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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

EXPERIMENTAL AND NUMERICAL EVALUATION OF NAPIER GRASS 

GASIFICATION IN AN AUTO-THERMAL FLUIDIZED BED REACTOR 

By 

RAMIN KHEZRI 

May 2018 

Chairman:  Assoc. Prof. Wan Azlina bt. Wan Abdul Karim Ghani, PhD 
Faculty: Engineering 

Biomass gasification is a promising renewable energy generation technology 
as alternative to fossil based fuels for cleaner and sustainable future. At site 
auto-thermal gasifier built in affordable economic scale can overcome the 
high costs of grid lining, supplementary resources and the delivery of 
feedstock as main target for this study. A biomass gasification system with 
Napier grass as feedstock was investigated with the target of the producer 
gas to be used in direct combustion for power generation. The study consists 
of two main parts of experimental evaluations and numerical models. 
Experiments carried out to study the effect of three different operating 
parameters namely, temperature, equivalence ratio (ER) and static bed 
height (SBH) on the gasification of Napier grass in an auto-thermal bubbling 
fluidized bed gasifier. The results showed that the temperature has the most 
significant effect on the production of syngas as well as the composition of 
combustible species. The highest yield of syngas, with highest compositions 
of hydrogen and carbon monoxide and lowest yield of residues (i.e. biochar, 
tar and ash) were achieved at maximum temperature of 824°C. ER on the 
other hand has more complex effects on responses. The increase in ER up 
to 0.33 favored the yields of syngas, H2 and CO however the inverse effect 
was observed for ER above 0.33. SBH was found an important factor to 
effect on the production of H2 and CO and the maximum yields of each 
obtained at temperature of 824°C, ER of 0.33 and SBH of 0.105m. Common 
challenges encountered in performing the experiments were related to the 
complexity and instability of the process and the difficulties to maintain the 
temperature at a constant level due to the auto-thermal characteristics. 
Difficulties are expected to be diminished once achieved a steady-state 
operating condition through process improvement and optimization to which 
the process become adaptable to any imposed variations such as different 
feedstock types. 
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An integrated numerical simulation were developed to study over 
hydrodynamics and thermodynamics of the gasification process. 
Hydrodynamics of solid particles fluidization were modelled to study on the 
effect of superficial velocity, viscous and drag models on the expansion of 
fluidizing bed, formation and distribution of bubbles inside the gasifier. The 
effect of air distributor plate with different pore diameters was modelled 
individually to determine the initial condition of the fluid as entered the 
gasifier. The results showed that the turbulent model of RNG K-Ɛ describes 
the actual process more accurately than other fluid regimes. Laminar and 
turbulent models although resulted in similar bed expansion level, the 
turbulent model showed higher distribution of solid particles and their related 
interactions as the result. Thermodynamic studies were conducted to 
simulate the heat distribution and to determine the temperature profile of the 
reactor at any time step of the operation. The temperature values at steady 
operation were verified by experimental records. The conduction heat 
transfer from gasifier media into the center of a single particles with different 
diameters were studied individually to calculate the particle degradation 
period. It was found from the results that fully degradation of a particle to 
solid biochar as entered the gasifier at constant temperature takes place 
after 0.66, 1.1 and 1.55 seconds for particles with 300,500 and 700 µm 
diameters respectively. The effect of particle size and initial reactor 
temperature on heat distribution were evaluated as well. Using the model 
eases the monitoring of system behavior while functions under various 
operating conditions. 

The findings from empirical optimization while integrated with numerical 
models provides an in-depth understanding over the gasification process 
and facilitates the scale-up determinations so that the technology in the 
future can be utilized in larger scales to provide power from biomass 
particularly in form of electricity in rural area. 
 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

iii 

 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PENGGEGASAN RUMPUT NAPPIER DI DALAM PENGGEGAS AUTO-
TERMAL TERBENDALIR 

Oleh 

RAMIN KHEZRI 

Mei 2018 

Pengerusi: Prof. Madya Wan Azlina bt. Wan Abdul Karim Ghani, PhD 
Fakulti: Kejuruteraan 

Pengegasan biomass adalah teknologi penjanaan tenaga boleh 
diperbaharui yang berpotensi sebagai kepada tenaga daripada bahan api 
berasaskan fosil untuk masa depan yang lebih bersih dan mampan. 
Penggegas auto-termal yang dibina dalam skala ekonomi berpatutan dapat 
mengatasi kos sambungan grid yang tinggi, sumber tambahan dan 
penghantaran bahan bakar adalah sasaran utama kajian ini. Kajian yang 
dicadangkan untuk menilai sistem pengegasan sisa menggunakan rumput 
Napier sebagai bahan bakar bagi menghasilkan sintesis gas yang 
kemudiannya dapat digunakan dalam pembakaran langsung untuk 
penjanaan tenaga. Kajian ini terdiri daripada dua bahagian utama kajian 
eksperimen dan kaedah simulasi berangka. Bahagian pertama kajian, 
eksperimen dijalankan untuk mengkaji kesan tiga parameter operasi yang 
berbeza iaitu suhu, nisbah kesetaraan (ER) dan ketinggian statik ruang 
terbendalir (SBH) pada pengegasan rumput Napier di dalam pengegagas 
terbendalir. Reaktor yang dignnakan ber geometri silinder dengan ketinggian 
1 m dan diameter 0.106 m dan dilengkapi dengan sistem penyejukan dan 
pembersihan. Pemilihan rumput Napier sebagai bahan mentah adalah 
kerana kelebihannya keupayaan hasil tuaian yang tinggi, pertumbuhan yang 
cepat dan nilai kalori yang tinggi (sekitar 17 MJ / kg). Secara ringkas, kajian 
menunjukkan bahawa suhu mempunyai kesan yang paling ketara terhadap 
pengeluaran sintesis gas serta komposisi spesis mudah terbakar seperti 
hidrogen dan karbon monoksida. Hasil tertinggi sinthesis gas, H2, CO dan 
hasil lebihan terendah seperti bio-arang, tar dan abu dicapai pada suhu 
maksimum 824 ° C. ER sebaliknya mempunyai kesan yang lebih kompleks 
terhadap tindak balas. Peningkatan ER sehingga 0.33 cenderung 
menghasilkan sintesis gas, H2 dan CO namun kesan songsang diperhatikan 
untuk ER melebihi 0.33. SBH pula didapati faktor kurang penting untuk 
menghasilkan pengeluaran H2 dan CO di mana hasil maksimum masing-
masing pada suhu 824 ° C, ER 0.33 dan SBH 0.105 m. Antara cabaran yang 
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sering dihadapi dalam menjalankan eksperimen adalah berkaitan dengan 
kerumitan dan ketidakstabilan proses dan kesukaran untuk mengekalkan 
suhu pada tahap yang berterusan. Kesukaran dijangka akan berkurang 
setelah mencapai keadaan operasi mantap melalui peningkatan kecekapan 
proses dan pengoptimalan yang prosesnya dapat disesuaikan dengan 
variasi yang dikenakan. 

Oleh itu, simulasi berangka telah dibangunkan untuk mengkaji  sifat 
hidrodinamik dan termodinamik proses pengegasan. Hidrodinamik  zarah 
pepejal terbendalir dimodelkan untuk mengkaji kesan halaju superficial rejim 
ter bendalir yang berbeza dan pada pengembangan katil terbendalir dan 
pembentukan dan pengedaran gelembung di dalam penggegas. Kesan 
pengedaran udara dimodelkan secara individu untuk menentukan keadaan 
awal bendalir masuk seperti masukan penggegas. Hasilnya menunjukkan 
bahawa model bergelora RNG K-Ɛ menerangkan proses sebenar dengan 
lebih tepat berbanding rejim bendalir yang lain. Model laminar dan bergelora 
walaupun mengakibatkan pengembangan katil yang sama, pengagihan 
zarah pepejal dan interaksi mereka lebih tinggi dalam model bergolak. Kajian 
termodinamik telah dijalankan untuk mensimulasikan pengagihan haba dan 
menentukan profil suhu reaktor pada setiap langkah operasi. Nilai suhu 
kemudiannya divalidas oleh rekod percubaan. Penyebaran haba dari media 
penggegas ke dalam zarah tunggal telah dikaji secara individu untuk 
mengira tempoh pengerakan tunin zarah. Didapati bahawal bahawa zarah 
telah di transformasi sepenuhnya kepada bio-arang pepejal selepas 1.1 saat 
memasuki gasifier pada suhu malar. Penggunaan model ini memudahkan 
pemantauan tingkah laku sistem manakala fungsi di bawah pelbagai 
keadaan operasi. 

Penemuan dari pengoptimuman empirikal semasa gabangar dengan model 
berangka memberikan pemahaman mendalam mengenai proses dan 
memudahkan penentuan skala sehingga teknologi di masa depan dapat 
digunakan dalam skala yang lebih besar untuk penjanaan kuasa dari biomass 
khususnya dalam bentuk elektrik di kawasan luar bandar . 
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MC Moisture content 
NG  Napier Grass 
NS Navier-Stokes 
OFAT One factor at a time 
OPF Oil palm fronds 
OPT Oil palm trunks 
PKS Palm Kernel shell 
RSM Response surface methodology 
SBH  Static Bed Height 
SBH-Based Static bed height based 
STBR  Steam to biomass ratio 
T-Based Temperature based 
VM Volatile matter 
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LIST OF SYMBOLS 

Cd drag coefficient 
Cp Specific heat capacity, kJ/kg K 
D diameter 
Ds Diffusion coefficient, m2/s 
dp Particle diameter 
Ɛ porosity 
Ea Activation energy, J/mol 
g acceleration of gravity ��,������ Molar enthalpy of formation of gaseous component i, 

J/mol 

k turbulent kinetic energy 

K Temperature unit, Kelvin 

mw Molecular weight, kg/kmol �� Mass flow rate, kg/s 

MWe Megawatt electrical 
n Molar flow rate, kmol/s 
ɲT Thermal efficiency 
P Pressure, pa 
ΔP pressure drop 
Pr Prandtl number 
Q gas volumetric flow rate, m3/hr or sqft/hr 
Ø granular temperature, K 
Rg Universal gas constant, J/mol K 
Re Reynolds number 
T Temperature, °C or K �̿ stress tensor 

U gas superficial velocity, m/s 
Wt.% weight percent 
ZnO Zinc oxide 
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CHAPTER 1 

INTRODUCTION 

1.1 Biomass as Renewable Energy Resource 

Biomass for years has gained major interest as a source of renewable 
energy for its significance in sustainable energy and environmental friendly 
aspects. The importance of biomass energy is mostly upon its utilization in 
replacing fossil fuels and reducing the dependency of the energy 
consumption to those sources (Mohammed et al., 2011; Ruiz et al., 2013). 
There are various types of biomass, however the most commonly used one 
is wood in its different forms e.g. trunks, fronds, sawdust and forest residues 
(Kim et al., 2013). Feedstock selected for this study is Pennisetum 
purpureum, also known as Napier grass, elephant grass or Uganda grass 
(Farrell et al., 2002). The selection of Napier grass is due to a numerous 
benefits attributed including high dry matter, fast growth rate and 
propagation, relatively high colorific value and adaptability (Boon et al., 
2017). 

Although traditional biomass combustion tends to have lower efficiencies in 
terms of power and electricity generation and limited supply comparing to the 
fossil, however its advantages of providing an economical and sustainable 
technology makes it significant enough to be considered in high priorities. 
The regarded issue of low energy efficiency attributed by biomass 
combustion, compensates to some extents with the technology of 
gasification while coupled with advanced power generating systems such as 
diesel generators (syngas injects as a supplementary source) or gas turbines 
(Asadullah, 2014). 

Gasification is a thermochemical converting method in which the bio-based 
feedstocks converts to synthesis gas (syngas) and the by-products form at 
subsidiary stages of the process. Gasification occurs once a preheated 
oxidizer known as ‘gasification agent’ (i.e. air/steam) introduced into the 
reactor and the temperature of the reactor raised to a certain level (above 
700°C). The moisture level of biomass drops at the beginning of the 
operation and the volatile matter releases subsequently. The carbon content 
from the feedstock as well as the hydrocarbons from the volatiles start to 
crack and the inherent energy involved in the biomass converts it to the 
combustible gas (McKendry, 2002c). Figure 1.1 shows the stages of the 
operation to produce the final syngas which involves in three major steps of 
gasification itself, condensation and gas-cleaning. In each step the specific 
by-product and condensate gets separated and collects to use in related 
applications. 
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Figure 1.1: Schematic description of biomass gasification and its 

products. Source: (Ruiz et al., 2013) 

The proposed reactor for this study is an auto-thermal bubbling fluidized bed 
with output power capacity of 5 kilo watts.  In auto-thermal processes, part 
of the energy content of the fuel which releases during partial combustion is 
used to keep an endothermal process running, therefore the required energy 
provides from the process itself and without the requirement for any external 
sources.  In economic point of view, the regarded fact may considered a 
huge saving of resources however from the technical angle, it introduces 
several difficulties and limitations that must be mitigated. Start-up heating in 
an auto-thermal biomass gasification is typically implemented by combusting 
bio-based material which may take a long period for the reactor to reach its 
operating temperature. Moreover, the temperature in auto-thermal process 
is usually controlled by the adjustment of ratio between the inlet air and 
biomass feeding therefore the process is typically instable and imposed with 
high level of fluctuations. Once the mentioned issues are resolved and the 
process becomes steady, the auto-thermal gasification technology can be 
integrated with an internal combustion engine to be used in electricity 
generation for rural area where having limited access to electricity grids. 

The fluidization of particulate solids takes place in fluidized bed reactor. 
Fluidization is entitled for the phenomenon in which a fluid (liquid or gas) 
passes through a bed of granular solid and converts the static bed to the 
dynamic state. Fluidized bed reactors are credited by many industries for 
several advantages including uniform temperature distribution, fine gas-solid 
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mixing characteristics and much higher rates of mass and energy transfer 
comparing to fixed bed types (Wang et al., 2008). 

The exploration of physics related to biomass fluidization is still an interesting 
and fairly noble topic for many researches and investigations. The complexity 
involved in the fluid-solid interactions especially while considering in 
gasification, appeals a well-defined knowledge to describe the fluidization 
behavior. A model of which accurately describes the fluidization phenomena 
is capable to predict the quantities and to estimate how the system reacts if 
imposed to any probable variations of parameters such as pressure drop, 
superficial and minimum fluidization velocities. 

The understanding of fluidization hydrodynamic is necessary in order to 
improve the operation and yet difficult to achieve empirically. Depending on 
the different characteristics of materials (in terms of physical geometry, sizes, 
densities etc.), several parameters has to be considered for the purpose of 
analysis. An accurate numerical model can describe the phenomenon for 
any type of material used (Baruah & Baruah, 2014). Silica sands are cost 
effective and are favorable to use as bed medium in high temperature 
gasification as they provide a uniform fluidizing bed (McKendry, 2002c). 
There are number of issues important to address for one dealing with air 
gasification: 

i. The calorific value (CV) of the producer gas in air gasification is relatively 
lower than steam gasification as the producer gas is diluted by nitrogen 
introduced with inlet air.(Asadullah, 2014) 

ii. Air gasification results to lower CV of the producer gas; it is more 
preferable to use directly in combustion or as a supplementary source in 
diesel engines. If the target is to use the syngas in bio-chemical production 
such as methanol and methane, hence air gasification is not the desirable 
technology. 

iii. Slagging and agglomeration are common issues associated with fluidized 
bed gasification due to the ash content of the biomass. One of the practical 
treatments to avoid slagging is to keep the bed temperature at lower degree, 
which however results to further loss of char (McKendry, 2002c). 

1.2 Problem Statement 

Biomass gasification although considered one of the crucial sustainable 
alternatives for carbon-based energy sources, the currently used 
technologies are not yet as efficient and powerful as expected to be. There 
exists a number of common and technology-specific limitations which make 
biomass gasification a complex and sensitive process such as the instable 
operation, handling of residues, fuel preparation, the cost of set-up and 
maintenance and the proper-state of the producer gas in terms of chemical 
and physical properties. The drawbacks are even more emphasized when 
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dealing with auto-thermal reactor as it introduces a number of further 
consideration related to start-up heating and preparation. Auto-thermal 
gasification as explained before, although brings along several handling and 
operating difficulties, it reduces a huge amount of capital and operating cost 
since the required heat for carbon conversion is supplied from exothermic 
chemical reactions within the reactor. The importance of auto-thermal 
gasifier is even more highlighted as it uses for the purpose of electrification 
in rural area whereby restricted from the access to electricity grids.  

Reactor optimization is one of the techniques in mitigation of deficiencies 
imposed by auto-thermal process. Several operating parameters are 
previously identified to have significant influence on gasification such as 
feeding rate, equivalence ratio, reactor temperature and static bed height. 
Any variation of those parameters may affect the quality of the producer gas 
as well as the performance of the operation. In addition, different 
characteristics of feedstocks e.g. thermo-chemical properties, carbon 
content, bulk density etc. may also results in different outputs. An optimum 
range of variation for such parameters must be determined in order to 
achieve the desirable products. 

There exists a number of physical parameters to have significant influence 
on gasification and thus should be considered, however they are difficult to 
measure through experimentations. Parameters related to particle 
interactions and fluidization hydrodynamics are the instances of those which 
seem to be expensive and time consuming to determine empirically. An 
accurate numerical hydrodynamic evaluation can play a crucial role to 
overcome such problems and to investigate important factors such as 
superficial velocity, formation of bubbles, motion pattern of particles, 
expansion ratio of bed materials and other related factor that influence the 
hydrodynamics of fluidization and hence the yield and quality of products as 
the result. 

Another important concern especially while dealing with auto-thermal reactor 
is regarding the unsteady and hard to control temperature variation that takes 
place during the operation. High fluctuations in temperature may lead up to 
dangerous or undesired situations such as high pressure, runaway reaction 
and explosion in case of high temperature or high amount of tar and low 
amount of combustible species in products in case of low temperature 
conditions. It has not yet observed a comprehensive numerical study from 
the literatures to address the temperature profile and heat distribution in an 
auto-thermal fluidized bed gasifier and the gap is still exists in this particular 
area of concern. A proper process simulation verified with actual data can 
generate temperature profiles at each time step of the operation and 
therefore provide the feasibility to monitor and control the process at any 
time. 
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Once the challenges related to instable and complex operation has been 
overcome and the process has been optimized with the help of numerical 
models and experimental analysis, the technology can be further improved 
for scale-up. 

1.3 Aim and Objectives 

The objectives of this study can be enlisted as following: 
1. To perform the optimization of the autothermal gasifier through 

investigating the effect of operating parameters on the producer gas in 
terms of yield and combustibility. 

2. To determine the effect of factors related to hydrodynamics of fluidization 
and motion of the particles through computational fluid dynamic 
modeling and simulation 

3. To evaluate the heat distribution inside the reactor and investigate the 
effect of parameters on the temperature profile through thermodynamics 
modeling and simulation. 

1.4 Scope of Work 

The scope of work for this study is divided in three main sections according 
to the objectives: 
1-  For the first objective, biomass characterization was completed and 

minimum fluidization velocity was calculated through experimental 
approach. This study was conducted to perform sensitivity analysis on 
gasification of Napier grass in an auto-thermal bubbling fluidized bed 
reactor using two experimental designs of:  

i- One factor at the time (OFAT).  This approach was performed to 
investigate the influence of main operating parameters on the producer 
gas and was included two main steps, namely OFAT-A and OFAT-B. 
OFAT-A studied the effect of temperature, equivalence ratio and static 
bed height on the composition of syngas with the target of achieving 
compositions of hydrogen and carbon monoxide and lowest composition 
of carbon dioxide. OFAT-B studied the effect of temperature, equivalence 
ratio and static bed height on yield of products with the target to achieve 
the highest yield of syngas (flowrate) and lowest production of liquids (tar 
and bio-oil) and residues (ash and char). 
 

ii- The application of Response surface methodology (RSM) was studied to 
evaluate the interactions of parameters with the method of Box-Behnken. 
The selected independent factors were temperature, static bed height 
and equivalence ratio and the respected responses were the syngas yield 
(mole %) and tar yield (wt %). An optimization method of “The desirability 
approach” was used to identify the optimum operating conditions. 
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2-  Computational fluid dynamics (CFD) with ANSYS Fluent framework was 
used to simulate the hydrodynamics of gas-solid mixing and fluidization. 
The 2D simulation was performed based on defined geometry, boundary 
conditions, generated mesh and wall functions. The effect of fluid 
regimes (laminar flow, RNG k-Ɛ and K-ω turbulent flows) as well as the 
effects of superficial velocity, air distributor with different pore sizes, drag 
models and pressure drop was investigated on the bed expansion, 
bubble formation and flow motion pattern. The pressure drop model was 
validated by experimental data to ensure that the simulated case is 
capable to represent the actual process. 

3-  Computational fluid dynamics (CFD) with ANSYS Fluent framework was 
used to perform the heat transfer models. The heat distribution inside the 
reactor was modelled based on the obtained hydrodynamics 
characteristics. The formulation of total energy was modified and added 
by a term (Sh) to describe the variation of energy due to enthalpies of 
chemical reaction related to gasification in equilibrium state. The 
degradation of a single particle of Napier grass as inserted in a reactor 
with fluidizing bed at gasification temperature was simulated and the 
degradation rate was calculated. The effect of different biomass particle 
sizes and initial bed temperatures on biomass degradation rate and 
consequently on temperature profile in gasifier was investigated. The 
temperature values from the simulation data was validated by those 
recorded from the thermocouples on reactor used in experimentation at 
the same operation state to ensure that the calculation of total energy is 
accurate and the model is representing the actual process. 

1.5 Limitations 

This study was imposed with a number of restrictions as below: 
i. Limitations caused by handling and control: since the instrumentations 
has been designed with the target of setting up a simple procedure to 
become economic and with least complexity of operation for the users. The 
apparatus for this study was selected as auto-thermal to avoid the excess 
costs related to heating. The source of heating is provided from the energy 
release through exothermic reactions of cracking and oxidizing of carbon 
components. The regarded fact creates instability and hence, difficulties to 
handle the operation at the set points of parameters mostly emphasized for 
temperature as it encounters consistent fluctuations. 

ii. Limitations caused by equipment design and mechanism of operation: 
The intention for considering economic aspects over the whole design stages 
imposed a few restrictions including the essential to avoid using expensive 
feedstock materials, complex catalysts or any operational conditions that 
considered costly. 
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1.6 Thesis Structure 

This thesis consists of five chapters following the structures. Chapter One 
provided knowledge about significance of biomass gasification and the 
scope of current research, moreover emphasized on the objectives taken to 
overcome the research problem. Chapter Two provides a detailed review on 
literatures related to various experimental and numerical approaches on 
gasification of biomass and fluidization of solid particles. Research 
methodology has been comprehensively explained in Chapter Three divided 
by two parts of experimental and numerical approaches. The final results 
have been presented and discussed in detail in Chapter Four and the 
correlation of quantities and validation of models has been performed and 
justified. Chapter Five is the final conclusions to highlight the most significant 
aspects and outcomes from the research. 
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