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ABSTRACT 

N-type (electron-transporting) semiconducting polymers are essential materials for the 

development of truly plastic electronic devices. Here, we synthesized for the first time 

dithiazolylthienothiophene bisimide (TzBI), as a new family for imide-based electron-deficient π-

conjugated systems, and semiconducting polymers by incorporating TzBI into the π-conjugated 

backbone as the building unit. The TzBI-based polymers are found to have deep frontier molecular 

orbital energy levels and wide optical bandgaps compared to the dithienylthienothiophene bisimide 

(TBI) counterpart. It is also found that TzBI can promote the π–π intermolecular interactions of 

the polymer backbones relative to TBI most probably because the thiazole ring, which replaced 

the thiophene ring, at the end of the framework gives a more coplanar backbone. In fact, TzBI-

based polymers function as the n-type semiconducting material in both organic field-effect 

transistor (OFET) and organic photovoltaic (OPV) devices. Notably, one of the TzBI-based 

polymers provides a power conversion efficiency of 3.3% in the all-polymer OPV device, which 

could be high for a low-molecular weight polymer (<10 kDa). Interestingly, while many of the n-

type semiconducting polymers utilized in OPVs have narrow bandgaps, the TzBI-based polymers 

have wide bandgaps. This is highly beneficial for complementing the visible to near-IR light 

absorption range when blended with p-type narrow bandgap polymers that have been widely 

developed in the last decade. The results demonstrate great promise and possibility of TzBI as the 

building unit for n-type semiconducting polymers. 
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INTRODUCTION 

Semiconducting polymers are an important class of materials that can be used for organic 

electronic devices, such as organic light-emitting diodes (OLEDs), organic field-effect transistors 

(OFETs) and organic photovoltaics (OPVs), due to the solution-processability as well as the 

fascinating electronic properties.1–6 The use of semiconducting polymers enables us to produce 

those devices by low-cost printing processes on light-weight and flexible plastic substrates. A large 

number of semiconducting polymers have been designed and synthesized in the last decade, which 

resulted in significant advances in the area.7–9 While most of the chemists have devoted to 

developing hole-transporting (p-type) semiconducting polymers, electron-transporting (n-type) 

semiconducting polymers have been less investigated though they are equally essential to produce 

truly plastic devices such as logic circuits based on OFETs and all-polymer OPVs.10–12 One main 

reason would be the lack of π-conjugated building units with strong electron-deficiency that 

ensures sufficiently deep lowest unoccupied molecular orbital (LUMO) energy levels for electron 

transport, although there are many electron deficient building units that function well for p-type 

semiconducting polymers.13–15 In particular, with respect to the n-type semiconducting polymers 

(polymer acceptors) for OPV, the building units incorporated into those polymers are limited to 

several imide-functionalized units such as naphthalenediimide (NDI),16 perylenediimide (PDI),17 

naphthodithiophenediimide (NDTI),18 and dithienylthienothiophenebisimide (TBI),19 isoindigo 

(iI),20 and B←N bridged bipyridine (BNBP).21 Thus, search for new electron-deficient building 

units that provide n-type semiconducting polymers is quite an important issue.  

Imide-functionalized electron-deficient units have been studied quite intriguingly because of its 

strong electron-withdrawing nature,22–24 which results in deep LUMO energy levels, thereby 
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enabling stable electron transport. Bithiophene imide (BTI) (Figure 1), where the imide group 

bridges bithiophene, is one of the attractive imide-functionalized units.25 For example, a 

homopolymer of BTI has been reported to show relatively high electron mobilities of up to 0.038 

cm2 V−1 s−1 in OFETs.26 Recently, related imide-bridged units such as thiazolylthiophene imide 

(TTzI),27 bithiazole imide (BTzI),28 and fluorinated BTI (F-BTI)29 (Figure 1), which have higher 

electron-deficiency than BTI, have been synthesized. We have also reported on the synthesis of 

TBI (Figure 1), a doubly BTI-fused system, and TBI-based polymers, in which the polymers 

showed good n-type semiconducting properties with electron mobilities of ~0.05 cm2 V−1 s−1 in 

OFETs as well as power conversion efficiencies (PCEs) of ~1% in all-polymer OPVs when 

combined with poly(3-hexylthiophene).19 More recently, Guo and co-workers have synthesized 

difluorinated TBI (F-TBI) (Figure 1) and its copolymer, which showed high n-type 

semiconducting properties, particularly in all-polymer OPVs with PCEs of ~8%.30 In addition, 

TBI-based polymers incorporating difluorinated thiophene as the comonomer afforded similarly 

high PCEs in all-polymer OPVs.31 

Here, we report the synthesis of a novel electron-deficient unit dithiazolylthienothiophene 

bisimide (TzBI), in which thiophenes at the end of the TBI molecular structure were replaced by 

thiazoles (Figure 1), and TzBI-based polymers. Owing to the thiazole moieties, TzBI would have 

higher electron-deficiency and thus provide deeper LUMO and highest occupied molecular orbital 

(HOMO) energy levels relative to TBI. In addition, the absence of the hydrogen atom at the β-

position of the outer ring would also beneficial to coplanarization of the polymer backbone and π–

π intermolecular interactions. We will show the electronic properties and ordering structures in the 

thin film of the polymers. TzBI-based polymers indeed showed good n-channel property with 

electron mobilities of ~0.04 cm2 V−1 s−1 in OFET devices. Furthermore, all-polymer OPV devices 
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that used TzBI-based polymers as the n-type material, combined with PTB7-Th as the p-type 

material, demonstrated power conversion efficiencies (PCEs) of ~3.3% despite the low molecular 

weights (<10 kDa), which indicates the great promise of TzBI as the building unit for n-type 

semiconducting polymers. 

 

 

 

Figure 1. Chemical structure of the imide-bridged units. 
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RESULTS AND DISCUSSION 

Monomer Synthesis and Polymerization. 

Scheme 1 depicts the synthetic route to the TzBI-based polymers. 2-Amino-5-bromo-4-thiazole 

carboxylic acid ethyl ester (1) was deaminated via the Sandmeyer reaction to afford 5-bromo-4-

thiazole carboxylic acid ethyl ester (2). 2 was then stannylated at the 5-position by treating with 

isopropylmagnesium chloride followed by tributhyltin chloride, which gave 5-tributylstannyl-4-

thiazole carboxylic acid ethyl ester (3). The Stille coupling reaction of 3 with 2,5-

dibromothieno[3,2-b]thiophene-3,6-dicarboxylic acid ethyl ether provided 

dithiazolylthienothiophene tetracarboxylic acid ethyl ester (4). 4 was then dibrominated at the 2-

position of the thiazole moieties by the lithiation using lithium hexamethyldisilazide (LiHMDS) 

and the following treatment using 1,2-dibromo-1,1,2,2-tetrachloroethane, giving 5 almost 

quantitatively. It is noted that the 2-position of the thiazole moieties must be dibrominated using 

4. In fact, the bromination of TzBI by bromine or N-bromosuccinimide via the lithiation did not 

proceed (Scheme S1), though the bromination of TBI had proceeded well. This is most likely 

because the TzBI is too electron-deficient to allow electrophilic substitution and TzBI does not 

have sufficient solubility, even with long branched alkyl groups, at cryogenic temperature to allow 

lithiation reactions, respectively. Hydrolysis and subsequent cyclodehydration of 5 gave 

dithiazolylthienothiophene dicarboxylic anhydride (6). Finally, 6 was converted into dibrominated 

dithiazolylthienothiophene bisimide (TzBI-Br2) via the amidation by 2-decyltetradecan-1-amine 

and the following cyclization in a good yield (92%). 

Polymerizations of TzBI-Br2 were carried out with distannylated thiophene and 

thienothiophene as comonomers via the Stille coupling reaction, which afforded PTzBIT and 

PTzBITT, respectively. The number average molecular weight (Mn) evaluated by high-
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temperature gel-permeation chromatography (GPC) was 6.9 kDa with a polydispersity index (PDI) 

of 1.9 for PTzBIT and 7.6 kDa with a PDI of 2.2 for PTzBITT. The low molecular weight for the 

TzBI copolymers is possibly because of the low reactivity of TzBI-Br2 under the normal conditions 

in the Stille coupling reaction. Both polymers had good solubility in common organic solvents 

such as chlorinated benzenes and toluene. Thermal properties of the polymers were studied by the 

differential scanning calorimetry (DSC) measurements. The DSC curves showed that the both 

polymers had no melting peaks below 350 °C (Figure S8).  
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Scheme 1. Synthetic route to TzBI-based polymers. 
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Electrochemical and Optical Properties. 

Electronic structures of the polymers were studied by cyclic voltammetry and UV-vis 

absorption spectroscopy. Figure 2a shows the cyclic voltammograms of the polymers in thin film 

and Table 1 summarizes the HOMO and LUMO energy levels (EHOMO and ELUMO) of the polymers 

determined from the onset oxidation and reduction potentials, respectively. While ELUMO of 

PTzBIT and PTzBITT was similar (−3.51 eV), EHOMO of PTzBIT (−6.26 eV) was deeper than that 

of PTzBITT (−6.14 eV). It is also noted that ELUMO and EHOMO of PTzBITT were deeper than those 

of PTBITT, a TBI-based polymer with the same thienothiophene co-unit, by 0.35 and 0.52 eV, 

respectively. This is most likely because only HOMO is located at the β-position of the thiophene 

rings in TBI and the nitrogen atoms of the thiazole rings in TzBI, and thus the electronic effect of 

the nitrogen atom is more pronounced on HOMO than LUMO in this system. It is also interesting 

to note that the HOMO–LUMO energy gap widened by replacing thiophene with thiazole, though 

it is possible to expect that the higher electron-deficiency of TzBI can make the donor–acceptor 

interaction along the polymer backbone larger and thereby can reduce the energy gap. This could 

be explained by the DFT calculations of the model compounds for TBI and TzBI (Figure 3). In 

both TBI and TzBI, HOMOs are mainly located on the dithienylthienothiophene and 

dithiazolylthienothiophene frameworks, whereas LUMOs are located on the imide groups as well 

as the frameworks. This can be viewed as that there is intramolecular donor–acceptor interactions 

in the TBI and TzBI moieties, where the frameworks act as the donor moiety and the imide groups 

act as the acceptor moiety. Therefore, TzBI has weaker intramolecular donor–acceptor interactions 

than TBI, which can widen the HOMO–LUMO energy gap. The fact that UV-vis spectrum of the 

TzBI unit showed a blue-shift compared to that of the TBI unit might support this hypothesis 
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(Figure S9). Overall, these results clearly indicate that TzBI possesses higher electron deficiency 

than TBI. 

The UV-vis absorption spectra of PTzBIT and PTzBITT in both the solution and thin film are 

shown in Figures 2b and 2c, respectively, and the optical data are summarized in Table 1. In the 

solution, both polymers showed an absorption spectrum with two peaks, i.e., high-energy and low-

energy bands. The absorption maximum (λmax) in the low-energy band for PTzBIT and PTzBITT 

was observed at 579 and 597 nm, respectively, both of which were significantly blue-shifted from 

that for PTBITT (652 nm). The blue-shift in the absorption in PTzBITT, as well as PTzBIT, 

compared to PTBITT is in good agreement with the results in CV, in which the HOMO–LUMO 

energy gap widened and the EHOMO was deepened more significantly than the ELUMO. The slight 

red-shift of the absorption range in PTzBITT relative to PTzBIT is attributable to the extended π-

electron system in the thienothiophene co-unit compared to the thiophene co-unit. In the thin film, 

the absorption bands were mostly the same as those in the solution, in which for example the low-

energy band for PTzBIT and PTzBITT was 587 and 602 nm, respectively. Thus, the optical 

bandgap (Eg
opt) calculated using the absorption onset (λedge) in the thin film was 1.96 eV for 

PTzBIT and 1.90 eV for PTzBITT. This implies that the backbone coplanarity is inherently high 

even in the isolated state. Interestingly, while most widely studied n-type semiconducting 

polymers based on NDI possess narrower optical bandgaps, the TzBI-based polymers had such 

wide optical bandgap. This is highly beneficial for complementing the visible range by combining 

with widely studied p-type semiconducting polymers with narrow optical bandgaps. 
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Figure 2. (a) Cyclic voltammograms of the polymers in thin film. (b, c) UV-vis absorption spectra 

of the polymers: (b) chlorobenzene solution, (c) thin film. 

 

 

Figure 3. Side view for the optimized structure and geometry of LUMOs and HOMOs for the 

optimized structure of the model compounds based on TBI and TzBI (DFT method at the 

B3LYP/6-31g(d) level). 
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Table 1. Electrochemical and optical properties of the polymers 

Polymer EHOMO (eV)a ELUMO (eV)b λmax
 (nm)c λedge

 (nm)d Eg
opt (eV)e 

Sol. Film 

PTzBIT −6.26 −3.51 538, 579  539, 587 633 1.96 

PTzBITT −6.14 −3.55 558, 597 557, 602 652 1.90 

PTBITT −5.65 −3.27 600, 652 597, 658 714 1.74 

aHOMO energy level. bLUMO energy level.  cAbsorption maximum in solution and thin film. 
dAbsorption edge in thin film. eOptical bandgap estimated from the absorption edge. 
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Polymer Ordering Structure in the Thin Film 

The grazing incidence X-ray diffraction (GIXD) measurement was carried out for PTzBIT and 

PTzBITT neat films to investigate the ordering structure. The two-dimensional (2D) GIXD 

patterns and the cross-sectional profiles along the qz axis (out-of-plane: OOP) and qxy axis (in-

plane: IP) are shown in Figure 4. A diffraction corresponding to the π–π stacking structure 

appeared on the qz axis for PTzBIT (qz ≈ 1.79 Å−1), in which the d-spacing (dπ) was calculated to 

be 3.55 Å. In PTzBITT, however, the π–π stacking diffraction was observed on the qxy axis, and 

dπ was found to be 3.51 Å (qxy ≈ 1.77 Å−1). These results indicate that whereas PTzBIT formed the 

face-on orientation, PTzBITT formed the edge-on orientation. This probably arises from the higher 

intermolecular interactions in PTzBITT, which is evident from the fact that PTzBITT had lower 

solubility than PTzBIT, and that dπ for PTzBITT was somewhat shorter than that for PTzBIT.32 

It is noted that although PTzBITT had a low molecular weight, the dπ was similar to that of the 

TBI counterpart (PTBITT) that had much higher molecular weight (Figure S2). Further, the 

crystallinity was even higher for PTzBITT than for PTBITT, as the coherence length calculated 

using the modified Scherrer’s equation (2π/fwhm)33 from the diffraction corresponding to the π–π 

stacking structure for PTzBITT was 4.7 nm, which was larger than that for PTBITT (4.3 nm). This 

suggests that TzBI offers higher crystallinity relative to TBI. This is most likely due to the 

enhanced coplanarity of the backbone as shown by the computation that the dihedral angle between 

the TzBI moiety and the neighboring thiophene ring is calculated to be 0.4°, which is significantly 

smaller than 9.9° for the case in TBI. This would originate in the reduced steric hindrance by the 

absence of the hydrogen atom in the outer ring (thiazole) of TzBI. 
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Figure 4. (a) 2D GIXD patterns of the polymer neat films. (b) Cross-sectional profiles cut along 

the qz axis (out-of-plane: OOP) and qxy axis (in-plane: IP) direction of the 2D GIXD patterns. 
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Device Properties  

We fabricated OFET devices that used PTzBIT and PTzBITT, both of which showed typical n-

channel behavior. Figures 5a and 5b display transfer and output curves of the devices after 

annealing the polymer films at 200 °C. While PTzBIT showed relatively low electron-mobility 

(𝜇e) of 1.1 × 10−3 cm2 V−1 s−1, PTzBITT showed reasonably high 𝜇e of 0.038 cm2 V−1 s−1 (Table 2). 

The current on/off ratios (Ion/Ioff) for the both polymer devices were fairly large (106–107) (Table 

2). The higher µe observed for PTzBITT than for PTzBIT was consistent with the fact PTzBITT 

formed preferential edge-on orientation whereas PTzBIT formed face-on orientation. It is also 

noted that the µe of PTzBITT was similar to that of PTBITT even though the molecular weight 

was much lower. This is likely due to the enhanced crystallinity in PTzBITT compared to that in 

PTBITT. The result suggests that TzBI-based polymers have good potential as the n-type 

semiconducting material. 

We also fabricated all-polymer OPV devices with an inverted structure (ITO/ZnO/PTB7-

Th:TzBI-based polymer/MoOx/Ag). Since the TzBI-based polymers had wide optical bandgaps, 

we chose PTB7-Th with a narrow bandgap of 1.58 eV as the p-type semiconducting polymer to 

capture as much incident light as possible. The photoactive layer was fabricated by spin-coating 

the chloroform solution of the polymer blend with a p:n weight ratio of 1:1. The energy diagrams 

of the materials, as depicted in Figure 6a, show that the energetics are well-aligned between PTB7-

Th (p-type material) and TzBI-based polymers (n-type materials), in which the offset energies of 

LUMOs and HOMOs are sufficiently large to trigger the photo-induced charge transfer. Figures 

6b and 6c display the current density (J)–voltage (V) curves and external quantum efficiency 

(EQE) spectra of the cells, respectively, and Table 2 summarizes the photovoltaic properties of the 

cells. The PTzBIT cell barely showed photovoltaic performance with a PCE of less than 1%. 
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Nevertheless, the photoresponse was observed in the visible region covering 400–800 nm, 

indicating that both PTzBIT and PTB7-Th functioned as photoactive materials. The PTzBITT cell 

showed reasonably high photovoltaic performance with a PCE of as high as 3.30% (JSC = 8.61 mA 

cm−2, VOC = 0.96 V, FF = 0.40). Importantly, EQE at the PTzBITT absorption band was similarly 

high as that at the PTB7-Th absorption band, indicating that PTzBITT largely contributed to the 

photovoltaic performance of the cell. 

Importantly, the photovoltaic performance of the TzBI polymers, even PTzBIT, was higher than 

that of PTBITT (Figure S12, Table S3). This should be ascribed to the deeper ELUMO of the TzBI 

polymers and thereby the relatively large offset of the ELUMOs between PTB7-Th and the TzBI 

polymers than that between PTB7-Th and PTBITT, which again allows sufficient driving force for 

photo-induced electron transfer. To confirm this, we conducted the photoluminescence (PL) 

quenching study. Figure 7 shows the PL spectra of the PTB7-Th/PTzBITT and PTB7-Th/PTBITT 

blend films along with the PTB7-Th neat film excited at 730 nm. It is clear that the PL intensity 

was much lower in the PTB7-Th/PTzBITT blend film than in the PTB7-Th/PTBITT blend film, 

indicating that PL from PTB7-Th was quenched more efficiently in the PTB7-Th/PTzBITT blend 

film. This suggests that the electron transfer is more efficient in the PTB7-Th/PTzBITT blend than 

in the PTB7-Th/PTBITT blend.  

It is noted that, in the blend film, only the diffractions corresponding to PTB7-Th were observed 

and those corresponding to the TzBI polymers as well as PTBITT were not observed (Figure S9), 

suggesting that both the TzBI polymers and PTBITT are similarly disordered in the blend film. 

This implies that the improved photovoltaic performance in PTzBITT compared to PTBITT is 

largely attributed to the enhanced electron-deficiency (lower LUMO energy level). In addition, the 
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disordered structure of PTzBITT and PTzBIT in the blend film could be because of their low 

molecular weights. Such disordered structure might be one of the reasons for the relatively low JSC 

and FF of the cells. Thus, further improvement of the molecular weight is highly required for 

improving the performance of the all-polymer OPVs based on the TzBI-based polymers.  

 

 

Figure 5. (a) Transfer curves of the OFET devices using PTzBIT (green line) and PTzBITT (red 

line). (b) Output curves of the OFET devices: PTzBIT and PTzBITT. The devices were annealed 

at 200 °C for 30 min. 
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Figure 6.  (a) Energy diagrams of PTB7-Th, PTzBIT, PTzBITT, and PTBITT. (b,c) Photovoltaic 

characteristics of the cells based on TzBI polymers as the n-type material: (b) J–V curves, (c) EQE 

spectra. 

Table 2. OFETa and OPV properties.b 

polymer 𝜇e (cm2 V−1 

s−1)c 

Ion/Ioff
d JSC (mA 

cm−2) 

VOC (V) FF PCE (%)e 

PTzBIT 1.1 × 10−3 106 2.49 0.88 0.33 0.71 

PTzBITT 0.038 107 8.61 0.96 0.40 3.30 

aBottom-gate bottom-contact device was used. bPTB7-Th was used as the p-type material. 

cMaximum electron mobility. dCurrent on/off ratio. eMaximum power conversion efficiency. 
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Figure 7. PL spectra of the PTB7-Th neat film, and PTB7-Th/PTzBITT and PTB7-Th/PTBITT 

blend films excited at 730 nm.  
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CONCLUSIONS 

We have designed and synthesized a new electron-deficient unit, TzBI, and TzBI-based 

copolymers. The polymers had relatively deep LUMO energy levels of below −3.5 eV, along with 

relatively wide optical bandgaps of around 1.9 eV. Thus, the polymers nicely match p-type 

semiconducting polymers with narrow optical bandgaps. We found that the main chains of the 

polymers were strongly packed with d-spacings of ca. 3.5 Å, leading to good crystallinity. The 

TzBI-based polymers functioned as n-type materials, as they provided electron mobilities of as 

high as 0.04 cm2 V−1 s−1 in OFET devices. All-polymer OPVs that used TzBI-based polymers as 

the n-type material blended with PTB7-Th that has an optical bandgap of 1.58 eV as the p-type 

material also showed clear photovoltaic performance with reasonably high PCEs of up to 3.3%. 

These results indicate that TzBI is a promising building unit for n-type semiconducting polymers. 

Further studies on the optimization of the molecular structure, synthetic procedure to have higher 

molecular weights, and device performances are currently underway. 
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