models
for: (1) demographic, (2) geographical, and (3) bioclimatic
variables. For the set of models examining bioclimatic vari-
ables, we first reduced the number of predictors to ensure
their independence (determined using Spearman rank correla-
tions, rs, Fig. S4a), and also that the predictors recapitulated
the observed geographical clines by examining the two-first
principal components of the selected bioclimatic variables in
comparison to all variables (Fig. S4b). In all models and for
all traits and life-cycle stages, explanatory variables were added
sequentially to models of increasing complexity and ANOVA
was used for model selection to identify the variable(s) that
best explained differences in sexual dimorphism. For each
model, we tested for homogeneity of residuals using the
Shapiro�Wilk normality test. To facilitate interpretation of
the contribution of bioclimatic variables to variation in sexual
dimorphism, we regressed sex-specific means on these variables
for traits where multiple regressions were significant (see later,
Table S3). We also visualised the relations between each
parameter and sexual dimorphism to assess the direction of
the correlations and whether heterogeneity in sexual dimor-
phism scaled with each predictor using funnel plots.

Intersex and intertrait correlations We estimated intersex and
intertrait correlations at wk 4 and 8 separately as Spearman
rank correlation coefficients (rs) across predicted means includ-
ing all populations. Given that our experiment was designed to
maximise the number of populations sampled, there were too
few individuals within families in each population to enable
maternal variation to be taken into account in the calculation
of population-level correlations. To account for the potential
effect of confounding variables on trait correlations, partial
intersex and intertrait correlations were additionally calculated
using ‘pcor.test’ function from the ‘PPCOR’ R package with the
Spearman method, by controlling for the predicted population
means of the rest of the trait values (and averaged across sexes
for the intersex partial correlations). We determined whether
pairwise intertrait correlations differed significantly between the
sexes via bootstrapping: we calculated sex-specific 95%

confidence intervals for correlations between all pairs of traits
by selecting 25 out of all populations 1000 times. If the sex-
specific confidence intervals did not overlap we concluded that
there was a significant difference in intertrait correlations. Pair-
wise correlations between absolute values of percent sexual
dimorphism and intersex correlation were computed as Spear-
man rank correlation coefficients. For all analyses, P-values
indicate probability that rs = 0.

Data availability

Data are available in DRYAD (doi: 10.5061/dryad.n1701c9).

Results

Sexual dimorphism in vegetative traits

Sexual dimorphism in plant height changed significantly across
the life-cycle of R. hastatulus. There was no sexual dimorphism
at wk 2 before flowering (Fig. S2a), but at wk 4 (peak flower-
ing) males were significantly taller than females (%
SD =�16.1; Figs 1a, 3 and Fig. S2b), and at wk 8 (reproduc-
tive maturity and seed dispersal) sexual dimorphism for height
reversed, with females taller than males (%SD = 9.4; Figs 1b, 3
and Fig. S2c). The reversal in height was indicated by the sig-
nificant interaction between sex and life-cycle stage when the
model included both 4 and 8 wk (Table cS1). These patterns
of sexual dimorphism were consistent across populations and
chromosome races, as indicated by the nonsignificant
sex9 population and sex9 chromosome race interactions
(Table S1). At wk 8, females produced more (%SD leaf num-
ber = 15.8) and larger leaves (%SD leaf size = 7.3; Figs 1d,f, 3)
and this was reflected in female-biased sexual dimorphism in
vegetative biomass at harvest (%SD = 45.2; Figs 1g, 3). How-
ever, this pattern varied significantly among populations and
between chromosome races (Table S1).

Sexual dimorphism in reproductive traits

At wk 4, even though males had more stems than females
(Fig. 2a), the proportion of plants flowering was female biased,
and this was the most sexually dimorphic trait overall (%
SD = 163.2; Figs 2c, 3), suggesting that males may delay flower-
ing and invest in stem growth. Indeed, we found a significant
positive correlation (rs = 0.81, P < 0.0001) between height and
total flower number in males at this life-cycle stage. Among those
individuals flowering at wk 4, males produced more and larger
inflorescences than females (Fig. 2d,f). At reproductive maturity
(wk 8), both sexes had equal numbers of stems (Fig. 2b), all of
which had flowered. At wk 8 females produced more inflores-
cences (Fig. 2e), whereas in males inflorescences were larger
(Fig. 2g). This difference resulted in a temporal reversal in sexual
dimorphism from male biased at wk 4 to female biased at wk 8
for inflorescence number (%SD wk 4 =�18.6, %SD wk
8 = 73.7) and total flower number (inflorescence number9 size,
%SD wk 4 =�30.2, %SD wk 8 = 24.6; Fig. 3).
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Variation in sexual dimorphism among chromosome races
and populations

There were no clear differences in the degree of sexual dimor-
phism between the Texas and North Carolina chromosome races
of R. hastatulus (Figs 1, 2). For some traits (height, leaf size and
number, amount of stems and inflorescence size and number),
however, we found significantly higher sexual dimorphism in the
Texas race compared with the North Carolina race at wk 4 (peak
flowering) but not at wk 8 (Figs 1, 2; Table S1). This may reflect
a developmental difference between the chromosome races, which
could contribute to the earlier onset of sexual dimorphism in pop-
ulations of the Texas karyotype. However, there was large among-
population variation in sexual dimorphism for many traits and
across different life-cycle stages (Fig. S3; see also sex9 population
interactions in (Table S1) As an example, Fig. S2) shows inter-
population variability for height across time points. Traits with a
significant sex9 population interaction were height at wk 2,
inflorescence number and size at wk 4, number of leaves, propor-
tion of flowering stems and inflorescence number and size at wk
8, and reproductive biomass at harvest (see Table S1).

Next, we assessed whether the observed genetically based sex-
ual dimorphism under glasshouse conditions could be explained

by demographic, geographical and environmental variables of the
population of origin. Population size, density and sex ratio did
not explain significant variation in the degree of sexual dimor-
phism. Only sexual dimorphism in inflorescence size at wk 8
decreased with plant density (%SD inflorescence size, wk
8 =�23.124–0.167Density; R2 = 0.28, P = 0.0017). However,
greater variability in sexual dimorphism for vegetative and repro-
ductive traits at both wk 4 and 8 was evident in less dense popula-
tions (Fig. 4). Among populations, both male- and female-biased
sexual dimorphism was evident at low density for height, total
flower number, number of leaves and biomass, but at higher den-
sity sexual dimorphism was more consistent in the direction of
bias, which varied among traits (Fig. 4).

Geographical parameters (longitude, latitude and elevation) of
the population of origin explained between 14–35% of the inter-
population variation in sexual dimorphism for several vegetative
and flowering traits in the glasshouse (see Table S2). Given that
these patterns are likely to reflect underlying bioclimatic variation
along geographical clines, we examined sexual dimorphism in
relation to three bioclimatic parameters of the source popula-
tions: total annual precipitation, annual mean temperature and
annual temperature range (based on reduced dimensionality of
19 WorldClim bioclimatic parameters, see Fig. S4 and the

Fig. 1 Sexual dimorphism of vegetative traits at 4 and 8 wk in Rumex hastatulus. Predicted means and 95% confidence intervals at two time points (4 and
8 wk) for males (orange squares) and females (green circles) of the Texas (TX) and North Carolina (NC) chromosome races (individual points) and overall
values for each sex (dashed lines and colour shading). Traits measured at 4 and 8 wk were (a, b) height (cm), (c, d) number of leaves and (e, f) leaf size
(cm), while (g) vegetative biomass (grams) was measured at harvest. The significance of sex differences for each chromosome race and across both races is
indicated by stars above the individual bars and in the lower right corner of each plot, respectively. *, 0.01 < P < 0.05; ***, P < 0.001; ns, not statistically
significant.
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Fig. 2 Sexual dimorphism of reproductive traits at 4 and 8wk in Rumex hastatulus. Predicted means and 95% confidence intervals at two time points (4
and 8wk) for males (orange squares) and females (green circles) of the Texas (TX) and North Carolina (NC) chromosome races (individual points) and
overall for each sex (dashed lines and colour shading). Traits measured: (a, b) number of stems, (c) presence of flowering (yes/no) at wk 4 (at wk 8 all
individuals are flowering, and (d, e) number of inflorescences and (f, g) inflorescence size (mm) for those individuals flowering. The significance of sex
differences for each chromosome race and across both races is indicated by stars above the individual bars and in the lower right corner of each plot,
respectively. **, 0.001 < P < 0.01; ***, P < 0.001; ns, not statistically significant.

Fig. 3 Percent of sexual dimorphism (%SD) per trait and at different life-cycle stages for Rumex hastatulus. Percent sexual dimorphism was calculated as
100 9 (meanF �meanM)/meanM, where meanM and meanF are the predicted means for males and females respectively. Error bars represent 95%
confidence intervals. Values above and below zero (dashed line) represent female-biased and male-biased sexual dimorphism, respectively.
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Materials and Methods section for details), which were indeed
correlated with longitude, latitude and elevation (Fig. S4c). At
wk 4, male-biased sexual dimorphism in height increased with
mean temperature (R2 = 0.24, P = 0.004; Fig. 5a), whereas for
inflorescence size, the degree of sexual dimorphism changed from
female biased to male biased with increasing mean temperature
(R2 = 0.25, P = 0.0048; Fig. 5b). At wk 8, we found that mean
temperature explained 31% (P = 0.001) and 19% (P = 0.011) of
the variation in female-biased sexual dimorphism in numbers of
leaves and stems, respectively (Fig. 5c,d). At this life-cycle stage,
male-biased dimorphism in inflorescence size was greater in pop-
ulations with higher mean annual temperature and a smaller
annual temperature range (R2 = 0.43, P = 0.002, Fig. 5e).

A more complex relationship between sexual dimorphism and
bioclimatic variables was evident for numbers of stems and total
flower number at 4 wk. For total flower number, sexual dimor-
phism was more male biased in populations with higher and
more variable temperatures and greater annual precipitation, with
these three variables explaining 34% of the variation in sexual
dimorphism (total flower number = 3270.29 – 8.32mean tem-
perature�4.09temperature range � 0.36precipitation;
P = 0.006). Sexual dimorphism in the number of stems was more
male biased in populations with higher precipitation and annual
variation in temperature, but lower average temperature (number
of stems = 726.53 �1.12mean temperature �1.28temperature
range �0.12precipitation; R2 = 0.37, P = 0.003). Sex-specific
regression of trait means on bioclimatic variables revealed that

several such patterns probably resulted from differences between
sexes in their sensitivity to environmental heterogeneity. For
example, the increase in male-biased sexual dimorphism in flow-
ering at wk 4 at higher temperatures was likely to be due to males
increasing flower production relative to females with increasing
temperature (Table S3).

Intersex and intertrait correlations

We analysed intersex and intertrait correlations using the pre-
dicted means of populations at each life-cycle stage separately,
because the correlation among traits within each stage was higher
than the within-trait correlations across life-cycle stages (data not
shown). We found significant pairwise correlations between
many traits, which in some cases differed between sexes (Fig. 6a,
b). For example, height was positively correlated with leaf size in
females and with inflorescence size in males, whereas inflores-
cence size was strongly negatively correlated with leaf production
and inflorescence number in males but not females. These results
are consistent with greater male investment in inflorescences, at
the expense of vegetative traits, whereas females invest in both
vegetative and reproductive structures.

We also detected significant temporal differences in intertrait
correlations (Fig. 6a,b). Whereas sex differences and negative
values of intertrait correlations were only apparent at wk 8, at
wk 4 all intertrait correlations were positive and highly concor-
dant between the sexes. This concordance at wk 4 is likely to

(a) (b)

(d)(c)

Fig. 4 The relationship between percent
sexual dimorphism (%SD) and mean plant
density (plants m�2) for 29 populations of
Rumex hastatulus for: (a) plant height (cm),
(b) number of leaves, and (c) total flower
number (number of inflorescences9
inflorescence size) at wk 4 (orange circles)
and wk 8 (green triangles). Total biomass (d)
was measured at harvest. Values above and
below zero (dashed line) represent female-
biased and male-biased sexual dimorphism,
respectively.
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reflect developmental variation, and that specific intertrait corre-
lations may result from indirect interactions with other traits.
Indeed, when examined via partial correlations (accounting for
other traits as covariates), we found that trade-offs between pairs
of traits were more consistent across sexes and time points
(Fig. 6c,d). For example, partial correlations showed that both
sexes displayed a trade-off between inflorescence size and num-
ber (which was stronger in males than females). Yet, for the
uncorrected correlations, this was masked by indirect interac-
tions with other traits at wk 4 for both sexes, and for females at
wk 8.

We then explored the relationships between intersex correla-
tion and the extent of sexual dimorphism. Interestingly, number
of inflorescences, which had the lowest intersex correlation both
at wk 4 and 8, also displayed temporal reversal in sexual

dimorphism (Fig. 3). However, we found no significant covaria-
tion between intersex correlation and the extent of sexual
dimorphism (rs =�0.095, P = 0.6745). Moreover, the most sex-
ually dimorphic traits (flowering at wk 4 and inflorescence
number at wk 8) had very similar correlations with other traits
in both sexes.

Discussion

We compared patterns of sexual dimorphism for reproductive
and vegetative traits measured under uniform glasshouse condi-
tions at three life-cycle stages in 30 populations of dioecious
wind-pollinated Rumex hastatulus. Genetically based sexual
dimorphism was evident for most traits and often changed during
the life-cycle, with a reversal of dimorphism between peak

Fig. 5 Patterns of sexual dimorphism along
temperature gradients for populations of
Rumex hastatulus. Percent sexual
dimorphism (%SD) among populations for
different vegetative and reproductive traits at
wk 4 (orange circles) and wk 8 (green
triangles) plotted against mean annual
temperature and annual temperature range
and total annual precipitation (see
Supporting Information Fig. S4 for more
details on temperature variables). (a) Height
(wk 4) = 99.40 �0.61bio1 (R2 = 0.24,
P = 0.004); (b) inflorescence size (wk
4) = 647.71�3.48bio1 (R2 = 0.25,
P = 0.005); (c) number of leaves (wk
8) =�86.17 + 0.56bio1 (R2 = 0.31,
P = 0.001); (d) number of stems (wk
8) =�103.10 + 0.55bio1 (R2 = 0.19,
P = 0.011); (e) inflorescence size (wk
8) = 179.61�0.45bio1�0.39bio7
(R2 = 0.43, P = 0.0003).
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flowering and reproductive maturity for some traits (e.g. height,
flowering). We detected no systematic sex differences between
the chromosome races, but there was striking among-population
variation in sexual dimorphism, which was partially explained by
bioclimatic variables along geographical clines. We now discuss

how these patterns of sexual dimorphism relate to the reproduc-
tive roles of the sexes and their life-cycle dynamics, and consider
explanations for the among-population variation in sexual dimor-
phism and how intertrait and intersex correlations may influence
the evolution of sex differences.

(a) (b)

(c) (d)

Fig. 6 Intersex and intertrait raw and partial correlations for Rumex hastatulus using predicted population means at (a, c) 4 and (b, d) 8wk. For each plot,
above the diagonal are the intertrait correlations among females, below diagonal are the intertrait correlations among males and on-diagonal are the intersex
correlations for each trait. Reproductive and vegetative biomass were measured at harvest. Flowering (yes/no) is not included at wk 8 as all individuals
flowered. For the raw correlations (a, b) values correspond to Spearman rank correlation on predicted population means. Partial correlations (c, d) control for
potential confounding interactions with other traits. Colour indicates the direction of the correlation (red for positive and blue for negative), whereas the
strength of the correlation is indicated by the colour bar. *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, P < 0.001. Dashed circles denote significant differences
between pairwise intertrait correlations between sexes, determined via bootstrapping (see the Materials and Methods section for more details).
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Temporal variation and reproductive roles of the sexes

Sexual dimorphism of reproductive and vegetative traits is
widespread among dioecious plant species (Delph, 1999; Barrett
& Hough, 2013), reflecting the different reproductive roles of
females and males (Lloyd & Webb, 1977), sex-specific trade-
offs in resource use (Moore & Pannell, 2011) and interactions
with underlying intersex genetic correlations (Delph et al., 2002,
2010, 2011b). The patterns of sexual dimorphism we observed
in R. hastatulus are consistent with temporal differences in the
reproductive roles of the sexes. For example, males were taller at
peak flowering, which is likely to facilitate wind-mediated pol-
len dispersal in males and pollen receipt in females (Okubo &
Levin, 1989; Friedman & Barrett, 2009), whereas females were
taller at reproductive maturity, which is likely to increase the
dispersal distance of wind-dispersed seeds (Tackenberg et al.,
2003; Soons et al., 2004; Thomson et al., 2011; Bullock et al.,
2017; Fig. 1a,b). The benefit of increased seed dispersal distance
in plants includes reduced sib-competition and greater potential
access to favourable microsites (Howe & Smallwood, 1982;
Levin et al., 2003). Our finding of reversal in sexual dimor-
phism for height in R. hastatulus, extends previous results
(Pickup & Barrett, 2012; Teitel et al., 2016), which involved
many fewer populations of this species, and demonstrates that
this pattern of height reversal is a fundamental feature of the
growth strategy of this species.

Although we did not directly evaluate the reproductive suc-
cess of males in relation to height, several lines of evidence sug-
gested that male height reflected wind-mediated sex-specific
selection (e.g. Tonnabel et al., 2019). First, we observed a signif-
icant positive relation between flowering onset and height in
this sex, suggesting that males delay flowering to achieve
increased stem elongation. This aspect may be particularly
important in R. hastatulus, as this species occurs in monospecific
stands in open habitats in which height – relative to conspecifics
– is likely to promote more effective pollen dispersal (Niklas,
1985). Second, male-biased dimorphism in height at peak flow-
ering was consistent across most populations (Fig. S2b; non-
significant sex9 population interaction in Table S1).
Significantly, the only populations where this was not evident
were those at low plant density (Fig. 4a), where male�male
competition may be less intense due to the positive relationship
between plant density and stigmatic pollen loads in wind-polli-
nated herbs (Steven & Waller, 2007; Friedman & Barrett,
2009; Hesse & Pannell, 2011), including R. hastatulus (M.
Pickup, D.L. Field and S.C.H. Barrett, unpublished) and other
Rumex species (Stehlik & Barrett, 2006; Stehlik et al., 2008).
Accordingly, other vegetative and reproductive traits showed
higher consistency in sexual dimorphism in denser populations
(Fig. 4). Third, in males, height was correlated with inflores-
cence size (indicative of flower number; Fig. 6), suggesting that
taller males have a higher reproductive investment and male sir-
ing success.

Wind-mediated sexual selection also likely acts on females of
R. hastatulus. Although shorter stature facilitates pollen receipt
during peak flowering, taller females probably have increased

seed dispersal at reproductive maturity, consistent with the tem-
poral reversal of sexual dimorphism in height we observed
(Fig. 1a,b). We also found evidence for sexual selection shaping
patterns of sexual dimorphism in inflorescence traits. Overall,
males produced fewer but taller and longer inflorescences
(Fig. 2e,g), facilitating pollen dispersal, whereas females had
more smaller inflorescences, which may optimise pollen receipt
by distributing flowers over a larger portion of the air stream.
We found greater vegetative biomass in females at reproductive
maturity, a pattern reported in other herbaceous wind-polli-
nated species (Korpelainen, 1992; Harris & Pannell, 2008;
Hesse & Pannell, 2011), and a previous study of R. hastatulus
(Teitel et al., 2016). Sex-specific differences in vegetative invest-
ment in wind-pollinated herbaceous plants have been explained
by contrasting resource requirements, in that females need more
carbon for seed and fruit production (Harris & Pannell, 2008;
Teitel et al., 2016). We found greater female investment in
leaves consistently across populations, especially at reproductive
maturity (Fig. 1d,f,g). Female bias in vegetative biomass at
reproductive maturity, but no difference between the sexes in
number of stems (Fig. 2a), is likely to reflect greater investment
in longer stems to support developing fruit and aid in their dis-
persal. Overall, we found higher sexual dimorphism in repro-
ductive than vegetative traits, as reported for several other
dioecious species (Delph et al., 2002; Barrett & Hough, 2013;
Tonnabel et al., 2019; Fig. 3).

Geographical variation in sexual dimorphism

Understanding the drivers of geographical variation in sexual
dimorphism can provide insights into the importance of sexual
selection, sex-specific plasticity and genetic divergence of sex-
specific trait differences (Delph et al., 2002; Delph & Bell,
2008). Our common garden study revealed extensive genetically
based among-population variation in sexual dimorphism across
the life-cycle. We investigated several genetic and ecological cor-
relates of this variation in an effort to provide insights into
potential contributing factors. First, we predicted that genetic
divergence at sex-linked genes across the two karyotypic races
(Beaudry et al., 2019) might contribute to sexual dimorphism
because sex chromosomes may be enriched for variation influenc-
ing sex-specific adaptations (Rice, 1984; Dean & Mank, 2014).
However, we found no systematic sex differences between the
chromosome races (Figs 1, 2). Significant among-race differences
in sexual dimorphism at wk 4 for some traits likely reflect a devel-
opmental difference associated with the earlier onset of dimor-
phism in populations of the Texas race.

Second, sex ratio might influence patterns of sex differences
by mediating the degree of pollen competition, with greater
competition expected in populations with more males.
Although populations of R. hastatulus varied in degree of
female-bias (sex ratio: 0.54–0.68; Pickup & Barrett, 2013), sex
ratio did not explain variation in sexual dimorphism. Third, dif-
ferences in sexual dimorphism can also arise through a greater
response of one sex than the other to environmental heterogene-
ity (Delph & Bell, 2008; Delph et al., 2011a). For example,
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sex-specific responses to environmental variables have been
reported in natural populations of Salix (Dudley, 2006),
although it is difficult to disentangle plasticity from genetically
based dimorphism by observing natural variation. We regressed
genetically based sexual dimorphism and sex-specific trait means
on the bioclimatic parameters of source populations of
R. hastatulus to determine: (1) if sexual dimorphism varied
across bioclimatic clines and, (2) whether these patterns are due
to a greater response of one sex than the other. We found that a
large proportion (up to 43%) of variation in sexual dimorphism
in some traits was explained by bioclimatic variables, likely to
be due to sex-differential responses. Mean annual temperature is
expected to provide more favourable growing conditions during
the year. In our study, populations from sites with higher mean
annual temperatures had greater male-biased sexual dimorphism
for plant height at peak flowering (Fig. 5a), perhaps due to a
higher relative investment in stem growth in males than females
at higher temperatures (Table S3). We also found a positive cor-
relation between temperature and female-biased sexual dimor-
phism for leaf production at reproductive maturity (Fig. 5c). In
females, a slower rate of decline in mean leaf production with
increasing annual temperature (see Table S3) suggested that they
maintained a greater investment in leaves than males over this
gradient, which was reflected in increased female-biased dimor-
phism.

To our knowledge, our finding of correlations between geo-
graphical and bioclimatic variables and sexual dimorphism in
R. hastatulus, provides the first evidence for clinal variation in sex-
ual dimorphism in plants. Our results strongly suggest that both
variation in sexual selection, mediated by intrasex competition
and sex-specific differences in resource allocation trade-offs, mod-
ulated by bioclimatic variables, shape patterns of sexual dimor-
phism. Experimental manipulation of growing conditions could
be used to further investigate these hypotheses and, combined
with studies of selection gradients (see Delph & Herlihy, 2012),
could provide more information on how these different factors
interact in the evolution of sex differences.

Phenotypic correlations and the evolution of sexual
dimorphism

Our study examined intersex and intertrait correlations at the
phenotypic level to understand how they interact with the evo-
lution of sex differences. First, we found many pairwise trait
correlations (Fig. 6a,b), yet, for many pairs of traits, the correla-
tions changed in strength and direction when assessed using
partial correlations conditioned on other traits (Fig. 6c,d). This
observation suggests an extensive shared genetic basis across
traits and that there is the potential for correlated evolution to
drive sexual dimorphism (Lande, 1980; Delph et al., 2002,
2004a,2004b). We observed extensive sex-specific differences in
both the direction and magnitude of intertrait correlations for
some traits, which may reflect sex differences in selective pres-
sures and trait architecture (Ashman, 2003; Delph et al., 2010).
For example, inflorescence size was negatively correlated with
inflorescence number and leaf size in males, but not females,

indicating that males invest in inflorescence size at the expense
of the other traits, whereas females strike a compromise between
reproductive and vegetative investment (Delph et al., 2005;
Fig. 6). In general, males had more significant among-trait cor-
relations and trade-offs than females, which is consistent with
previous findings in Silene latifolia (Steven et al., 2007; Delph
et al., 2010), Ceratodon purpureous (McDaniel, 2005) and
R. hastatulus (Teitel et al., 2016). Importantly, in our study,
negative correlations among traits only became evident at wk 8,
indicating that wk 4 probably captured mostly developmental
variation. This finding highlights the importance of examining
intersex and intertrait correlations across the life-cycle to capture
functionally relevant patterns.

High intersex correlations in trait expression can limit the evo-
lution of sex differences (Meagher, 1992; Ashman, 2003) and as
a result constrain the evolution of sexual dimorphism (Poissant
et al., 2010; Griffin et al., 2013). However, we found no associa-
tion between intersex correlation and the extent of sexual dimor-
phism. The most dimorphic traits (flowering at wk 4 and
inflorescence number at wk 8) had very similar correlations with
other traits in both sexes (Fig. 6b). These results therefore sug-
gested that, although intersex correlations contribute to patterns
of sexual dimorphism, they are capable of evolving and are not
inflexible constraints to the evolution of sex differences (Delph
et al., 2011b).

Understanding the link between sex-specific phenotypic varia-
tion and the different reproductive roles of the sexes has long
intrigued evolutionary biologists. For plants, pollen and seed dis-
persal vectors can mediate the strength of sex-specific selection,
leading to trait changes in relation to the timing of the reproduc-
tive roles of males (pollen dispersal) and females (pollen receipt
and seed dispersal). Similarly, interaction between environmental
gradients and sex-specific resource requirement may result in cli-
nal variation in patterns of dimorphism. By examining geograph-
ical and temporal variation in sexual dimorphism, our study has
provided novel insights into how sexual and natural selection
contributed to sex-phenotype variation in a wide-ranging plant
species.
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