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Abstract: Competitive interactions are important predictors of tree growth. Spatial and temporal 
changes in resource availability, and variation in species and spatial patterning of trees alter 
competitive interactions, thus affecting tree growth and, hence, biomass. Competition indices are 
used to quantify the level of competition among trees. As these indices are normally computed only 
over small areas, where field measurements are done, it would be useful to have a tool to predict 
them over large areas. On this regard, remote sensing, and in particular light detection and ranging 
(lidar) data, could be the perfect tool. The objective of this study was to use lidar metrics to predict 
competition (on the basis of distance-dependent competition indices) of individual trees and to 
relate them with tree aboveground biomass (AGB). The selected study area was a mountain forest 
area located in the Italian Alps. The analyses focused on the two dominant species of the area: Silver 
fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) H. Karst). The results showed that lidar 
metrics could be used to predict competition indices of individual trees (R2 above 0.66). Moreover, 
AGB decreased as competition increased, suggesting that variations in the availability of resources 
in the soil, and the ability of plants to withstand competition for light may influence the partitioning 
of biomass. 

Keywords: airborne lidar; remote sensing; modelling; individual-based competition indices; 
competition–biomass relationship 

 

1. Introduction 

Tree growth is influenced by several factors, including climate patterns, site conditions, and 
competition processes [1–4] Among them, tree competition measures are the main predictors of 
individual trees’ growth [5]. Competition among trees is defined as the negative effects that 
neighboring trees have on a subject tree. These negative effects depend on the interactions between 
trees in acquiring limited resources, such as light, water, and nutrients [6,7]. Quantifying the 
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competitive effect of neighboring trees is difficult due to the co-occurring effects of various 
environmental factors on trees. 

Many indices have been developed in numerous studies in order to quantify the level of 
competition that individual trees experience, and to assess how competition affects growth rates (e.g., 
[8–12]). Competition models, based on competition indices of single trees, can be classified into two 
main groups: distance-independent and distance-dependent models [13–16]. Distance-independent 
models use only non-spatial competition indices. These indices are based on the size distribution of 
competitor trees within a given area, without considering their spatial distribution. Differently, 
distance-dependent models are based on spatial competition indices that incorporate both the size 
and the spatial distribution of competitors [17]. Distance-dependent indices may offer more reliable 
forecasts of the growth of single trees [18,19], as tree size, species composition, and stand structure 
vary within a stand and, consequently, the availability of resources [20]. In forests with a spatially 
inhomogeneous distribution of trees, and in particular in unmanaged mountainous areas, there is 
usually stronger growth competition between neighboring trees and thus biomass growth can be 
more easily influenced by the available light intensity and site quality. 

Several studies (e.g., [16,21]) found that the canopy neighborhood plays a key role in 
understanding tree competition. Therefore, the availability of light is probably a determining factor 
for the growth of individual trees [22–25]. However, species-specific differences in crown 
characteristics may influence light capture differently in different canopy classes [26]. Yet, the co-
occurrence of species that differ in their root architecture may improve the uptake of nutrients and 
water [27,28]. Below-ground competition does not only consider the interactions between dominant 
and/or subdominant trees with the subject tree but also those trees whose roots occupy the root 
distribution area of the subject tree [29]. These differences in functional traits for the capture and 
assimilation of resources (such as light, water, and nutrients) may lead to changes in biomass 
partitioning and, therefore, change the productivity of forests. According to Fox et al. [30], the 
productive potential of forest stands can be greatly increased by competition. Competition is linked 
to the acquisition of environmental resources by species in close spatial proximity, so changes in 
biomass partitioning may affect the productivity of forests [31,32]. Many studies (e.g., [33,34]) have 
investigated the relationship between biomass partitioning and plant competition. For example, Lin 
et al. [34] showed that the allocation of biomass can vary due to different types of competition, above 
and below ground. Increased competition among trees due to the limitation of underground 
resources can lead to changes in roots’ biomass [35]. Furthermore, according to Petersen et al. [36], 
removal of the effects of competition in a controlled environment led to an increase in the above 
ground biomass of Douglas fir. These studies suggest that competition is closely related to biomass 
partitioning, and biomass distribution directly affects forest productivity. Furthermore, according to 
Zhou et al. [33], biomass distribution directly affects forest productivity, and productivity is closely 
related to forest competition. 

Obtaining information regarding the spatial distribution of individual trees, and their height, 
diameter, crown projection, and biomass requires methods based on field measurements. Although 
these conventional techniques provide reasonably accurate estimates, they often require labor-
intensive and time-consuming measurements and inspections. Moreover, the measurements are 
always limited to small areas while in many cases, it is necessary to have measurements over large 
areas. Therefore, the use of remote sensing, in particular of light detection and ranging (lidar) remote 
sensing technology, partially overcomes these limitations. Several methods have been developed 
using airborne lidar metrics (e.g., [37–39]) for the estimation of forest biomass and volume (e.g., [40]), 
and other forest characteristics (e.g., [41]). The majority of the studies in the literature have focused 
on the prediction of volume and biomass, many on forest structure, and few on competition. As an 
example, Lo et al. [42] predicted volume, DBH, and a height-based competition index using lidar 
metrics at the individual tree level. Relating volume and DBH to the competition index, they showed 
that they are negatively related. Similarly, Lin et al. [43] showed that by using a lidar-based height 
competition index it is possible to predict the aboveground carbon density of individual trees. Ma et 
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al. [44] predicted tree growth in terms of an increase in height crown area and crown volume using 
bi-temporal airborne lidar data and they related this to some competition indices. 

The objective of this study was to use lidar metrics to predict competition indices and to show 
how they relate with tree aboveground biomass (AGB). In particular, we focused on two competition 
indices, one related to height and one to the diameter at breast height (DBH). To the best of our 
knowledge, no study has explored the possibility of predicting DBH and height competition indices 
for individual trees detected on lidar data, using lidar metrics extracted both at the plot and ITC level. 

2. Materials and Methods 

The workflow in Error! Reference source not found. shows the analyses carried out in this work. 
In the following subsections, we present the dataset analyzed in this study and each step of the 
workflow. 

 
Figure 1. Workflow of the processing steps adopted in this study. 

2.1. Data Set Description 

2.1.1. Study Area 

This study was conducted in the Autonomous Province of Trento (Italy), in the municipality of 
Lavarone (45°57′30.09”N, 11°16′25.17′’E). The study area of approximately 4 km2 (Error! Reference 
source not found.) presents an altitude between 1200 and 1600 m above sea level, and it is composed 
of an uneven-aged forest with patches of mixed-species and pure-forest stands. The average number 
of trees per hectare is 839.4. In particular, dominant tree species are Norway spruce (Picea abies (L.) 
H. Karst.), about 47% of the total stem volume, and silver fir (Abies alba Mill.), about 36% of the total 
stem volume. Other tree species are present in the study area, although with a low percentage of the 
total stem volume: European beech (Fagus sylvatica L.) with about 13%, and European larch (Larix 
decidua Mill.) and Scots pine (Pinus sylvestris L.) with an overall percentage of about 4%. 
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Figure 2. Canopy height model of the study area with plot locations (in red). The coordinate system 
of the CHM is UTM WGS 84 zone 32N. In the insets on the left, on the bottom, a map of Italy with the 
location of the Autonomous Province of Trento (in red), and, on the top, the location of the study site 
(in red) inside the Autonomous Province of Trento. 

2.1.2. Lidar Data 

Lidar data were acquired in 2015 by an Optech ALTM 3100EA sensor with a maximum scan 
angle of 21 degrees. The mean point density was 21.5 points per square meter for the first return. Up 
to four returns per pulse were measured. A digital terrain model (DTM) was generated from the lidar 
points by the vendor using the TerraScan software with a grid size of 0.5 m. The lidar point cloud 
was normalized to create a canopy height model (CHM) by subtracting the DTM from the z values 
of the lidar pulses. This operation was carried out using the software lasground of the package 
LAStools (https://rapidlasso.com/). The intensity value of each lidar point was range calibrated using 
the following equation: 

Iେ = I ∗ ቀ
ୖ

ୖୱ
ቁ
஑

, (1) 

where 𝐼஼  is the calibrated intensity, 𝐼 is the raw intensity, 𝑅 is the sensor-to-target range, and 𝑅𝑠 
is the reference range or average flying height. An exponential factor, 𝛼, of 2.5 was considered since 
the environmental factors can be considered stable and the same acquisition parameters and 
instruments were maintained during the survey [45]. 

2.1.3. Field Data 

Inside the study area, 49 circular plots of a 15-m radius were placed (see Error! Reference source 
not found.). In summer 2016, within each plot, diameter at breast height (DBH), species, and positions 
were measured for all the trees with DBH ≥ 7 cm. Height was measured only for certain trees while 
for the others, it was predicted using height–DBH models defined on the basis of the measured trees. 
Above-ground biomass was obtained for all trees using local stem volume equations [46,47] 
multiplied by a conversion factor [48]. In Error! Reference source not found., a summary of the 
collected field data and plot characteristics is presented.  
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Table 1. Summary of the field data collected in the 49 field plots. Data refer to the mean, maximum, 
and minimum values. 

 All trees Norway Spruce Silver Fir 
Height (m) 16.9 (40.1, 2.1) 20.5 (40.1, 3.1) 18.1 (40.0, 3.2) 
DBH (cm) 22.3 (81.0, 7.0) 28.6 (79.5, 7.0) 25.4 (81.0, 7.0) 
AGB (kg) 284.7 (3468.5, 1.2) 453.5 (3215.0, 1.6) 353.6 (2917.7, 1.6) 
𝐶𝐼ு 5.1 (19.3, 0.04) 5.0 (18.3, 0.7) 4.2 (19.3, 0.04) 
𝐶𝐼஽஻ு  5.7 (22.8, 0.02) 5.1 (17.5, 0.5) 4.3 (15.8, 0.02) 

2.2. Extraction of Competition Indices 

Competition dynamics were analyzed using distance-dependent individual competition indices 
(CIs). These indices provide spatial information of the competitive status of an individual tree [49]. 
In this study, we used the indices proposed by Hegyi [50] in order to represent different combinations 
of tree characteristics (i.e., DBH and height). 

The first step to calculate individual-based competition indices for a tree (called the subject tree) 
is the identification of the trees actively competing with it. A search radius around the subject tree 
needs to be defined: The radius influences the number of competitors to consider and thus the indices. 
A too small or too large radius may lead to underestimates or overestimates of the competitive effects 
between the subject tree and its real competitors [49]. In the literature, different methods to define 
the neighborhood area are presented. In our case, to evaluate the level of competition for each tree, 
we considered only the competitors located within a certain radius from the subject tree. Previous 
studies showed that a search radius of 10 m is sufficiently wide to capture all the competitive effects 
of neighboring trees [51,52]. In particular Szwagrzyk et al. [53] used a radius of 10 m in an area with 
similar structural parameters to the area in this study. Thus, we decided to use such a value. 
Moreover, to avoid edge effects, the competition indices were calculated only for trees positioned less 
than 10 m from any of the plot borders. 

Two competition indices were considered in this study, one related to stem DBH and one to tree 
height. The two indices were calculated using the following formulas [50]: 

CIୈ୆ୌ
୧ = ∑ ൭

ీాౄౠ

ీాౄ౟

ୢ୧ୱ୲౟ౠାଵ
൱୬

୨ୀଵ , (2) 

CIୌ
୧ = ∑ ൭

ౄౠ

ౄ౟

ୢ୧ୱ୲౟ౠାଵ
൱୬

୨ୀଵ , (3) 

where 𝐶𝐼஽஻ு௜  and 𝐶𝐼ு௜  are the DBH and height competition indices for the subject tree, i; 𝐷𝐵𝐻௜  is the 
diameter at breast height of the subject tree, i; 𝐷𝐵𝐻௝  is the diameter at breast height of the competitor 
tree, j; 𝐻௜  is the height of the subject tree, i; 𝐻௝ is the height of the competitor tree, j; 𝑑𝑖𝑠𝑡௜௝ is the 
distance between the subject tree, i, and the competitor tree, j; and n is the number of competitors in 
the neighborhood zone. 

Because the most abundant species in our study area are silver fir and Norway spruce, we 
considered only these species as subject trees, while all trees were competitors. 

2.3. ITCs Delineation 

The delineation of the ITCs was carried out on the lidar data using the delineation algorithm of 
the R package itcSegment [54]. In particular, we used the function itcLiDAR. A detailed description of 
the method adopted can be found in [55]. This approach takes as input the canopy height model 
(CHM) on which local maxima (i.e., treetops) are located, and around them the crowns of the trees 
are delineated. The approach included three phases: 1) Smoothing of the canopy height model for 
which a Gaussian low-pass filter is applied to the rasterized CHM to smooth the surface and to reduce 
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the number of potential local maxima; 2) local maxima extraction: A circular moving window of 
variable size is applied to the smoothed CHM to find a set of potential treetops (local maxima). A 
pixel of the CHM is identified as a local maximum when its value is greater than the other values 
contained in the moving window. The window size is defined according to the height of its central 
pixel and it spans in a range of odd values defined by the user (e.g., 3,5,7,9). If the height of the central 
pixel is low, a small value of the window size is used and vice versa; and 3) crown region growing: 
The crown of a tree is identified by the algorithm through the proximity of the pixels to that particular 
local maximum. A pixel is considered to belong to a specific region when its vertical distance is less 
than a percentage of a default difference given by the height of the local maximum. This process is 
repeated until no pixel is added to a region. Once the region is fully grown, a 2D convex hull is 
applied, resulting in polygons that represent individual trees (ITCs). The algorithm assigns to each 
delineated ITC a value of height (i.e., the value of the maximum elevation value of the lidar points 
inside the ITC) and a value of the crown area derived from the convex hull. The input parameters of 
the function itcLiDAR used in this study were: Resolution 0.5, MinSearchFilSize 3, MaxSearchFilSize 
9, TRESHSeed 0.55, TRESHCrown 0.6, minDIST 5, maxDIST 40, HeightThreshold 2,and cw 1. For 
each ITC, DBH and AGB were predicted using the equations of Jucker et al. [56] implemented in the 
R package itcSegment considering the temperate coniferous forest as the biome. 

To generate the ITCs dataset to use in the modelling part, a matching process between delineated 
ITCs and reference ground observations was done. The matching procedure followed two steps: 1) 
Candidate search: all ground reference trees falling inside an ITC were considered as matching 
candidates; 2) candidate vote: selected candidates were ranked by their difference in height with the 
delineated ITCs and their Euclidean distance to the treetop. A distance metric, D, was estimated by 
considering both parameters to select the best candidate as follows: 

D = ඥ(xେ୅୒ − x୍୘େ)
ଶ + (yେ୅୒ − y୍୘େ)

ଶ + w ∗ (hେ୅୒ − h୍୘େ)
ଶ, (4) 

where x and y denote the locations and h the heights of the field-measured trees and the delineated 
ITCs, respectively; 𝑤 is a user-defined weight (set to 0.5 in this study) [57]. 

2.4. Lidar Metrics Extraction 

Lidar metrics were extracted for each delineated ITC. As explained before, the competition 
indices computed on the field tree data refer to the competing trees in a radius of 10 m from the 
subject tree. Thus, for each ITC, two sets of metrics were defined: i) plot metrics: 93 elevation and 
intensity metrics (see Error! Reference source not found.) extracted from the first and last return of 
the lidar point cloud data. For each ITC, we considered lidar points located in an area of radius of 10 
m from the ITC location. These metrics were extracted from the entire set of points in the 10-m radius 
from the ITC location, and they did not depend on the ITCs characteristics. Each metric was extracted 
from the first return points only (_F), and last return points only (_L); and ii) ITC metrics: 23 metrics 
computed on the basis of the ITCs located in a radius of 10 m around the considered ITC (see Error! 
Reference source not found.). These metrics were computed combining the characteristics (height, 
crown area, location, DBH) of the ITCs located in a radius of 10 m from the reference ITC. 
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Figure 3. Example of a point cloud in a radius of 10 m from an ITC. The points are colored according 
to their intensity value. On the right, a table of the metrics extracted from the first and last returns of 
the lidar points is shown. 

 
Figure 4. Example of competitors’ ITCs (dashed ITCs) in a radius of 10 m from a subject ITC (red ITC), 
and list of attributes associated with each ITC from which the ITCs’ metrics were extracted. On the 
right, a table of the metrics extracted is presented. 
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2.5. Prediction 

To evaluate the efficiency of lidar metrics in modelling the competition indices, ordinary least 
square (OLS) models were built, in which the dependent variables were the competition indices 
estimated in the field and the independent variables were the lidar metrics. We developed three 
models for each competition index: One model using all the ITCs matched with the field data, one 
using only the ones of silver fir, and one using only the ones of Norway spruce. Before building the 
regression models, the presence of multicollinearity between the independent variables (the lidar 
metrics) was evaluated with the function findCorrelation of the R package caret [58]. In order to reduce 
the number of lidar metrics and to remove the ones most correlated among each other, we set the 
correlation threshold to 0.9. After this, the OLS models were built using the stepAIC function of the R 
package MASS. A natural logarithmic transformation of the original independent variables (the 
competition indices) was performed in order to avoid non-normality. The stepAIC function was 
restricted in order to reduce/avoid overfitting of the models. In particular, the selection was restricted 
in order to have at least 10 field samples for each metric selected and to have a value of the accuracy 
indices, 𝑅2𝑅 (Equation (13)) and 𝑆𝑆𝑅 (Equation (14)), close to one. 

The models were validated using a leave-one-out cross-validation and the accuracy statistics 
used in [59]. In particular, we considered: 

(1) The mean difference (MD) between the predicted and the observed values: 

MD = ∑ ൫pre୧
େ୚ − obs୧൯ n⁄୬

୧ୀଵ , (5) 

where 𝑛 is the total number of samples, 𝑝𝑟𝑒௜஼௏  is the predicted value of the sample, i, obtained by 
cross-validation, and 𝑜𝑏𝑠௜  is the observed value of the sample, i. 

(2) The mean absolute difference (MAD): 

MAD = ∑ หpre୧
େ୚ − obs୧ห n⁄୬

୧ୀଵ . (6) 

(3) The root mean squared differences (RMSDs) of the predicted values: 

RMSD = ඥSSେ୚ n⁄ , (7) 

where the SSେ୚ is the sum of the squared differences between the observed values and the predicted 
values obtained by cross-validation: 

SSେ୚ = ∑ ൫pre୧
େ୚ − obs୧൯

ଶ௡
௜ୀଵ . (8) 

(4) The coefficient of determination obtained from the models’ residuals: 

R୤୧୲
ଶ = 1 − SS୤୧୲ SS୲୭୲⁄ , (9) 

where the SS୤୧୲ is the sum of squares of the model residuals: 

SS୤୧୲ = ∑ ൫pre୧
୤୧୲ − obs୧൯

ଶ୬
୧ୀଵ , (10) 

and SS୲୭୲ is the sum of squared differences of each observation from the overall mean: 

SS୲୭୲ = ∑ ൫obs୧ − obsതതതതത൯
ଶ୬

୧ୀଵ . (11) 

(5) The coefficient of determination obtained from the cross-validation: 

Rେ୚
ଶ = 1 − SSେ୚ SS୲୭୲⁄ . (12) 

(6) The 𝑅ଶ  ratio: 

R2R = R୤୧୲
ଶ Rେ୚

ଶ⁄ , (13) 

and (7) the sum of squares ratio: 
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SSR = √SSେ୚ √SS୤୧୲⁄ . (14) 

Each one of these statistics measures a different aspect of the prediction accuracy: MD measures 
the prediction bias, MAD and RMSD the prediction precision, Rେ୚

ଶ  the agreement, and R2R and SSR 
the overfitting. Regarding these last statistics, a desirable value for R2R and SSR in order to avoid 
overfitting is below 1.1 [59]. 

2.6. Relationship between AGB and Competition Indices 

The relationship between competition and AGB was evaluated by developing two linear models 
between the AGB of the subject trees and the corresponding competition indices. In particular, we 
built: i) an OLS model linking the logarithm of the individual trees AGB estimated in the field with 
the competition indices estimated in the field, and ii) an OLS model linking the logarithm of the 
individual trees AGB predicted using lidar with the competition indices predicted using lidar. The 
logarithm was used in order to avoid non-linearity. The coefficient of determination was used to 
evaluate the relationships. 

3. Results 

3.1. ITC Crown Delineation 

Out of 464 trees used as subject trees to calculate the competition indices, only 115 matched with 
a delineated ITC. The detection rate was not very high at only 24.7%, but it is worth noting that, as 
we wanted to use these data to build up a reliable model, we excluded all the matched trees for which 
the field height and lidar height differed by more than 2 m. Among the 115 matched trees, 100 
belonged to Norway spruce (34 ITCs) and silver fir (66 ITCs), and in the following analyses, only 
these ones were considered. In Error! Reference source not found., a scatterplot of the field-
measured/estimated versus lidar-predicted values of DBH and AGB is reported along with the R2. 

 
Figure 5. Field-measured DBH and field-estimated AGB versus lidar-predicted DBH and AGB for the 
100 detected trees used to build the competition models. 

3.2. Prediction of Competition Indices 

Regarding the models comprising both species, the 𝐶𝐼஽஻ு  model (Error! Reference source not 
found.) was made up of two plot metrics and four ITC metrics. Among the plot metrics, one was an 
elevation metric (Zpcum1_F) and one was an intensity metric (Iskew_L). The 𝐶𝐼ு  model (Error! 
Reference source not found.) was made up of four plot metrics and one ITC metric. Among the plot 
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metrics, two were elevation metrics (Z) and two were intensity metrics (I). Regarding the species 
specific models, for the silver fir (Error! Reference source not found.), the 𝐶𝐼஽஻ு  model was made 
up of two elevation plot metrics and one ITC metric, while the 𝐶𝐼ு  model was made up of one 
elevation plot metric and two ITC metrics. Contrastingly, the models for Norway spruce (Table 5) 
were made up by plot metrics only: three intensity metrics for the 𝐶𝐼஽஻ு  model and one elevation 
metric and two intensity metrics for the 𝐶𝐼ு  model. 

Table 2. OLS model for the prediction of 𝐶𝐼஽஻ு. 

Lidar metric Estimate Std.Error p Significance 
(Intercept) –2.77 0.52 0.00 *** 
CI_H_ITC 1.82 0.21 0.00 *** 
Zpcum1_F –0.02 0.00 0.00 *** 

Iskew_L –0.28 0.11 0.01 * 
DBHsumITC –0.01 0.00 0.00 *** 

DsdITC 0.30 0.08 0.00 *** 
CAmeanITC 0.03 0.01 0.00 *** 

Significance levels: *** = p < 0.001; ** = p < 0.01; * = p < 0.05. 

Among the ITC metrics, five of them were used in the models: CI_H_ITC, CI_DBH_ITC, 
DBHsumITC, CAmeanITC, and DsdITC. CI_H_ITC is the height competition index (Equation (3)) 
computed using only the detected ITCs in the 10-m radius from the subject tree and the lidar-
predicted heights; CI_DBH_ITC is the DBH competition index (Equation (2)) computed using only 
the detected ITCs in the 10-m radius from the subject tree and the lidar-predicted DBH; DBHsumITC 
is the sum of the predicted DBH values of the delineated ITCs in the 10-m radius around the subject 
tree; CAmeanITC is the mean value of the crown areas of the delineated ITCs in the 10-m radius 
around the subject tree; and DsdITC is the standard deviation of the distances among the delineated 
ITCs in the 10-m radius around the subject tree. Among the elevation plot metrics, two percentile 
metrics were used (Zq20_F, and Zq95_L) and three cumulative percentage of points metrics 
(Zpcum1_F, Zpcum2_F, and Zpcum2_L). Six intensity plot metrics were used: Iskew_L, Iskew_F, Isd_L, 
Imean_F, Ipcumzq50_L, and Ipcumzq90_F. 

Table 3. OLS model for the prediction of 𝐶𝐼𝐻 . 

Lidar metric Estimate Std.Error p Significance 
(Intercept) 2.13 0.58 0.00 *** 
CI_H_ITC 0.59 0.11 0.00 *** 

Iskew_F 0.37 0.11 0.00 ** 
Zpcum2_F –0.02 0.00 0.00 *** 

Isd_L –0.15 0.04 0.00 *** 
Zq95_L –0.03 0.01 0.00 ** 
Significance levels: *** = p < 0.001; ** = p < 0.01; * = p < 0.05. 

Table 4. OLS models for the prediction of the competition indices for silver fir. 

𝑪𝑰𝑫𝑩𝑯 𝑪𝑰𝑯  
Lidar metric Estimate Significance Lidar metric Estimate Significance 

(Intercept) –1.07 *** (Intercept) –1.25 ** 
CI_H_ITC 1.42 *** CI_DBH_ITC 0.59 *** 
Zpcum2_F –0.03 *** DsdITC 0.43 *** 

Zq20_F –0.05 *** Zq95_L –0.05 *** 
Significance levels: *** = p < 0.001; ** = p < 0.01; * = p < 0.05.  
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Table 5. OLS models for the prediction of the competition indices for Norway spruce. 

𝑪𝑰𝑫𝑩𝑯  𝑪𝑰𝑯  
Lidar metric Estimate Significance  Lidar metric Estimate Significance 

(Intercept) 17.39 **  (Intercept) 3.71 *** 
Ipcumzq90_F –0.13 *  Imean_F –0.10 *** 

Imean_F –0.09 **  Isd_L –0.19 *** 
Ipcumzq50_L –0.05 **  Zpcum2_L 0.02 * 

Significance levels: *** = p < 0.001; ** = p < 0.01; * = p < 0.05. 

The accuracy statistics of the models obtained with the leave-one-out cross-validation are shown 
in Error! Reference source not found.. As can be seen, the behaviors are quite different for each 
model. Regarding the generic models, the model for the prediction of 𝐶𝐼ு  obtained slightly better 
results compared to the one for the prediction of 𝐶𝐼஽஻ு : All the statistics except for the R୤୧୲

ଶ  and Rେ୚
ଶ  

obtained better values. Among the species-specific models, the ones for the silver fir competition 
indices had better performances compared to the ones of Norway spruce. All models experienced 
quite high values of MAD% (over 25%) and RMSD% (over 36%), and all had a negative bias (negative 
value of MD). Regarding the overfitting statistics (R2R and SSR), it can be seen that only the generic 
models have values below 1.1 while for the other models, these values can be higher even if (except 
for the one for 𝐶𝐼஽஻ு  of Norway spruce) the values are just slightly above 1.1. Error! Reference 
source not found., Error! Reference source not found. and Error! Reference source not found. show 
the scatterplots between the competition indices predicted by the lidar models and those calculated 
from the data in the field. 

Table 6. Summary of models’ accuracy statistics. MD: mean difference (Equation (5)). MD: relative 
MD. MAD: mean absolute difference (Equation (6)). MAD%: relative MAD. RMSD: root mean squared 
differences (Equation (7)). RMSD%: relative RMSD. R୤୧୲

ଶ : coefficient of determination obtained from the 
models’ residuals (Equation (9)). Rେ୚

ଶ : coefficient of determination obtained from the cross validation 
(Equation (12)). R2R: the Rଶ  ratio (Equation (13)). SSR: sum of squares ratio (Equation (14)). 

 All trees Silver fir Norway spruce 
 𝐂𝐈𝐃𝐁𝐇 𝐂𝐈𝐇  𝐂𝐈𝐃𝐁𝐇 𝐂𝐈𝐇  𝐂𝐈𝐃𝐁𝐇 𝐂𝐈𝐇  

Number of samples 100 100 66 66 34 34 
Metrics selected 6 5 3 3 3 3 

MD –0.11 –0.09 –0.09 –0.11 –0.30 –0.20 
MD% –4.8 –3.4 –4.1 –4.5 –11.4 –7.2 
MAD 0.75 0.67 0.70 0.83 0.89 0.71 

MAD% 31.9 26.7 32.0 34.3 33.9 25.7 
RMSD 1.03 0.92 0.98 0.99 1.37 1.00 

RMSD% 43.9 36.3 44.7 41.2 52.0 36.3 
𝑅௙௜௧
ଶ  0.68 0.66 0.60 0.53 0.72 0.73 

𝑅஼௏
ଶ  0.64 0.62 0.54 0.44 0.57 0.66 

R2R 1.08 1.07 1.11 1.19 1.27 1.10 
SSR 1.07 1.07 1.07 1.08 1.25 1.11 
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Figure 6. Field-estimated competition indices versus lidar-predicted competition indices. On the 
right, the 𝐶𝐼𝐷𝐵𝐻 competition index, and on the left, the 𝐶𝐼𝐻  competition index. 

 
Figure 7. Field-estimated competition indices versus lidar-predicted competition indices for silver fir 
ITCs. On the right, the 𝐶𝐼𝐷𝐵𝐻 competition index, and on the left, the 𝐶𝐼𝐻  competition index. 
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Figure 8. Field-estimated competition indices versus lidar-predicted competition indices for Norway 
spruce ITCs. On the right, the 𝐶𝐼𝐷𝐵𝐻 competition index, and on the left, the 𝐶𝐼𝐻  competition index. 

3.3. Relationship between Competition Indices and AGB 

In Error! Reference source not found. scatterplots of the field-estimated AGB and field-
estimated competition indices are shown. This figure shows that high levels of competition resulted 
in low biomass values while when the competition was below a certain value, it did not influence the 
biomass. In the figures, the linear models relating the AGB and competition indices are also shown. 
The model relating log(AGB) to 𝐶𝐼஽஻ு  showed an R2 of 0.65 while the one relating log(AGB) to 𝐶𝐼ு  
was 0.44. The same trend was found using the lidar-predicted AGB and competition indices (Error! 
Reference source not found.), but with lower values of correlation (R2 of 0.43 and 0.16, respectively). 

 
Figure 9. Field-estimated AGB versus field-estimated competition indices for the 100 ITCs matched 
with the field data. 
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Figure 10. Lidar-predicted AGB versus lidar-predicted competition indices for the 100 ITCs matched 
with the field data. 

4. Discussion 

In this study, we demonstrated that it is possible to predict DBH and height competition indices 
using lidar metrics. We also showed how competition affects the AGB of individual trees. The results 
showed that no real improvement is gained in using a species-specific model with respect to a general 
model. It is worth noting that for the species-specific models, we had quite a low number of samples 
(especially for Norway spruce) and this could have influenced the results. In terms of overfitting, all 
models showed reasonable values of R2R and SSR; in particular, only the model for 𝐶𝐼஽஻ு  of Norway 
spruce showed values much above 1.1, which was suggested by Lipovetsky [60] as a desirable limit 
in order to not have overfitting. 

Analysis of the five ITC metrics selected indicated that they are all related to the competition 
indices. Some of them are clearly related, like the 𝐶𝐼஽஻ு  and 𝐶𝐼ு  indices computed using the ITCs 
(CI_DBH_ITC, and CI_H_ITC), while the others are representative of a part of the competition index 
equations (DBHsumITC, and CAmeanITC) and of the density of the forest (DsdITC), which is related 
to competition. Regarding the plot metrics, it was slightly harder to find a direct relation to the 
competition indices. Metrics based on the distribution of Z are likely related to competition even if 
not directly. The Zq20_F, Zq95_L, Zpcum1_F, Zpcum2_F, and Zpcum2_L metrics describe the vertical 
distribution of the lidar points, and the vertical distribution of the points is related to the forest 
structure and density, which are related to competition. In contrast, the intensity metrics could be 
related to the species. As an example, Imean_F has a quite different distribution of values for the two 
species: It has a mean value of 23.47 (standard deviation of 3.63) for silver fir compared to 20.15 
(standard deviation of 3.82) for Norway spruce. 

The effectiveness of lidar metrics in predicting both AGB and competition indices was also found 
in the study conducted by Lin et al. [43]. In particular, Lin et al. [43] showed that the height 
competition index estimated by lidar, especially when combined with other lidar metrics (crown 
radius and height) of the trees, is capable of effectively estimating above-ground carbon (AGC) at 
both the stand and tree level. In our case, the competition indices were used to assess the influence 
that high or low competition values have on biomass. The results showed that high competition 
values led to a decrease in biomass. Therefore, the competitive pressure of neighboring trees is 
probably an important factor influencing tree growth and biomass partitioning, especially for small 
trees. Indeed, according to Litton et al. [61] and Poorter et al. [62], biomass partitioning may vary 
with soil resource availability and with the ability of plants to withstand competition for light. 
Furthermore, according to the theory of biomass allocation, high competition may increase or reduce 
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biomass allocation in plants [63,64]. Zhou et al. [33] found that the biomass ratio of roots and stems 
decreased with increasing intensity of competition from neighboring trees, while biomass at the level 
of branches and leaves increased. 

Few previous studies were found in the literature that combined lidar and competition indices. 
Among the ones present in the literature, the ones of Lo et al. [42], Lin et al. [43], and Ma et al. [44] 
are the only ones slightly related to this work. In all these studies, competition indices were computed 
using ITCs automatically delineated on lidar data, in a similar way to our computation of the lidar 
metrics CI_DBH_ITC and CI_H_ITC. None of these studies analyzed the accuracy of the prediction 
of competition indices using lidar metrics or validated the predictions using field data. In contrast to 
the present study, these studies used lidar-predicted competition indices as metrics to predict trees 
attributes, such as DBH, volume, and carbon density. 

Several studies have shown the relationship between radial growth and height growth of trees 
[65,66] and that the crown:height ratio may quantify competition among trees [67,68]. Therefore, the 
diameter and height of a tree are not only closely linked to light capture but also to the effects of 
water, nutrients, and soil conditions [33]. Moreover, according to the results of Zhou et al. [33], during 
growth, plants change how they are affected by the competition of neighboring plants, and their 
competitive effect on other plants. This suggests a close relationship between individual competition 
and tree growth. 

In the workflow proposed in this study, some parameters were fixed in a way that could have 
influenced the final results. The main one was the search radius used to compute the competition 
indices. Many studies in the literature focusing just on the computation of indices using field data 
used a different radius for each area analyzed. This is possible if all the tree crowns are measured on 
the ground; however, that was not our case. Moreover, as we wanted to relate the indices to the lidar 
data in order to have the possibility of also predicting competition indices in areas not covered by 
field data, we needed to have a fixed value of the search radius. We chose 10 m as it was used before 
in other studies investigating forests with similar characteristics [53]. It is worth noting that we also 
carried out the same analyses using other values, computed in other ways, but the used radius was 
quite close to 10 m and the final results were very similar or the same. 

The ITCs delineation could also have had an effect on the final results. Indeed, the higher the 
accuracy of the delineation, the more valuable ITC metrics are, and the more trees can be considered 
as subject trees in the area. The algorithm selected is a simple method when compared with the many 
algorithms in the literature [69], and has been used successfully in many other studies on forests with 
similar characteristics (e.g., [47,55]). It was effective for different forest scenarios in a previous study 
conducted on various forest sites in the Alps [70]. 

Despite the high potential of lidar technology for the estimation of vegetation parameters, it 
must be considered that lidar also has limitations. According to Rosette et al. [71], the ability to 
estimate vegetation parameters (tree height and DTM) decreases in the presence of high terrain slopes 
and high canopy coverage. Moreover, in very dense forests, it is only able to identify dominant trees, 
as in our study. Values of competition indices calculated using metrics derived from lidar can be 
biased due to the fact that small trees are not detected. 

5. Conclusions 

Our results showed that lidar metrics have a good capacity to predict competition indices. We 
developed a system that, after detecting individual tree crowns (ITCs) in the forest, on the basis of 
lidar metrics extracted in the neighborhood of the detected ITC, predicts two competition indices 
related to height and diameter at breast height (DBH). From the analyses, it emerged that the use of 
lidar metrics based on ITCs is important in prediction models. Moreover, we showed that all the 
information that can be extracted from lidar data should be used, as both plots and ITCs metrics were 
used in our models. Regarding the relationship between AGB and competition indices, it was 
observed that the AGB value decreases, increasing competition at both the DBH and height level. 
These results are probably related to the variation in the availability of soil-level resources and the 
ability of plants to withstand competition for light. The possibility of predicting competition indices 
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in large areas opens interesting perspectives for forest management practices aimed at regulating 
species mixture, in particular for forests managed extensively with selective logging, typical of many 
mountain areas. 
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