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Literal resolution of affected equations
by Isaac Newton

By

Naoki Osada *

Abstract

In 1669 and 1671, Isaac Newton resolved an algebraic equation  f(x, y)=0 by expressing
 y as an infinite series of  x . In this paper, we formulate Newton’s resolution as a contemporary
algorithm along the line of his original text and prove that the series converges asymptotically
to the implicit function or one of the branches under certain conditions.

§1. Introduction

Isaac Newton gave the literal resolution of an affected equation in De Analysi

(1669) and De Methodis (1671). An affected equation is an algebraic equation that is
not binomial, such as  y^{3}-2y-5=0 or  y^{3}+a^{2}y-2a^{3}+axy  -x^{3}=0 . Newton referred

to the former equation as numerical and the latter as literal. The literal resolution of

an affected equation  f(x, y)=0 is to express  y as an infinite series

(1.1)  y= \sum_{i=k}^{\infty}c_{i}x^{\pm i/r},  c_{i}\in \mathbb{R},  k\in \mathbb{Z} , andr  \in \mathbb{N},

where the double sign is set to  + when  x is close to  0 , and it is set to — when  x is

sufficiently large. The series (1.1) is calleda Puiseux series if the double sign is  + . In
De Analysi, Newton elucidated the two cases, namely, one when  x is close to  0 and there

exists  c such that  f(0, c)=0 and   \frac{\partial}{\partial y}f(0, c)\neq 0 , and another whenx is sufficiently large.

In the first case,  k=0,  c_{0}=c and  r=1 in (1.1). In De Methodis, Newton improved the
above algorithm so that it can be applied easily even if  (0, c) is a singular point, i.e.,

 f(0, c)=0,  \frac{\partial}{\partial x}f(0, c)=0, \frac{\partial}{\partial y}
f(0, c)=0,
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2 Naoki Osada

using the Newton diagram. For the Newton diagram method, see [3, pp.191‐196] or
[4, pp.158‐164]. Neither De Analysi nor De Methodis was published at that time, but
Newton’s algorithm using the Newton diagram became publicly known because Newton

wrote it in the letter epistola posterior [9] sent to Henry Oldenburg for Gottfried Wilhelm
Leibniz in 1676, and John Wallis reproduced Newton’s algorithm in his A Treatise of

Algebra [11] in 1685.
In 1850, Victor Puiseux [7, p.401] proved that for a complex algebraic equation

 f(u, z)=0,  u can be represented as convergent infinite series

 u_{j}=b+\gamma_{j}(z-a)^{\frac{1}{p}}+a_{j}(z-a)^{\frac{2}{p}}+b_{j}(z-a)
^{\frac{3}{p}}+\cdots , (j=1, \ldots,p) .

See [8, p.194] for more details. Today the following theorem is known:

Theorem 1.1. (Puiseux theorem)
Let  \mathbb{C}\{z\} be the ring of all convergent power series. Let  f(z, y)  \in  \mathbb{C}\{z\}[y] be a monic

irreducible polynomial of the form

 f(z, y)=y^{n}+a_{n-1}(z)y^{n-1}+\cdots+a_{1}(z)y+a_{0}(z) , a_{j}(z)\in \mathbb
{C}\{z\}.

Then, there is  g(z)  \in \mathbb{C}\{z\} such that

 f(z, y)= \prod_{j=0}^{n-1}(y-g(\zeta^{j}z^{1/n})) ,

where  \zeta is a primitive n‐th root of unity.

Proof. See [2, pp.15‐26] or [5, pp.235‐237].  \square 

In regard to the Puiseux theorem Abyhyankar wrote

Newton’s theorem was revived by Puiseux in 1850.  [\cdots] Puiseux’sproof, be‐

ing based upon Cauchy’s integral theorems, applies only to convergent power

series with complex coefficients. On the other hand, Newton’sproof, being al‐

gorithmic, applies equally well to power series, whether they converge or not.

Moreover, and that is the main point, Newton’s algorithmic proof leads to nu‐
merous other existence theorems while Puiseux’s existential proof does not do
so. [1, p.417]

In this paper, we formulate Newton’s algorithm to express an infinite series as a

contemporary algorithm along the line of his original text. Additionally we prove under

certain conditions that the infinite series (1.1) is the asymptotic expansion of the implicit
function or one of the branches.
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Newton’s papers are cited from Mathematical Papers of Isaac Newton [12] edited
by Whiteside and abbreviated as MP.

§2. The asymptotic expansion of the implicit function as  xarrow 0

Newton elucidated the literal resolution of affected equations in De Analysi as
follows.

Suppose now that the algebraic equation  y^{3}+a^{2}y-2a^{3}+axy  -x^{3}=0 has to

be resolved. First Iseek out the value of ywhen  x is zero, that is, Ielicit the

root of this equation  y^{3}+a^{2}y-2a^{3}=0 , and find it to be  +a . And soIwrite
 +a in the quotient. Again, supposingy  =a+p , foryI substitute that value

and the terms  p^{3}+3ap^{2}+4a^{2}p which thence result I set in the margin. Out

of these I take  4a^{2}p+a^{2}x , in which  p and  x separately are of least dimension

and suppose them nearly equal to zero, that is,  p=- \frac{x}{4} nearly orp  =- \frac{x}{4}+q.
 [\cdots]

MP II, pp.222‐225
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We now formulate the literal resolution of an affected equation  f(x, y)  =0 under

the condition that there exists a root  c of  f(0, y)=0 with   \frac{\partial}{\partial y}f(0, c)\neq 0.
Algorithm 2.1. (The asymptotic expansion as  x  arrow  0. ) Let  f(x, y) be a

polynomial of the form

 f(x, y)= \sum_{i=0}^{l}a_{i,0^{X^{i}+\sum_{j=1}^{n}}} (\sum_{i=0}^{m}a_{i,j}
x^{i})y^{j}.
Suppose  f(0, y)=0 has a root  c with   \frac{\partial}{\partial y}f(0, c)\neq 0.
(i) Put  f_{0}(x, y)=f(x, y) and  d_{0}(x)=c.

(ii) Repeat below for  \nu=1 , 2, . . . ,  N :
calculate

 f_{\nu}(x, y)=f_{\nu-1}(x, d_{\nu-1}(x)+y)

 = \sum_{i=i_{\nu}}^{l_{\nu}}a_{i,0}^{(\nu)}x^{i}+\sum_{j=1}^{n}(\sum_{i=0}^{m_{
\nu}}a_{i,j}^{(\nu)}x^{i})y^{j}, a_{i_{\nu},0}^{(\nu)}\neq 0
and

 d_{\nu}(x)=- \frac{a_{i_{\nu},0}^{(\nu)}}{a_{0,1}^{(\nu)}}x^{i_{\nu}}.
Then,  y_{N}(x)=d_{0}(x)+\cdots+d_{N-1}(x)+d_{N}(x) satisfies

 f(x, y_{N}(x))=o(x^{i_{N}}) as  xarrow 0.

It is further assumed that there exists a positive integer  \mu\in \mathbb{N} such that

(2.1)  f(x, y)= \sum_{i=0}^{l/\mu}a_{i\mu,0}x^{i\mu}+\sum_{j=1}^{n} (\sum_{i=0}
^{m/\mu}a_{i\mu,j}x^{i\mu}) y^{j}.
(iii) Let  \mathcal{N}(x) be the first  N terms of   \sum_{i=i_{N}/\mu}^{l_{N}/\mu}a_{i\mu,0}^{(N)}x^{i\mu} , and let  \mathcal{D}(x) be the first  N terms of

  \sum_{i=0}^{m_{N}/\mu}a_{i\mu,1}^{(N)}x^{i\mu} . Expand  -\mathcal{N}(x)/\mathcal{D}(x) to  N terms by division, and put this expansion
as  \tilde{d}_{N}  (x) .

Then,  \tilde{y}_{N}(x)=d_{0}(x)+\cdots+d_{N-1}(x)+  \tilde{d}_{N} (x) satisfies

 f(x,\tilde{y}_{N}(x))=O(x^{i_{N}+N\mu}) as  xarrow 0.
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Example 2.2. We now apply Algorithm 2.1 to Newton’s example  f(x, y)  =

 y^{3}+a^{2}y-2a^{3}+axy  -x^{3}=0 with  N=3 . We takec  =a as the root of the equation

 f(0, y)=y^{3}+a^{2}y-2a^{3}=0 . Then,   \frac{\partial}{\partial y}f(0, a)=4a^{2}\neq 0.
 \nu=0 Put  f_{0}(x, y)=y^{3}+a^{2}y-2a^{3}+axy  -x^{3} and  d_{0}(x)=a.

 \nu=1 Since  f_{1}(x, y)=f_{0}(x, a+y)=a^{2}x-x^{3}+(4a^{2}+ax)y+3ay^{2}+y^{3} , we have

 i_{1}=1,  a_{1,0}^{(1)}=a^{2},  a_{0,1}^{(1)}=4a^{2} and thus,  d_{1}(x)=- \frac{1}{4}x.
 \nu=2 Since

 f_{2}(x, y)=- \frac{1}{16}ax^{2}-\frac{65}{64}x^{3}+ (4a^{2}-\frac{1}{2}ax+
\frac{3}{16}x^{2})y
 + (3a- \frac{3}{4}x)y^{2}+y^{3},

we have i 2=2,  a_{2,0}^{(2)}=- \frac{1}{16}a,  a_{0,1}^{(2)}=4a^{2} and thus,  d_{2}(x)=   \frac{1}{64a}x^{2}.
 \nu=3 Since

 f_{3}(x, y)=- \frac{131}{128}x^{3}+\frac{15}{4096a}x^{4}-\frac{3}{16384a^{2}}x^
{5}+\frac{1}{262144a^{3}}x^{6}
 + (4a^{2}- \frac{1}{2}ax+\frac{9}{32}x^{2}-\frac{3}{128a}x^{3}+\frac{3}
{4096a^{2}}x^{4})y
 + (3a- \frac{3}{4}x+\frac{3}{64a}x^{2})y^{2}+y^{3},

we have   \mathcal{N}(x)=-\frac{131}{128}x^{3}+\frac{15}{4096a}x^{4}-\frac{3}{16384a^{2}
}x^{5} and

  \mathcal{D}(x)=4a^{2}-\frac{1}{2}  ax+ \frac{9}{32}x^{2} . Expanding  \mathcal{N}(x)/\mathcal{D}(x) , we obtain

  \frac{\mathcal{N}(x)}{\mathcal{D}(x)}=-\frac{131}{512a^{2}}x^{3}-\frac{509}
{16384a^{3}}x^{4}+\frac{1843}{131072a^{4}}x^{5}
and

  \tilde{d}_{3}(x)= \frac{131}{512a^{2}}x^{3}+\frac{509}{16384a^{3}}x^{4}-
\frac{1843}{131072a^{4}}x^{5}
Thus, f3  (x,\tilde{d}_{3}(x))=\mathcal{N}(x)+\mathcal{D}(x)\tilde{d}_{3}(x)=O(x^{6}) as  xarrow 0.

Therefore,

 y3  (x)=d_{0}(x)+d_{1}(x)+d_{2}(x)+\tilde{d}_{3}(x)

 =a- \frac{1}{4}x+\frac{x^{2}}{64a}+\frac{131x^{3}}{512a^{2}}+\frac{509x^{4}}
{16384a^{3}}-\frac{1843x^{5}}{131072a^{4}},
 f(x,\tilde{y}_{3}(x))=f_{3}(x,\tilde{d}_{3}(x))=O(x^{6}) as  xarrow 0.

The next theorem shows that the sequence of functions  \{f(x, y_{\nu}(x))\} generated by

Algorithm 2.1 (i)(ii) asymptotically converges to  0 , where  y_{\nu}(x)=d_{0}(x)+\cdots+d_{\nu}(x) .
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Theorem 2.3. Let  f(x, y) be a polynomial of the form

 f(x, y)= \sum_{i=0}^{l}a_{i,0}x^{i}+\sum_{j=1}^{n} (\sum_{i=0}^{m}a_{i,j}x^{i})
y^{j}.
Suppose  f(0, y)  =0 has a root  c with   \frac{\partial}{\partial y}f(0, c)  \neq 0 . Let the polynomials f \nu(x, y) and

the monomials  d_{\nu}(x) be the same as Algorithm 2.1 (i)(ii). Then, the following (1), (2)
and (3) hold for  \nu=1 , 2, . . . ,  N :

(1)  a_{0,1}^{(\nu)}  =a^{(1)}  =   \frac{\partial}{\partial y}f(0, c)\neq 0,
(2)  1\leq i_{1}  <\cdots<i_{\nu-1}<i_{\nu},

(3)  y_{\nu}(x)=d_{0}(x)+d_{1}(x)+\cdots+d_{\nu}(x) satisfies

(2.2)  f(x, y_{\nu}(x))=o(x^{i_{\nu}} ) as  xarrow 0.

Proof. We prove by mathematical induction on  \nu . By Taylor’stheorem,

 f_{1}(x, y)=f(x, c+y)=f(x, c)+ \frac{\partial}{\partial y}f(x, c)y+\sum_{j=2}
^{n}\frac{1}{j1}\frac{\partial^{j}}{\partial y^{j}}f(x, c)y^{j}.
When  x=0 , we have

 f_{1}(0, y)=f(0, c)+ \frac{\partial}{\partial y}f(0, c)y+\sum_{j=2}^{n}\frac{1}
{j1}\frac{\partial^{j}}{\partial y^{j}}f(0, c)y^{j}.
Therefore,  a_{0,0}^{(1)}=f(0, c)=0 and  a_{0,1}^{(1)}=   \frac{\partial}{\partial y}f(0, c)\neq 0 , and thus,  i_{1}  \geq 1 and

 d_{1}(x)=- \frac{a_{i_{1},0}^{(1)}}{(1)}x^{i_{1}}.
 a_{0,1}

Then,

 f(x, y_{1}(x))=f(x, d_{0}(x)+d_{1}(x))=f_{1}(x, d_{1}(x))

 = \sum_{i=i_{1}}^{l_{1}}a_{i,0}^{(1)}x^{i}+\sum_{j=1}^{n}(\sum_{i=0}^{m_{1}}
a_{i,j}^{(1)}x^{i})d_{1}(x)^{j}
 =(a_{i_{1},0}^{(1)}x^{i_{1}}+a_{0,1}^{(1)}d_{1}(x))+ \sum_{i=i_{1}+1}^{l_{1}}a_
{i,0}^{(1)}x^{i}

 + ( \sum_{i=1}^{m_{1}}a_{i,1}^{(1)}x^{i})d_{1}(x)+\sum_{j=2}^{n}(\sum_{i=0}^{m_
{1}}a_{i,j}^{(1)}x^{i})d_{1}(x)^{j}
 =o(x^{i_{1}}) as  xarrow 0.
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It holds for  \nu=1.

Next we assume that it holds for  \nu(\nu>1) . Let

 f_{\nu}(x, y)= \sum_{i=i_{\nu}}^{l_{\nu}}a_{i,0}^{(\nu)}x^{i}+\sum_{j=1}^{n}
(\sum_{i=0}^{m_{\nu}}a_{i,j}^{(\nu)}x^{i})y^{j}, a_{i_{\nu},0}^{(\nu)}\neq 0.
By the induction hypothesis,  a_{0,1}^{(\nu)}=a_{0,1}^{(1)}\neq 0 and

 d_{\nu}(x)=- \frac{a_{i_{\nu},0}^{(\nu)}}{(1)}x^{i_{\nu}}.
 a_{0,1}

Since

 f_{\nu+1}(x, y)=f_{\nu}(x, d_{\nu}(x)+y)

 = \sum_{i=i_{\nu}}^{l_{\nu}}a_{i,0}^{(\nu)}x^{i}+\sum_{j=1}^{n}(\sum_{i=0}^{m_{
\nu}}a_{i,j}^{(\nu)}x^{i}) (d_{\nu}(x)+y)^{j}
 =(a_{i_{\nu},0}^{(\nu)}x^{i_{\nu}}+a_{0,1}^{(1)}d_{\nu}(x))+ \sum_{i=i_{\nu}+1}
^{l_{\nu}}a_{i,0}^{(\nu)}x^{i}+ (\sum_{i=1}^{m_{\nu}}a_{i,1}^{(\nu)}x^{i})
d_{\nu}(x)

 + ( \sum_{i=0}^{m_{\nu}}a_{i,1}^{(\nu)}x^{i})y+\sum_{j=2}^{n}(\sum_{i=0}
^{m_{\nu}}a_{i,j}^{(\nu)}x^{i}) (d_{\nu}(x)+y)^{j}
and  a_{i_{\nu},0}^{(\nu)}x^{i_{\nu}}+a_{0,1}^{(1)}d_{\nu}(x)  =0 , it holds that  i_{\nu+1}  >i_{\nu} and  a_{0,1}^{(\nu+1)}  =a_{0,1}^{(\nu)}  =a_{0,1}^{(1)}  \neq 0 . By
the definition of  i_{\nu+1},

  \sum_{i=1}^{i_{\nu+1}-i_{\nu}-1}(a_{i+i_{\nu},0}^{(\nu)}x^{i+i_{\nu}}+a_{i,1}^
{(\nu)}x^{i}d_{\nu}(x)) =0.
Thus,

 f_{\nu+1}(x, y)= \sum_{i=i_{\nu+1}}^{l_{\nu}}a_{1,0}^{(\nu)}x^{i}+ (\sum_{i=i_{
\nu+1}-i_{\nu}}^{m_{\nu}}a_{i,1}^{(\nu)}x^{i}) d_{\nu}(x)
 + ( \sum_{i=0}^{m_{\nu}}a_{i,1}^{(\nu)}x^{i})y+\sum_{j=2}^{n}(\sum_{i=0}
^{m_{\nu}}a_{i,j}^{(\nu)}x^{i}) (d_{\nu}(x)+y)^{j}

 =a_{i_{\nu+1},0}^{(\nu+1)}x^{i_{\nu+1}}+ \sum_{i=i_{\nu+1}+1}^{l_{\nu}}a_{i,0}^
{(\nu)}x^{i}+ (\sum_{i=i_{\nu+1}-i_{\nu}+1}^{m_{\nu}}a_{i,1}^{(\nu)}x^{i}) 
d_{\nu}(x)
 + ( \sum_{i=0}^{m_{\nu}}a_{i,1}^{(\nu)}x^{i})y+\sum_{j=2}^{n}(\sum_{i=0}
^{m_{\nu}}a_{i,j}^{(\nu)}x^{i}) (d_{\nu}(x)+y)^{j},
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where

 a_{i_{\nu+1},0}^{(\nu+1)}=a_{i_{\nu+1},0}^{(\nu)}+a_{i_{\nu+1}-i_{\nu},1}
^{(\nu)} (- \frac{a_{i_{\nu},0}^{(\nu)}}{a_{0,1}^{(1)}})
Thus,

 d_{\nu+1}(x)=- \frac{a_{i_{\nu+1},0}^{(\nu+1)}}{(1)}x^{i_{\nu+1}}.
 a_{0,1}

The coefficient of  x^{i_{\nu+1}} in  f_{\nu+1}(x, d_{\nu+1}(x)) is

 a_{i_{\nu+1},0}^{(\nu+1)}+a_{0,1}^{(\nu)} (- \frac{a_{i_{\nu+1},0}^{(\nu+1)}}
{a_{0,1}^{(1)}}) =0.
Therefore,

  f(x, y_{\nu+1}(x))=f_{1}(x, d_{1}(x)+\cdots+d_{\nu+1}(x))=f_{2}(x, d_{2}(x)+
\cdots+d_{\nu+1}(x))=\cdots

 =f_{\nu+1}(x, d_{\nu+1}(x))=o(x^{i_{\nu+1}}) as  xarrow 0.

This theorem has been proved by mathematical induction.  \square 

The core of Algorithm 2.1 is to take  d_{\nu}(x) so that

 a_{i_{\nu},0}^{(\nu)}x^{i_{\nu}}+a_{0,1}^{(1)}d_{\nu}(x)=0,

thereby increasing the order  i_{\nu+1} of  f_{\nu+1}(x, 0) . The equation

 a_{i_{\nu},0}^{(\nu)}x^{i_{\nu}}+a_{0,1}^{(1)}y=0

corresponds with “in which  p and  x separately are of least dimension and suppose them

nearly equal to zero.”

By the implicit function theorem, there exist open intervals  I=  (-\delta, \delta) ,  (\delta > 0) ,

 J=(c-\eta, c+\eta) ,  (\eta>0) and the unique function  \phi :  Iarrow J such that

(i)  \phi(0)=c,

(ii)  f(x, \phi(x))=0 for  \forall x\in I,

(iii)  \phi(x) is of class  C^{\infty}(I) .

Since  y_{\nu}(0)=c , the asymptotic formula (2.2) means that  y_{\nu}(x) asymptotically converges
to  \phi(x) as  \nuarrow\infty . We can say that Newton gave an algorithm to construct the implicit

function  \phi(x) of an algebraic equation  f(x, y)=0 when  f(0, c)=0 with   \frac{\partial}{\partial y}f(0, c)\neq 0.
The next theorem shows that Algorithm 2.1 (iii) is valid.
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Theorem 2.4. Let  f(x, y) be a polynomial of the form

 f(x, y)= \sum_{i=0}^{l/\mu}a_{i\mu,0}x^{i\mu}+\sum_{j=1}^{n} (\sum_{i=0}
^{m/\mu}a_{i\mu,j}x^{i\mu}) y^{j}, \mu\in \mathbb{N}.
Suppose  f(0, y)=0 has a root  c with   \frac{\partial}{\partial y}f(0, c)\neq 0 . Let integers  \nu,  N,  i_{\nu},  l_{\nu} , and m  \nu be

the same as Algorithm2.1. Let polynomials or monomials  f_{\nu}(x, y) ,  f_{N}(x, y) ,  d_{\nu}(x) , Ñ  (x) ,
 y_{\nu}(x) ,  \tilde{y}_{N}(x) ,  \mathcal{N}(x) , and  \mathcal{D}(x) be the same as Algorithm 2.1. Then, the following asymp‐

totic formulas hold:

 f_{N} (  x , dÑ  (x) )  =O(x^{i_{N}+N\mu}) as  xarrow 0,

 f(x,\tilde{y}_{N}(x))=O(x^{i_{N}+N\mu}) as  xarrow 0.

Proof. As in the proof of Theorem 2.3, it holds that

 f_{\nu}(x, y)= \sum_{i=i_{\nu}/\mu}^{l_{\nu}/\mu}a_{i\mu,0}^{(\nu)}x^{i\mu}+
\sum_{j=1}^{n} (\sum_{i=0}^{m_{\nu}/\mu}a_{i\mu,j}^{(\nu)}x^{i\mu}) y^{j}, a_{i_
{\nu},0}^{(\nu)}\neq 0.
Thus,  \mathcal{N}(x) and  \mathcal{D}(x) can be written as

 \mathcal{N}(x) = a_{i_{N},0^{X^{i_{N}}}}^{(N)} +a_{i_{N}+\mu,0^{X^{i_{N}+\mu}}}
^{(N)} + \cdot \cdot \cdot + a^{(N)} i_{N}+(N-1)\mu, i_{N}+(N-1)\mu,0^{X}

 \mathcal{D}(x) = a_{0,1}^{(N)} +a_{\mu,1}^{(N)}x^{\mu} + \cdot \cdot \cdot +a_{
(N-1)\mu,1}^{(N)}x^{(N-1)\mu},
respectively. Then,  \mathcal{N}(x)/\mathcal{D}(x) can be written as

(2.3)   \frac{\mathcal{N}(x)}{\mathcal{D}(x)}=e_{i_{N}}x^{i_{N}}+e_{i_{N}+\mu}x^{i_{N}
+\mu}+\cdots+e_{i_{N}+(N-1)\mu}x^{i_{N}+(N-1)\mu}
 +O(x^{i_{N}+N\mu}) as  xarrow 0.

Thus,

 f_{N}(x, y)= \mathcal{N}(x)+\sum_{i=i_{N}/\mu+N}^{l_{N}/\mu}a_{i\mu,0}^{(N)}
x^{i\mu}+\mathcal{D}(x)y+ (\sum_{i=N}^{m_{N}/\mu}a_{i\mu,1}^{(N)}x^{i\mu}) y
 + \sum_{j=2}^{n} (\sum_{i=0}^{m_{N}/\mu}a_{i\mu,j}^{(N)}x^{i\mu}) y^{j},

 \tilde{d}_{N}(x)=-(e_{i_{N}}x^{i_{N}}+e_{i_{N}+\mu}x^{i_{N}+\mu}+\cdots+
e_{i_{N}+(N-1)\mu}x^{i_{N}+(N-1)\mu}) .

Since  \mathcal{D}(x)=O(1) and  \mathcal{N}(x)/\mathcal{D}(x)=-d  (x)+O(x^{i_{N}+N\mu}) as  xarrow 0 , we have

 f_{N}  (x, d (x))=O(x^{i_{N}+N\mu}) as  xarrow 0.

This completes the proof.
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Example 2.5. We apply Algorithm 2.1 with  N=3 to  f(x, y)=x^{2}-2ay+y^{2}=0
which satisfies (2.1) with  \mu=2.

The roots of  f(0, y)  =  -2ay+y^{2}  =0 are  2a and  0 . We takec  =0 as the root of

the equation. Then,   \frac{\partial}{\partial y}f(0,0)  =  -2a  \neq  0 . The implicit function  \phi(x) of  f(x, y)  =  0

with  \phi(0)=0 is  \phi(x)=a-\sqrt{}a^{2}-x^{2}.

 \nu=0 Put  f_{0}(x, y)=x^{2}-2ay+y^{2} and  d_{0}(x)=0.
 \nu=1 Since  f_{1}(x, y)  =  f_{0}(x, 0+y)  =  x^{2}  -2ay+y^{2} , we have  i_{1}  =  2,  a_{2,0}^{(1)}  =

1,  a_{0,1}^{(1)}=-2a , and thus  d_{1}(x)=   \frac{1}{2a}x^{2}.
 \nu=2 Since  f_{2}(x, y)  =   \frac{1}{4a^{2}}x^{4}+  (-2a+ \frac{1}{a}x^{2})y+y^{2} , we have  i_{2}  =  4,  a_{4,0}^{(2)}  =

 4a^{2}1,  a_{0,1}^{(2)}=-2a , and thus,  d_{2}(x)=   \frac{1}{8a^{3}}x^{4}.

 \nu=3 Since f 3(x, y)=   \frac{1}{8a^{4}}x^{6}+\frac{1}{64a^{6}}x^{8}+(-2a+\frac{1}{a}x^{2}+\frac{1}
{4a^{3}}x^{4})y+y^{2} , we have

 i_{3}=6.

  \tilde{d}_{3}(x)=-\frac{\frac{1}{8a^{4}}x^{6}+\frac{1}{64a^{6}}x^{8}}{-2a+
\frac{1}{a}x^{2}+\frac{1}{4a^{3}}x^{4}}= \frac{1}{16a^{5}}x^{6}+\frac{5}
{128a^{7}}x^{8}+\frac{7}{256a^{9}}x^{10}+O(x^{12}) .

Therefore,

  \tilde{y}_{3}(x)=0+\frac{1}{2a}x^{2}+\frac{1}{8a^{3}}x^{4}+\frac{1}{16a^{5}}x^
{6}+\frac{5}{128a^{7}}x^{8}+\frac{7}{256a^{9}}x^{10}+O(x^{12}) ,

 f(x,\tilde{y}_{3}(x))=f3 (x,\tilde{d}_{3}(x))=O(x^{12}) .

§3. The asymptotic expansion of the implicit function as   xarrow\infty

Up to this point, Newton elucidated the literal resolution when  x is close to zero,

but from here elucidated when  x is sufficiently large.

But if you wish that the value of the area should approach nearer the truth

greater  x is, take this an example:y 3+axy  +x^{2}y-a^{3}-2x^{3}=0 . Accordingly,

ready to resolve this, I take out the terms  y^{3}+x^{2}y-2x^{3} in which  x and  y

either separately or multiplied together are of the most and equal dimensions

everywhere. From these, set as it were equal to zero, Ielicit the root, finding

it to be  x , and write it in the quotient: or, what comes to the same thing,

on substituting unity for  x from  y^{3}+y-2 I extract the root 1, multiply it
by  x and write the product  x in the quotient. Then Isuppose  x+p=y and

so proceed as in the former example until I have the quotient  x-   \frac{a}{4}+\frac{a^{2}}{64x}+
  \frac{131a^{3}}{512x^{2}}+\frac{509a^{4}}{16384x^{3}} &c,  [\cdots]

MP II, pp.226‐227
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We formulate the literal resolution of the affected equation when  x is sufficiently

large as a modern algorithm faithful to Newton’s elucidation.
For a function

 f(x, y)= \sum_{i,j}a_{i,j}x^{q_{i,j}}y^{j}, q_{i,j} \in \mathbb{Q},
the set of all exponents of  x is defined by

 P(f, \alpha)=\{q_{i,j}+\alpha j | a_{i,j}\neq 0\},

when  y\sim cx^{\alpha} as   xarrow\infty for some  c\in \mathbb{R}.

Algorithm3.1. (The asymptotic expansion as  xarrow\infty. ) Let

 f(x, y)= \sum_{j=0}^{n}(\sum_{i=0}^{m}a_{i,j}x^{i})y^{j}=0,
be an algebraic equation.

(i) Put  f_{0}(x, y)=f(x, y) .

(ii) Find a rational number  \alpha_{0} such that there are two or more terms in

 g_{0}(x, y; \alpha_{0})=\sum_{i+\alpha_{0}j=\max P(f,\alpha_{0})}a_{i,j}x^{i}y^
{j}.
(iii) Take a root  v=c_{0} of the equation  g_{0}(1, v;\alpha_{0})=0.

(iv) Put  d_{0}(x)=c_{0}x^{\alpha_{0}}.

(v) Repeat (1), (2), (3) and (4) below for  \nu=1 , 2, . . . ,  N :

(1) calculate  f_{\nu}(x, y)=f_{\nu-1}(x, d_{\nu-1}(x)+y) , say

 f_{\nu}(x, y)= \sum_{j=0}^{n}(\sum_{\dot{l}}a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}})
y^{j},
(2) find a rational number  \alpha_{\nu} with   \max P(f_{\nu}, \alpha_{\nu})  < \max P(f_{\nu-1}, \alpha_{\nu-1}) such that

there are two or more terms in

 g_{\nu}(x, y; \alpha_{\nu})= \sum a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}}y^{j},
 q_{i,j}^{(\nu)}+ \alpha_{\nu}j=\max P(f_{\nu},\alpha_{\nu})

(3) take a root  v=c_{\nu} of the equation  g_{\nu}(1, v;\alpha_{\nu})=0,
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(4) put  d_{\nu}(x)=c_{\nu}x^{\alpha_{\nu}} .

Then, the function  y_{N}(x)= \sum_{\nu=0}^{N}d_{\nu}(x) satisfies

 f(x, y_{N}(x))=o(x^{\max P(f_{N},\alpha_{N})}) as  xarrow\infty.

Theorem3.2. Keep the notation in Algorithm 3.1. Put   \max P(f_{-1}, \alpha_{-1})=\infty.
Suppose there exist  \alpha_{\nu} and  c_{\nu} in Algorithm 3.1, for  \nu=0 , 1, . . . , N. Then,

1. for  \nu=0 , 1, . . . ,  N,

 g_{\nu}(x, d_{\nu}(x);\alpha_{\nu})=0,

 f_{\nu}(x, d_{\nu}(x))=o(x^{\max P(f_{\nu},\alpha_{\nu})}) as  xarrow\infty,

  \max P(f_{\nu}, \alpha_{\nu})<\max P(f_{\nu-1}, \alpha_{\nu-1}) ;

2. the function  y_{N}(x)= \sum_{\nu=0}^{N}d_{\nu}(x) satisfies

 f(x, y_{N}(x))=o(x^{\max P(f_{N},\alpha_{N})}) as  xarrow\infty.

Proof.

1. Assume there existsa rational number  \alpha_{\nu} such that there are two or more terms in

 g_{\nu}(x, y; \alpha_{\nu})= \sum a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}}y^{j}.
 q_{i,j}^{(\nu)}+ \alpha_{\nu}j=\max P(f_{\nu},\alpha_{\nu})

Let  c_{\nu} be a non‐zero root of

 g_{\nu}(1, v; \alpha_{\nu})= \sum a_{i,j}^{(\nu)}v^{j}=0.
 q_{i,j}^{(\nu)}+ \alpha_{\nu}j=\max P(f_{\nu},\alpha_{\nu})

Then,

 g_{\nu}(x, c_{\nu}x^{\alpha_{\nu}}; \alpha_{\nu})= \sum a_{i,j}^{(\nu)}c_{\nu}^
{j}x^{\max P(f_{\nu},\alpha_{\nu})}
 q_{i,j}^{(\nu)}+ \alpha_{\nu}j=\max P(f_{\nu},\alpha_{\nu})

 =g_{\nu}(1, c_{\nu};\alpha_{\nu})x^{\max P(f_{\nu},\alpha_{\nu})} =0.

Since

 f_{\nu}  (x, c_{\nu}x^{\alpha_{\nu}} )  =g_{\nu}(x, c_{\nu}x^{\alpha_{\nu}} ; \alpha_{\nu})+o(x^{\max P(f_{\nu},\alpha_
{\nu})}) as  xarrow\infty,

we have

 f_{\nu}(x, d_{\nu}(x))=o(x^{\max P(f_{\nu},\alpha_{\nu})}) as  xarrow\infty.

From the way of deciding  \alpha_{\nu} , it holds that

  \max P(f_{\nu}, \alpha_{\nu})<\max P(f_{\nu-1}, \alpha_{\nu-1}) .
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2. By the definition of f \nu,

  f(x, d_{0}(x)+d_{1}(x)+\cdots+d_{N}(x))=f_{1}(x, d_{1}(x)+\cdots+d_{N}(x))=
\cdots

 =f_{N}(x, d_{N}(x))=o(x^{\max P(f,\alpha_{N})}N) as  xarrow\infty.

The function  g_{\nu}(x, y;\alpha_{\nu}) is the sum of the terms in which  x and  y either separately

or multiplied together are of the most and equal dimensions everywhere.” The equation

 g_{\nu}(1, v;\alpha_{\nu})=0 corresponds with “on substituting unity for  x.

Example3.3. We apply Algorithm 3.1 to Newton’s example  f(x, y)  =  y^{3}+
 axy+x^{2}y-a^{3}-2x^{3}=0.

 \nu=0 Two or more exponents of  \{3\alpha, 1+\alpha, 2+\alpha, 0, 3\} are equal to each other

and maximized when  \alpha=  1 . Thus,  g_{0}(x, y;1)  =y^{3}+x^{2}y-2x^{3} , and the

root of  g_{0}(1, v;1)  =  v^{3}+v-2  =  0 is  c=  1 . Therefore,  d_{0}(x)  =  x and

 f(x, x)=ax^{2}-a^{3}=o(x^{3}) as  xarrow\infty.

 \nu=1 Since  f_{1}(x, y)=f(x, x+y)=ax^{2}-a^{3}+(4x^{2}+ax)y+3xy^{2}+y^{3} , two or

more exponents of  \{2, 0, 2+\alpha, 1+\alpha, 1+2\alpha, 3\alpha\} are equal to each other

and maximized when  \alpha=0 . Thus,  g_{1}(x, y;0)  =ax^{2}+4x^{2}y,  c=- \frac{a}{4} , and

 d_{1}(x)=- \frac{a}{4} . Therefore,  f_{1}(x, - \frac{a}{4})=-\frac{a^{2}}{16}x-\frac{65}{64}a^{3}=o(x^{2}) as  xarrow\infty.

 \nu=2 Since f2  (x, y)=- \frac{1}{16}a^{2}x-\frac{65}{64}a^{3}+(4x^{2}-\frac{1}{2}ax+
\frac{3a^{2}}{16})y+(3x-\frac{3}{4}a)y^{2}+
 y^{3} , two or more exponents of  \{1, 0, 2+\alpha, 1 +\alpha, \alpha, 1 +2\alpha, 2\alpha, 3\alpha\} are

equal to each other and maximized when  \alpha  =  -1 . Thus,  g_{2}(x, y;-1)  =

‐   \frac{1}{16}a^{2}+4x^{2}y,  c  =   \frac{a^{2}}{64},  d_{2}(x)  =   \frac{a^{2}}{64x} . Therefore  f_{2}(x,  \frac{a^{2}}{64x})  =  - \frac{131a^{3}}{128}  +

  \frac{15a^{4}}{4096x}-\frac{3a^{5}}{16384x^{2}}+\frac{a^{6}}{262144x^{3}}=o(x) as  xarrow\infty.

Put  y_{2}(x)=x- \frac{a}{4}+\frac{a^{2}}{64x} . Then

 f(x, y_{2}(x))=f_{1}(x, - \frac{a}{4}+\frac{a^{2}}{64x})=f_{2}(x, \frac{a^{2}}
{64x})=o(x) as  xarrow\infty.

By Theorem 3.2, the infinite series

 x- \frac{a}{4}+\frac{a^{2}}{64x}+\frac{131a^{3}}{512x^{2}}+\frac{509a^{4}}
{16384x^{3}} . . .

asymptotically converges to the implicit function of  y^{3}+axy  +x^{2}y-a^{3}-2x^{3}  =0 as
 xarrow\infty.
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§4. The Newton diagram in De Methodis

The explanation of the literal resolution of affected equations in De Analysi is
insufficient. Even if  f(0, y)  =  0 has aroot  c , the initial quotient can not always be

found when   \frac{\partial}{\partial y}f(0, c)  =  0 . Also, when  x is large, we cannot obtain the terms of the

maximum dimension unless we decide  \alpha of  y  \sim  cx^{\alpha} . In De Methodis, Newton solved

these points by using the Newton diagram which he called the parallelogram.

However, to make this rule still more evident, I thought it fitting to expound

it in addition with the aid of the following diagram. Describing the right angle

BAC, I divide its sides BA, AC into equal segments and from these raise normals

distributing the space between the angle into equal squares or rectangles: these

I conceive to be denominated by the powers of the variables  x and  y , as you

see them entered in figure 1. Next, when some equation is proposed, I mark

the rectangles corresponding to each of its terms with some sign and apply a

ruler to two or maybe several of the rectangles so marked, one of which it to be

the lowest in the left‐hand column alongside AB, a second to the right touching
the ruler, and all the rest not in contact with the ruler should lie above it. I

then choose the terms of the equation which are marked out by the rectangles in

contact with the ruler and thence seek the quantity to be added to the quotient.

fig 1 fig 2

So to extract the root  y from

 y^{6}-5xy^{5}+(x^{3}/a)y^{4}-7a^{2}x^{2}y^{2}+6a^{3}x^{3}+b^{2}x^{4}=0,

I mark the rectangles answering to its terms with some sign  * , as you see done

in the second illustration. I then apply the ruler DE to the lower corner of

the places marked out in the left‐hand column and make it swing to the right

from bottom to top until in like fashion it begins to touch a second or maybe
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several together of the other marked places. Those so touched I see to be

 x^{3},  x^{2}y^{2} and  y^{6} . Hence from the terms  y^{6}-7a^{2}x^{2}y^{2}+6a^{3}x^{3} as through set
equal to nothing (and in addition, if it places, reduced to  v^{6}  -7v^{2}+6  =  0

by supposing  y  =  v  \cross  \sqrt{ax} ) I seek the value of  y and find it to be fourfold,
 +\sqrt{ax},  -\sqrt{ax},  +\sqrt{2ax} and  -\sqrt{2ax} . Any ofthese may be acceptable as an initial
term in the quotient depending on whether the decision is made to extract one
or other of the roots.

MP III, pp.48‐53

Modern expression of how to extract the root  y from  f(x, y)  =0 when  x is close

to  0 is as follows. Let  f(x, y)  = \sum_{j=0}^{n}\sum_{i}a_{i,j}x^{i}y^{j}  =0 be an algebraic equation. Each
monomial  a_{i,j}x^{i}y^{j} is represented by a lattice point  (j, i) in the j‐i plane with  j on the
horizontal axis and  i on the vertical axis. The set of all lattice points of  f(x, y) is
denoted by  L(f)  =  \{(j, i) | a_{i,j} \neq 0\} . Let  S(f) be the set of line segments whose end
points are the points of the set  L(f) . Take the lowest point  (0, m) of  L(f) and the line
segment  \ell\in S(f) with the equation

(4.1)  \ell:i+\alpha j=m

such that  \={i}+\alpha\overline{j}\geq m\forall  (\overline{j}, \={i})\in L(f) . The line segment  \ell corresponds with “the ruler”.
Let  (j_{1}, i_{1}) , . . . ,  (j_{r}, i_{r}) be all points of  L(f) on  \ell , then  i_{k}+\alpha j_{k}=m,  (k=1, . . . , r) . Put

 g(x, y)= \sum_{k=1}^{r}a_{i_{k}j_{k}}x^{i_{k}}y^{j_{k}}.
Let  c be a root of  g(1, v)=0 . Take d (x)=cx^{\alpha} asaquotient.

The j‐i plane plotted the lattice points in  L(f) and drawn the lowest line segment

is called the Newton diagram of  f(x, y)= \sum_{j=0}^{n}\sum_{i}a_{i,j}x^{i}y^{j}=0 , and the above method
is called the Newton diagram method. At the time of illustration, the lattice points on
the line segment are represented by black circles  \bullet , and the lattice points outside the

line segment are represented by white circles ◦.

Example4.1. We apply the Newton diagram method to Newton’s example

 f(x, y)=y^{3}+a^{2}y-2a^{3}+axy  -x^{3}=0 , when  x is close to  0.

 \nu=0 The Newton diagram of  f_{0}(x, y)  =  y^{3}+a^{2}y-2a^{3}+axy-x^{3}  =  0 is as
below.
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The lowest line is  \ell :  i=0 ; thus,  \alpha=0 and  g(x, y)=y^{3}+a^{2}y-2a^{3} . Thus,
the first term of the quotient is  y=a , which is the root of  y^{3}+a^{2}y-2a^{3}=0.

 \nu=1 The Newton diagram of  f_{1}(x, y)=f(x, a+y)=a^{2}x-x^{3}+(4a^{2}+ax)y+
 3ay^{2}+y^{3} is as below.

 i

 \backslash \backslash \backslash \backslash ◦  j

The lowest line is  \ell :  i+j  =  1 ; thus,  \alpha  =  1 and g  (x, y)  =  a^{2}x+4a^{2}y.
Thus, the second term of the quotient is  y  =  - \frac{x}{4} which is the root of
 a^{2}x+4a^{2}y=0.

We formulate the Newton diagram method in De Methodis as an algorithm similar

to Algorithm 3.1. Therefore, the order of afunction

 f(x)= \sum_{i}a_{i}x^{q_{i}}, q_{i}\in \mathbb{Q},
is defined by

  ordf=\min\{q_{i} | a_{i}\neq 0 \}.

Algorithm4.2. (The asymptotic expansion as  x  arrow  0. ) For an algebraic
equation

 f(x, y)= \sum_{j=0}^{n}(\sum_{i=0}^{m}a_{i,j}x^{i})y^{j}=0,
put  f_{0}(x, y)=f(x, y) .

(i) Find a rational number  \alpha_{0} such that there are two or more terms in

 g_{0}(x, y; \alpha_{0})=\sum_{i+\alpha_{0}j=ordf_{0}(x,0)}a_{i_{J}}^{(0)}x^{i}
y^{j}.
(ii) Take a root  v=c_{0} of the equation  g_{0}(1, v;\alpha_{0})=0.

(iii) Put  d_{0}(x)=c_{0}x^{\alpha_{0}}.

(iv) Repeat (1), (2), (3) and (4) below for  \nu=1 ,  2 , . . . ,  N :
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(1) calculate  f_{\nu}(x, y)=f_{\nu-1}(x, d_{\nu-1}(x)+y) , say

 f_{\nu}(x, y)= \sum_{j=0}^{n}(\sum_{\dot{l}}a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}})
y^{j},
(2) find a rational number  \alpha_{\nu} such that there are two or more terms in

 g_{\nu}(x, y; \alpha_{\nu})= \sum a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}}y^{j},
 q_{i,j}^{(\nu)}+\alpha_{\nu}j=ordf_{\nu}(x,0)

(3) take a root  v=c_{\nu} of the equation  g_{\nu}(1, v;\alpha_{\nu})=0,

(4) put  d_{\nu}(x)=c_{\nu}x^{\alpha_{\nu}} .

Then, the function  y_{N}(x)= \sum_{\nu=0}^{N}d_{\nu}(x) satisfies

 f(x, y_{N}(x))=o(x^{ordf_{N}(x,0)}) as  xarrow 0.

Example4.3. We apply Algorithm 4.2 to Newton’s example  f(x, y)  =  y^{3}+
 a^{2}y-2a^{3}+axy  -x^{3}=0.

 \nu=0 Two or more exponents of  \{3\alpha, \alpha, 0, 1+\alpha, 3\} are equal to ord f  (x, 0)  =0

and minimized when  \alpha  =  0 . Thus ,  g_{0}(x, y;0)  =  y^{3}+a^{2}y-2a^{3} . The

root of  g_{0}(x, y;0)  =0 is  y=a , and thus,  d_{0}(x)  =a . Therefore,  f(x, a)  =

 a^{2}x-x^{3}=o(1) as  xarrow 0.

 \nu=1 Since  f_{1}(x, y)=f(x, a+y)=a^{2}x-x^{3}+(4a^{2}+ax)y+3ay^{2}+y^{3} , two or

more exponents of  \{1, 3, \alpha, 1+\alpha, 2\alpha, 3\alpha\} are equal to ord f1  (x, 0)=1 and

minimized when  \alpha=1 . Thus,  g_{1}(x, y;1)=a^{2}x+4a^{2}y , and  d_{1}(x)=- \frac{1}{4}x.
Therefore,  f_{1}(x, - \frac{1}{4}x)=-\frac{1}{16}ax^{2}-\frac{65}{64}x^{3}=o(x) as  xarrow 0.

 \nu=2 Thereafter, it can be executed in the same way.

Krantz and Parks [6, pp.15‐20] determine  \alpha by different method from Algorithm
4.2. They assume  y(0)=0 and  y(x)=x^{\alpha}\tilde{y}(x) with  \tilde{y}(x) a continuous function that does

not vanish when  x=0 . They substitutey  =x^{\alpha}\tilde{y}(x) in  f(x, y)=0 , and explain “To be

able to determine  \tilde{y}(0) from”  f(x, x^{\alpha}\tilde{y}(x))=0 , “there must be two or more monomials

in”  f(x, x^{\alpha}\tilde{y}(x))  =0 “which have the same power of  x and all other monomials must

have a large power of  x.

§5. An improved algorithm as  xarrow 0

By rewriting Algorithm 3.1 dually, even if  (0, c) is a singular point, infinite series

expansion (Puiseux expansion) of one of the branches can be obtained.
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Algorithm 5.1. (An improved algorithm as  xarrow 0. ) For an algebraic equa‐
tion

 f(x, y)= \sum_{j=0}^{n}(\sum_{i=0}^{m}a_{i,j}x^{i})y^{j}=0,
put  f_{0}(x, y)=f(x, y) .

(i) Find a rational number  \alpha_{0} such that there are two or more terms in

 g_{0}(x, y; \alpha_{0})=\sum_{i+\alpha_{0}j=\min P(fo,\alpha_{0})}a_{i}^{(0)}x^
{i}y^{j}.
(ii) Take a root  v=c_{0} of the equation  g_{0}(1, v;\alpha_{0})=0.

(iii) Put  d_{0}(x)=c_{0}x^{\alpha_{0}}.

(iv) Repeat (1), (2), (3) and (4) below for  \nu=1 , 2, . . . ,  N :

(1) calculate  f_{\nu}(x, y)=f_{\nu-1}(x, d_{\nu-1}(x)+y) , say

 f_{\nu}(x, y)= \sum_{j=0}^{n}(\sum_{i}a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}})y^{j},
(2) find a rational number  \alpha_{\nu} with   \min P(f_{\nu}, \alpha_{\nu})  > \min P(f_{\nu-1}, \alpha_{\nu-1}) such that

there are two or more terms in

 g_{\nu}(x, y; \alpha_{\nu})= \sum a_{i,j}^{(\nu)}x^{q_{i,j}^{(\nu)}}y^{j},
 q_{i,j}^{(\nu)}+ \alpha_{\nu}j=\min P(f_{\nu},\alpha_{\nu})

(3) take a root  v=c_{\nu} of the equation  g_{\nu}(1, v;\alpha_{\nu})=0,

(4) put  d_{\nu}(x)=c_{\nu}x^{\alpha_{\nu}} .

Then, the function  y_{N}(x)= \sum_{\nu=0}^{N}d_{\nu}(x) satisfies

 f(x, y_{N}(x))=o(x^{\min P(f_{N},\alpha_{N})}) as  xarrow 0.

The Newton polygon of an algebraic equation

 f(x, y)= \sum_{i,j}a_{i,j}x^{i}y^{j}=0
is defined by the convex hull of the set  \{ (j+x, i+y) |a_{i,j} \neq 0;x, y\in \mathbb{R}^{+}\} } in the j‐i
plane. Algorithm 5.1 is equivalent to modern Newton polygon method [6, pp.15‐20] [10,
pp.58‐61].
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Theorem 5.2. Keep the notation in Algorithm 5.1. Put   \min P(f_{-1}, \alpha_{-1})  =

 -\infty . Suppose there exist  \alpha_{\nu} and  c_{\nu} in Algorithm 5.1, for  \nu=0 , 1, . . . , N. Then

1. For  \nu=0 ,  1, . . . ,  N,

 g_{\nu}(x, d_{\nu}(x);\alpha_{\nu})=0,

 f_{\nu}(x, d_{\nu}(x))=o(x^{\min P(f_{\nu},\alpha_{\nu})}) as  xarrow 0,

  \min P(f_{\nu}, \alpha_{\nu}) >\min P(f_{\nu-1}, \alpha_{\nu-1}) .

2. The function  y_{N}(x)= \sum_{\nu=0}^{N}d_{\nu}(x) satisfies

 f(x, y_{N}(x))=o(x^{\min P(f_{N},\alpha_{N})}) as  xarrow 0.

Proof. The proof can be shown dually with that of Theorem 3.2.  \square 

Example 5.3. We apply Algorithm 5.1 to the Descartes folium

 f(x, y)=y^{3}-3axy+x^{3}=0,

which have two branches at  (0,0) . The Newton polygon of f  (x, y)=0 is shown below.
 \nu=0 Two or more exponents of  \{3\alpha, 1 +\alpha, 3\} are equal to each

other and minimized if  \alpha  =   \frac{1}{2} and  \alpha  =  2 . When  \alpha_{0}  =   \frac{1}{2},
 g_{0}(x, y; \frac{1}{2})  =  y^{3}-3axy . By solving  y^{3}  -3axy  =  0 , we take
 d_{0}(x)  =\pm\sqrt{}3ax . When  \alpha_{0}=2,  g_{0}(x, y;2)  =-3axy+x^{3} . By
solving  -3axy+x^{3}=0 , we take  d_{0}(x)=   \frac{1}{3a}x^{2}.

 \nu=1 When  \alpha_{0}  =   \frac{1}{2},  f_{1}(x, y)  =  f(x, \pm\sqrt{3ax}+y)  =  y^{3}\pm 3\sqrt{3ax}y^{2}+6axy+x^{3} . Two
or more exponents of   \{3\alpha, \frac{1}{2}+2\alpha, 1+\alpha, 3\} are equal to each other and minimized
and   \min P(f_{1}, \alpha)  > \min P(f_{0}, \frac{1}{2})  =   \frac{3}{2} , when  \alpha=2 . Thus,  \alpha_{1}  =2 and  g_{1}(x, y;2)  =

 6axy+x^{3} . By solving  6axy+x^{3}  =  0 , we have  d_{1}(x)  =  - \frac{1}{6a}x^{2} . When  \alpha_{0}  =  2,

 f_{1}(x, y)  =  f(x,  \frac{1}{3a}x^{2}+y)  =y^{3}+ \frac{1}{a}x^{2}y^{2}-3axy+\frac{1}{3a^{2}}x^{4}y+\frac{1}{27a^{3}}
x^{6} . Two or more
exponents of  \{3\alpha, 2+2\alpha, 1+\alpha, 4+\alpha, 6\} are equal to each other and minimized
and   \min P(f_{1}, \alpha)  > \min P(f_{0},2)  =3 , when  \alpha=5 . Thus,  \alpha_{1}  =5 and g1  (x, y;5)  =

 -3axy+ \frac{1}{27a^{3}}x^{6} . By solving  -3axy+ \frac{1}{27a^{3}}x^{6}=0 , we have d1  (X)=   \frac{1}{81a^{4}}x^{5}.

Thus, we have the Puiseux expansions of the two branches

(5.1)   y=\pm\sqrt{3a}x^{\frac{1}{2}}--x6a \mp\cdots ,
1 2

  y=  \frac{1}{3a}x^{2}+\frac{1}{81a^{4}}x^{5}+\cdots .

The Newton diagram method cannot yield (5.1).
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§6. Conclusion

In this paper we proved the following.

1. When  f(0, c)  =  0,   \frac{\partial}{\partial y}f(0, c)  \neq  0 , the power series given by the algorithm in  De

Analysi is well defined and asymptotically converges to the implicit function of

 f(x, y)=0.

2. Whenx is sufficiently large, an infinite series can be constructed by the algorithm

in De Analysi, and the series asymptotically converges to the implicit function of

 f(x, y)=0.

3. When  (0, c) is asingular point of  f(x, y)  =  0 , and an infinite series can be con‐

structed by the Newton diagram method given in De Methodis, the series asymp‐

totically converges to one of the branches of  f(x, y)=0.
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