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Abstract—Lesion border detection is considered a crucial
step in diagnosing skin cancer. However, performing such a task
automatically is challenging due to the low contrast between
the surrounding skin and lesion, ambiguous lesion borders,
and the presence of artifacts such as hair. In this paper we
propose a two-stage approach for skin lesion border detection:
(i) segmenting the skin lesion dermoscopy image using U-Net,
and (ii) extracting the edges from the segmented image using
a novel approach we call FuzzEdge. The proposed approach is
compared with another published skin lesion border detection
approach, and the results show that our approach performs
better in detecting the main borders of the lesion and is more
robust to artifacts that might be present in the image. The
approach is also compared with the manual border drawings
of a dermatologist, resulting in an average Dice similarity of
87.7%.

I. INTRODUCTION
The computerized analysis of skin cancer images normally
starts by lesion border detection, which is considered a cru-
cial step for subsequent diagnostic steps, given that clinical
features such as border irregularity are measured from the
border, an important feature (i.e. B feature) in the ABCD rule
(criteria) that physicians, dermatologists and non-physicians
could use to detect features of melanoma, enhancing its
early diagnosis [16,24]. The ABCD acronym refers to the
following four parameters: Asymmetry, Border irregularity,
Color variegation, and Diameter greater than 6mm. Such pa-
rameters provide simple means for the appraisal of pigmented
cutaneous lesions that may need to be further examined by a
specialist with dermoscopy and excision where appropriate.
Other clinical features such as atypical pigment network and
globules rely on how well the border is detected. Detecting
such borders automatically is however challenging due to the
low contrast between the surrounding skin and the lesion,
ambiguous lesion borders, artifacts such as hair, and the
variation of colors inside the lesion [1].

Different methods have been proposed in literature for
lesion border detection. Erkol et. al. [7] used Gradient Vector
Flow (GVF) snakes to obtain the border of skin lesions
in dermoscopy images, where a luminance image blurring
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approach is presented for automatic snake initialization. The
approach is tested on 100 images (30 melanoma and 70
benign). The results show that 76 out of the 100 images have
percentage border errors in less than 20%, and 96 out of the
100 images have percentage border errors in less than 30%.
In [4] Celebi et. al. proposed a fast unsupervised approach
to border detection of pigmented skin lesions based on the
Statistical Region Merging (SRM) algorithm [5]. The authors
attempted to facilitate the border detection process by the
pre-processing operations of black frame removal and image
smoothing. The process is also followed by a post-processing
step, namely morphological dilation. The approach is tested
on 90 dermoscopy images and does not perform well on
images with a significant amount of hair. Celebi et.al. [2]
proposed an unsupervised approach to border detection in
dermoscopy skin lesion images based on a modified version
of the JSEG algorithm [3] for segmentation, preceding that
with pre-processing steps that aim at facilitating the border
detection procedure (image smoothing, color quantization
and approximate border localization), and carrying out a
post-processing step as the final stage of the proposed ap-
proach. The approach is tested on 100 dermoscopy images
(30 melanoma and 70 benign) and suffers from several
limitations in that the bounding box determined by the
approximate lesion localization method does not contain
the whole lesion, and the method might not perform well
on images with a significant amount of hair. An automatic
approach for skin lesion border detection was proposed by
Tzekis et. al. [6] where the process is carried out through
a combination of different phases. The first phase attempts
to determine if some points belong to melanoma or not,
which is carried out by calculating the base color between
the skin color and the melanoma color. The second phase
of the approach locates a random point in the mole either
from the entire area of the image or from random points
around the center of the image. A point on the border of
the mole is then found in the third phase, which adds more
border points and terminates when a point is very close to
where the first one is located, eventually drawing the actual
boundaries of the lesion. The results of the approach have
been shown to be fast, simple and accurate. The authors also
utilized an algorithm for hair removal. An Artifact Removal
and Border Detection (ARBD) approach was proposed by
Abbas [8]. The approach is composed of multiple steps: pre-
processing to enhance the contrast of lesions, artifact removal
to reduce the effects of specular reflection, dermoscopic-gel,
and lines (e.g. hair, blood vessels, skin lines, ruler markings
and camera flash), plane-fitting to reduce the effect of texture
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patterns from tumor regions, detecting candidate regions, and
segmenting the tumor region by Adaptive Dynamic Program-
ming (ADP). The approach is applied on 250 dermoscopic
imagines (30 benign melanocytic, 60 Malignant Melanomas
(MM), 45 Basal Cell Carcinoma (BCC), 25 Merkel Cell
Carcinoma (MCC), 70 Seborrhoeic Keratosis (SK), and 20
Acral volar Melanocytic (AM)), and has shown to be robust
to boundary detection of the tumor in cases of fuzzy or
smooth lesion types (BCC, MCC and AM). Other studies
attempting to detect skin lesion borders can be found in [26-
29], and a comprehensive survey on lesion border detection
in dermoscopy images can be found in [9].

With the increasing interests in Deep Learning in recent
years, along with the outstanding results it has provided on
different computer vision tasks, some attempts have been
made in utilizing this technology in skin lesion border detec-
tion. Sabouri and GholamHosseini [10] used a Convolutional
Neural Network (CNN) to detect lesion borders. The CNN
is trained on two classes: the lesion class (containing 480
lesion images) and the background class (containing 1200
images of the normal skin with artifacts such as hair and ruler
marker). The output is a binary mask labeling the segmented
lesion. Lesion borders using the CNN are not accurately
detected. The authors thus utilized the morphological closing
operation as a post-processing step to determine the border
more accurately. The advantage of this approach is that no
pre-processing operations are carried out for hair removal
and illumination correction. In [11] the authors employed a
CNN as feature extractor avoiding any pre-processing for the
input images, and a Support Vector Machine (SVM) as a skin
lesion classifier. The border of the lesion is obtained through
combining the binary mask with the original image. The
CNN is trained on 23,000 patches of normal and skin lesions
divided in such a way that each class contains the same
number of images. Results show that some lesion borders are
not detected perfectly, and thus a post-processing approach
of smoothing the images is applied.

In this paper, we propose a skin lesion border detection
method that is composed of two stages: (i) segmenting the
skin lesion dermoscopy image using U-Net, and (ii) detecting
the edge (border) using a novel method called FuzzEdge.
As opposed to most previous studies, our approach requires
neither pre-processing (i.e. image enhancement) nor post-
processing (i.e. mathematical morphology) steps. Section
(II) explains the U-Net architecture, Section (III) explains
our novel fuzzy border detector, Section (IV) provides an
overview and explanation of results, and the paper is con-
cluded in Section (V).

II. IMAGE SEGMENTATION USING
CONVOLUTIONAL NEURAL NETWORKS

CNNs tend to produce dense predictions by extracting
patches around each pixel which can be inefficient. A Fully
Convolutional Network (FCN) is proposed in [13-14], which
uses up-sampling and fully convolutional layers to generate
pixel-wise predictions in a more efficient manner in a single
pass [12]. In this paper, we use the U-Net architecture

Fig. 1: U-Net architecture: blue boxes correspond to a multi-
chanel feature map with the number of channels shown on
top of the box. The value on the lower left edge of the box
is the x-y-size. The copied feature maps are shown in white
boxes, and the arrows refer to different operations [15]

[15] for segmenting the mole images. U-Net is an end-
to-end encoder-decoder network for semantic segmentation
which was firstly used for medical image segmentation.
The architecture is composed of left (down) and right (up)
sides. The down part, which follows the typical convolutional
network architecture, is the encoder part where convolu-
tion blocks are applied followed by maxpooling in order
to encode the input image into feature representations at
multiple levels. The number of feature channels are doubled
at each downsampling step. On the other hand, the up
part consists of upsampling the feature map followed by
a convolution operation that brings the number of feature
channels to half; a concatenation with the corresponding
cropped feature map from the down part occurs, followed by
two 3×3 convolutions which are also followed by two ReLU
operations and one 2 × 2 max-pooling operation with stride
2 used for downsampling. The cropping process is essential
as border pixels are lost at each convolution. Thus, while
upsampling we concatenate the higher resolution features
from the down part with the upsampled features in order
to localize and learn representations better. The resulting
architecture is that the expansive path is symmetric to the
concatenating path, yielding a u-shaped architecture (Fig.
1). The final layer of U-Net uses a 1 × 1 convolution to
map each 64 feature vector to the desired number of classes.
The network is composed of 23 convolutional layers in total,
provided that it does not have any fully connected layers and
uses only the valid part of each convolution. For the border
region of the image, the pixels are predicted by an overlap-
tile strategy such that the missing context is extrapolated by
mirroring the input image, thus allowing the U-Net network
to be applied on large images. The outcome of this stage
is the segmented image, where the foreground (in white)
represents the skin lesion and the background (in black)
represents the skin.



III. FUZZY BORDER DETECTOR
Based on the work in [25], in this paper we propose a
novel fuzzy filter for skin lesion border detection, namely
FuzzEdge. The major adaptation is that the fuzzy filter
proposed in [25] calculates the weighted fuzzy mean for the
purpose of noise removal, while our FuzzEdge calculates the
standard deviation for the purpose of edge detection. The
algorithm code has been open sourced and can be accessed
via https://github.com/abderhasan/fuzzedge.

Assume we have an image G of size M × N pixels, and
has L gray levels. Such image can be denoted as G =

[g(i, j)]M×N , where g (i, j) ∈ {0, 1, ..., L − 1} refers to a pixel
in the image. Fuzzy sets that represent a particular concept
for the gray level (i.e. intensity feature) of the image pixels
can be constructed. Examples of such fuzzy sets are dark
pixels and bright pixels. The membership function of each
fuzzy set determines the membership grade in the range [0, 1]
(1: full membership, 0: no membership) by which a pixel
with a certain gray level belongs to that fuzzy set (concept).
Those fuzzy sets can be eventually used to describe image
pixels.

The fuzzy concepts can be derived from the image his-
togram, with gray levels in the range [0, L − 1] defined as
follows:

h (gk) =
nk
n

(1)

where gk denotes the k th gray level of image G, nk is the
number of pixels with the k th gray level in G, n is the total
number of pixels in G, and k = 0, 1, 2, ..., L − 1.
In order to generate the fuzzy sets (concepts), the mem-

bership functions for those fuzzy concepts have to first be
defined. A heuristic algorithm is utilized to define the mem-
bership functions of the different fuzzy concepts from the
histogram of the image. Three fuzzy concepts that represent
an image have been created: Bright, Dark, and Median.

The fuzzy concepts used in this work are of the L−R type
fuzzy number [23] defined as follows:

fLR_FC(x) =


L
(m − x

α

)
, x ≤ m

R
( x − m

β

)
, x ≥ m

(2)
where L(y) = R(y) = max(0, 1 − y), and f (x) can be

represented as a triplet [m, α, β], such that m corresponds to
the modal value of the membership function, and α and β are
the spreads that correspond to the left-hand and right-hand
curves of the membership function, respectively. Algorithm
1 highlights the steps required to create fuzzy sets.

For initiating the filtering process, a 3×3 window (kernel)
is affected on the input image, where the window determines
the gray level values (intensities) of the filtered area, and
the pixel to be filtered would stand in the central cell of
the 3 × 3 kernel. Let X = [x (i, j)]M×N be the original
input image, and Y = [y (i, j)]M×N be the filtered output
image. The (i, j)th pixel of the filtered image Y is represented

input : grayscale image I
output
:

fuzzy set (concept)

1 For the fuzzy concepts Bright, Dark, and Median,
specify the intervals of [Brightbegin, Brightend],
[Darkbegin,Darkend], and
[Medianbegin, Medianend], respectively.

2 Let Brightbegin =
(
Nf − 1

) [
L−1
N f

]
, Darkend =

[
L−1
N f

]
,

Medianbegin = Darkend − le f t_overlap, and
Medianend = Brightbegin + right_overlap /* Nf is
the number of fuzzy concepts, and le f t_overlap
and right_overlap determine the overlapping range
of the fuzzy concepts (the overlap range was set to 0
in this paper) */.

3 Set Darkbegin to be the first gk from 0 to Darkend .
4 Set Brightend to be the last gk from Brightbegin to

L − 1.
5 In interval [Darkbegin,Darkend], find a pixel gk

with the maximum value of p(gk).
6 For the fuzzy concept Dark, create its membership

function fDark as follows: mDark ← gk ,
αDark ← mDark − Darkbegin,
βDark ← Darkend − mDark .

7 In interval [Medianbegin, Medianend], find a pixel
gk with the maximum value of p(gk).

8 For the fuzzy concept Median, create its membership
function fMedian as follows: mMedian ← gk ,
αMedian ← mMedian − Medianbegin,
βMedian ← Medianend − mMedian.

9 In interval [Bright, begin − Brightend], find a pixel
gk with the maximum value of p(gk).

10 For the fuzzy concept Bright, create its membership
function fBright as follows: mBright ← gk ,
αBright ← mBright − Brightbegin,
βBright ← Brightend − mBright .

Algorithm 1: Fuzzy set (concept) creation process

as: y(i, j) = FuzzEdge(X(i, j)), where X(i, j) is a 3 × 3
kernel centered at the input pixel x(i, j) that will be affected
by the filter, and FuzzEdge(.) denotes the function of the
FuzzEdge (fuzzy filter). The kernel can be represented as
follows:

X(i, j) =

x(i − 1, j − 1) x(i − 1, j) x(i − 1, j + 1)

x(i, j − 1) x(i. j) x(i, j + 1)
x(i + 1, j − 1) x(i + 1, j) x(i + 1, j + 1)


(3)
The FuzzEdge operation is composed of three standard

deviation processes, one for each fuzzy concept (Bright,
Dark, or Median). Each standard deviation process deter-
mines the value of the filtered pixel on one of the three fuzzy
concepts (fuzzy intensity features). The weight associated
with each pixel is determined by referring to the membership
function (i.e. fBright ) of the associated fuzzy concept. The
standard deviation is then found for the pixels located in the



kernel, eventually affecting the result to the pixel located at
the center of the kernel (i.e. ȳ (i, j)). This process allows us
to find ¯yBright (i, j), ¯yDark (i, j), and ¯yMedian (i, j).
After ¯yBright (i, j), ¯yDark (i, j) and ¯yMedian (i, j) are pro-

duced, the decision process of FuzzEdge is utilized in order
to determine the final filtered output of each pixel in the
input image by referring to a fuzzy estimator derived from
a fuzzy interval. A fuzzy interval is of LR − type if two
shape functions L and R exist, in addition to the parameters
(i.e. (ml,mR) ∈ R2, α and β) that are used to form the
membership function of the fuzzy interval. The fuzzy interval
can be denoted as FI = [ml,mr, α, β]LR, and the membership
function of FI can be defined as shown in Equation 4.
A standard deviation process similar to the one described
above is applied on a sliding kernel (window) centered at the
input pixel x(i, j). In the fuzzy estimator step, the parameters
are assigned the following values: mr = Brightend , ml =

Darkbegin, L(y) = 0 and R(y) = 0 for the membership
function of the fuzzy interval.

fLR_FI (x) =


L
(ml − x

α

)
, x ≤ ml

1, ml ≤ x ≤ mr

R
( x − mr

β

)
, x ≥ mr

(4)
The final output of each filtered pixel is determined by

selecting the pixel that is nearest to the fuzzy estimator from
¯yBright (i, j), ¯yDark (i, j) and ¯yMedian (i, j) (see Algorithm

2).

1 if
��ȳDark (i, j) − fLR−FI

(
X (i, j)

) �� <��ȳMedian (i, j) − fLR−FI

(
X (i, j)

) ��
2 y (i, j) ← ȳDark (i, j)
3 else
4 y (i, j) ← ȳMedian (i, j)
5 if

��ȳBright (i, j) − fLR−FI

(
X (i, j)

) �� <��y (i, j) − fLR−FI

(
X (i, j)

) ��
6 y (i, j) ← ȳBright (i, j)

Algorithm 2: Decision process of FuzzEdge

The general framework of the proposed approach can be
shown in Fig. 2.

Fig. 2: General framework

IV. RESULTS AND DISCUSSION
The U-Net architecture is trained on 2594 dermoscopy im-
ages along with their corresponding ground truth response
masks from the "ISIC 2018: Skin Lesion Analysis Towards
Melanoma Detection" grand challenge datasets [18-19]. Fig.

3 depicts some examples on the training dataset and the
corresponding ground truth.

Fig. 3: Training examples

To make the most of the training data, augmentation using
some transformations has been applied (such as rotation,
shifting horizontally and vertically, shearing, zooming, hor-
izontal flip, and filling in newly created pixels which can
appear after a rotation or a horizontal/vertical shift). This
avoids the model from coming across the exact same image
twice, and thus preventing over-fitting and leading to better
generalization. Images used have been resized to 512 × 512.
U-Net was implemented using Keras and FuzzEdge using
Python. The U-Net model is trained for 20 epochs on a Tesla
P100 GPU. Fig. 4 shows how accuracy is improved across
the epochs.

Fig. 4: Accuracy improvement across different epochs

A. Ground truth

A ground truth is required to compare our automatically
detected borders against. The manual borders were created
by a dermatologist (Dr.Sally Jane O’Shea). Fig. 5 shows an
example on such annotated images. Those images represent a
sample of skin lesion dermoscopy test images that the model
has not been trained on before (i.e. did not see).



Fig. 5: Borders (in blue) manually drawn by a dermatologist

B. Comparison with another automated method

Fig.6 shows the test images, segmentation results (i.e. U-Net
output) and borders detected (i.e. FuzzEdge output).

Fig. 6: Results of our proposed approach. The first row in
the two sets of images represents the original dermoscopy
images, the second row shows the segmentation results of
U-Net, and the third row displays the detected borders after
applying FuzzEdge.

We compare our approach with another automatic border
detection approach proposed by Hua [21]. Fig.7 illustrates
Hua’s two stage results: (i) pre-processing and (ii) edge
detection using the Sobel edge detector [22] (the author
utilizes different edge detectors, but we chose one edge
detector for brevity).

Fig. 7: Results of the approach proposed by Hua [21]. The
first row in the two sets of images represents the original
dermoscopy images, the second row shows pre-processing
results, and the third row displays the detected borders after
applying the Sobel edge detector.

From Fig. 6 and Fig. 7 we can notice that the proposed
approach is able to detect the main border around the skin
lesion, and is robust to artifacts presented in the images as
opposed to the approach proposed by Hua [21]. Moreover,
the approach by Hua is more of a heuristic approach on a trial
and error basis as different threshold and sigma values need
to be experimented with. However, our proposed approach
lacks the ability to detect the exact fine structure of the skin
lesion border. This might be due to the many structures that
skin lesions possess, unlike other medical imaging shapes
(i.e. colon) that tend to be very similar, This might also be
due to downsampling the images in the U-Net process.

C. Comparison with the ground truth

Fig. 8 shows a sample of our results (white border) over-
laid against the dermatologist’s annotations (blue border).
A visual comparison between the borders drawn by the
dermatologist and the borders of our proposed approach
shows the automatically extracted borders are very close to
those manually outlined by the dermatologist.



Fig. 8: Borders of our proposed approach (in white) overlaid
on the borders by the dermatologist (in blue)

To quantitatively evaluate our method against the ground
truth, we fill the area surrounded by the dermatologist’s
border and our method’s border for each image. We then use
the Dice coefficient [31] to measure the similarity between
the two images. The Dice coefficient is a measure that finds
the spatial overlap between two binary images, resulting in a
value that lies between 0 (no overlap) and 1 (agree perfectly).
The Dice coefficient can be defined as follows:

D =
2 (A ∩ G)

A + G
× 100% (4)

where A is the algorithm output and G is the ground truth.
Table. 1 lists the Dice coefficient results of 10 test images

(the names reflect the original names as used in the dataset).
The Dice similarity achieved by our approach is 87.7% on
average.

TABLE I: Dice values for dermoscopy test images

Image Dice
ISIC_0012456 82.6%
ISIC_0012560 89%
ISIC_0012647 81.1%
ISIC_0015094 84.7%
ISIC_0015117 88.2%
ISIC_0015165 95.4%
ISIC_0017789 74.8%
ISIC_0018917 94.4%
ISIC_0019133 94.5%
ISIC_0020005 92.1%

V. CONCLUSION
In this paper we propose a deep learning based approach for
skin lesion border detection in dermoscopy images. Com-
pared to another automatic approach, our approach proves to
be more robust to artifacts that might be present in skin lesion
images (i.e. hair). When compared to a dermatologist’s man-
ual border drawing (i.e. ground truth), our approach resulted
in an average Dice similarity of 87.7%. An important feature
of the proposed approach lies at that no pre-processing (e.g.
image enhancement) or post-processing (e.g. mathematical
morphology) methods are required. However, our approach
fails to detect the exact structure of the skin lesion border.
This might be mainly due to the many skin lesion shapes,
which require more data when training the U-Net. As the
future work, we plan to investigate further how to capture

the fine structures of the skin lesion borders as this is a
crucial factor in determining the border irregularity.
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