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Chronic lung disease remains the primary cause of mortality in cystic fibrosis (CF).

Growing evidence suggests respiratory viral infections are often more severe in CF

compared to healthy peers and contributes to pulmonary exacerbations (PEx) and

deterioration of lung function. Rhinovirus is the most prevalent respiratory virus detected,

particularly during exacerbations in children with CF <5 years old. However, even though

rhinoviral infections are likely to be one of the factors initiating the onset of CF lung

disease, there is no effective targeted treatment. A better understanding of the innate

immune responses by CF airway epithelial cells, the primary site of infection for viruses,

is needed to identify why viral infections are more severe in CF. The aim of this review

is to present the clinical impact of virus infection in both young children and adults with

CF, focusing on rhinovirus infection. Previous in vitro and in vivo investigations looking at

the mechanisms behind virus infection will also be summarized. The review will finish on

the potential of transcriptomics to elucidate the host-pathogen responses by CF airway

cells to viral infection and identify novel therapeutic targets.

Keywords: cystic fibrosis, airway epithelium, rhinovirus, innate immune response, therapy, transcriptomic

RESPIRATORY INFECTIONS IN THE CYSTIC FIBROSIS LUNG

Chronic obstructive lung disease remains the primary cause of mortality and morbidity in CF
(Cutting, 2015). The defective function of the Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) gene initiates a lifelong cycle of neutrophilic inflammation, progressive
bronchiectasis, mucus obstruction and recurrent microbial infection of the CF airway. These
processes typically begin in the first years of life and lead to eventual lung failure during early
adulthood. The CF airway environment is vulnerable to colonization by particular bacterial
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and fungi species including Haemophilus influenzae,
Staphylococcus aureus, Aspergillus fumigatus, and Pseudomonas
aeruginosa (Gangell et al., 2011). Infection by these common
pathogens typically trigger neutrophilic responses, however,
these fail to eradicate the infection and lead to a sustained release
of oxidants and proteases, particularly neutrophil elastase (NE)
(Hartl et al., 2007; Painter et al., 2008). This neutrophil-based
inflammation has been associated with the progression of
structural abnormalities specifically bronchiectasis and air
trapping, from as early as 3 months of age (Mott et al., 2012; Sly
et al., 2013).

In addition to colonization by bacteria and fungi, the CF
airway will be infected with respiratory viruses and viral
infections are a major cause of PEx in the pediatric CF population
(Goffard et al., 2014; Dijkema et al., 2016). The significance of
viral infections in CF has been identified by the advancements
in molecular diagnostic technologies to detect virus (Wat, 2015).
The prevalence of respiratory viruses during CF PEx can vary
from 5% up to 60% (Billard et al., 2017) and include; rhinovirus
(RV), influenza A and B, respiratory syncytial virus (RSV),
parainfluenza (PIV; Type 1–4), metapneumovirus, coronavirus
and adenovirus (Waters and Ratjen, 2015; Flight and Jones,
2017). Earlier work suggested influenza viruses (A & B) (Pribble
et al., 1990; Hiatt et al., 1999) and RSV (Abman et al., 1991;
Armstrong et al., 1998) were the major cause of PEx in CF.
However, studies utilizing more sensitive virological methods
in the last 5 years have comprehensively established RV as the
most common respiratory virus detected in CF airway (Burns
et al., 2012; Wark et al., 2012; Kieninger et al., 2013; Etherington
et al., 2014; Dijkema et al., 2016; Stelzer-Braid et al., 2017).
Despite numerous studies into the virology of CF airways, the
mechanistic link between virus infection, airway inflammation
and structural lung disease remains largely unknown. Further
investigation into the interaction of these disease components is
warranted.

IMPACT OF RV INFECTION IN CF LUNG

A member of the Picornaviridae family within the Enterovirus
genus, RV features a positive sense single stranded RNA genome
∼7.2 kb in length. The airway epithelium is the primary site
of RV infection and replication (Vareille et al., 2011). As
reviewed by Palmenberg and Gern (2015), 11 viral proteins form
the non-enveloped icosahedral structure. The external capsid
proteins comprise of VP1, VP2, VP3, while VP4 is located
between the interface of capsid protein and RNA genome.
These capsid proteins feature a high degree of heterogeneity
and consequently the significant antigenic diversity among RV
has precluded vaccine development (Glanville and Johnston,
2015; Lewis-Rogers et al., 2017). Currently, there are more than
150 serotypes of RV, which have been classified into 3 species;
RV-A, RV-B, and RV-C. Within RV-A and RV-B, strains are
clustered into major and minor RV groups based upon their
specificity for the intracellular adhesion molecule (ICAM-1)
receptor or low-density lipoprotein receptor (LDLR), respectively
(Palmenberg, 2017). Recently, the cell receptor for RV-C species
has been putatively identified as cadherin related family member

3 (CDHR3), whose expression is largely confined to ciliated cells
(Bochkov et al., 2015; Griggs et al., 2017; Palmenberg, 2017).

Rhinovirus infections occur all year round and children
experience on average six to eight episodes per year (Worrall,
2011). Although the “common cold” is largely self-limiting, it still
poses a burden on the activity and productivity of the general
population (Stein, 2017). Additionally, RV infection has a more
pronounced effect on vulnerable individuals such as children
with CF, as summarized in Table 1. These include increased PEx
(Asner et al., 2012), more severe respiratory symptoms (Burns
et al., 2012; Wark et al., 2012), greater inflammation (Kieninger
et al., 2013), reduced quality of life and hospitalization and
prolonged antibiotic treatment (Smyth et al., 1995). Prevalence
and symptoms of RV infection in patients with CF can vary
between cohorts (reviewed by Billard et al., 2017), with some
reporting similar rates of RV detection in both children with
and without CF (de Almeida et al., 2010; Esposito et al., 2014),
while others have reported significant correlations with disease
progression in those with CF (Hiatt et al., 1999; van Ewijk et al.,
2005). Other features such as age preference, RV serotype, viral
load, impact on lung function were assessed in several studies.
Susceptibility to particular RV serotype in children with CF
requires further investigation due to inconsistent observations
(de Almeida et al., 2010; Shah et al., 2015). RV load has been
observed to be significantly higher in children with CF (>100
times) when compared to healthy controls and children with
asthma (>10 times; Kieninger et al., 2013). This study also
illustrated that viral load was negatively correlated to pulmonary
function (Kieninger et al., 2013). Cousin et al. (2016) observed
that RV-induced PEx in children with CF resulted in failure
of pulmonary function recovery for up to 6 weeks. An age
preference for RV-associated CF exacerbations has also been
reported for young children <5 years old (Stelzer-Braid et al.,
2017). However, several other studies have detected a higher
frequency of RV in upper and lower airway of adults with CF
via screening of sputum and throat swabs (Etherington et al.,
2014; Goffard et al., 2014). Adults with CF who have viral
associated PEx have been shown to have worse lung function
and require more days of intravenous antibiotic treatment (Flight
et al., 2014; Goffard et al., 2014). Others have also reported
that adult patients who are less responsive to treatment are re-
admitted for a subsequent exacerbation within a shorter time
frame (Etherington et al., 2014). Finally, Flight et al. (2014)
found that RV infection in adults is accompanied by an increased
risk of PEx, prolonged antibiotic prescription, higher respiratory
symptom scores and heightened level of C-reactive protein. As
RV has a large clinical impact on those with CF, it is critical to
elucidate how this virus alters host antiviral and inflammatory
responses.

AIRWAY EPITHELIUM AND RV INFECTION
IN CF

A pseudostratified epithelium lines the surface of the lung
(trachea, primary bronchi, secondary bronchi, tertiary bronchi,
and bronchioles) and is composed of several cell types including
ciliated cells, basal cells, secretory cells and goblet cells. These
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airway epithelial cells form the first point of contact with inhaled
environmental insults, including respiratory viruses. To provide
a physical barrier against particulates/pathogens from entering
the lung tissue, numerous cell-cell connections are formed
including tight junctions, adherent junctions, gap junctions, and
desmosomes (Whitsett and Alenghat, 2015). To clear inhaled
particles/pathogens, intraepithelial goblet cells, and submucosal
glands mucous cells secret mucins. These large glycoproteins
bind matter including microbes and allows effective cough
clearance by the mucociliary escalator (Foster, 2015). Mucins are
transported from the bronchioles to the trachea via beating cilia,
expressed by airway epithelial cells of the luminal airway surface
(Ma et al., 2018).

Perhaps more significantly for viral pathogens, the airway
epithelium plays a crucial role in innate immunity. It has been
suggested that the inflammatory responses induced by airway
epithelial cells give rise to associated clinical symptoms (Jacobs
et al., 2013). RVs can disrupt epithelial tight junctions including
zona occludens 1 (ZO-1) protein by stimulating the production
of reactive oxygen species (ROS) during viral replication (Unger
et al., 2014). Work utilizing airway epithelial cells in vitro have
shown reduced expression of other tight junction proteins, loss
of epithelial integrity, disruption of extracellular matrix and
subepithelial fibrosis and induction of proangiogenic molecules
which enhance angiogenesis and airway remodeling (Bossios
et al., 2005; Leigh et al., 2008; Bochkov et al., 2010; Tacon et al.,
2010; Yeo and Jang, 2010; Looi et al., 2018).

The uptake of RV via clathrin-dependent or -independent
endocytosis or through micropinocytosis occurs when RV binds
to its specific receptors. Upon binding and in a low-pH
environment, uncoating of RVs occurs and the virus undergoes
conformational changes. The loss of the protein capsid protein
VP4, and the externalization of the hydrophobic N-terminal of
VP1, facilitates RVs to cross the host cell membrane (Jacobs
et al., 2013; Blaas and Fuchs, 2016). Following viral uncoating
and membrane rupture, RV “pathogen-associated molecular
patterns” (PAMP) are recognized by the host cell via interaction
with pattern recognition receptors (PRRs) including; Toll like
receptors (TLRs), C-type lectin receptors (CLRs), retinoic acid-
inducible gene 1 (RIG-I)-like receptors (RLRs), and nucleotide-
binding oligomerization domain-like receptors (NLRs). The
signaling pathways induced by TLRs and RLRs are typically
host defense antiviral pathways as well as the production of
antiviral substances, namely IFNs, B-defensins (Proud et al.,
2004), and nitric oxide (Sanders et al., 1998). The airway
epithelium also responds to RV infection by activating pro-
inflammatory signaling pathways which trigger the release of
chemokines and cytokines including IL-8, RANTES/CCL5, and
granulocyte-macropahge colony-stimulating factor (GM-CSF),
that in turn recruit neutrophils, esoinophils, natural killer cells
(NK cells), and macrophages to the infected tissue. IL-6 has
an important role in innate immune responses induced by RV
infection and IL-6 production has been shown to be inversely
correlated to cold symptoms scores and disease severity (Doyle
et al., 2010). IL-15 exerts important antiviral and cytotoxic effects
and is involved in the activation, differentiation, survival and
recruitment of NK cells and CD8+ T cells (Jayaraman et al.,

2014). IL-8 has been associated with RV infection as well as cold
symptom scores (Gern et al., 2002). Furthermore, it has also been
associated with neutrophilic infiltration in sputum (Gern et al.,
2000). Taken together, it is evident that innate immune signaling
induced by the airway epithelium is essential for effective antiviral
responses.

However, in many chronic airway diseases including CF,
antiviral responses are defective. Due to the pre-existing genetic
defect, normal functions of the CF airway epithelium are often
disrupted. As the primary site for virus entry and replication
during viral infection, understanding the consequence that lack
of CFTR function has on pathophysiology during virus infection
is critical for effective disease management. Relevant in vitro
experimental studies investigating RV infection in CF epithelium
have been summarized in Table 2. Most studies performed to
date assessed cells obtained from adult CF cohorts who had
significant disease and structural lung damage. These studies
report similar levels of interferon production post infection
despite higher viral load being detected (Chattoraj et al., 2011;
Dauletbaev et al., 2015). Studying cells from pediatric CF cohorts
may generate more relevant data and potentially reveal new
insights into early life RV infections that could be exploited
therapeutically. Also important is the level of pro-inflammatory
cytokines produced by CF epithelium following RV infection.
Many studies have reported similar level of IL-8, IL-6, type
I, and III IFN production, while others reported higher level
of production dependent on virus strain and infectious titer
(Table 2). These contradictory observations may be due in part
to the age of patients involved, disease severity, RV strain,
dose, and length of infection. Most studies to date including
ours have focused on specific host response targets at the
gene or protein level which might not reflect the global innate
immune changes during RV infection. The translation of such
a targeted approach would be the identification of a single
molecule to address a single pathway and ultimately target one
downstream effect such as the production of a single cytokine.
However, knowing that the interaction of RV and the airway
is multifaceted, an alternative approach that addresses this
complexity is needed.

PAST AND CURRENT THERAPIES

To date, there have been no studies performed that have focused
on potential treatments for RV infection in CF individuals.
As RV continues to be the most prevalently detected virus in
the all individuals including CF airway, additional evidence is
needed to specify its connection with the existing factors such
as lack of CFTR and airway inflammation through molecular
intermediates and cellular signaling pathways. Common anti-
inflammatories including oral corticosteroids and high-dose
ibuprofen are unsuitable for treatment in infants and preschool
children due to their long-term side effects (Lai et al., 2000;
Fennell et al., 2007). Azithromycin may have some interesting
antiviral properties, specifically in reducing RV replication via
amplification of the IFN pathway-mediated antiviral responses
(Schögler et al., 2014). Nevertheless, clinical studies are necessary
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to elucidate the clinical impact of azithromycin against RV-
induced PEx in patients with CF. Vaccination is an important
part of CF clinical care, however vaccine development for RV
has been rather challenging due to the wide range of antigenic
diversity of more than 150 serotypes of RV across three different
strains. Technical difficulties in producing sufficient amounts of
antigen against multiple RV serotypes using animal models (as
reviewed in Del Vecchio et al., 2015) also remains a challenge
and as result, the development of a long-lasting RV vaccine
has not been successful. This has been further compounded by
the lack of a suitable model (other than human) that is fully
permissive to RV infection as well as insufficient clinical data to
identify and prioritize dominant RV serotypes. In addition, no
suitable animal models for CF exhibit complete spectrum of CF
phenotype besides CF pig and ferret which are strictly limited for
research use (as reviewed in Rosen et al., 2018).

Since vaccination is unavailable, other approaches have been
explored in healthy and disease cohorts other than CF. An early
approach by Turner et al. (1999) aimed to prevent HRV binding
to its receptors via administration of inhaled recombinant soluble
ICAM-1 (Tremacamra). Although the reduction in symptom
severity and viral shedding were promising, the high costs and
dosing regimen recommended (6 times daily) made translation
of this therapy into the clinical setting prohibitive (Turner
et al., 1999). Targeting viral replication has perhaps been the
highest priority in past therapeutic development, where capsid-
binding drugs bind to the hydrophobic “pocket” of the viral
capsid (reviewed in McKinlay et al., 1992). Pleconaril and
Pirodavir were discontinued due to unforeseen side effects and
drug efficacy. Reformulated Pleconaril and Vapendavir have
completed clinical trials although results have yet to be published
[ClinicalTrials.gov (NCT00394914&NCT01175226)]. A recently
discovered compound IMP-1088 offers more promise (Mousnier
et al., 2018). This molecule was shown to inhibit human N-
myristoyltransferases NMT1 and NMT2, prevent virus assembly
and suppress RV replication and infection across various RV
strains without inducing cytotoxicity. However, most of this work
was demonstrated using cell lines or adult primary cells and
further assessment of IMP-1088 on primary cells from young
children with CF is necessary. The outcome of such studies
would be informative as to whether this compound exerts similar
efficacy across all cohorts, as more than 30 polymorphic DNA
loci associated with host variation in gene expression called
responsereQTLs to rhinovirus infection has been previously
reported (Çalişkan et al., 2015).

Alternatively, the roles of type I IFN administration in
enhancing the primary antiviral signaling pathway of innate
immunity have also been assessed. Early studies involving the
prophylactic administration of IFN-α2 or IFN-β were found
to demonstrate a reduction in number of RV-induced episodes
but no difference in symptom severity or duration (Farr et al.,
1984; Hayden et al., 1986; Monto et al., 1986; Sperber et al.,
1988). Multiple side effects from high dose administration
of IFNs, including nasal bleeding, transient leukopenia and
sore throat have also been reported (Sperber et al., 1988).
A more recent study assessed low dose IFN-β administration
and although antiviral activity was enhanced, it did not aid

in reducing cold symptoms of viral induced exacerbations
asthma cohorts (Djukanović et al., 2014). Ruuskanen et al.
(2014) also suggested that short-term subcutaneous pegylated
IFN-α in combination with oral ribavirin treatment rapidly
decreased RV RNA in recurrent or chronic rhinovirus infection
in immunocompromised patients.

Alternative therapies have not been thoroughly assessed in
CF cohorts. While ongoing clinical trials are comprehensive
in evaluating the efficacy of CFTR potentiators and correctors
for application on mutation specific patients, improvements
in infection and inflammation therapies would be highly
desirable for all individuals with CF. Indeed, Ivacaftor has been
found to reduce sputum P. aeruginosa density (>60-fold) and
airway inflammation significantly (Hisert et al., 2017). Whether
improvements in CFTR folding or function will enhance antiviral
responses in children with CF warrant further investigation.
Multi-target drug design also holds potential and could be
employed to exert both antiviral and anti-inflammation effects.
Understanding how host anti-viral and inflammatory responses
differ in CF airways, particularly young children, is critical in
facilitating the development of new therapeutic treatments that
can limit CF disease progression.

NEW THERAPEUTIC FOR RV INFECTIONS

Current therapies directed at RV are mainly focusing on specific
viral proteins or inhibition of viral cycle. However, some of
these drugs are not effective on drug-resistant viral strains. The
current review proposes an alternative approach that focuses on
host cellular pathways and factors. To expedite novel therapeutic
strategies, investigation on how cellular signaling pathways
can be altered by RV infection and how these alterations
can be manipulated by new compounds or drugs are crucial
for new therapeutic development. The current field of system
biology and adoption of high-throughput technologies through
transcriptomics not only facilitates characterization of the host-
pathogen interaction in a more comprehensive manner, but
also aids in understanding how developed and repurposed
compounds exert their antiviral properties on RV infection in CF
patients.

Knowing viruses can manipulate the host signaling processes
and thus altering the host-pathogens interactions (Christiaansen
et al., 2015), evaluating the global changes in gene expression
during infection via employing gene/transcriptomics could
elucidate crucial messages for therapeutic target identification.
Transcriptomics is used to study the total RNA output of a cell.
Early transcriptomic analyses were performed using microarrays
which have customized probes, while current transcriptomic
analyses rely on high-throughput RNA sequencing which capture
global transcriptome (Mortazavi et al., 2008). These techniques
allow analysis for “all molecules” regulated at the gene level. By
illustrating their interaction within the cells and the complexities
of host-pathogen interactions, enhancing or diminishing specific
molecules as well as precise characterization of specific targets
can be a more promising therapeutic approach (as reviewed in
Cesur and Durmuş, 2018). Generally, computational approaches
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are used to organize or manage these data sets and interpret
the biological inference, including network analysis (such
as InnateDB, NetworkAnlayst, and Cytoscape) and pathway
analysis (such as Reactome, Kegg Pathway, and Pantherdb).

In the context of host-viral interaction, transcriptomic
analysis has been successfully applied to identify the

uncharacterized isoforms from wild-type dengue infected host
RNA from human hepatoma cells. The authors demonstrated
that infection with wild-type dengue virus elicited a different host
response compared to infection with a vaccine sensitive strain,
highlighting the potential of strain-specific responses (Sessions
et al., 2013). Transcriptional profiling of blood specimens from

FIGURE 1 | Proposed workflow using transcriptomics to elucidate future treatment for cold virus infection in CF.
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symptomatic and asymptomatic patients with RV infection
have revealed that individuals with active infection demonstrate
a robust transcriptional signature of immune-related genes
(Heinonen et al., 2016). In other disease settings including
asthma and allergic rhinitis, transcriptomic responses of human
respiratory cells to surrogate RV infection [Poly(I:C) stimulation]
have potentially identified disease-specific signatures (Wagener
et al., 2014). Therefore, it is imperative to assess the global
transcript expression and investigate the host-viral interaction,
given that CF is a defined genetic disease condition and live RV
infection can truly represent an active infection which might
involve modification of the host response. This approach is not
only applied to protein-coding RNA but also provide insights
to critical non-coding RNA such as short non-coding RNAs
(miRNAs) and long non-coding RNAs (lncRNAs) which are
key regulators for modulation of gene expression (Delpu et al.,
2016).

Mapping genes on a complete network allows identification
of key hub genes and central genes with high connectivity
which exert large effects on signal transduction. Molecular
network analysis also allows enrichment of functional modules
to identify which area group of genes are cooperatively working
together to perform specific biological function and could be
associated with disease setting (reviewed by Csermely et al.,
2013). Some examples include, the identification of 16 strongly
connected hub genes as potential antifungal drug targets against
Candida albicans (Altwasser et al., 2012), the identification of
new key genes for type 1 diabetes (Safari-Alighiarloo et al.,
2016) as well as certain cancers (Zaman et al., 2013; Jin et al.,
2015). Moreover, omics data has discovered disease modules
and revealed substantial inter-patient heterogeneity, highlighting
the potential importance of customize treatments to conditions.
Numerous algorithms have been introduced to identify disease
modules, including ModuleDiscoverer that identified a rodent
model of non-alcoholic steatohepatitis (NASH), as well as a
severe form of non-alcoholic fatty liver disease (NAFLD) (Vlaic
et al., 2018). To maximize the efficacy and treatment outcome,
patient individual characteristics, including their genetic profile
needs to be considered. Although using biological network
analysis can expedite the drug discovery process, the timeline
from target identification to clinic application can still be
lengthy.

An alternative strategy is to explore drug repurposing.
Integrated analysis of disease-gene profiles, pathway
analysis, and mining of FDA approved drug databases
can be carried out to identify correlations of common
pathways with certain compounds or molecules at the
network level. Successful examples of drug repurposing
based on transcriptomic analyses include the identification
of topiramate for the treatment of inflammatory bowel
disease (IBD) and cimetidine for the treatment of lung
adenocarcinoma (Dudley et al., 2011; Sirota et al., 2011).
Using a large-scale expression signature, Lee et al. (2016)
have also identified that ivermectin, trifluridine, astemizole,
amlodipine, maprotiline, apomorphine, mometasone, and
nortriptyline show significant anti-proliferative activity against
glioblastoma. With the recent establishment of ImmPort, a

data repository that promotes research dataset repurposing
(Bhattacharya et al., 2018), the identification of novel targets
and repurposed drugs that target these has been accelerated
further. Currently, there is paucity of data in CF-related RV-
therapy given its impact on CF lung disease and thus new
interventions are urgently required. The strategy to repurpose
already approved drugs could advance antiviral therapies by
reducing cost and improving and quality of life for affected
individuals.

CONCLUSION

RV infection remains a significant cause of pulmonary
exacerbation in CF. There has been little investigation into
antiviral therapies in CF especially in young children who
are more susceptible to these types of infection. However,
modern virological procedures and omic technologies now
facilitate more in-depth studies of the genes and molecular
pathways involved in aberrant CF antiviral responses to RV.
We propose transcriptomics could be leveraged to elucidate
future therapeutic intervention for treatment of rhinovirus
infection in CF. For example, a global gene expression
profile of bronchial epithelial cells from patients with CF,
under baseline conditions and after RV infection will be
profiled following next-generation RNA sequencing (Figure 1).
Sequences can be aligned and mapped to already available
reference genomes to identify differentially expressed genes
pre- and post-infection. The identified genes could then be
annotated using online repositories or libraries to investigate
their enriched functional biological pathways. Moreover,
networks or subnetworks can then be constructed by mapping
identified genes to explore their relationship using curated
protein-protein interaction databases. Therapeutic opportunities
can also identify by exploring protein-protein interaction and
protein-transcription factor, protein-drug interaction as well as
chemical interaction databases. Finally, monolayer cell cultures
which have previously been found to be more susceptible for
RV infection (Bochkov et al., 2010) represent an oversimplified
model for the multicellular interactions of epithelial (ciliated
cells, goblet cells) and immune cells (dendritic cells, neutrophils).
Indeed, functional validation utilizing human in vitro 3D
airway models (Boda et al., 2018) will be needed to further
elucidate to host-pathogen interactions. The emergence of single
cell transcriptomics could be used to compliment 3D airway
models and accelerate progress in this new era of scientific
research. Overall, the advancement of these promising tools
should aid in expediting new therapeutic intervention in this
sphere.
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