

TITLE:

Effect of different trunk postures on scapular muscle activities and kinematics during shoulder external rotation

AUTHOR(S):

Miyakoshi, Kosuke; Umehara, Jun; Komamura, Tomohito; Ueda, Yasuyuki; Tamezawa, Toru; Kitamura, Gakuto; Ichihashi, Noriaki

CITATION:

Miyakoshi, Kosuke ...[et al]. Effect of different trunk postures on scapular muscle activities and kinematics during shoulder external rotation. Journal of Shoulder and Elbow Surgery 2019, 28(12): 2438-2446

ISSUE DATE: 2019-12

URL: http://hdl.handle.net/2433/244811

RIGHT:

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/; The full-text file will be made open to the public on 1 December 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'; This is not the published version. Please cite only the published version.; この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。

1 Title page

- 2 Effect of different trunk postures on scapular muscle activities and kinematics during shoulder
- 3 external rotation
- 4
- 5 Kosuke Miyakoshi, MS^a; Jun Umehara, PhD, PT^{a,b}; Tomohito Komamura, MS, PT^a; Yasuyuki Ueda,
- 6 PhD, PT^{a, c}; Toru Tamezawa, MS, PT^d; Gakuto Kitamura, MS, PT^e; Noriaki Ichihashi, PhD, PT^a
- $\overline{7}$
- 8 ^aHuman Health Science, Graduate School of Medicine, Kyoto University
- 9 ^bResearch fellow of the Japan Society for the Promotion of Science
- 10 ^cDepartment of Rehabilitation, Nobuhara Hospital
- 11 ^dDepartment of Rehabilitation, Kanazawa University Hospital
- 12 ^eRehabilitation Unit, Kyoto University Hospital
- 13
- 14 *Corresponding author
- 15 Kosuke Miyakoshi
- 16 Human Health Sciences, Graduate School of Medicine, Kyoto University,
- 17 53 Shogoin-Kawahawa-cho, Kyoto 606-8507, Japan
- 18 Phone: +81-75-751-3935; Fax: +81-75-751-3909

- 19 E-mail: miyakoshi.kosuke.87n@st.kyoto-u.ac.jp
- 20 Financial biases: None
- 21
- 22 Ethics committee approval
- 23 The study design was approved by the ethic committee of Kyoto University Graduate School and the
- Faculty of Medicine (C1247-1).
- 25
- 26 Acknowledgments: None

28 Abstrac

29	[Backgrou	nd]
----	-----------	-----

Shoulder external rotation at abduction (ER) is a notable motion in overhead sports 3031because it could cause strong stress to the elbow and shoulder joint. However, no study has comprehensively investigated the effect of different trunk postures during ER. This 3233 study aimed to investigate the effect of different trunk postures on scapular kinematics and muscle activities during ER. 34[Methods] 35Fourteen healthy men performed active shoulder external rotation at $90\Box$ of abduction 36 with the dominant arm in 15 trunk postures. At maximum shoulder external rotation in 3715 trunk postures, including 4 flexion-extension, 6 trunk rotation, and 4 trunk 38 39 side-bending postures, as well as upright posture as a control, scapular muscle activities and kinematics were recorded using surface electromyography and an electromagnetic 40

41 tracking device, respectively. The data obtained in the flexion-extension, trunk rotation,

42 and trunk side-bending postures were compared with those obtained in the upright

43 posture.

44 [Results]

45 In the flexion-extension condition, scapular posterior tilt and external rotation

46	significantly decreased, but the muscle activities of the lower trapezius and infraspinatus
47	significantly increased in maximum trunk flexion. Moreover, scapular upward rotation
48	and the activity of the serratus anterior significantly increased in maximum trunk
49	extension. In the rotation condition, scapular posterior tilt and external rotation
50	significantly decreased, but the activity of the serratus anterior significantly increased in
51	the maximum contralateral trunk rotation posture. In the trunk side-bending condition,
52	scapular posterior tilt and the external rotation angle significantly decreased.
53	[Conclusion]
54	Trunk postures affected scapular kinematics and muscle activities during ER. Our
55	results suggest that different trunk postures activate the lower trapezius and serratus
56	anterior, which induce scapular posterior tilt.
57	
58	Level of evidence
59	Basic Science Study; Kinesiology
60	
61	Keywords
62	Scapula; muscle activity; kinematics; trunk posture; shoulder external rotation; exercise.
63	

64 **1. Introduction**

Shoulder joint motion is the harmonious motion by the scapula, humerus, clavicle, 65 and rib cage. In shoulder motion, the role of the scapula is especially important because 66 67 nonoptimal scapular motion leads to increased stress on peripheral soft tissues of the shoulder joint and could induce shoulder dysfunction and pain.^{3,12,18,20,22,36} Therefore, it 68 is important to focus on the muscle controlling scapular motion. Some studies have 69 suggested that the upper trapezius (UT), lower trapezius (LT), and serratus anterior (SA) 70 muscles coordinately work as a force couple in arm elevation to upwardly rotate the 71scapula.^{6,7,13,15,19,20} 72

The effect of trunk posture on scapular motion and muscle activity has also been 73studied.^{16,29,39} Yamauchi et al³⁹ reported that maximum ipsilateral trunk rotation 7475increased the activity of the middle trapezius (MT) and LT muscles and posterior tilt of the scapular angle in arm elevation. However, the investigated trunk postures were 76 limited (eg, trunk ipsilateral rotation or trunk extension). Therefore, our study reports 77the effects of comprehensive trunk flexion, extension, bilateral side-bending, and 78bilateral rotation postures during shoulder external rotation at shoulder abduction. 7980 Moreover, we sought to investigate the effects of the degree of the trunk angle on scapular kinematics and muscle activity. 81

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

京都大学学術情報リボジトリ KURENAI レ Kvnto I blugerbly Becegreb Information Describer

Scapular angles with different trunk postures

82	Arm elevation motion has often been selected to evaluate scapular muscle activity
83	and kinematics. ^{16,29,39} However, overhead sports players frequently perform motions
84	with shoulder external rotation at abduction (ER) with different trunk postures. Some
85	previous studies reported scapular kinematics during overhead sports, ^{26,30,31} and one
86	study described that the scapula posteriorly tilts, externally rotates, and rotates upward
87	at shoulder external rotation during baseball pitching. ²⁵ Moreover, the scapular muscles
88	stabilize the scapula, and an imbalance of these muscles might contribute to injury
89	risk. ¹¹ In pitching, the shoulder abduction angle from foot strike to release is
90	approximately 90°. ^{8,37} Therefore, shoulder external rotation is commonly measured at
91	90° of abduction in baseball players ^{4,27,37} which may be a position that reflects the
92	scapular kinematics during pitching. Giving the overhead motion, accordingly, the
93	assessment of scapular muscle activities and kinematics during shoulder ER is
94	necessary.

The scapular motions during ER are upward rotation, external rotation, and posterior tilt.^{23,33} The UT, LT, and SA muscles work to upwardly rotate the scapula during ER.^{10,28} In addition, previous studies have reported that the LT and SA muscles work to posteriorly tilt the scapula during arm elevation.^{21,24} It is assumed that these muscles have an important role in scapular kinematics during ER because the scapula is rotated

100	upward, externally rotated, and posteriorly tilted and these muscle activities increase
101	during the given conditions.
102	Examination of the effect of trunk posture on scapular kinematics and muscle activity
103	during shoulder external rotation is crucial during overhead sports activity. The purpose
104	of this research was to evaluate the effects of the difference in trunk posture on scapular
105	kinematics and muscle activity during ER. Trunk extension or ipsilateral rotation has
106	been shown to increase scapular posterior tilt, the external rotation angle, and LT muscle
107	activity during shoulder flexion. ^{16,29,39} We hypothesized that the scapular posterior tilt
108	and external rotation angles and the activity of the SA and LT muscles, which contribute
109	to scapular posterior tilt, would increase with trunk extension and ipsilateral rotation
110	during ER.

112

113 **2. Material and Methods**

114 **2.1 Subjects**

115	A controlled experimental study was conducted. Fourteen healthy men (mean age,
116	24.2 \pm 1.9 years) without orthopedic or nervous system disease of the upper limb or
117	trunk were included in the study. All subjects provided consent after receiving written
118	and oral explanations regarding the study. This study conformed to the principles of the
119	Declaration of Helsinki. The sample size was based on a 1-way analysis of variance
120	(ANOVA) with repeated measures (effect size of 0.25, α error of .05, and power of 0.8)
121	by use of G*Power (version 3.1; Heinrich Heine University, Dusseldorf, Germany)
122	before the recruitment of subjects. On the basis of the calculation results, the sample
123	size required was 13; this study thus met the statistical power requirement.

124

125 **2.2 Experimental procedure**

Scapular kinematics and muscle activity at ER measured in 14 trunk postures were compared with those in the upright posture to evaluate the effect of trunk posture. The scapular angles, muscle activities, and shoulder external rotation angles were measured at maximum shoulder external rotation. Subjects sat on a platform with an ascent and descent function and placed both feet on the floor with the knee joints at 90° of flexion

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

131	and the pelvis not fixed during the task. This posture of the feet and pelvis was the same
132	in all testing postures, and only the trunk posture was changed during the task. Subjects
133	performed 15 trunk postures: upright posture as the control posture; 4 trunk
134	flexion-extension conditions (maximum flexion [Flex _{max}], 20° of flexion [Flex20], 20°
135	of extension [Ext20], and maximum extension [Ext _{max}]); 6 trunk rotation conditions
136	(maximum contralateral rotation [CR _{max}], contralateral rotation of 30° [CR30],
137	contralateral rotation of 15° [CR15], ipsilateral rotation of 15° [IR15], ipsilateral
138	rotation of 30° [IR30], and maximum ipsilateral rotation [IR _{max}]); and 4 trunk
139	side-bending conditions (contralateral lateral bending at 30°[CLB30], contralateral
140	lateral bending at 15° [CLB15], ipsilateral lateral bending at 15° [ILB15], and ipsilateral
141	lateral bending at 30° [ILB30]). Three optical markers were attached to the seventh
142	cervical spinous process (C7), 10th thoracic spinous process (T10), and third lumbar
143	spinous process (L3). The flexion-extension angle was made by the line connecting C7
144	with T10 and the line connecting L3 with T10 in the sagittal plane. In the upright
145	posture, the angle was 0° . Flex _{max} was the posture in which each subject achieved the
146	maximum trunk flexion angle by relaxing. The flexion angle for Flexmax in all subjects
147	was over 20°. The trunk rotation angle was the angle between the line linking the
148	bilateral posterior anterior iliac spine and the line linking the bilateral acromion. The

- trunk side-bending angle was the angle between the line linking C7 and T10 and the line
- 150 linking L3 and T10 in the coronal plane.
- 151
- 152 **2.3 Active shoulder external rotation task**

Subjects performed the active ER task to the maximum shoulder external rotation angle 153with random trunk postures directed from 12 trunk postures except CR^{max}, IR^{max}, and 154Ext^{max} (Fig. 1). Then, they performed the active ER task with randomly directed trunk 155postures from the remaining 3 trunk postures. Before measurement of scapular 156kinematics and muscle activity during the shoulder external rotation task, the active 157maximum shoulder external rotation angle was measured using a goniometer at 90° of 158abduction of the shoulder joint in the directed trunk posture. Subsequently, subjects 159160actively maintained the maximum shoulder external rotation position for 5 seconds. The measurement was performed once in each trunk posture to avoid the effect of fatigue. 161

162

163 **2.4 EMG protocol**

During the shoulder external rotation task, scapular muscle activities were collected using surface electromyography (EMG) (TeleMyo 2400; Noraxon, Scottsdale, AZ, USA) with sampling at 1500 Hz. Electrodes were placed on the UT, MT, LT, SA,

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

167	infraspinatus, and latissimus dorsi (LD) in the dominant upper limb with fixed 2.5-cm
168	spacing parallel to the muscle fibers. Skin at the electrode sites was shaved and cleaned
169	using scrubbing gel and alcohol. Electrode placement was based on previous studies or
170	Surface Electromyography for the Non-invasive Assessment of Muscles (SENIAM)
171	recommendations. The locations of the electrodes for each muscle were as follows: The
172	UT electrode is at the midpoint between C7 and the acromion of the scapula. ¹⁹ The MT
173	electrode is at the midpoint between the medial border of the scapula and T3. The LT
174	electrode is at the point located at two-thirds on the line from the trigonum spinae (TS)
175	to T8. The infraspinatus electrode is at the midpoint on the line connecting the midpoint
176	of the spine of the scapula and angulus inferior scapulae.14 The SA electrode is at the
177	halfway point between the anterior border of the LD muscle and the inferior border of
178	the pectoralis major muscle on the seventh rib. ⁹ The LD electrode is 2 to 3 cm below the
179	angulus inferior scapulae. ³² The raw EMG signals during the shoulder external rotation
180	task were recorded and analyzed for 3 seconds at the shoulder maximum external
181	rotation angle. The EMG signals of the maximal voluntary contraction were recorded
182	for 3 seconds on each muscle. The method was referred to the manual muscle test and
183	previous studies ^{2,5,17,32} before subjects began the task. The raw EMG signals were band
184	pass filtered (15-500 Hz, Butterworth) and then smoothed using the root mean square.

- 185 The root-mean- square amplitude was divided by the maximal voluntary contraction of
- 186 each muscle for normalization.
- 187
- 188 **2.5 Scapular kinematics**

Three-dimensional kinematics of the scapula and thorax was quantified during the 189 shoulder external rotation task using a 6-df electromagnetic tracking device (Liberty; 190 Polhemus, Colchester, VT, USA) at 120 Hz. This system was composed of a transmitter, 191 192 5 sensors, and a digitizing stylus connecting the Liberty electronic unit. The transmitter was fixed on a rigid wooden stand at 100 cm in height. This transmitter generated the 193electromagnetic fields, which constituted the global coordinate system, with the x-axis 194orienting forward, the y-axis orienting upward, the z-axis orienting right, and the origin 195196located at the transmitter. The sensors were placed on the bony landmarks of the subjects using tape. The thoracic sensor was placed at the sternum just below the jugular 197notch; the humeral sensor, on the halfway point of the humerus with a thermoplastic 198 199 cuff; and the scapular sensor, on the flat surface of the acromion. With reference to the positions of these sensors, the local coordinate systems (LCSs) of the thorax, humerus, 200201and scapula were built by digitizing each bony landmark while subjects sat in the anatomic upper-limb position. 202

203	All LCSs were defined according to the shoulder standardization proposal of the
204	International Society of Biomechanics. ³⁸ The distal coordinate system was rotated with
205	respect to the proximal coordinate system in accordance with the recommendation on
206	the Euler angle of the International Society of Biomechanics. In the LCS of the scapula,
207	the origin was the acromial angle (AA). The axes were defined as follows: The x-axis
208	(Xs) was the normal vector of the plane including the TS, AA, and inferior angle. The
209	z-axis (Zs) was directed from the TS to the AA. The y-axis (Ys) was the normal vector
210	of the x-axis and z-axis. In the LCS of the thorax, the origin was the sternal notch. The
211	y-axis (Yt) was directed from the midpoint between the xiphoid process and T8 to the
212	midpoint between the SN and C7. The z-axis (Zt) was the normal vector of the plane
213	including the midpoint between the xiphoid process and T8, SN, and C7. The direction
214	was right. The x-axis (Xt) was the normal vector of the y-axis and z-axis.
215	The rotation of the thoracic segment relative to the global coordinate system around
216	Xt was defined as right (+) and left (-) bending, that around Yt was defined as rotation
217	to the left (+) and rotation to the right (-), and that around Zt was defined as extension
218	(+) and flexion (–). The rotation of the scapular segment relative to the thoracic segment
219	around Xs was defined as downward (+) and upward (-) rotation, that around Ys was
220	defined as internal (+) and external (-) rotation, and that around Zs was defined as

221 posterior (+) and anterior (-) tilt.

The humeral external rotation angle was defined as the difference between the apparent shoulder external rotation angle measured by a goniometer and the thoracic extension angle and scapular posterior tilt angle. The scapular angle of each trunk posture was the average of kinematic data for 3 seconds at the shoulder maximum external rotation angle.

227

228 2.6 Data analysis

The statistical analysis software used in this study was SPSS, version 22 (IBM, 229Armonk, NY, USA). For the scapular angle and muscle activity, 1-way ANOVA with 230repeated measures on 1 factor (trunk posture) was used to evaluate the effect of trunk 231232posture on each parameter. Then, trunk postures were classified into 4 conditions: upright as the control condition, flexionextension condition (Flexmax, Flex20, Ext20, 233and Extmax), rotation condition (IR15, IR30, IRmax, CR15, CR30, and CRmax), and 234side-bending condition (CLB30, CLB15, ILB15, and ILB30). For the scapular angle 235and muscle activity, 1-way ANOVA with repeated measures on a factor (trunk posture) 236237was used in each condition including upright posture. When a significant main effect was detected, the Dunnett test as the post hoc test was conducted to compare the trunk 238

239 postures with the upright posture.

240

241 Figure 1 Different trunk postures during 2nd ER.

Participants performed shoulder external rotation at shoulder 90° abduction with different trunk postures. Electromyography electrodes were placed on UT (upper trapezius muscle), MT (middle trapezius muscle), LT (Lower trapezius muscle), SA (serratus anterior), IS (infraspinatus muscle), and LD (latissimus dorsi). Three optical markers were attached to the 7th cervical spinous process (C7), 10th thoracic spinous process (Th10), and 3rd lumbar spinous process (L3). θ means contralateral lateral bending angle. A: upright posture. B: Flexion posture. C: Extension posture. D:

- 249 Contralateral rotation. E: Ipsilateral rotation. F: Contralateral lateral bending. G:
- Ipsilateral lateral bending. D' shows trunk rotation angle defined by the line linking the bilateral acromion and the line linking the bilateral posterior anterior iliac spine (psis). θ ,
- 252 contralateral lateral bending angle.

	Table I. Kinematics data					
GH (°) Scapula (°)						
	Posture	External rotation	Posterior tilt	Upward rotation	Internal rotation	
Cont	rol Upright	89±14	13±6	10±10	12±7	
	Flex max	83±16 [.534]	7±8* [.000]	12±11 [.078]	19±6* [.001]	
Florign	Flex20	84±12 [.607]	10±7 [.103]	9±10 [.650]	14±5 [.722]	
Flexion	(Ext20)	(88±10)	(12±9)	(13±11)	(13±10)	
Extens	Ext _{max}	97±11 [.259]	12±6 [.591]	12±12* [.027]	10±6 [.347]	
	Main effect	t F=3.26, p=.029	F=8.66, p<.001	F=3.46, p=.026	F=9.79, p<.001	
	CR max	79±11* [.001]	8±7* [.000]	10±11	17±6* [.001]	
	CR30	82±10* [.020]	11±6 [.059]	11±10	14±5 [.102]	
	CR15	87±12 [.836]	11±6 [.122]	10±10	15±5* [.046]	
Rotat	ion IR15	91±10 [1.000]	14±6 [.615]	11±10	13±6 [.659]	
	IR30	90±12 [.980]	14±6 [.287]	11±11	14±6 [.447]	
	IR max	88±17 [.991]	13±6 [1.000]	11±12	12±7 [1.000]	
	Main effect	t F=6.57, p<0.001	F=14.74, p<.001	F=1.36, p=.241	F=3.75, p=.002	
	ILB30	90±10	9±6* [.015]	11±10 [.979]	15±6 [.170]	
Lata	ILB15	85±11	11±6 [.456]	11±11 [.925]	14±6 [.407]	
Later	CLB15	86±13	9±7* [.018]	11±10 [.879]	18±7* [.001]	
bendi	CLB30	90±11	7±7* [.001]	10±9 [.996]	16±5* [.018]	
	Main effect	t F=1.86, p=.132	F=4.62, p=.003	F=0.36, p=.838	F=4.68, p=.003	

- 275 GH, glenohumeral; Flex_{max}, maximum flexion; Flex20, 20° of flexion; Ext20, 20° of extension; Ext_{max}, maximum extension; CR_{max},
- 276 maximum contralateral rotation; CR30, contralateral rotation of 30°; CR15, contralateral rotation of 15°; IR15, ipsilateral rotation of
- 277 15°; IR30, ipsilateral rotation of 30°; IRmax, maximum ipsilateral rotation; CLB30, contralateral lateral bending at 30°; CLB15,
- 278 contralateral lateral bending at 15°; ILB15, ipsilateral lateral bending at 15°; ILB30, ipsilateral lateral bending at 30°; F, Fishers value.
- 279 Data are presented as mean \pm standard deviation. The P value for each value is shown in brackets.
- 280 * Significantly different (P < .05) compared with upright posture.
- ²⁸¹ †The Ext20 values were not included in the analysis because only 5 subjects achieved Ext20. The values are shown as reference values.

283			Т	able II. EMG data			
	Muscle activation (%MVC)						
	Muscle	UT	MT	LT	IS	SA	LD
Control	Upright	15.9±13.4	23.3±15.3	30.3±18.9	40.7±30.2	27.1±16.6	6.6±5.0
	Flex max	18.7±13.1 [.160]	32.1±15.8	45.7±28.3* [.027]	54.5±41.2* [.019]	22.2±9.1[.953]	5.7±4.0
	Flex20	19.7±12.5 [.069]	29.0±15.4	43.0±28.2 [.090]	50.6±38.4[.125]	25.0±10.8 [.554]	6.5±4.3
Flexion and	(Ext20)	(13.3±18.2)	(10.9±11.0)	(15.0±15.8)	(35.1±27.9)	(29.0±16.0)	(9.6±10.8)
L'Atension	Ext max	14.6±11.5 [.957]	25.1±19.1	27.0±16.8 [.937]	45.9±31.3[.633]	42.5±23.8 * [.006]	7.4±4.2
	Main effect	F=3.63, p=.021	F=1.86, p=.153	F=4.93, p=.005	F=3.04, p=.040	F=3.47, p=.014	F=1.63, p=.199
	CR max	16.4±13.7 [.999]	23.1±15.0 [1.000]	18.7±10.1 [.349]	53.4±31.0	36.3±15.9* [.003]	7.9±4.3
	CR30	16.2±11.7 [1.000]	21.5±13.2 [.991]	25.1±13.3 [.945]	50.4±42.8	31.1±19.1 [.863]	7.4±5.2
	CR15	16.6±12.8 [.651]	23.5±16.8 [1.000]	26.2±15.6 [.999]	42.9±32.1	27.4±11.0[1.000]	7.0±4.9
Rotation	IR15	18.1±15.2 [.597]	29.9±19.2 [.375]	44.1±28.3 [.172]	44.3±29.4	27.3±10.5 [1.000]	6.3±4.6
	IR30	20.1±15.1 [.155]	33.8±25.7* [.020]	48.2±30.8* [.050]	46.4±36.9	28.1±14.3[1.000]	6.5±4.0
	IR max	21.7±17.2* [.015]	31.6±20.9 [.117]	49.5±33.6* [.025]	40.8±26.1	25.1±12.3[.996]	6.2±4.2
	Main effect	F=2.48, p=.030	F=20.77, p<.001	F=6.58, p<.001	F=2.00, p=.076	F=3.92, p=.002	F=2.08, p=.065
	ILB30	15.1±12.4	26.4±13.2 [.862]	27.0±18.3	39.7±30.4 [.997]	35.2±17.5 [.153]	5.9±3.7
T , 1	ILB15	$14.0{\pm}10.9$	26.9±19.3 [.831]	31.0±21.5	38.4±24.5 [.968]	36.8±18.1 [.471]	5.9±3.7
Lateral bending -	CLB15	22.2±19.8	31.1±16.1 [.250]	32.1±19.2	51.5±37.0 [.109]	19.4±9.5 [.680]	5.2±2.6
	CLB30	22.8±26.2	39.3±20.0* [.006]	37.3±26.7	53.5±36.9* [.044]	22.0±23.7 [.891]	4.6±2.3
	Main effect	F=1.90, p=.124	F=3.20, p=.020	F=0.79, p=.539	F=4.20, p=.005	F=3.47, p=.014	F=1.80, p=.143

- 284 MVC, maximal voluntary contraction; UT, upper trapezius muscle; MT, middle trapezius muscle; LT, lower trapezius muscle; IS,
- infraspinatus muscle; SA, serratus anterior; LD, latissimus dorsi; Flex_{max}, maximum flexion; Flex20, 20° of flexion; Ext20, 20° of
- extension; Ext_{max}, maximum extension; CR_{max}, maximum contralateral rotation; CR30, contralateral rotation of 30°; CR15, contralateral
- rotation of 15°; IR15, ipsilateral rotation of 15°; IR30, ipsilateral rotation of 30°; IR_{max}, maximum ipsilateral rotation; CLB30,
- contralateral lateral bending at 30°; CLB15, contralateral lateral bending at 15°; ILB15, ipsilateral lateral bending at 15°; ILB30,
- ipsilateral lateral bending at 30° ; F, Fishers value. Data are presented as mean \pm standard deviation. The P value for each value is shown
- in brackets.
- 291 * Significantly different (P < .05) compared with upright posture.
- ²⁹² †The Ext20 values were not included in the analysis because only 5 subjects achieved Ext20. The values are shown as reference values.

294

295 **3 Results**

All subjects achieved the rotation and side-bending conditions. However, only 5 296subjects performed the Ext20 task, and another subject performed Ext_{max} at a trunk 297angle of less than 20° of extension. Therefore, the data are shown as reference values 298but were not included in the analysis. The maximum trunk angle in each trunk 299condition was $37^{\circ} \pm 6_{-}$ for maximum trunk flexion, $14^{\circ} \pm 8^{\circ}$ for maximum trunk 300 extension, $44^{\circ} \pm 8^{\circ}$ for maximum contralateral trunk rotation, and $42^{\circ} \pm 7^{\circ}$ for 301 maximum ipsilateral trunk rotation. The kinematic data of 1 subject for Ext_{max} were 302 excluded because of measurement failure. The kinematic and muscle activity data are 303 described in the following sections. 304

305

306 3.1 Kinematics data

The angles of the scapula and shoulder are presented in Table I. One-way ANOVA indicated a main effect in all conditions for the angle of glenohumeral joint external rotation. The post hoc test revealed that the angle of external rotation in CR_{max} and CR30 significantly decreased compared with that in the upright posture. For scapular posterior tilt, a main effect in all conditions was shown. Scapular posterior tilt in

312	Flex _{max} , CR _{max} , ILB30, CLB15, and CLB30 significantly decreased compared with
313	that in the upright posture. For the angle of scapular upward rotation, a main effect was
314	shown in the flexion-extension condition only. The scapula in Ext_{max} was slightly
315	upwardly rotated compared with that in the upright posture. For the scapular external
316	rotation angle, a main effect was shown in all conditions. The angle in $Flex_{max}$, CR_{max} ,
317	CR15, CLB15, and CLB30 significantly decreased.
318	
319	3.2 Muscle activity data
320	All muscle activities are presented in Table II. In the UT, 1- way ANOVA showed
321	a main effect in the flexion-extension and rotation conditions. The muscle activity in
322	IR_{max} significantly increased compared with that in the upright posture. In the MT, a
323	main effect was shown in the rotation and side-bending conditions. The muscle activity
324	in IR30 and CLB30 significantly increased compared with that in the upright posture.
325	In the LT, a main effect was shown in the flexion-extension and rotation conditions.
326	The muscle activity significantly increased in $Flex_{max}$, IR30, and IR _{max} . In the
327	infraspinatus, a main effect was shown in the flexion-extension and side-bending
328	conditions. The muscle activity in $Flex_{max}$ and CLB30 significantly increased
329	compared with that in the upright posture. In the SA, a main effect was shown in all

330	conditions. Ext _{max} and CR_{max} increased the muscle activity more significantly than the
331	upright posture. In the LD, there were no main effects in all conditions.

332

333 4 Discussion

In this study, we examined the effect of trunk posture on scapular kinematics and 334muscle activity at maximum shoulder external rotation. To our knowledge, this is the 335first research study to demonstrate that flexion, extension, rotation, and lateral bending 336 of the trunk minimize the effects of hip motions on scapular kinematics and muscle 337 activity. We hypothesized that extension or ipsilateral rotation of the trunk would 338contribute to increases in the scapular posterior tilt angle, external rotation angle, and 339 activities of the SA and LT, which are the posterior tilt muscles of the scapula. Our 340 341results showed that the scapular posterior tilt angle did not change whereas the SA and LT activities increased with trunk extension and IR_{max}, respectively. It was assumed 342that this upright posture was relatively close to extension of the trunk considering that 343 only a few subjects achieved trunk extension over 20°. In addition, there were no trunk 344postures in which both LT and SA activities increased. 345

346 In the trunk flexion-extension condition, the angles of scapular posterior tilt and 347 external rotation significantly decreased in Flex_{max} compared with those in the upright

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

Scapular angles with different trunk postures

posture during ER. Kebaetse et al¹⁶ reported that shoulder abduction range of motion 348 and the angle of scapular upward rotation and posterior tilt during arm elevation 349decreased with a slouch posture. In addition, they indicated that the acromion may 350create a bony block that may cause or contribute to impingement pathology with 351repetitive overhead activity. Our study similarly indicated a decrease in the scapular 352posterior tilt angle with trunk flexion, which could also cause a bony block. The angle 353of scapular external rotation decreased whereas the angle of scapular upward rotation 354did not change in Flex_{max} compared with that in the upright posture —a finding that 355 was partially incongruent with the results of Kebaetse et al. This is considered to be 356due to the difference in examination posture; their study was not on ER but rather on 357arm elevation. In Ext_{max} in our study, the angle of scapular upward rotation and the 358359activity of the SA significantly increased compared with those in the upright posture, which is logical considering that the SA has the function of scapular upward 360 rotation.^{10,28} The difference of approximately 2° in the scapular upward rotation angle 361 between the upright posture and Ext_{max} is small. Nonetheless, Shaheen et al³⁴ reported 362that rigid and elastic taping techniques changed the scapular internal rotation and 363 posterior tilt angles by less than 5° and reduced pain in patients with shoulder 364 impingement syndrome. Therefore, the change of 2° maximum with extension may be 365

366 clinically significant. We assumed that the differences between the Ext_{max} and upright 367 postures were not enough for some subjects to increase the angle of scapular tilt in 368 Ext_{max} compared with that in the upright posture.

369 In the trunk rotation condition, the angles of scapular posterior tilt and external rotation significantly decreased in CR_{max} compared with those in the upright 370 posture. Scapular external rotation significantly decreased in CR15 compared with that 371in the upright posture, whereas in CR_{max} and CR30, the glenohumeral joint external 372 rotation angle significantly decreased. This restriction of shoulder external rotation is 373 predictably caused by the stretched LD, which contributes as a shoulder internal rotator, 374has the origin at the spine and pelvis, and inserts in the humerus.¹ In IR30 and IR_{max}, 375the angle of scapular upward rotation did not significantly increase whereas the activity 376 of the LT on scapular upward rotation significantly increased. The increase in LT 377activity without an increment in scapular upward rotation could be evoked by the 378physical restriction of the scapular motion by the thorax or the increase in activity of 379 the scapular downward rotators such as the rhomboids,¹⁰ which was not measured in 380 this study. 381

382 Yamauchi et al³⁹ reported that maximum ipsilateral trunk rotation during ER 383 increased the scapular external rotation angle and the activities of the UT, MT, and LT.

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

384	This study showed no significant differences in scapular kinematics whereas UT and
385	LT activities significantly increased. The methodology regarding posture differed
386	between our study and this previous study. Subjects performed our task in the sitting
387	position because the purpose of this study was to investigate the effects of trunk
388	posture only. In the study by Yamauchi et al, subjects performed active ER in the
389	standing position; therefore, their study included pelvis rotation. In addition, the
390	upright posture in our study was relatively in a trunk-extended posture. It was assumed
391	that the variance of the results was caused by the definition of postures.
392	In the side-bending condition, the angles of scapular posterior tilt and external rotation
393	significantly decreased in CLB30 compared with those in the upright posture. In
394	CLB15, only the scapular external rotation angle significantly decreased. It was
395	considered that trunk contralateral bending disturbed scapular external rotation and that
396	MT activity compensatively increased to resist it. In ILB30, the angle of scapular
397	posterior tilt significantly decreased compared with that in the upright posture.
398	The low activity in the muscles could cause the decrease in scapular posterior tilt.
399	However, there were no decreases in the activities of the LT and SA- the posterior tilt
400	muscles- in trunk postures that showed a significant decrease in the scapular posterior
401	tilt angle. Therefore, the decrease in the scapular posterior tilt angle was not caused by

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

402	the alteration in scapular muscle activities. The trunk posture was only the factor that
403	differed among these conditions. Consequently, it was considered that the thorax
404	physically restricted the scapular movement, resulting in a decrease in the scapular
405	posterior tilt angle. Moreover, the trunk postures that decreased the angle of scapular
406	external rotation roughly duplicated the trunk postures in which the scapular posterior
407	tilt angle decreased. The decrease in the scapular external rotation angle might also be
408	due to the scapular movement restriction by the thorax.
409	Our hypothesis was that the activities of the LT and SA that contribute to scapular
410	posterior tilt would synchronously change with it. However, the increase or decrease in
411	the activities of the 2 muscles did not happen simultaneously. On the contrary, the
412	activity of 1 muscle tended to increase in a certain trunk posture while the activity of
413	the other decreased in the same trunk posture. These results suggested that there was a
414	superiority among muscles that have similar action, which may be replaced based on
415	the difference in the trunk posture. These muscle activities might be coordinated to be
416	the most effective muscle force balance for the task because the superiority did not
417	change based on the increase or decrease in the scapular posterior tilt angle.
418	This study has some limitations. First, the trunk postures were uniquely defined
419	based on the body surface markers, although some previous studies used similar angle

435

Scapular angles with different trunk postures

491	specificity. Trunk posture was suggested to be better defined on the basis of the
421	
422	individual trunk range of motion and neutral trunk posture. If the natural trunk posture
423	(neutral trunk posture) was based on the aforementioned definition of trunk posture, all
424	the participants might have achieved Ext20. Finally, surface EMG was not able to
425	measure the deep muscles. The effects of trunk posture on the deep muscles in the
426	present research are unknown.
427	In clinical sites, if clinicians use training or interventions focusing on scapular
428	kinematics during ER, it is suggested to choose a trunk extension posture rather than a
429	trunk flexion posture because the angles of scapular posterior tilt and external rotation
430	decreased during the task of ER with $\ensuremath{Flex_{max}}$ in this study. In addition, ipsilateral
431	rotation of the trunk increased the scapular posterior tilt angle and LT activity, which is
432	important in ER; therefore, adding ipsilateral rotation to trunk extension is
433	recommended.
434	Trunk flexion and ipsilateral rotation postures may resist scapular upward rotation.

436 effective for scapular upward rotation in these postures. We suggest that $Flex_{max}$, IR_{max} , 437 and IR30 would facilitate LT activity during shoulder external rotation at 90_ of

The activation of the LT with these trunk postures suggests that the LT may be

438	shoulder abduction. Similarly, Ext_{max} and CR_{max} would facilitate SA activity during
439	such shoulder exercise. From the perspective of intensive training of those muscles,
440	future studies are needed to research scapular muscle activities at maximum shoulder
441	external rotation torque.

443

444 **5** Conclusion

- 445 This study showed that the difference in trunk posture affected scapular kinematics
- and muscle activity during active shoulder external rotation at 90° of abduction. The
- 447 LT and SA, which both contribute to scapular posterior tilt, were activated by different
- 448 trunk postures.

451	6	References
452	1.	Bassett RW, Browne AO, Morrey BF, An KN. Glenohumeral muscle force and
453		moment mechanics in a position of shoulder instability. J Biomech.
454		1990;23(5):405–415.
455	2.	Brandt M, Andersen LL, Samani A, Jakobsen MD, Madeleine P. Inter-day
456		reliability of surface electromyography recordings of the lumbar part of erector
457		spinae longissimus and trapezius descendens during box lifting. BMC
458		Musculoskelet Disord. 2017;18(1):519.
459		https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-017-
460		1872-ydoi:10.1186/s12891-017-1872-y
461	3.	Burkhart SS, Morgan CD, Kibler W Ben. The disabled throwing shoulder:
462		Spectrum of pathology part III: The SICK scapula, scapular dyskinesis, the
463		kinetic chain, and rehabilitation. Arthroscopy. 2003;19(6):641-661.
464		doi:10.1016/S0749-8063(03)00389-X
465	4.	Camp CL, Zajac JM, Pearson DB, Sinatro AM, Spiker AM, Werner BC, et al.
466		Decreased Shoulder External Rotation and Flexion Are Greater Predictors of
467		Injury Than Internal Rotation Deficits: Analysis of 132 Pitcher-Seasons in

468		Professional Baseball. Arthroscopy. 2017;33(9):1629–1636.
469		http://dx.doi.org/10.1016/j.arthro.2017.03.025doi:10.1016/j.arthro.2017.03.025
470	5.	Chalmers PN, Trombley R, Cip J, Monson B, Forsythe B, Nicholson GP, et al.
471		Postoperative Restoration of Upper Extremity Motion and Neuromuscular
472		Control During the Overhand Pitch. Am J Sports Med. 2014;42(12):2825–2836.
473		http://journals.sagepub.com/doi/10.1177/0363546514551924doi:10.1177/036354
474		6514551924
475	6.	Cools AM, Witvrouw EE, Declercq GA, Vanderstraeten GG, Cambier DC.
476		Evaluation of isokinetic force production and associated muscle activity in the
477		scapular rotators during a protraction-retraction movement in overhead athletes
478		with impingement symptoms. Br J Sports Med. 2004;38(1):64-68.
479		doi:10.1136/bjsm.2003.004952
480	7.	Cools AM, Witvrouw EE, Mahieu NN, Danneels L a. Isokinetic Scapular Muscle
481		Performance in Overhead Athletes With and Without Impingement Symptoms. J
482		Athl Train. 2005;40(2):104–110.
483	8.	Dillman CJ FG& AJ. Biomechanics of Pitching with Emphasis upon Shoulder
484		Kinematics. J Orthop Sports Phys Ther. 1993;18(2):402–408.
485		doi:10.2519/jospt.1993.18.2.402

486	9.	Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR. Comparing the
487		Function of the Upper and Lower Parts of the Serratus Anterior Muscle Using
488		Surface Electromyography. J Orthop Sports Phys Ther. 2004;34(5):235–243.
489		doi:10.2519/jospt.2004.1345
490	10.	Escamilla RF. Shoulder Muscle Activity and Function in Common Shoulder
491		Rehabilitation Exercise. Sports Med. 2009;39(8):663-685.
492		doi:10.2165/00007256-200939080-00004.
493	11.	Escamilla RF, Andrrews JR. Shoulder muscle recruitment patterns and related
494		biomechanics during upper extremity sports. Sports Med. 2009;39(7):569-590.
495	12.	Graichen H, Bonei H, Stammberger T, Haubner M, Englmeier K.
496		Three-Dimensional Analysis of the Width of the Subacromial Space in Healthy
497		Subjects and Patients with Impingement Syndrome. AJR Am J Roentgenol.
498		1999;172(4):1081–1086.
499	13.	Ha S min, Kwon O yun, Cynn H seock, Lee W hwee, Park K nam, Kim S hyun,
500		et al. Comparison of electromyographic activity of the lower trapezius and
501		serratus anterior muscle in different arm-lifting scapular posterior tilt exercises.
502		Phys Ther Sport. 2012;13(4):227–232.
503		http://dx.doi.org/10.1016/j.ptsp.2011.11.002doi:10.1016/j.ptsp.2011.11.002

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

504	14.	Iles R, Davidson M. Evidence based practice: a survey of physiotherapists'
505		current practice. Physiother Res Int. 2006;11(2):93-103. doi:10.1002/pri
506	15.	Johnson G, Bogduk N, Nowitzke A, House D. Anatomy and actions of the
507		trapezius muscle. Clin Biomech (Bristol, Avon). 1994;9(1):44–50.
508		doi:10.1016/0268-0033(94)90057-4
509	16.	Kebaetse M, McClure P, Pratt NA. Thoracic position effect on shoulder range of
510		motion strength, and three-dimensional scapular kinematics. Arch Phys Med
511		Rehabil. 1999;80(8):945–950. doi:10.1016/S0003-9993(99)90088-6
512	17.	Kendall FP, McCreary EK, Provanoe PG, Rodgers M RW. Muscles: Testing and
513		Function, with Posture and Pain. 5th ed. Lippincott Williams & Wilkins; 2005.
514	18.	Kibler W Ben, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports
515		Med.2010 Apr;44(5):300-305. doi:10.1136/bjsm.2009.058834
516	19.	Kibler W Ben, Sciascia AD, Uhl TL, Tambay N, Cunningham T.
517		Electromyographic analysis of specific exercises for scapular control in early
518		phases of shoulder rehabilitation. Am J Sports Med. 2008;36(9):1789–1798.
519		doi:10.1177/0363546508316281
520	20.	Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated
521		muscle activity in people with symptoms of shoulder impingement. Phys Ther.

京都大学学術情報リボジトリ KURENAI LL Kyoto University Research Information Respection

Scapular angles with different trunk postures

522	2000;80(3):276-91.

523	http://www.	ncbi.nlm.nih.	gov/pubmed/	10696154doi:10.25	519/jospt.1993.17.5.212	2
	1				J 1	

- 524 21. Ludewig PM, Cook TM, Nawoczenski DA. Three-dimensional scapular
- 525 orientation and muscle activity at selected positions of humeral elevation. J
- 526 Orthop Sports Phys Ther. 1996;24(2):57–65. doi:10.2519/jospt.1996.24.2.57
- 527 22. Ludewig PM, Reynolds JF. The Association of Scapular Kinematics and
- 528 Glenohumeral Joint Pathologies. J Orthop Sports Phys Ther. 2009;39(2):90–104.
- 529 http://www.jospt.org/doi/10.2519/jospt.2009.2808doi:10.2519/jospt.2009.2808
- 530 23. McClure PW, Michener LA, Karduna AR. Shoulder Function and 3-Dimensional
- 531 Scapular Kinematics in People With and Without Shoulder Impingement
- 532 Syndrome. Phys Ther. 2006;1075–1091.
- 533 http://web.a.ebscohost.com.ezproxy.staffs.ac.uk/ehost/detail/detail?vid=14&sid=
- 534 b956e79f-419b-4bc6-8675-d4b464463536%40sessionmgr4008&hid=4101&bdat

535 a=JnNpdGU9ZWhvc3QtbGl2ZQ%3D%3D#AN=21802032&db=s3h

- 536 24. McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-dimensional
- 537 measurement of scapular kinematics during dynamic movements in vivo. J
- 538 Shoulder Elbow Surg. 2001;10(3):269–277. doi:10.1067/mse.2001.112954
- 539 25. Meyer KE, Saether EE, Soiney EK, Shebeck MS, Paddock KL, Ludewig PM.

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

540		Three-Dimensional Scapular Kinematics During the Throwing Motion. J Appl
541		Biomech. 2008;24(1):24–34.
542	26.	Miyashita K, Kobayashi H, Koshida S, Urabe Y. Glenohumeral, Scapular, and
543		Thoracic Angles at Maximum Shoulder External Rotation in Throwing. Am J
544		Sports Med. 2010;38(2):363-368.
545		http://journals.sagepub.com/doi/10.1177/0363546509347542doi:10.1177/036354
546		6509347542
547	27.	Miyashita K, Urabe Y, Kobayashi H, Yokoe K, Koshida S, Kawamura M, et al.
548		The role of shoulder maximum external rotation during throwing for elbow injury
549		prevention in baseball players. J Sports Sci Med. 2008;7(2):223-228.
550	28.	Myers JB, Pasquale MR, Laudner KG, Sell TC, Bradley JP, Lephart SM.
551		On-the-field resistance-tubing exercises for throwers: An electromyographic
552		analysis. J Athl Train. 2005;40(1):15-22. doi:10.1016/S0162-0908(08)70347-7
553	29.	Nagai K, Tateuchi H, Takashima S, Miyasaka J, Hasegawa S, Arai R, et al.
554		Effects of trunk rotation on scapular kinematics and muscle activity during
555		humeral elevation. J Electromyogr Kinesiol. 2013;23(3):679–687.
556		http://dx.doi.org/10.1016/j.jelekin.2013.01.012doi:10.1016/j.jelekin.2013.01.012
557	30.	Okamoto S, Endo Y, Saito Y, Nakazawa R, Sakamoto M. Three-dimensional

京都大学学術情報リボジトリ KURENAI LU Kyoto University Research Information Resperies

558		kinematic analysis of glenohumeral, scapular, and thoracic angles at maximum
559		shoulder external rotation associated with baseball shadow pitching : comparison
560		with normal pitching. J Phys Ther Sci. 2018;30(7):938–942. doi:
561		10.1589/jpts.30.938.
562	31.	Oliver G, Weimar W. Scapula kinematics of youth baseball players. J Hum Kinet.
563		2015;49(1):47-54. doi:10.1515/hukin-2015-0107
564	32.	Orozco-Levi M, Gea J, Monells J, Aran X, Aguar MC, Broquetas JM. Activity of
565		latissimus dorsi muscle during inspiratory threshold loads. Eur Respir J.
566		1995;8(3):441-445. doi:10.1183/09031936.95.08030441
567	33.	Pascoal AG, Morais N. Kinematic comparison and description of the
568		3-dimensional shoulder kinematics of 2 shoulder rotation tests. J Manipulative
569		Physiol Ther. 2015;38(4):288–294. doi:10.1016/j.jmpt.2014.10.017
570	34.	Shaheen AF, Bull AMJ, Alexander CM. Rigid and elastic taping changes
571		scapular kinematics and pain in subjects with shoulder impingement syndrome:
572		an experimental study. J Electromyogr Kinesiol. 2015;25(1):84–92.
573		http://dx.doi.org/10.1016/j.jelekin.2014.07.011doi:10.1016/j.jelekin.2014.07.011
574	35.	Solomito MJ, Garibay EJ, Woods JR, Õunpuu S, Nissen CW. Lateral trunk lean
575		in pitchers affects both ball velocity and upper extremity joint moments. Am J

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

576		Sports Med. 2015;43(5):1235–1240. doi:10.1177/0363546515574060
577	36.	Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and
578		movement in unimpaired shoulders, shoulder impingement syndrome, and
579		glenohumeral instability. Scand J Med Sci Sports. 2011;21(3):352–358.
580		doi:10.1111/j.1600-0838.2010.01274.x
581	37.	Werner SL, Fleisig GS, Dillman CJ, Andrews JR. Biomechanics of the Elbow
582		During Baseball Pitching. J Orthop Sports Phys Ther. 1993;17(6):274–278.
583		http://www.jospt.org/doi/10.2519/jospt.1993.17.6.274doi:10.2519/jospt.1993.17.
584		6.274
585	38.	Wu G, Van Der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, et
586		al. ISB recommendation on definitions of joint coordinate systems of various
587		joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist
588		and hand. J Biomech. 2005;38(5):981–992. doi:10.1016/j.jbiomech.2004.05.042
589	39.	Yamauchi T, Hasegawa S, Matsumura A, Nakamura M, Ibuki S, Ichihashi N.
590		The effect of trunk rotation during shoulder exercises on the activity of the
591		scapular muscle and scapular kinematics. J Shoulder Elbow Surg.
592		2015;24(6):955–964.
593		http://dx.doi.org/10.1016/j.jse.2014.10.010doi:10.1016/j.jse.2014.10.010

594

595

596	Table legends
-----	---------------

- 597 Table I. Kinematics data
- 598 Table II. EMG data
- 599
- 600 Figure I. Trunk postures