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Summary

In this paper, we propose an approach for real-time implementation of nonlin-
ear model predictive control (NMPC) for switched systems with state-dependent
switches called the moving switching sequence approach. In this approach, the
switching sequence on the horizon moves to the present time at each time as well
as the optimal state trajectory and the optimal control input on the horizon. We
assume that the switching sequence is basically invariant until the first predicted
switching time reaches the current time or a new switch enters the horizon. This
assumption is reasonable in NMPC for systems with state-dependent switches
and reduces computational cost significantly compared with the direct optimiza-
tion of the switching sequence all over the horizon. We update the switching
sequence by checking whether an additional switch occurs or not at the last
interval of the present switching sequence and whether the actual switch occurs
or not between the current time and the next sampling time. We propose an
algorithm consisting of two parts: (1) the local optimization of the control input
and switching instants by solving the two-point boundary-value problem for
the whole horizon under a given switching sequence and (2) the detection of
an additional switch and the reconstruction of the solution taking into account
the additional switch. We demonstrate the effectiveness of the proposed method
through numerical simulations of a compass-like biped walking robot, which
contains state-dependent switches and state jumps.

KEYWORDS

biped walking, hybrid systems, nonlinear model predictive control, switched systems

1 INTRODUCTION

Switched systems are a class of hybrid systems composed of several subsystems and switching laws. Many systems in the
real world can be modeled as switched systems and can be roughly divided into two types: systems that switch when
the state satisfies some conditions, and systems that switch when the system receives external signals.1 The former are
called state-dependent switches or internally forced switches, and the latter are called state-independent switches or exter-
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nally forced switches. For example, we can see state-dependent switches in contacts of mechanical systems with objects
or environments2-5 and logical switching controllers6-8 and state-independent switches in gear shifts of automobiles,9
electrical circuit systems,10,11 and process systems.12,13 In this paper, we focus on control of switched systems with
state-dependent switches.

It is difficult to apply conventional control methods directly to switched systems with state-dependent switches, par-
ticularly when they contain nonlinear subsystems. Nonlinear model predictive control (NMPC)14-16 is the only generic
method that can control such systems in practice. In NMPC, an open-loop optimal control problem over a finite future is
solved at each time on the basis of the current state and the system's model, and the actual control input to the system is
given by the initial value of the optimal control input. Even if the system contains discrete events such as switches or state
jumps, we can realize NMPC in consideration of future discrete events as long as we can solve the finite horizon nonlin-
ear optimal control problem (NOCP) within a given sampling period. However, it is difficult to solve the finite horizon
NOCP for the switched systems with state-dependent switches in a short computational time because the control input
and sequence of the active subsystems complicatedly depend on each other.17

In previous studies, optimal control of systems with state-independent switches and that of systems with
state-dependent switches are often considered in the same framework, and many different optimization approaches
have been studied. Mixed-integer programming (MIP) is a classical method for optimization problem with a kind of
switches and numerical methods based on MIP are successfully applied to systems with long sampling period, eg, pro-
cess systems.18,19 Two-stage methods20-22 define two independent optimal control problems (one for the sequence of
active subsystems over the horizon, and the other for control input and switching instants) and solve them alternately
by conventional numerical methods for optimization. The algebraic geometry method23,24 applies cylindrical algebraic
decomposition to the NOCP for polynomial switched systems. The embedded method25,26 converts the optimal control
problem for switched systems into a conventional continuous optimal control problem for a larger set of systems by intro-
ducing variables corresponding to mode activation. Although these methods successfully optimize the sequence of active
subsystems and control input simultaneously, it is difficult to realize NMPC by using these methods when the switched
system contains nonlinear subsystems whose state equations are complex, and the sampling period is short because these
methods still take long computation time. These studies require seeking the switching sequence, sequence of active sub-
systems, all over the horizon of NOCP, which increases the computational time significantly compared with the optimal
control problem for systems without switches. On the other hand, the minimum-principle for the switched or hybrid sys-
tems has been studied for a long time,27,28 and efficient numerical methods combining it with conventional optimization
algorithms, such as dynamic programming or gradient-descent methods under a fixed sequence of the active subsystems,
have been developed.17,29-35 However, these methods increase the computational cost a lot compared with the optimal
control problem or NMPC for a system without any switches. These methods have to find an optimal (or at least a feasible)
sequence of active subsystems on the horizon. For this purpose, they have to solve the optimal control problems for all
possible sequence of active subsystems, which obviously takes much more computational time than solving the optimal
control problem for only one sequence of active subsystems.

In this paper, we propose an approach for real-time implementation of NMPC for switched systems with
state-dependent switches called the moving switching sequence approach, in which the switching sequence on the horizon
moves to the present time at each time as well as the optimal state trajectory and the optimal control input on the horizon.
We assume that the switching sequence is basically invariant until the first predicted switching time reaches the cur-
rent time or a new switch enters the horizon. This assumption is reasonable in NMPC for systems with state-dependent
switches and reduces computational cost significantly compared with directly optimizing the switching sequence all over
the horizon. In the proposed method, we update the switching sequence by checking whether an additional switch occurs
or not at the last interval of the present switching sequence and whether the actual switch will occur or not between the
current sampling time and the next sampling time. We check the former by computing the state trajectory on the horizon
on the basis of the current solution and the current switching sequence. If we detect an additional switch on the state
trajectory, we reconstruct the solution of NMPC in consideration of the additional switch. We check the latter by evalu-
ating the switching instants after the solution is updated. If the instant of the first switch in the switching sequence after
the solution is updated becomes less than the next sampling time, we predict that the actual switch occurs between the
current sampling time and the next sampling time and then remove variables related to the switch from the solution. We
propose an algorithm of the moving switching sequence approach consisting of two parts: (1) the local optimization of
the control input and switching instants by solving the two-point boundary-value problem (TPBVP) for the whole hori-
zon under a given switching sequence and (2) the detection of an additional switch and the reconstruction of the solution
by solving a reduced optimal control problem defined only for additional variables with respect to an additional switch.
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The former takes almost the same computational time as the NOCP for systems without switches, and the latter can be
achieved at sufficiently small computational burden. Therefore, the computational time of the proposed method increases
only slightly from that of NMPC for a system without switches.

In solving the TPBVP, we can apply conventional numerical methods for implementing NMPC in real time.36-42 We
adopt the continuation/generalized minimum residual (C/GMRES) method,37 which achieves fast computation by track-
ing the solution at each time without approximation for state equations and cost functions as long as the sampling period
is set sufficiently short. By utilizing the C/GMRES method for the TPBVP containing switches, we update the control
input and switching instants simultaneously at each sampling time in a short computational time. In reconstructing the
solution for an additional switch, we obtain variables with respect to the switch by solving the reduced optimal control
problem only for variables with respect to the additional active subsystem using conventional numerical methods, eg,
Newton's method. Note that there are studies using the C/GMRES method that implicitly make the same assumption
about the invariance of switching sequence for NMPC for a class of switched systems with state-dependent switches.43-45

For example, Yamakita et al extended the C/GMRES method to mechanical systems with collisions by handling the opti-
mality conditions approximately.43,44 However, that approximation generates errors from the optimal control, and an
undesirable oscillation of the control input is observed in their simulations. They introduce an integrator to avoid that
oscillation, which does not guarantee the optimality of the solution. To treat the optimality conditions more appropriately
with the C/GMRES method, we proposed a penalty function method.45 However, this method can make numerical com-
putation unstable due to the penalty function. These approximations are introduced to avoid directly treating changes in
the number of optimization variables caused by the addition of a new switch. In contrast, the moving switching sequence
approach does not introduce such approximations because this method obtains the additional variables efficiently when
the number of switches on the horizon changes.

The rest of this paper is composed as follows. In Section 2, we describe a class of switched systems with state-dependent
switches. In Section 3, we derive the optimality conditions and define the TPBVP for that system. In Section 4, we describe
the C/GMRES method for TPBVP formulated in Section 3, detection of an additional switch and reconstruction of the
solution for the additional switch, and the algorithm of the moving switching sequence approach. In Section 5, we present
a numerical simulation of a compass-like robot walking for two cases, ie, a nominal case without any disturbances and
a case with impulse disturbances, using the proposed method and demonstrate the method's effectiveness. In Section 6,
we conclude our paper.

2 SWITCHED SYSTEMS WITH STATE-DEPENDENT SWITCHES

We consider a switched system consisting of subsystems

.x(t) = 𝑓q(t)(x(t),u(t)), 𝑓q ∶ 𝜒q ×ℝm → ℝn,

q(t) ∈ Q ∶= {1, 2, … ,M} , (1)

where x(t) ∈ ℝn denotes the state vector, u(t) ∈ ℝm denotes the control input vector, 𝜒q ⊆ ℝn denotes the domain of
fq(x,u) for x, and M denotes a positive integer. We represent that subsystem q(t) is active or active subsystem is q(t) if the
state is governed by .x(t) = 𝑓q(t)(x(t),u(t)). We also consider the switching sets Ψq1,q2 ⊆ 𝜒q1 that represent the condition of
state-dependent switches

Ψq1,q2 =
{

x |𝜓q1,q2(x) = 0, 𝜓q1,q2 ∶ 𝜒q1 → ℝlq1 ,q2

}
, q1, q2 ∈ M. (2)

This means that, if subsystem q1 is active and x ∈ 𝜒q1 reaches Ψq1,q2 , that is, if x ∈ 𝜒q1 satisfies 𝜓q1,q2(x) = 0, then the
active subsystem switches to q2. We also consider the state changes discontinuously, ie, a state jump occurs at the same
time as the switch, as

x+ = 𝛾q1,q2(x
−), 𝛾q1,q2 ∶ ℝn → ℝn, q1, q2 ∈ Q, (3)

where x− ∈ Ψq1,q2 denotes the state just before the state jump, and x+ ∈ ℝn denotes the state just after the state jump.
Note that, if x satisfies 𝜓q,q(x) = 0 for some q ∈ Q, just the state jump x+ = 𝛾q,q(x−) occurs without a switch of the active
subsystems. We make the following assumptions about fq(x,u), 𝜓q1,q2(x), and 𝛾q1,q2(x).
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Assumption 1. fq(x,u) are continuously differentiable for all x ∈ 𝜒q, for all u ∈ ℝm, and for all q ∈ Q, and 𝜓q1,q2(x)
and 𝛾q1,q2(x) are also continuously differentiable for all x ∈ ℝn and for all q1, q2 ∈ Q.

Assumption 2. 𝛾q1,q2(x) is uniquely and explicitly determined for all x ∈ 𝜒q1 and for all q1, q2 ∈ Q.

Assumption 3. 𝛾q1,q2(x) ∈ 𝜒q2 for all x ∈ 𝜒q1 and for all q1, q2 ∈ Q.

Assumption 4. 𝛾q1,q2(x) ∉ Ψq2,qi for all x ∈ Ψq1,q2 and for all q1, q2, qi ∈ Q.

Note that Assumption 4 implies that the length of a time interval in which any subsystem is active is not zero, ie, state
jumps do not occur in a row. That is, situations that are too complicated such as infinite loops of state jumps are not
considered.

3 TWO-POINT BOUNDARY-VALUE PROBLEMS

In NMPC, the optimality conditions, which are the necessary conditions of the optimal control, are formulated into a
TPBVP and solved numerically to obtain the optimal control input at each time. The optimal control problem for switched
systems with state-dependent switches and state jumps is defined as follows: find u(t′) (t ≤ t′ ≤ t + T) minimizing the
cost function

J = 𝜑q(t+T)(x(t + T)) +

t+T

∫
t

Lq(t′)
(

x(t′),u(t′)
)

dt′, (4)

subject to (1)-(3), where𝜑q(x) ∈ ℝ denotes the terminal cost for subsystem q and Lq(x) ∈ ℝ denotes the stage cost for sub-
system q. To derive the optimality conditions, we introduce a sequence of subsystems for t ∈ [t, t+T], a switching sequence
defined as

𝜎 = (q1, q2, … , qm), (5)
where qk ∈ Q for all k = 1, … ,m, and introduce switching instants tk ∈ ℝ for k = 1, … ,m − 1 representing the instants
of the switch from subsystem qk to subsystem qk+1, where 0 ≤ m < ∞, t ≤ t1 < · · · < tm−1 ≤ t + T, and q1, … , qm ∈ Q.
Note that ti ≠ ti+1 because of Assumption 4. This denotes that subsystem q1 is active at [t, t1), subsystem qk is active at
(tk−1, tk) for k = 2, … ,m − 1, and subsystem qm is active at (tm−1, t + T]. Figure 1 illustrates the switching sequence and
a state trajectory on the horizon. We make the following assumption about the solution of the NOCP for systems with
state-dependent switches.

Assumption 5. The optimal control input u and switching sequence 𝜎 of a finite length exist.

Suppose that the switching sequence on the horizon t′ ∈ [t, t + T] is given as 𝜎 = (q1, q2, … , qm), where q1, … , qm ∈ Q
and the instants of the switch from qk to qk+1 are given as tk for all k = 1, … ,m − 1. The state trajectory is then given as

d
dt′

x(t′) = 𝑓q1

(
x(t′),u(t′)

)
(t ≤ t′ < t1), (6)

𝜓q1,q2

(
x
(

t−1
))

= 0, (7)

x
(

t+1
)
= 𝛾q1,q2

(
x
(

t−1
))
, (8)

FIGURE 1 The switching sequence 𝜎 = (q1, q2, … , qm) and a
state trajectory on the horizon
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d
dt′

x(t′) = 𝑓qk

(
x(t′),u(t′)

)
(tk−1 < t′ < tk)

𝜓qk ,qk+1

(
x
(

t−k
))

= 0
x(t+k ) = 𝛾qk ,qk+1

(
x
(

t−k
))

⎫⎪⎪⎬⎪⎪⎭
for k = 2, … ,m − 1, (9)

d
dt′

x(t′) = 𝑓qm

(
x(t′),u(t′)

)
(tm−1 < t′ < t + T). (10)

The optimal control problem is then defined as finding the optimal control input u(t′) (t ≤ t′ ≤ t + T) minimizing the
cost function

J = 𝜑qm (x(t + T)) +

t𝑓

∫
tm−1

Lqm

(
x(t′),u(t′)

)
dt′ +

m−1∑
k=2

tk

∫
tk−1

Lqk

(
x(t′),u(t′)

)
dt′ +

t1

∫
t

Lq1

(
x(t′),u(t′)

)
dt′, (11)

subject to (6)-(10).
For numerical computation, we discretize the optimal control problem. We divide the horizon t′ ∈ [t, t+T] into N steps,

define the time step Δ𝜏 ∶= T∕N, and introduce ik as an integer satisfying ikΔ𝜏 ≤ tk − t < (ik + 1)Δ𝜏 for k = 1, … ,m − 1.
We also introduce x∗i (t) for i = 0, … ,N and u∗

i (t) for i = 0, … ,N − 1 corresponding to x(iΔ𝜏 + t) and u(iΔ𝜏 + t). Figure 2
shows an example of the discretization over the horizon, in which ik𝛥𝜏 + t < tk for k = 1, … ,m − 2 and
im−1𝛥𝜏 + t = tm−1. The optimal control problem is then given as follows: find the optimal control input sequence
u∗

0(t), … ,u∗
N−1(t),u

∗(t+1 ), … ,u∗(t+m−1) minimizing the discretized cost function

J = 𝜑qm

(
x∗N(t)

)
+

N−1∑
i=im+1

Lqm

(
x∗i (t),u

∗
i (t)

)
Δ𝜏 + Lqm

(
x∗
(

t+m−1
)
,u∗ (t+m−1

))
((im−1 + 1)Δ𝜏 + t − tm−1)

+
m−1∑
k=2

{
Lqk

(
x∗ik

(t),u∗
ik
(t)
)
(tk − t − ikΔ𝜏) +

ik−1∑
i=ik−1+1

Lqk

(
x∗i (t),u

∗
i (t)

)
Δ𝜏

+ Lqk

(
x∗
(

t+k−1

)
,u∗ (t+k−1

))
((ik−1 + 1)Δ𝜏 + t − tk−1)

}

+ Lq1

(
x∗i1
(t),u∗

i1
(t)
)
(t1 − t − i1Δ𝜏) +

i1−1∑
i=0

Lq1

(
x∗i (t),u

∗
i (t)

)
Δ𝜏, (12)

FIGURE 2 An example of the discretization of x and u over the
horizon
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subject to
x∗0(t) = x(t), (13)

x∗i+1(t) = x∗i (t) + 𝑓q1

(
x∗i (t),u

∗
i (t)

)
Δ𝜏, i = 0, … , i1 − 1, (14)

x∗(t−1 ) = x∗i1
(t) + 𝑓qk

(
x∗i1
(t),u∗

i1
(t)
)
(t1 − t − i1Δ𝜏), (15)

𝜓q1,q2

(
x∗
(

t−1
))

= 0, (16)

x∗
(

t+1
)
= 𝛾q1,q2

(
x∗
(

t−1
))
, (17)

x∗ik−1+1(t) = x∗
(

t+k−1

)
+ 𝑓qk

(
x∗
(

t+k−1

)
,u∗ (t+k−1

))
((ik−1 + 1)Δ𝜏 + t − tk−1)

x∗i+1(t) = x∗i (t) + 𝑓qk

(
x∗i (t),u

∗
i (t)

)
Δ𝜏, for i = ik−1 + 1, … , ik − 1

x∗(t−k ) = x∗ik
(t) + 𝑓qk

(
x∗ik

(t),u∗
ik
(t)
)
(tk − t − ikΔ𝜏)

𝜓qk ,qk+1

(
x∗
(

t−k
))

= 0
x∗(t+k ) = 𝛾qk ,qk+1

(
x∗
(

t−k
))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for k = 2, … ,m − 1, (18)

x∗im−1+1(t) = x∗
(

t+m−1
)
+ 𝑓qm

(
x∗
(

t+m−1
)
,u∗ (t+m−1

))
((im−1 + 1)Δ𝜏 + t − tm−1) , (19)

x∗i+1(t) = x∗i (t) + 𝑓qm

(
x∗i (t),u

∗
i (t)

)
Δ𝜏, i = im−1 + 1, … ,N − 1. (20)

To derive the optimality conditions, we define the augmented cost function,46 which is obtained by adjointing equality
constraints (14)-(20) to the cost function (12). We introduce the Lagrange multipliers for the state equations in (14), (15),
and (18)-(20) as 𝜆∗1(t), … , 𝜆∗N(t) ∈ ℝn, and 𝜆∗(t−1 ), 𝜆

∗(t+1 ), … , 𝜆∗(t−m−1), 𝜆
∗(t+m−1) ∈ ℝn. We also introduce the Lagrange

multipliers for the switching conditions 𝜓q1,q2(x) = 0, … , 𝜓qm−2,qm−1 (x) = 0, and 𝜓qm−1,qm(x) = 0 as 𝜈∗q1,q2
(t) ∈ ℝlq1 ,q2 , … ,

𝜈∗qm−2,qm−1
(t) ∈ ℝlqm−2 ,qm−1 and 𝜈∗qm−1,qm

(t) ∈ ℝlqm−1 ,qm . The augmented cost function J̄ is then given as

J̄ = J +
N−1∑

i=im+1
𝜆∗i+1(t)

T {𝑓qm

(
x∗i (t),u

∗
i (t)

)
Δ𝜏 + x∗i (t) − x∗i+1(t)

}
+ 𝜆∗im−1+1(t)

T
{
𝑓qm

(
x∗
(

t+m−1
)
,u∗ (t+m−1

))
((im−1 + 1)Δ𝜏 + t − tm−1) − x∗

(
t+m−1

)
− x∗im−1+1(t))

}
+

m−1∑
k=2

[
𝜈∗qk ,qk+1

(t)T𝜓qk ,qk+1

(
x∗
(

t−k
))

+ 𝜆∗
(

t−k
)T
{
𝑓qk

(
x∗ik

(t),u∗
ik
(t)
)
(tk − t − ikΔ𝜏) + x∗ik

(t) − x∗
(

t−k
)}

+
ik−1∑

i=ik−1+1
𝜆∗i+1(t)

T {𝑓qk

(
x∗i (t),u

∗
i (t)

)
Δ𝜏 + x∗i (t) − x∗i+1(t)

}
+ 𝜆∗ik−1+1(t)

T
{
𝑓qk

(
x∗
(

t+k−1

)
,u∗ (t+k−1

))
((ik−1 + 1)Δ𝜏 + t − tk−1) + x∗

(
t+k−1

)
− x∗ik−1+1

}]
+ 𝜈∗q1,q2

(t)T𝜓q1,q2

(
x∗
(

t−1
))

+ 𝜆∗
(

t−1
)T
{
𝑓q1

(
x∗i1
(t),u∗

i1
(t)
)
(t1 − t − i1Δ𝜏) + x∗i1

(t) − x∗
(

t−1
)}

+
i1−1∑
i=0
𝜆∗i+1(t)

T {𝑓q1

(
x∗i (t),u

∗
i (t)

)
Δ𝜏 + x∗i (t) − x∗i+1(t)

}
Δ𝜏. (21)

We further introduce the Hamiltonian of subsystem q ∈ Q

Hq(x,u, 𝜆) = Lq(x,u) + 𝜆T𝑓q(x,u). (22)

We then obtain the optimality conditions by calculus of variations46

𝜆∗N(t) =
(
𝜕𝜑qm

𝜕x

)T (
x∗N(t)

)
, (23)

𝜆∗i (t) = 𝜆∗i+1(t) +
(
𝜕Hqm

𝜕x

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
Δ𝜏, i = im−1 + 1, … ,N − 1, (24)
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𝜆∗
(

t+m−1
)
= 𝜆∗im−1+1(t) +

(
𝜕Hqm

𝜕x

)T (
x∗
(

t+m−1
)
,u∗ (t+m−1

)
, 𝜆∗im−1+1(t)

)
((im−1 + 1)Δ𝜏 + t − tm−1) , (25)

𝜆∗
(

t−k
)
=
(
𝜕𝛾qk ,qk+1

𝜕x

)T (
x∗
(

t−k
))
𝜆∗
(

t+k
)
+
(
𝜕𝜓qk ,qk+1

𝜕x

)T (
x∗
(

t−k
))
𝜈∗qk ,qk+1

(t)

𝜆∗ik
(t) = 𝜆∗

(
t−k
)
+
(
𝜕Hqk

𝜕x

)T (
x∗ik

(t),u∗
ik
(t), 𝜆∗

(
t−k
))

(tk − t − ikΔ𝜏)

𝜆∗i (t) = 𝜆∗i+1(t) +
(
𝜕Hqk

𝜕x

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
Δ𝜏, i = ik−1 + 1, … , ik − 1

𝜆∗
(

t+k−1

)
= 𝜆∗ik−1+1(t) +

(
𝜕Hqk

𝜕x

)T (
x∗
(

t+k−1

)
,u∗ (t+k−1

)
, 𝜆∗ik−1+1(t)

)
((ik−1 + 1)Δ𝜏 + t − tk−1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

for k = 2, … ,m − 1,

(26)

𝜆∗(t−1 ) =
(
𝜕𝛾q1,q2

𝜕x

)T (
x∗
(

t−1
))
𝜆∗
(

t+1
))

+
(
𝜕𝜓q1,q2

𝜕x

)T (
x∗
(

t−1
))
𝜈∗q1,q2

(t), (27)

𝜆∗i1
(t) = 𝜆∗(𝜏−1 ; t) +

(
𝜕Hq1

𝜕x

)T (
x∗i1
(t),u∗

i1
(t), 𝜆∗

(
𝜏−1 ; t

))
(𝜏1 − i1Δ𝜏), (28)

𝜆∗i (t) = 𝜆∗i+1(t) −
(
𝜕Hq1

𝜕x

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
Δ𝜏, i = 0, … , i1 − 1, (29)(

𝜕Hqm

𝜕u

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
= 0, i = im−1 + 1, … ,N − 1, (30)(

𝜕Hqm

𝜕u

)T (
x∗
(

t+m−1
)
,u∗ (t+m−1

)
, 𝜆∗im−1+1(t)

)
= 0, (31)

(
𝜕Hqk

𝜕u

)T (
x∗ik

(t),u∗
ik
(t), 𝜆∗

(
t+k
))

= 0

Hqk

(
x∗ik

(t),u∗
ik
(t), 𝜆∗

(
t−k
))

− Hqk+1

(
x∗
(

t+k
)
,u∗ (t+k

)
, 𝜆∗ik+1(t)

)
= 0(

𝜕Hqk

𝜕u

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
= 0, i = ik−1 + 1, … , ik − 1(

𝜕Hqk

𝜕u

)T (
x∗
(

t+k−1

)
,u∗ (t+k−1

)
, 𝜆∗ik−1+1(t)

)
= 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

for k = 2, … ,m − 1, (32)

(
𝜕Hq1

𝜕u

)T (
x∗i1
(t),u∗

i1
(t), 𝜆∗

(
t+1
))

= 0, (33)

Hq1

(
x∗i1
(t),u∗

i1
(t), 𝜆∗

(
t−1
))

− Hq2

(
x∗
(

t+1
)
,u∗ (t+1

)
, 𝜆∗i1+1(t)

)
= 0, (34)(

𝜕Hq1

𝜕u

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
= 0, i = 0, … , i1 − 1, (35)

The unknown quantities of the optimal control problem are x∗0(t), … , x∗N(t), x∗(t−1 ), … , x∗(t−m−1), x∗(t+1 ), … , x∗(t+m−1),
u∗

0(t), … ,u∗
N−1(t), u∗(t+1 ), … ,u∗(t+m−1), 𝜆

∗
1(t), … , 𝜆∗N(t), 𝜆

∗(t−1 ), … , 𝜆∗(t−m−1), 𝜆
∗(t+1 ), … , 𝜆∗(t+m−1), and t1, t2, … , tm. For a

given u∗
0(t), … ,u∗

N−1(t),u
∗(t+1 ), … ,u∗(t+m−1), and t1, … , tm−1, we can specify i1, … , im−1 and compute x∗0(t), … , x∗N(t),

x∗(t−1 ), … , x∗(t−m−1), x∗(t+1 ), … , x∗(t+m−1) from (13)-(20), and 𝜆∗1(t), … , 𝜆∗N(t), 𝜆
∗(t−1 ), … , 𝜆∗(t−m−1), 𝜆

∗(t+1 ), … , 𝜆∗(t+m−1) from
(23)-(29). Thus, we define variables to be determined as

U(t) ∶=

⎡⎢⎢⎢⎢⎢⎣

u∗
0(t)
⋮

u∗
N−1(t)

Uq1,q2(t)
⋮

Uqm−1,qm (t)

⎤⎥⎥⎥⎥⎥⎦
, Uqk ,qk+1(t) ∶=

⎡⎢⎢⎣
u∗ (t+k

)
𝜈∗qk ,qk+1

(t)
tk

⎤⎥⎥⎦ , (36)
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satisfying

F(U(t), x(t), t) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
𝜕Hq1
𝜕u

)T (
x∗0(t),u

∗
0(t), 𝜆

∗
1(t)

)
⋮(

𝜕Hqk+1

𝜕u

)T (
x∗N−1(t),u

∗
N−1(t), 𝜆

∗
N(t)

)
Fq1,q2(U(t), x(t), t)

⋮
Fqm−1,qm(U(t), x(t), t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (37)

where Fqk ,qk+1 (U(t), x(t), t) is

Fqk ,qk+1(U(t), x(t), t) ∶=

⎡⎢⎢⎢⎢⎣
(
𝜕Hqk+1

𝜕u

)T (
x∗
(

t+k
)
,u∗ (t+k

)
, 𝜆∗ik+1(t)

)
𝜓qk ,qk+1

(
x∗
(

t−k
))

Hqk

(
x∗ik

(t),u∗
ik
(t), 𝜆∗

(
t−k
))

− Hqk+1

(
x∗
(

t+k
)
,u∗ (t+k

)
, 𝜆∗ik+1(t)

)
⎤⎥⎥⎥⎥⎦
, (38)

for k = 1, … ,m− 1. Note that, if 𝜎 = (q), ie, if only one subsystem q is active over the whole horizon, the optimal control
problem is just given as the conventional one for subsystem q.

4 THE MOVING SWITCHING SEQUENCE APPROACH

The moving switching sequence approach considers the recession of the switching sequence on the horizon as well as
the optimal state trajectory and the optimal control input on the horizon. To justify this approach, we make the following
assumption.

Assumption 6. Let 𝜎 = (q1, … , qm) be the switching sequence on the horizon at the sampling time t. The switching
sequence at the next sampling time t +Δt is given as one of the following: 𝜎 = (q1, … , qm), 𝜎 = (q1, … , qm, qm+1) for
some qm+1 ∈ Q, 𝜎 = (q2, … , qm), or 𝜎 = (q2, … , qm, qm+1).

Figure 3 represents possible changes of the switching sequence under this assumption. This assumption limits the
change in the switching sequence to those only by the exit of the first switch of the switching sequence because of an actual
switch occurrence or the addition of a new switch to the end of the switching sequence. This is a reasonable assumption for
systems with state-dependent switches as long as the actual state changes continuously. If the state changes continuously,
ie, the actual state changes slightly at each time in a sufficiently short sampling period, the optimal state trajectory also
changes slightly from that of the previous sampling time. This assumption will then hold as long as the distance between
each switching condition is sufficiently far.

Under this assumption, the switching sequence 𝜎 = (q1, … , qm) moves to the present time at each time without
changing from the previous time to the current time and an additional switch may occur at t′ ∈ (tm, t + T], where the
last subsystem of 𝜎 is active. We update the switching sequence by checking whether an additional switch occurs at
t′ ∈ (tm, t + T] at each time and whether the actual switch occurs or not between the current sampling time and the
next sampling time. We check the former by computing the state trajectory on the horizon on the basis of the current
solution and the current switching sequence. If we detect an additional switch on the state trajectory, we reconstruct
the solution taking the switch into account. We check the latter after the solution is updated by evaluating the updated
switching instants. If the instant of the first switch of the switching sequence after the solution is updated is less than
the next sampling time, we predict the actual switch between the current sampling time and the next sampling time
and then remove variables related to the switch from the solution. We propose an algorithm of the moving switching
sequence approach composed of two main parts: (1) the optimization of the control input and switching instants under
the switching sequence obtained at the previous sampling time by solving the TPBVP formulated in Section 3 and (2) the
reconstruction of the solution by solving the reduced optimal control problem for the additional switch. For (1), we uti-
lize the C/GMRES method, and for (2), we define and solve the optimal control problem just for variables with respect to
the additional switch and additional active subsystem and reconstruct the solution.



KATAYAMA ET AL. 727

(A)

(B)

(C)

(D)

FIGURE 3 Possible changes of the switching sequence 𝜎 from t to t + Δt under Assumption 6. A, The switching sequence dows not
change; B, An additional switch from subsystem qm to subsystem qm+1 is detected in the last interval of the switching sequence; C, An actual
switching from subsystem q1 to subsystem q2 occurs between t and t + 𝛥t; D, An actual switch from subsystem q1 to subsystem q2 occurs
between t and t + 𝛥t, and an additional switch from subsystem qm to subsystem qm+1 is detected in the last interval of the switching sequence

In Section 4.1, we briefly introduce the C/GMRES method for the TPBVP and the method to update the solution in
the C/GMRES method in accordance with the switches. In Section 4.2, we describe the detection of an additional switch
and optimization of variables related to an additional switch. In Section 4.3, we summarize the algorithm of the moving
switching sequence algorithm.

4.1 The C/GMRES method and update of the solution
The C/GMRES method
To realize NMPC for systems with state-dependent switches, we have to compute the unknown quantities to be deter-
mined, U(t), which is defined by (36) and satisfies (37), at each sampling time within a given sampling period. The
C/GMRES method37 is a fast algorithm of NMPC composed of the continuation method47 and the GMRES method.48 In
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the C/GMRES method, we do not compute U(t) directly but update the solution by integrating
.

U(t) at each time, eg, as

U(t + Δt) = U(t) +
.

U(t)Δt, (39)

where Δt is the sampling period, and the nonlinear equation F(U(t), x(t), t) = 0 for U(t) is transformed into a linear
equation for

.
U(t) by the continuation method as

𝜕F
𝜕U

.
U = −𝜁F − 𝜕F

𝜕x
.x − 𝜕F

𝜕t
, (40)

where 𝜁 > 0 is a stabilization parameter. We solve this equation by using the forward-difference GMRES method
(FD-GMRES method),48 which solves linear equations fast. In the FD-GMRES method, forward-difference approximation
is used to approximate the products of Jacobians and some W ∈ ℝn′ , w ∈ ℝn, 𝜔 ∈ ℝ as

𝜕F
𝜕U

W + 𝜕F
𝜕x

w + 𝜕F
𝜕t
𝜔 ≃ F (U + hW , x + hw, t + h𝜔) − F(U, x, t)

h
, (41)

where h > 0 is a time increment. By utilizing the FD-GMRES method for the TPBVP formulated in Section 3, we obtain
not only the time derivatives of the optimal control input sequence but also the time derivatives of the optimal switching
instants and the corresponding Lagrange multipliers with respect to the switching conditions.
Integration of

.
U(t) taking discontinuity of the control input into account

The integration (39) is based on the continuity of U(t) between t and t +Δt, and we have to modify the numerical inte-
gration method when there are switches and state jumps because that continuity does not hold when there are switches
or state jumps. Let 𝜎 = (q1, … , qm) be the switching sequence for the NOCP at time t, let tk(t) be the optimal switch-
ing instants from subsystem qk to subsystem qk+1 at time t for k = 1, … ,m − 1, and let ik(t) be an integer satisfying
ik(t)Δ𝜏 ≤ tk(t) − t < (ik(t) + 1)Δ𝜏. Note that subsystem qk is active at t′ ∈ (tk(t), tk+1(t)) in the NOCP at time t, and then,
u∗(t+k (t)), u∗

ik(t)+1(t), … ,u∗
ik+1(t)−1(t), and u∗

ik+1(t)
(t) are the optimal control input on the interval where subsystem qk is active.

Figure 4 illustrates the update of the control input taking the discontinuity of the control input into account. Black
circles represent u∗

i (t) and u∗
i (t + Δt) for i = ik(t), … , ik+1(t) + 1, and white circles represent u∗(t+k (t)), u∗(t+k+1(t)),

u∗(t+k (t + Δt)), and u∗(t+k+1(t + Δt)). We then have to determine the control input for subsystem qk at time t + Δt on the
basis of control inputs and their time derivatives for subsystem qk at time t, ie, we have to determine u∗(t+k (t + Δt)),
u∗

ik(t+Δt)+1(t + Δt), … ,u∗
ik+1(t+Δt)−1(t + Δt), and u∗

ik+1(t+Δt)(t + Δt) on the basis of u∗(t+k (t)), u∗
ik(t)+1(t), … ,u∗

ik+1(t)
(t), .u∗(t+k (t)),.u∗

ik(t)+1(t), … ,
.u∗

ik+1(t)−1(t), and .u∗
ik+1(t)

(t). However, when ik(t) ≠ ik(t+Δt), it is not suitable to determine u∗
i (t+Δt) by (39) for

i such that ik(t + Δt) < i ≤ ik(t) or ik(t) < i ≤ ik(t + Δt) because (39) does not consider the difference between the active
subsystem at iΔ𝜏 at the sampling time t and that of iΔ𝜏 at the sampling time t + Δt. For example, in Figure 4, ie, when
ik(t) = ik(t +Δt) + 1 and ik+1(t) = ik+1(t +Δt) − 1, it is not suitable to determine u∗

ik(t)
(t +Δt) by (39) because control input

u∗
ik(t)

(t) and its time derivative .u∗
ik(t)

(t) are for subsystem qk−1 whereas u∗
ik(t+Δt)(t + Δt) is for subsystem qk. Additionally, it

is also not suitable to determine u∗
ik+1(t)

(t + Δt) by (39) because control input u∗
ik+1(t)+1(t) and its time derivative .u∗

ik+1(t)+1(t)
are for qk+1 whereas u∗

ik+1(t+Δt)+1(t + Δt) is for qk. The update (39) when ik(t) ≠ ik(t + Δt) is modified as follows. We first
compute u∗(t+k (t + Δt)) for k = 1, … ,m − 1 by

u∗ (t+k (t + Δt)
)
= u∗ (t+k (t)

)
+ .u∗ (t+k (t)

)
Δt, (42)

and the switching instants tk(t + Δt) for k = 1, … ,m − 1 by

tk(t + Δt) = tk(t) +
.
tk(t)Δt. (43)

Next, we compute u∗
i (t + Δt) for i satisfying ik(t) < i ≤ ik+1(t) and ik(t + Δt) < i ≤ ik+1(t + Δt) by (39), ie, by

u∗
i+1(t) = u∗

i (t) +
.u∗

i (t)Δt. (44)

Thin arrows in Figure 4 represent updates by (42) and (44). We update u∗
i (t +Δt) for i such that ik(t +Δt) < i ≤ ik(t) or

ik(t) < i ≤ ik(t+Δt) using the control input for qk at the sampling time t+Δt and its time derivative. We regard u∗
i (t+Δt)
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FIGURE 4 Update of the
control input in consideration of
switches and state jumps

for i such that ik(t + Δt) < i ≤ ik(t) as the control input obtained by integrating .u∗(t+k−1(t)) for iΔ𝜏 + t − tk−1(t + Δt) from
u∗(t+k (t)), ie, we determine u∗

i (t + Δt) for ik(t + Δt) < i ≤ ik(t) as

u∗
i (t + Δt) = u∗ (t+k−1(t + Δt)

)
+ .u∗ (t+k−1(t)

)
(iΔ𝜏 + t − tk−1(t + Δt)). (45)

Additionally, we regard u∗
i (t+Δt) for i such that ik(t) < i ≤ ik(t+Δt) as the control input obtained by integrating .u∗

ik(t)
(t)

for (i − ik(t))Δ𝜏 from u∗
ik(t)

(t + Δt) as

u∗
i (t + Δt) = u∗

ik(t)
(t + Δt) + .u∗

ik(t)
(t) (i − ik(t))Δ𝜏. (46)

Thick arrows in Figure 4 represent the integration by (45) and (46). Note that the Lagrange multipliers for the switching
conditions 𝜈∗q1,q2

(t + Δt), … , 𝜈∗qm−1,qm
(t + Δt) are just updated by (39), ie, as

𝜈∗qk ,qk+1
(t + Δt) = 𝜈∗qk ,qk+1

(t) + .
𝜈∗qk ,qk+1

(t)Δt (47)

for k = 1, … ,m − 1. Note that all time derivatives in (42)-(47) are determined as components of
.

U(t).
Prediction of the actual switch

Suppose that the switching sequence is given as 𝜎 = (q1, q2, … , qm). If the switching instant t1(t+Δt) in U(t+Δt) after
the update of U(t) by the C/GMRES method satisfies t1(t + Δt) < t + Δt, we predict that the switch from subsystem q1 to
q2 occurs on the actual system between t and t + Δt. We then remove q1 from 𝜎 and Uq1,q2 (t + Δt) from U(t + Δt). Note
that u∗

0(t + Δt) is already updated for subsystem q2 by (45) in this case because i1(t + Δt) < 0 ≤ i1(t) holds from the fact
that t1(t + Δt) < t + Δt.

4.2 Detection of an additional switch and reconstruction of the solution
Suppose that the switching sequence is given as 𝜎 = (q1, q2, … , qm). In solving the TPBVP, the state trajectory on
the horizon is computed on the basis of x(t), 𝜎, and U(t), and we then check whether an additional switch occurs
or not for tm−1 < t′ ≤ t + T. In the discretized problem, the state trajectory for tm−1 < t′ ≤ t + T is given as
x∗(t+m−1(t)), x

∗
im−1+1(t), … , x∗N(t), which is computed by (19) and (20), and we check whether an additional switch occurs or

not between tm−1 and (im−1+1)Δ𝜏+ t and between iΔ𝜏+ t and (i+1)Δ𝜏+ t for i = im−1+1, … ,N−1 by evaluating𝜓qm,qk (x)
for all qk ∈ Q. For example, when lqm,qk = 1 for all qk ∈ Q, we regard that a switch from subsystem qm to qk occurs when
the sign of 𝜓qm,qk (x

∗(t+m(t))) and that of 𝜓qm,qk (x
∗
im
(t)) are different or when that of 𝜓qm,qk (x

∗
i (t)) and that of 𝜓qm,qk (x

∗
i+1(t)) are

different for some i = im−1 + 1, … ,N − 1 because 𝜓qm,qk (x) is continuous for x ∈ 𝜒qm .
When we detect an additional switch in computing the state trajectory, we reconstruct the solution U(t) taking the

additional switch and the additional active subsystem into account. Suppose that we detect a switch from qm to qm+1
between imΔ𝜏 + t and (im + 1)Δ𝜏 + t where im−1 < im < N. Note that, if the switch is detected between tm−1 and (im−1 +
1)Δ𝜏 + t, we can formulate the NOCP for reconstructing the solution just by replacing x∗im

(t), u∗
im
(t), and imΔ𝜏 + t in

the following formulation with x∗(𝜏+m−1(t)), u∗(𝜏+m−1(t)), and tm−1, respectively. When we detect a switch from qm to qm+1
between imΔ𝜏 + t and (im + 1)Δ𝜏 + t, then tm(t), 𝜈∗qm,qm+1

(t), and u∗(t+m(t)) are appended to U(t). In addition, we have
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to reoptimize u∗
im+1(t), … ,u∗

N−1(t) for the additional active subsystem qm+1 because u∗
im+1(t), … ,u∗

N−1(t) are the optimal
control input sequence for subsystem qm before detecting the additional switch. To reduce the computational cost of the
reconstruction of the solution, we define an optimal control problem only for the interval after the additional switch to
determine tm(t), 𝜈∗qm,qm+1

(t),u∗(t+m(t)), and u∗
im+1(t), … ,u∗

N−1(t) numerically. Although this optimal control problem only
considers the optimality of the interval where qm+1 is active, we resolve the entire optimal control problem in consideration
of the whole horizon after solving this optimal control problem. We define the reduced optimal control problem for these
variables as follows: find the optimal control input u∗(t+m(t)),u∗

im
(t), … ,u∗

N−1(t) minimizing the cost function defined for
t′ ∈ (imΔ𝜏 + t, t + T],

Jm+1 = 𝜑qm+1

(
x∗N(t)

)
+

N−1∑
i=im+1

Lqm+1

(
x∗i (t),u

∗
i (t)

)
Δ𝜏

+ Lqm+1

(
x∗
(

t+m(t)
)
,u∗ (t+m(t)

))
((im + 1)Δ𝜏 + t − tm) + Lqm

(
x∗im−1(t),u

∗
im−1(t)

)
(tm − t − imΔ𝜏), (48)

subject to the state trajectory for t′ ∈ (t + imΔ𝜏, t + T],

x∗ (t−m(t)) = x∗im
(t) + 𝑓qm

(
x∗im

(t),u∗
im
(t)
)
(tm − t − imΔ𝜏), (49)

𝜓qm,qm+1 (x
∗ (t−m(t))) = 0, (50)

x∗
(

t+m(t)
)
= 𝛾qm,qm+1(x

∗(t−m(t))), (51)

x∗im+1(t) = x∗
(

t+m(t)
)
+ 𝑓qm+1

(
x∗
(

t+m(t)
)
,u∗ (t+m(t)

))
((im + 1)Δ𝜏 + t − tm), (52)

x∗i+1(t) = x∗i (t) + 𝑓qm+1

(
x∗i (t),u

∗
i (t)

)
Δ𝜏, i = im + 1, … ,N − 1. (53)

The optimality conditions for this optimal control problem are derived as

𝜆∗N(t) =
(
𝜕𝜑qm+1

𝜕x

)T (
x∗N(t)

)
, (54)

𝜆∗i (t) = 𝜆∗i+1(t) +
(
𝜕Hqm+1

𝜕x

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
Δ𝜏, i = im + 1, … ,N − 1, (55)

𝜆∗
(

t+m(t)
)
= 𝜆∗im+1(t) +

(
𝜕Hqm+1

𝜕x

)T (
x∗
(

t+m(t)
)
,u∗ (t+m(t)

)
, 𝜆∗im+1(t)

)
((im + 1)Δ𝜏 + t − tm), (56)

𝜆∗(t−m(t)) =
(
𝜕𝛾qm,qm+1

𝜕x

)T

(x∗(t−m(t)))𝜆∗
(

t+m(t)
)
+
(
𝜕𝜓qm,qm+1

𝜕x

)T

(x∗(t−m(t))) 𝜈∗qm,qm+1
(t), (57)(

𝜕Hqm+1

𝜕u

)T (
x∗i (t),u

∗
i (t), 𝜆

∗
i+1(t)

)
= 0, i = im + 1, … ,N − 1, (58)(

𝜕Hqm+1

𝜕u

)T (
x∗
(

t+m(t)
)
,u∗ (t+m(t)

)
, 𝜆∗im+1(t)

)
= 0, (59)

Hqm

(
x∗im

(t),u∗
im
(t), 𝜆∗(t−m(t))

)
− Hqm+1

(
x∗
(

t+m(t)
)
,u∗ (t+m(t)

)
, 𝜆∗im+1(t)

)
= 0. (60)

The unknown quantities in this optimal control problem are given as x∗im
(t), x∗(t−m(t)), x∗(t+m(t)), x∗im+1(t), … , x∗N(t), u∗

im
(t),

u∗(t+m(t)),u∗
im+1(t), … ,u∗

N−1(t), 𝜆
∗(t−m(t)), 𝜆∗(t+m(t)), 𝜆∗im+1(t), … , 𝜆∗N(t), tm, and 𝜈∗qm,qm+1

(t). Note that u∗
im
(t) and x∗im

(t) are given
as the boundary value. For a given u∗(t+m(t)),u∗

im
(t), … ,u∗

N−1(t), tm(t), and 𝜈∗qm,qm+1
(t), we can compute x∗(t−m(t)), x∗(t+m(t)),

… , x∗N(t) from (49) and (51)-(53) and 𝜆∗N(t), … , 𝜆∗(t+m(t)) from (54)-(57). Therefore, variables to be determined for this
optimal control problem are given as

Uqm+1(t) ∶=

⎡⎢⎢⎢⎢⎢⎣

u∗ (t+m(t)
)

u∗
im+1(t)
⋮

u∗
N−1(t)

𝜈∗qm,qm+1
(t)

tm(t)

⎤⎥⎥⎥⎥⎥⎦
, (61)
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and Uqm+1(t) has to satisfy

Fqm+1 (Uqm+1(t)) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
𝜕Hqm+1

𝜕u

)T (
x∗
(

t+m(t)
)
,u∗ (t+m(t)

)
, 𝜆∗im+1(t)

)
(
𝜕Hqm+1

𝜕u

)T (
x∗im+1(t),u

∗
im+1(t), 𝜆

∗
im+2(t)

)
⋮(

𝜕Hqm+1

𝜕u

)T (
x∗N−1(t),u

∗
N−1(t), 𝜆

∗
N(t)

)
𝜓qm,qm+1

(
x∗
(

t+m(t)
))

Hqm+1

(
x∗im

(t),u∗
im
(t), 𝜆∗

(
t−m(t)

))
− Hqm+1

(
x∗(t+m(t)),u∗(t+m(t)), 𝜆∗im+1(t)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (62)

We solve this problem numerically using the conventional methods, eg, Newton's method. For computation using
Newton's method, we make the following assumption for Fqm+1 (Uqm+1(t)) and Uqm+1(t).

Assumption 7. The Jacobian matrix of Fqm+1 (Uqm+1(t)) with respect to Uqm+1(t) is nonsingular for all Uqm+1(t) ∈
ℝ(N−im)m+lqm ,qm+1+1.

Note that, if Assumption 7 does not hold, we add a minimum number of the control inputs u∗
im−k(t), … ,u∗

im−1(t),u
∗
im
(t) to

Uqm+1(t) so that the Jacobian of Fqm+1 (Uqm+1(t)) for Uqm+1(t) becomes nonsingular and redefine the optimal control problem.
Algorithm 1 shows the reconstruction of the solution for an additional switch. First, if we detect a switch between im

and im +1, where im < N−1, we set tm(t) between imΔ𝜏+ t and (im +1)Δ𝜏+ t. For example, it is reasonable to approximate
tm(t) by linear interpolation as

tm(t) =

‖‖‖‖𝜓qm,qm+1

(
x∗im

(t)
)‖‖‖‖‖‖‖‖𝜓qm,qm+1

(
x∗im

(t)
)‖‖‖‖ + ‖‖‖‖𝜓qm,qm+1

(
x∗im+1(t)

)‖‖‖‖
Δ𝜏 + imΔ𝜏 + t. (63)

Next, we substitute initial guess values for u∗(t+m(t)),u∗
im
(t), … ,u∗

N−1(t), and 𝜈∗qm,qm+1
(t). After that, we iterate Newton's

method for (62) and obtain Uqm+1(t). We terminate the iteration when the error in the optimality condition ||Fqm+1(Uqm+1(t))||
is sufficiently small or when the number of iteration is sufficiently large. We introduce r̃ ∈ ℝ for the criterion of the former
and imax ∈ ℕ for that of the latter. After the iteration, we replace u∗

im+1(t), … ,u∗
N−1(t) in U(t) with u∗

im+1(t), … ,u∗
N−1(t) in

Uqm+1(t) and append

Uqm,qm+1(t) ∶=
⎡⎢⎢⎣

u∗ (t+m(t)
)

𝜈∗qm,qm+1
(t)

tm(t)

⎤⎥⎥⎦ (64)

to U(t), and append qm+1 to 𝜎.



732 KATAYAMA ET AL.

4.3 The algorithm of the moving switching sequence approach
The length of the horizon

We set the length of the horizon as a smooth increasing function such that T(0) = 0 and T(t) → Tf(t → ∞), eg, as

T(t) = T𝑓 (1 − e−𝛼t), (65)

where T𝑓 ∈ ℝ and 𝛼 ∈ ℝ are positive constant values, to initialize U(0) in sufficiently short computational time and to
modify the solution U(t) when Assumption 6 does not hold.
Initialization of U(0)

We have to compute the initial solution U(0) by iterative method such as Newton's method instead of the C/GMRES
method because we do not know the optimal U(t) before t = 0. We also have to compute U(0) in a short computational
time unless we know x(0) and compute U(0) in advance. If we set T(t) such that T(0) = 0, we can compute the initial
solution U(0) in sufficiently short computational time even by iterative method such as Newton's method: from the initial
state x(0) and active subsystem q at t = 0, we obtain u(0) ∈ ℝm by solving

(
𝜕Hq

𝜕u

)T

(x(0),u(0), 𝜆0) = 0, (66)

where 𝜆0 ∈ ℝn is obtained by

𝜆0 =
(
𝜕𝜑q

𝜕x

)T

(x(0)). (67)

and we set u∗
i (0) = u(0) for all i = 0, … ,N − 1. Note that U(t) obtained by this initialization satisfies F(U(t), x(t), t) = 0.

Note also that, if we set the sampling period sufficiently short, T(t) and T(t +Δt) are almost same and we can update U(t)
just by integrating

.
U(t).

Shrinkage of the horizon when Assumption 6 does not hold
When we detect an additional switch before the end of the switching sequence in computing the state on the horizon, ie,

when Assumption 6 does not hold, we can still use the C/GMRES method by shrinking the horizon and then increasing
the length of the horizon smoothly. Suppose that 𝜎 = (q1, q2, … , qm) is the switching sequence at time t and an additional
switch is detected at the middle of the switching sequence, eg, an additional switch from qk to qj (1 ≤ j < m, qj ≠ qk+1)
is detected between ij and ij + 1 (ik + 1 ≤ ij < ik+1). We then shrink the length of the horizon T(t) by setting t0 > 0 so that
T(t) satisfies

T(t) ∶= T𝑓 (1 − e−𝛼(t−t0)) ≤ i𝑗Δ𝜏 − t. (68)

We also modify u∗
0(t), … ,u∗

N−1(t) by linear interpolation of u∗
0(t), … , u∗

i𝑗
(t). LetΔ𝜏1 ∶= Tf(1−e−𝛼t)∕N andΔ𝜏2 ∶= T𝑓 (1−

e−𝛼(t−t0))∕N. Then, we approximate u∗
0(t), u∗

1(t), … , u∗
N−1(t), which correspond to u∗(t), u∗(t+Δ𝜏2), … , u∗(t+(N−1)Δ𝜏2), by

linear interpolation from u∗
0(t), … ,u∗

N−1(t) before the modification, which correspond to u∗(t),u∗(t+Δ𝜏1), … ,u∗(t+ijΔ𝜏1).
Figure 5 shows an example of the linear interpolation of u∗

0(t), … ,u∗
N−1(t)when we shrink the horizon. After interpolating

u∗
0(t), … ,u∗

N−1(t), we remove Uqk ,qk+1(t), … ,Uqm−1,qm (t) from U(t) and remove qk+1, … , qm from 𝜎. Once the solution U(t)
for the shrunk horizon is obtained, we can continue to update the solution by the C/GMRES method with the length of
the horizon T(t) increased smoothly toward Tf.
Entire algorithm

Algorithm 2 shows the entire algorithm of the moving switching sequence approach. Note that, in Algorithm 2, we
treat q1 as the first element of 𝜎 and qm as the last element of 𝜎. This algorithm basically updates U(t) using the C/GMRES
method introduced in Section 4.1. If we predict that t1(t + Δt) satisfies t1(t + Δt) < t + Δt, where q1 is the first element of
the switching sequence 𝜎, we regard that a switch occurs between the current sampling time and the next sampling time
and we remove variables related to the switch from U(t) and remove q1 from 𝜎. While computing x∗0(t), … , x∗N(t) in solving
the TPBVP, we monitor whether a new switch occurs or not at t′ ∈ (tm−1, t + T], where qm is the last element of 𝜎. If we
detect a switch from qm to qm+1 for some qm+1 ∈ Q at t′ ∈ (tm−1, t + T], we obtain the additional variables related to the
switch numerically and reconstruct U(t) by Algorithm 1 and append qm+1 to 𝜎. If we detect the violation of Assumption
6, we shrink the horizon and modify U(t) and 𝜎.
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FIGURE 5 Linear interpolation of u∗
0(t), … ,u∗

N−1(t) when
shrinking the horizon [Colour figure can be viewed at
wileyonlinelibrary.com]

5 NUMERICAL SIMULATIONS OF COMPASS-LIKE WALKING

This section describes an application of the proposed method to the simplest biped walking robot model, called a
compass-like model.2 Compass-like walking involves state-dependent switches and state jumps, and we successfully
control it by using the moving switching sequence approach.

5.1 Compass-like walking model
Figure 6 shows the model of the compass-like robot, and Table 1 lists its physical parameters. The compass-like robot
is composed of two legs and one joint, and we assume that the physical properties of both legs are the same. Let 𝜃1 be

http://wileyonlinelibrary.com
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FIGURE 6 Compass-like walking model

TABLE 1 Physical parameters of compass-like
model Mass of the joint m0 = 1.0 [kg]

Mass of a leg m = 1.0 [kg]
Length of a leg l = 1.0 [m]

Distance between the joint and the center of mass of a leg d = 0.5 [m]
Inertia of a leg I = 0.08333 [kg·m2]

the angle of leg 1 in the vertical direction, 𝜃2 be that of leg 2, q = [𝜃1 𝜃2]T be the angle vector, and x = [qT .qT]T be the
state vector. The dynamics of compass-like walking contains three phases: (1) leg 1 is standing on the ground and leg 2
is swinging, (2) leg 2 is standing on the ground and leg 1 is swinging, and (3) legs 1 and 2 are standing on the ground. To
simplify the problem, we make the following assumption about the impact between the swinging leg and the ground.3

Assumption 8. The impact between the swinging leg and the ground results in no rebound and no slipping, and the
supporting leg lifts from the ground at the time of the impact.

Under this assumption, the model of the compass-like walking robot is composed of the dynamics when one leg is
standing on the ground and the other is swinging and state jumps by the collisions between the swinging leg and the
ground. The state equation when leg 1 is standing and leg 2 is swinging is derived by Lagrange's method as

.x = 𝑓1(x,u) ∶=
[ .q

M−1
1 (q) (B1u − H1 (q,

.q))

]
, (69)

where u ∈ ℝ is a control input torque, M1 ∈ ℝ2×2 is the inertia matrix, H1 ∈ ℝ2 consists of terms related to Coriolis
force and terms about gravity force, and B1 = [1 − 1]T. Additionally, the state equation when leg 2 is standing and leg 1
is swinging is derived as

.x = 𝑓2(x,u) ∶=
[ .q

M−1
2 (q) (B2u − H2 (q,

.q))

]
, (70)

where M2 ∈ ℝ2×2 is the inertia matrix, H2 ∈ ℝ2 consists of terms related to Coriolis force and terms about gravity force,
and B2 = [−1 1]T.

The equations of state jump are derived from the conservation law of angular momentum.2 When leg 2 collides with
the ground, the conservation law of angular momentum is written as

Q+
1,2
(

q
(

t+c
)) .q

(
t+c
)
= Q−

1,2 (q (t−c ))
.q (t−c ), (71)

where Q−
1,2,Q

+
1,2 ∈ ℝ2×2, and when leg 1 collides to the ground, the conservation law of angular momentum is written as

Q+
2,1
(

q
(

t+c
)) .q

(
t+c
)
= Q−

2,1 (q(t
−
c ))

.q(t−c ), (72)

where Q−
2,1,Q

+
2,1 ∈ ℝ2×2. Note that the posture of the robot is not changed by the collision because the collision is

instantaneous from Assumption 8. The equations of the state jump are then given as

x
(

t+c
)
= 𝛾1,2(x(t−c )) ∶=

[
q(t−c )(

Q+
1,2
(

q
(

t+c
)))−1

Q−
1,2(q(t

−
c ))

.q(t−c )

]
, (73)
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and

x
(

t+c
)
= 𝛾2,1(x(t−c )) ∶=

[
q(t−c )(

Q+
2,1
(

q
(

t+c
)))−1

Q−
2,1(q(t

−
c ))

.q(t−c )

]
. (74)

The collision occurs when the height of the tip of the swinging leg, h in Figure 6, becomes zero. That is, the switching
conditions are given as

𝜓1,2(x) ∶= l(cos 𝜃1 − cos 𝜃2) = 0, (75)
and

𝜓2,1(x) ∶= l(cos 𝜃2 − cos 𝜃1) = 0. (76)
We introduce an assumption to abstract compass-like walking motion easily as a switched system.3

Assumption 9. The swinging leg does not contact with the ground when the swinging leg is put forward from behind
the supporting leg.

Under Assumption 9, we ignore the collision between leg 2 and the ground when 𝜃1−𝜃2 ≤ 0 and the collision between
leg 1 and the ground when 𝜃2 − 𝜃1 ≤ 0. Figure 7 summarizes switches and state jumps in compass-like walking.

5.2 Controller design
To achieve a steady gait, we design the cost function with two aims: moving forward steadily and achieving a steady gait. To
achieve the former aim, we make the angular velocity of the supporting leg close to the reference constant vref. To achieve
the latter aim, we add a2(𝜃1 + 𝜃2)2 to the cost function, thereby preventing the tip of the swinging leg from being too high.
In addition to these two aims, we add a penalty to the control input u. Consequently, we design the cost functions as

L1(x,u) =
1
2

a1(
.
𝜃1 − vref)2 + 1

2
a2(𝜃1 + 𝜃2)2 + 1

2
ru2, (77)

L2(x,u) =
1
2

a1(
.
𝜃2 − vref)2 + 1

2
a2(𝜃1 + 𝜃2)2 + 1

2
ru2, (78)

and 𝜑1(x) = 𝜑2(x) = 0. The parameters of NMPC are listed in Table 2.

FIGURE 7 State-dependent switches and state jumps in
compass-like walking

TABLE 2 Parameters of nonlinear model predictive control
A weight parameter in the cost function a1 = 1.0
A weight parameter in the cost function a2 = 1.0
A weight parameter in the cost function r = 0.5

The reference velocity in the cost function vref = 0.5 [rad/s]
A parameter on the length of the horizon Tf = 0.8 [s]
A parameter on the length of the horizon 𝛼 = 1.0

Number of divisions of the horizon N = 80
Time increment in forward-difference generalized minimum residual (GMRES) method h = 1.0 × 10−9

The stabilization parameter in (40) 𝜁 = 1000
Maximum number of iterations in the GMRES kmax = 5

Convergent radius of Newton's method in the reconstruction of the solution rinit = 1.0 × 10−7

Maximum number of iterations in Newton's method in the reconstruction of the solution imax = 5
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FIGURE 8 Simulation result of
the nominal case [Colour figure can
be viewed at wileyonlinelibrary.com]

5.3 Simulation conditions
To evaluate the robustness of the proposed method, the numerical simulations are performed in two cases: the nomi-
nal case without disturbances and the case with impulsive disturbances. In the simulation with disturbances, we input
instantaneous changes on the angular velocity as

.
𝜃
+
1 =

.
𝜃
−
1 + Δ1,

.
𝜃
+
2 =

.
𝜃
−
2 + Δ2 (Δ1,Δ2 ∈ ℝ), corresponding to impulsive

http://wileyonlinelibrary.com
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FIGURE 9 Simulation result of
the case with disturbances [Colour
figure can be viewed at
wileyonlinelibrary.com]

disturbances. We input instantaneous changes as Δ1 = 0.1, Δ2 = −1 at t = 5.0 [s] and Δ1 = −0.02, Δ2 = 0.2 at t = 7 [s].
The former and latter represent the cases the robot is pushed from the back and the front, respectively. Both cases are
simulated on the sampling period of 1 [ms], and the central processing unit (CPU) is Intel Core i5 1.8 GHz.

http://wileyonlinelibrary.com
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FIGURE 10 Predicted switching instants around the disturbances [Colour figure can be viewed at wileyonlinelibrary.com]

5.4 Simulation results
Figures 8, 9, and 10 show simulation results for the nominal case, those for the case with disturbances, and the enlarged
time history of the predicted switching instant around the disturbances, respectively. Note that dashed lines in these
Figures represent discontinuous change of variables. In Figures 8 and 9, switches and state jumps occur at points where.
𝜃1 and

.
𝜃2 are discontinuous except for discontinuous points due to the disturbances, and the compass-like robot walked

successfully in both cases. ||F|| in Figures 8 and 9 denotes the norm of the residual in (37), and tk in Figures 8, 9, and 10
are switching instants on the predicted horizon. Note that, when there are no switches on the predictive horizon, tk is
plotted as tk = 0.

We can see that the predicted switching instants are mostly constant in the nominal case from Figure 8 and fluctuate in
the case with disturbances from Figures 9 and 10. From Figure 9, instantaneous increases of ||F|| at the moments of the
impulsive disturbances attenuate immediately, which suggests that the proposed method optimizes the switching instants
and control input simultaneously. Note that, even if in the nominal case, the error increases at the sampling time when an
additional switch is detected and when a switch is removed from 𝜎, ie, when an actual switch occurs. This suggests that
errors increase when the switching sequence changes from the previous sampling time. In addition to the points where
the error peaks due to such reasons, we can see errors increase when there is a switch on the horizon. This occurs when
ik(t) differs from ik(t−Δt). However, ||F|| is sufficiently small on the whole, and we can see that the proposed method can
compute the optimal solution. We also found that each update takes around 0.14 [ms] and that we can implement control
update within the sampling period of 1 [ms].

6 CONCLUSIONS

In this paper, we proposed a moving switching sequence approach for real-time computation of NMPC for switched
systems with state-dependent switches. In the approach, the switching sequence on the horizon moves to the present time
at each time as well as the optimal state trajectory and optimal control input on the horizon. We assume that the switching
sequence is basically invariant on the horizon and update the switching sequence at each time by checking whether an
additional switch occurs or not and whether the actual switch will occur or not. We propose an algorithm composed of the
update of the solution by solving the TPBVP and reconstruction of the solution taking into account an additional switch.
We utilize the C/GMRES method for the former problem and solve the reduced optimal control problem for the latter.
We performed numerical simulations of compass-like walking for a nominal case without disturbances and a case with
impulsive disturbances and found that the proposed method successfully computes the optimal solution in a short time
even if there are disturbances.

For future work, we will analyze the necessary or sufficient conditions of the assumption about the invariance of the
switching sequence. We will also seek methods to design the cost functions and constraints so that the assumption holds.
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