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Abstract:

Purpose: The present study aims to give a short introduction into the possibilities offered by Voyant Tools

to quantitatively explore qualitative data on the Sales-Marketing Interface (SMI).

Design/methodology/approach: The study is exploratory in nature. The sample consists of  sales and

marketing  employees  of  six  manufacturing  companies.  Answers  to  three  open-ended questions  were

analysed  quantitatively  and  visualised  in  various  ways  using  the  online  toolset  of  Voyant  Tools.  We

experimented with four different tools out of  the twenty-four offered by Voyant Tools. These tools were:

Cyrrus tool, Correlation tool, Topics tool and Scatter plot tool. All four tools that were tested on the data

have scalable parameters.  Various settings were tested to demonstrate how input conditions influence

modelling of  the textual data.

Findings: Positive aspects of  Voyant Tools: It was demonstrated that the four selected text analysis tools

can yield valuable information depicted in the form of  attractive visualisation formats. Negative aspects of

Voyant Tool: It is also highlighted how rushed conclusions can be arrived at by falsely interpreting the

visualised data. Limited aspects of  Voyant Tools: It is shown how setting different input parameters can

affect results. Out of  the four examined tools the Scatter plot tool offering an analysis and modelling

method  based  on t-SNE (t-Distributed  Stochastic  Neighbour  Embedding)  proved  to  yield  the  most

complex information about the text. 

Research limitations/implications: As the study aimed to be exploratory a sample of  convenience was

used to collect qualitative data.  Although quantitative methods can be invaluable tools of  preliminary

analysis and hypothesis adjustment in the processing of  qualitative data, their results should always be

checked  against  the  traditional  content  analysis  techniques  which  are  more  sensitive  to  the  complex

structure of  semantic units. These quantitative techniques are to help early exploration of  textual data.

Practical implications: Professional implications: Managerial implications might be connected to the fact

that in a fast changing global business environment managers and corporate decision makers in general

might find the attractive visualisation outputs of  Voyant Tool easy to analyse and interprete various aspects

of  business. Academic implications: As Voyant Tools is an open source, free online sofware not even

requiring regsitration and at the same time has an impressive array of  sophisticated statistical tools, it might

be a cost-effective way of  analysing qualitative data for low budget academic users. 

Originality/value: As  there  is  virtually  no  earlier  literature  on  how  quantitative  data  visualisation

techniques can be used in marketing research, especially in the analysis of  the SMI, utilisation possibilities
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of  Voyant Tools and other quantitative data analysis and visualisation software for handling qualitative data

is definitely a worthwhile area for further research.

Keywords: qualitative  research,  qualitative  data  visualisation,  qualitative  marketing  research,  Voyant  Tools,

Sales-Marketing Interface
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1. Introduction

Qualitative research has evolved into an accepted and invaluable research method since it was first advocated by

German sociologists Max Webber and Georg Simmel (Dey, 2003; Gummesson, 2005; Lapan, Quartaroli & Riemer,

2011; Mayer, 2015; Silverman, 2016; Flick, 2018). The false dichotomy between the two research methods has by

now been  resolved  as  there  are  more  and  more  studies  employing  mixed  research  methodologies  that  take

advantage of  both qualitative  and quantitative data  collecting and data processing techniques (Molina-Azorin,

Bergh, Corley & Ketchen, 2017; Bryman, 2017; Braun, Clarke, V., Hayfield, N., & Terry, 2019). 

Marketing research can be traced back to the first part of  the 19th century when the first market-focused data

collections took place in the USA (Lockley, 1950). Since then marketing research has gone a long way and today

there have accumulated an abundance of  literature on both qualitative (Carson, Gilmore, Perry & Gronhaug, 2001;

Belk, 2007) and quantitative research  (Franses & Paap, 2001;  Müller,  Boda, Ráthonyi,  Ráthonyi-Odor, Barcsák,

Könyves et al., 2016; Lipowski, Pastuszak & Bondos, 2018) used in this field.

Qualitative  research  methods  have  been  used  in  marketing  research  for  decades  (Bellenger,  Bernhardt  &

Goldstucker, 2011; Wilson, 2018). However, analysis of  qualitative data, usually in the form of  the transcripts of

various  interview  techniques  or  answers  to  open-ended  questions  in  self-reported  questionnaires,  is  usually

restricted to quoting passages, typical sample answers or themes that emerge during some form of  content analysis

(Hsieh & Shannon, 2005). 

Quantitative analysis of  qualitative data (Young, 1981), other than word clouds, is extremely scarce in marketing

research and not frequently used in other social sciences either (Bernard & Ryan, 1998). On the one hand, it is

understandable, as the transformation of  a coherent text, which is a complex, multi-layered information source

with  contextualised  meaning,  into  smaller  meaning  units  necessarily  entails  some  loss  of  information

(Krippendorff, 2018). It might be tempting to think that qualitative analysis of  qualitative data does not result in

information loss, however, as Bernard aptly points out. Quantitative analysis involves reducing people (as observed

directly or through their texts) to numbers, while qualitative analysis involves reducing people to words (Bernard,

1996: page 10). Obviously, the validity and generalisability of  the results depend on the research design including

sampling methods as well as the form of  analysis applied to the collected data. 

In order to be able to apply quantitative statistical methods with qualitative data the answers of  respondents are

typically coded. Coding can be as complex as to include sixteen steps (Assarroudi, Heshmati-Nabavi, Armat, Ebadi &

Vaismoradi, 2018). At the end of  the coding process longer meaning units are reduced to one word. These one-word

codes can then be analysed as categorical data using quantitative statistical methods. However, there are statistical

methods, such as the latent Dirichlet allocation used for topic modelling (Jacobi, Van Atteveldt & Welbers, 2016;

Toubia, Iyengar, Bunnell & Lemaire, 2019) to mention one, which can be used without any previous coding. 

Voyant Tools is a web-based, free, open source text analysis software package that offers versatile and sophisticated

text manipulation capabilities useful for both the beginner and advanced humanities scholar (Welsh, 2014; Uboldi &
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Caviglia, 2015;  Bradley, 2018; Miller, 2018). It has already been used as a quantitative text analysis tool in several

peer-reviewed articles (Steiner, Agosti, Sweetnam, Hillemann, Orio, Ponchia et al., 2014; Clouder & King, 2015;

Williams, Inversini, Buhalis & Ferdinand, 2015; Zahedzadeh, 2017). Data visualisation in social sciences research is

an under-researched area (Uboldi & Caviglia, 2015).

Via the analysis of  data on SMI, the present paper demonstrates how Voyant Tools can be used to quantitatively

analyse qualitative data. The harmonious, constructive and efficient cooperation between the Sales and Marketing

(SM) departments are considered a key element of  customer satisfaction and strategic success in a fast-changing

global market. The Sales-Marketing Interface (SMI) can be burdened with various conflicts and dysfunctions which

(Malshe,  Friend,  Al-Khatib,  Al-Habib  &  Al-Torkistani, 2017;  Cometto,  Labadie  &  Palacios,  2017),  if  not

investigated and properly managed, can undermine the overall performance of  the company. Thus, it is of  utmost

importance to obtain a clear picture of  the state of  SMI and its possible problems. Even though the optimization

of  the SMI is obviously a crucially important challenge, the SMI is a seriously under researched area within business

research and the application of  quantitative techniques to qualitative data in connection with SMI has not been

researched at all. Previous studies on the SMI typically applied qualitative data collection and processing methods

such as personal interviews of  sales and marketing managers with summaries of  the main findings, but no coding

of  text (Matthyssens & Johnston, 2006), minimal coding of  interview data (Hughes, Le Bon & Malshe, 2012) or a

detailed and rigorous coding process (Malshe & Al-Khatib, 2017).

2. Sample and Methods

As it is an exploratory study a sample of  convenience was used. Six different manufacturing companies (number

of  employees ≥ 250) were involved in the data collection process. The main criterium of  qualifying into the

research was the presence of  a separate sales and marketing department within the company. Data collection was

conducted via a self-reported online questionnaire which contained three open-ended questions. The link to the

questionnaire was emailed to the Human Resources managers of  the six companies and were forwarded to the

SM employees by them. The date was gathered during a two-week period in March 2019.  Out of  the  352

questionnaires sent out to potential respondents we received 124 fully completed ones which served as the basis

for  our  analysis.  75 of  them were marketing employees  and 49 sales employees.  As there  were Hungarian,

Austrian,  German  and Austrian  companies  involved  the  questionnaires  were  distributed  in  three  languages

(German, Hungarian, English). As the first step in processing the data the returned questionnaires filled out in

German or Hungarian were translated by a qualified translator into English. Respondents had to answer the

following three questions:

1. Please describe your daily tasks in a few sentences. 

2. What are the tasks of  the other (sales or marketing) department? 

3. How is sales-marketing cooperation managed in your company?

For limitations of  space most method demonstrations are performed on the third question as it is the main focus

of  the analysis. As our survey contained only three questions and the number of  completed questionnaires is small

too, it was possible to compare the results of  quantitative analysis carried out with the help of  tools of  Voyant and

see how accurate quantitative results are. Obviously, Voyant Tools is especially useful with large textual data sets

when content analysis methods are extremely time-consuming. Out of  the twenty-four different text analysis tools

this paper attempts to demonstrate the use of  four. 

2.1. Cyrrus Tool

It is a word cloud creation tool which positions the most frequent words centrally and in the biggest size in the

cloud. It is possible to exclude words using the „Stop word„ function or specify the maximum number of  words to

be fetched from the corpus. 

2.2. Correlation Tool

It allows the researcher to check which words tend to occur together within the text. Negative correlations signal

words with an inverse occurrence pattern. In order to be able to perform Pearson correlation calculations the text is
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divided into segments. The software examines how many times words appear in the various segments and the

resulting numerical serves as the basis of  the correlations. The significance level for each pair of  words is also

provided. Pearson correlation is typically applied with assumptions of  normal distribution. However, several studies

demonstrated that the Pearson correlation is robust enough to tolerate the violation of  the above-mentioned typical

assumption (Havlicek & Peterson, 1976; Fowler, 1987). Still, the results should be interpreted with caution.

2.3. Topics Tool

This tool uses a rather sophisticated algorithm called latent Dirichlet allocation (LDA). It is a topic model which

assumes that words in the text belong to latent topics. It also assumes that there is a relatively small set of  topics

with a relatively small set of  words used frequently by the topic. With the help of  this tool term clusters and their

distribution can be discovered. It is possible to set the number of  topics to optimise modelling for.

2.4. Scatter Plot Tool

This is probably the most sophisticated tool among the text analysis tools of  Voyant. The analysis functions of  this

tool include Principle component analysis, Correspondence analysis, document similarity check and t-SNE analysis.

All four cluster plotting analyses uses algorithms that creates a 2 (or 3) dimensional representation of  the data in a

multidimensional space. The number of  dimensions and the number of  clusters to be created can be set by the

analyst. Out of  the four types of  plotting methods t-SNE is discussed in this paper. t-SNE (t-Distributed Stochastic

Neighbour Embedding) is a prize-winning method that can be applied especially well to high dimensional data sets

such as qualitative textual data (Van Der Maaten & Hinton, 2008; Van Der Maaten, 2014). Cao and Wang define the

method as follows, “t-SNE tries to preserve local neighbourhood structure from high dimensional space in lowdimensional space by

converting pairwise distances to pairwise joint distributions,  and optimize low dimensional embeddings to match the high and low

dimensional joint distributions.” (Cao & Wang, 2017: page 1.)

There is a tuneable function of  t-SNE in Voyant, the level of  perplexity (0-100) which largely determines, what

cluster model is plotted. If  the data is very dense perplexity close to 100 might be the most suitable but with lower

density data lower levels of  perplexity will yield the best results, that is the most accurately identified clusters. The

algorithm behind perplexity examines the “local” and “global” aspects of  the data set, that is, it tries to determine

the number of  closest neighbours of  each word (data points) or expressed differently, it can be “measure of  the

effective number of  neighbours” (Van Der Maaten & Hinton, 2008: page 2582).

3. Results and Discussion

Figure 1. Question 1 Figure 2. Question 2 Figure 3. Question 3

(Own editing using www.voyant.tools.org)

In Cyrrus tool there is a default “stop-word” list containing the most typical non-content words such as “the, and,

but, etc”. It was supplemented by other text-specific words of  little significance such as “however, some, most,

etc”. The remaining words are mainly (92%) nouns. Words clouds are to be interpreted with caution, because they

do not reflect collocations, co-occurrences or possible meaning variations. the word “management” in Figure 1 is a

typical example as it can mean the board of  leaders or the set of  processes. However, some preliminary guesses can

be made about these three qualitative data sets. The first question concerned the daily tasks of  the SM employees. It
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is apparent that “contact” “partners” and “management” are the most frequent terms. It suggests a typical daily

work schedule of  SM employees. As there were considerably more marketing department respondents than sales

ones, it is not surprising that the term “marketing” is the most used in the answers to the first and the second

question. As the first two questions were about the work done by SM employees, it is not hard to explain the

considerable overlap between the word clouds in Figures 1 and 2. The third question aimed to gauge how the

respondents thought the cooperation between SM was actually realised. The frequency of  words “meetings, regular,

common” signal the importance of  face-to-face contact and sharing. It is interesting that sales and marketing

appear with equal weight suggesting a possible drive to reach balance between them. It is also telling that the terms

“organisation”, “goals” and “company” appear with considerable weight for the first time. The underlying cause

might be the realisation by both departments of  the necessity of  harmonising the SMI to foster organisational

goals and benefit the company as a whole. Figure 4 shows some of  the strongest correlations between words in the

answers given to Question 3.

Obviously strong correlations can signal collocation of  the pairs of  words. In the above picture “regular” and

“meetings” are collocated in the form of  “regular meetings” in most segments (It was checked with the Collocates

tool). Not all, because in that case the correlation would be one. The same applies to “weekly” and “meeting”,

“telephone” and “conference” and meetings (regular, weekly) seem to be a crucial factor in the optimisation of  the

SMI.  Looking at  the correlating pairs  of  words it  seems apparent  that  the strongest  correlations are present

between words that refer to some form of  communication (meetings, conference, communication, telephone). 

Figure 5. shows three topics variations of  the answers given to Question 3. It has to be noted that the LDA

algorithm randomly assigns words (number can be set) to topics (number can be set) when it is started. Thus, each

time the algorithm is run there will be slight differences in the results. Besides setting the number of  topics and the

number of  words per topic to model the text on it is also possible to set the number of  iterations for the algorithm.

The  default  is  50,  but  the  present  results  were  obtained  after  200  iterations.  The  more  iterations  are  run,

theoretically, the more accurate the topics will reflect clusters in the text.

Figure 4. Correlations of  words in the answers given to Question 3 (Own editing using www.voyant.tools.org)

Figure 5. Topics variations from the answers to Question 3 (Own editing using www.voyant.tools.org)
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Each seven topics in Figure 5 contain all the words in the corpus, but only the top seven words are displayed.

The order of  the words is important. The first words in each topic contribute more to the topic than the other

words,  thus the seven words in each topics demonstrates  an order of  importance as well.  There are some

inferences that can be made from these topics. Both iterations yielded topics in which “meetings” appear as the

organizing force of  the topic. In the first iteration (on the left) it appears twice in first position. As the question

was  about  how  SM  cooperation  is  realised  and  managed,  it  seems  that  common  meetings  for  the  two

departments play an important role in optimising SMI. The fact that the word “cooperation” occurs in both

topics sets in  first  position is  probably  attributable to the  main focus of  the question being the nature of

cooperation between SM. The term “marketing” is  in first  position in both versions but  “sales” is  in first

position  in  only  one of  them. This  is  a  typical  case  to  demonstrate  why exercising caution with  results  is

warranted. At first glance this occurrence pattern of  “marketing” and “sales” might suggest that marketing is

somewhat more important in these companies than sales. However, the numbers of  respondents in the sample

were considerable higher from the marketing departments than from sales, which might be the real cause of  this

occurrence pattern. The term “company” also appears in both sets as being the most important word of  the

topic  together  with  other  words  such as  “organization” or  “goals”.  It  might  suggest  that  the  harmonious

relationship between SM significantly affects the company at large. At the same time, there might be a reverse

interpretation, namely, the company and its goals have a significant influence on the relationship between SM. In

order to come to valid conclusion a close consultation of  the answers is unavoidable. Having consulted the

answers, it is clear that both interpretations hold true at the same time. It has to be noted that the 124 answers to

Question 3 represent a relatively small corpus, which can be read through in a relatively short time. In a different

sampling scenario where there are thousands of  answers to open-ended questions the topics tool of  Voyant

might become a much “heavier weapon” in the hand of  the researcher. 

The scatter plots (Figures 6, 7, 8) were created by the t-SNE tool. 

The tf-idf  (term frequency-inverse document frequency) weighting method was used for the analysis. It is an

option that can be set by the analyst besides the other two methods “raw frequencies” and “relative frequencies”.

It is a method that determines how important a word is to a document and is largely dependent on how often a

word appears in a document. As there is only one document in our case, the algorithm divides the corpus into 10

segments and examines word frequencies in each segment. As it was noted earlier t-NSE is an award-winning

method and the cluster plots that it is able to create can encourage jumping to conclusions that might not at all

be sound. There are several reasons for this. The two that we consider the most important is discussed here.

These two factors are the level of  perplexity and the number of  iterations. Figures 6, 7 and 8 show the results of

the t-SNE algorithm run at three different levels (5, 50, 100) of  perplexity. All three scatter plots bellow (Figures

6,  7,  8)  were obtained after  5000 iterations.  In order  to test  how the model  changes  at  different  levels  of

perplexity it was necessary to keep the number of  iterations constant. Looking at the three scatter plots it is

apparent that perplexity level 50 yielded the most convergent result, that is, the various clusters are the clearest in

Figure 7. Perplexity levels 5 and 100 (minimum and maximum levels respectively) resulted in less convergent

clusters. It seems obvious that the level of  optimal perplexity is largely dependent on the data set. There is no

fixed level that can be suggested to be used in general and beginner users of  t-SNE in Voyant might need

considerable time to get the best results (Wattenberg, Viégas & Johnson, 2016). Attempts have already been

made to automate the selection of  the perplexity parameter and thus make analysis much easier for the novice

user. (Cao & Wang, 2017).

The above results gained with altering the level of  perplexity seem to support the claim of  the inventors of  the

t-SNE method who said that the t-SNE method is fairly robust to changes in the level of  perplexity (Van Der

Maaten & Hinton, 2008; Van Der Maaten, 2014). There are no dramatic differences between the models of  the

three different levels of  perplexity. 

The number of  iterations the tool will use to create the model can be set between 100-5000. If  we take a look at

Figures 9, 10, 11, 12 (100, 600, 900, 5000 iterations respectively) the same can be stated as about the level of

perplexity earlier. There is no linear relationship between.
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Figure 6. t-SNE generated clusters for the answers to Question 3 at perplexity level 5 

(Own editing using www.voyant.tools.org)

Figure 7. t-SNE generated clusters for the answers to Question 3 at perplexity level 50 

(Own editing using www.voyant.tools.org)

Figure 8. t-SNE generated clusters for the answers to Question 3 at perplexity level 100 

(Own editing using www.voyant.tools.org)
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Figure 9. t-SNE generated clusters for the answers to Question 3, 100 iterations 

(Own editing using www.voyant.tools.org)

Figure 10. t-SNE generated clusters for the answers to Question 3, 600 iterations 

(Own editing using www.voyant.tools.org)

Figure 11. t-SNE generated clusters for the answers to Question 3, 900 iterations 

(Own editing using www.voyant.tools.org)
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Figure 12. t-SNE generated clusters for the answers to Question 3, 5000 iterations 

(Own editing using www.voyant.tools.org)

the number of  iterations and the convergence of  the model, even though as the number of  data points grow (bigger

data sets) the number of  iterations required for the model to converge will grow too (Linderman & Steinerberger,

2017). 900 iterations yielded the best result with the clusters being the tightest (Figure 11). This model version is even

better than the model in Figure 7 with the same level of  perplexity but a much higher number of  iterations (5000).

The colours reflect data points (words in this case) that belong to the same cluster, while the size of  the points is

proportionate to the relative frequency of  words. SM seems to be strongly related, which might be attributable to the

nature of  the question. There is a clearly detectable cluster that is about communication. Regular meetings and

appropriate communication in general can significantly improve cooperation (Madhani, 2016) and reduces conflict

(Snyder, McKelvey & Sutton, 2016). Communication and information sharing between SM is considered to be one of

the keys to an effective management of  the SMI (Biemans, Brenčič & Malshe, 2010). In Figure 11 there is a separate

cluster that contains the most important information sharing methods in the two departments (telephone, email).

Points marked in lilac signal the importance of  joint tasks and work as well as cooperation between SM departments.

It is interesting that there is a “corporate level” cluster with terms such as “company”, “organisation”, “goals” which

highlights the significance of  how corporate goals and vision can influence the efficiency of  SM. It also supports

earlier literature emphasizing corporate vision (Kumar, 2016; Groysberg, Lee, Price & Cheng, 2018). 

These tools might be valuable for professional and academic purposes for different reasons. In academic settings,

where time constraints are not as pressing as in the business world they might serve as means of  preliminary

analysis prior to more conservative and traditional methods of  qualitative data analysis such as directed text analysis

or grounded theory techniques. In business settings where being time-effective directly impacts cost-effectiveness

these tools can be invaluable to save time and energy. It is especially true in the case of  large data sets such as

thousands of  pages of  comments from a corporate page. The tools that this paper presented vary in degree of

sophistication and explanatory power.  The Cyrrus tool or  the Correlation tool can reveal  limited interactions

whithin the answers. The Topics tool provides a higher level of  intimacy with the text as besides frequencies

ranking is also taken into account. The t-SNE tool provides the highest level of  sophistication and the deepest

analytical possibilities revealing how groups of  terms are related to each other. 

4. Conclusions

As Soltani, Ahmed, Ying-Liao and Anosike (2014) point out qualitative methodologies in oparations management

has been gaining significance in recent decades especially for fileds like interfacing. One such interface challenge is

the SM interface which the present paper uses as an example fpr the demonstration of  the possibilities Voyant

Tools can offer. Qualitative methods resulting in large textual data sets in the operations management paradigm

include in-depth interviews,  anthropological  studies,  participant  observations,  case studies or etnographies.  As
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operations management is increasingly dependent on Big Data analytics (Choi, Wallace & Wang, 2018; Guha &

Kumar, 2018) like data mining, Voyant Tools can serve as useful and valuable supplementary technique. Integrating

qualitative  and  quantitative  analysis  techniques  in  the  analysis  of  qualitative  data  can  result  in  a  more  solid

foundation to build research conclusions on. Voyant-Tools offers an impressive array of  tools to visualise the

results  of  quantitatively  analysed  qualitative  data.  Visualisation  tools  might  tempt  the  researcher  to  read

suppositions into the data that do not reflect the true relationships of  meaning units existing in the data set. As

textual data is a coherent system of  meaning units, care must be taken with interpreting results especially because

there is a danger that quantitative analysis of  qualitative data necessarily leads to considerable loss of  information.

However, these quantitative methods can be invaluable tools of  preliminary analysis and hypothesis adjustment.

Their results should always be checked against the traditional content analysis techniques which are more sensitive

to the complex structure of  semantic units. These quantitative techniques are to help early exploration of  textual

data. As there is virtually no earlier literature on how quantitative data visualisation techniques can be used in

marketing  research,  especially  in  the  analysis  of  the  SMI,  utilisation  possibilities  of  Voyant  Tools  and  other

quantitative data analysis and visualisation software for handling qualitative data is definitely a worthwhile area for

further research. 
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