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Abstract

The random behavior of financial quantities is commonly modeled by using
stochastic differential equations (SDEs), which are continuous-time stochas-
tic processes. Depending on the complexity of the model, numerical methods
are widely adopted to solve the SDEs. In particular, the Euler method is
frequently employed to simulate the time series of the underlying asset price,
based on discretizing the life of the financial quantity into reasonably small
time steps and updating the asset price at each step in line with a financial
model. Among other alternatives, Monte Carlo simulation is probably the
most suitable one for pricing path-dependent options and the only one in the
case of higher dimensions, where a sufficiently large number of sample paths
are generated to obtain, for example, the expected payoff of an option.

Among others, options are important and widely-used financial deriva-
tives. In addition to the standard call and put options that are traded on
exchanges, a number of exotic options are commonly traded in the over-
the-counter market. Among them, Asian options are popular hedging in-
struments, the most favorites in the commodity market, and appropriate in
executive compensation plans due to the reduced price and less exposition
to sudden crashes or price hike. They are hence harder to be manipulated
than the standard options.

Since the creation of Asian options, substantial studies have been con-
ducted to price them accurately while no significant efforts have been made
to improve the benefits that Asian options offer. In this thesis, a new type
of path-dependent options, referred to as the average-Asian options, are in-
troduced to further reduce the volatility of the underlying price risk and
minimize the option manipulation threat. Euler method is then adopted
to discretize the associated SDE, based on which the options are priced by
using Monte Carlo simulation method for both the cases when volatility is
constant and when it is stochastic during the life of the option. In the lat-
ter case, the option prices are calculated by applying the newly proposed
Poisson-Diffusion stochastic volatility model.

It is indicated that the average-Asian options are able to reduce the price
volatility and the resulting option price is consistently more stable in the
practical situations. It is shown by numerical results that the average-Asian
option price is uniformly less than the standard option price as well as the
Asian option price when the options are granted in-the-money or at-the-
money. On average, the average-Asian option is about 49.3% and 5.4%
cheaper than the standard and Asian options, respectively, when granted at-
the-money. In addition, the option is less sensitive than the corresponding
Asian option, both at the front-end and at the back-end price manipulation.

viii



Chapter 1

Introduction

Unlike a spot contract, which is an agreement to buy or sell an asset im-
mediately, a forward (or forward contract) is an agreement to buy or sell
an asset at a certain future time for an agreed price. The fundamental dif-
ference between forward and futures contracts is that, forwards are traded
in the over-the-counter market, whereas, futures are traded on an exchange.
The holder of these two derivatives, futures and forward, is obliged to trade
the derivatives at the maturity of the contract irrespective of whether the
asset price has risen or fallen during the life of the contract. On the other
hand, an option grants the holder the right to buy or sell the underlying asset
at a specific time in the future for an agreed price. Because of this added
feature, a right instead of an obligation, options markets have been tremen-
dously successful. They are popularly used by different types of traders for
the purposes of hedging, speculating, and arbitraging.

For companies that require frequent exchange of currencies every year,
it would be preferred to avoid the extra risk imposed by the variability in
the currency exchange rates. This is where financial derivatives, particularly
options are introduced. For such derivatives, sophisticated mathematics is
usually applied to price them so that no arbitrage opportunity exists. The
first organized option exchange market in the world, Chicago Board Options
Exchange (CBOE), started option trading in 1973, the year in which the
landmark Black-Scholes option pricing model was published. The model
then led to a boom in options trading and provided mathematical legitimacy
to the activities of the CBOE and other option markets around the world
(MacKenzie, 2008). At present, CBOE is the largest U.S. options exchange
with an annual trading volume of around 1.975 billion contracts in 2018
(CBOE, 2019).

In addition to the standard European and American call and put options
that are traded on exchanges, there are several exotic options which are
normally traded in the over-the-counter (OTC) market. They are created to
meet specific needs of a particular business or risk management, which makes
them more attractive (Hull, 2015). One typical example of such options is the
binary asset-or-nothing call option (Rubinstein & Reiner, 1991), which pays
the asset price if the underlying asset price ends up above the strike price
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and zero otherwise. Exotic options along with other financial derivatives are
gaining increasing importance and are traded nowadays in large quantities in
the OTC market (Kyprianou, Schoutens, & Wilmott, 2006), which is shown
to be much larger than the exchange-traded market (Hull, 2015).

The payoff from the standard European style option depends on the price
of the underlying at expiry. There are then chances that the option may be
manipulated or may be too expensive. In case that there is a potential to
manipulate the price of the underlier, or that some cheaper option is sought,
a popular alternative is the Asian option (Boyle & Emanuel, 1980), which
is also called the average option and was first successfully priced in 1987 by
David Spaughton and Mark Standish when they were in Tokyo, Japan, Asia
(Wilmott, 2007). The payoff of an Asian option is determined by the average
underlying price during the life of the option. In addition, the payoff structure
of an Asian option resembles that of the variable annuity (Bernard, Cui, &
Vanduffel, 2017), an insurance contract typically as a long-term investment
aimed at generating income for retirement.

1.1 Motivation

1.1.1 Stochastic Differential Equations

Financial quantities, which are the underlying of the options, change with
time randomly. The dynamics of these quantities are generally modeled
through stochastic differential equations (SDEs). In the case of models driven
by drifts and Brownian motions only, analytical solutions may exist. How-
ever, after the incorporation of jumps, in particular Lévy processes, analytical
solutions could be available for standard European options, while for pricing
exotic options, numerical methods are unavoidable (Cont & Tankov, 2004).
This results in finding numerical solutions as the only remedy to the prob-
lem. Both in academics and practice, most attention has then been focused
on discrete time approximation of SDEs.

1.1.2 Numerical Approximations

As a popular numerical approximation method to price options, Monte Carlo
simulation is an appropriate method for pricing path dependent financial
options (Hull, 2015). In particular, the complexity of the method grows
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only linearly with respect to number of stochastic variables (Cont & Tankov,
2004). Thus, the method is suitable for stochastic volatility models where in
addition to the asset price, volatility is also considered as a stochastic vari-
able. Besides, solving Lévy-driven SDEs using the Monte Carlo simulation
method is the only possible option in many applications, since in practice,
only little is known about the functionals of the underlying Lévy processes
(Papapantoleon, 2008).

As SDEs are continuous-time stochastic processes, the simulations of
these SDEs usually involve discrete time steps. The Euler scheme is a method
to discretize a continuous-time process into a discrete-time process. The
method involves discretizing the life T of a financial quantity into n time
steps and updating its value at each step using a financial model based on
an SDE. The option values can then be calculated using the Monte Carlo
simulation method. For derivatives, portfolio optimization, and other finan-
cial applications, weak order of convergence, defined by error in the expected
payoff is required (Giles, 2012).

1.1.3 Options and Hedging

The averaging feature in the Asian option reduces the volatility inherent
in the option, which makes it less exposed to sudden crashes or rallies in
an asset price and is harder to manipulate (Wilmott, 2007). As a result,
Asian options are the most popular exotic payout options chosen by U.S.
non-financial firms for the purpose of risk management (Bodnar, Hayt, &
Marston, 1998). In particular in the commodity market, now a mainstream
financial and investment class (Kyriakou, Pouliasis, & Papapostolou, 2016),
end users are often exposed to the average prices over time, which makes
Asian options of obvious appeal (Wilmott, 2007). These path-dependent
Asian options are particularly appropriate to the electricity market, where
the contracts are written to supply continuous electricity over the life of
the option. It is therefore reasonable for the electricity market to refer to
the average price over the period of the contract (Fanelli, Maddalena, &
Musti, 2016). Besides, price manipulation by large market participants is
harder in the case of an Asian option as compared to a standard option
(Chatterjee et al., 2017). This is critically important in the case of thinly
traded commodities since it may be possible to manipulate the price on any
given day or near option expiry than the average price of the underlying
asset (Linetsky, 2004). For firms to mitigate the principal-agent problem, it
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is highly recommended to suggest that firms should consider granting Asian
options instead of standard options as compensation packages (Tian, 2013).

1.2 Research Focus

Financial engineers create exotic options to make them more attractive, for
the purpose of risk management, to increase or decrease the sensitivity of
uncertain future price risk, or any other particular needs of the business (Hull,
2015). Options are also designed to align the interest of the parties involved,
for example, to mitigate the principal-agent problem in a firm (Bernard,
Boyle, & Chen, 2016). In this thesis, the focus is on creating a new path-
dependant option, calculating the sensitivity of price jumps or manipulations,
and pricing using the Monte Carlo simulation method for both the cases when
volatility is constant and when it is stochastic during the life of the option.

1.2.1 Research Gap

Since 1987, substantial efforts have been made to price the reliable alterna-
tive, i.e., Asian option, to the vanilla counterparts for financial risk manage-
ment, especially in the market where either the volume is low or the volatility
is high (Fanelli, Maddalena, & Musti, 2016). However, except for the power
option in executive compensation literature (Bernard, Boyle, & Chen, 2016),
not too many notable efforts have been made to look into what made this
option so popular: the averaging concept, reduced price, and safeguard from
the option manipulation threat. In this thesis as illustrated in Section 4.3, a
new path dependent option, referred to as the average-Asian option, is intro-
duced to further reduce the volatility of the asset prices risk and minimize
the option manipulation threat.

1.2.2 Research Questions

Based on the above discussion, the questions to be addressed in this thesis
are outlined below.

1. How can a new path-dependent average option be developed to improve
the benefits offered by Asian option with a reasonable payoff function?
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2. To what extent can the proposed average-Asian option be capable of
reducing the underlying price volatility and be used to hedge uncertain
future price risk more effectively?

3. How can such an option be priced by using Monte Carlo simulation
when the Euler method is used as the discretization scheme for SDEs
and the volatility is considered as being constant as well as being
stochastic?

4. How can the Asian and average-Asian options be priced when jumps
are incorporated into the diffusion process?

1.2.3 Research Objectives

The research objectives, in line with the research questions, are then

1. To introduce a new option, referred to as average-Asian option, so as
to improve the benefits offered by Asian option.

2. To analyze the expected payoff, prices, and sensitivity of the average-
Asian option by using a combination of methods, and to compare them
with those of the standard and Asian options.

3. To value the average-Asian option by using Monte Carlo simulation
when the discretization scheme for SDEs is the Euler method and the
volatility is constant, as well as when the financial model is a coupled
SDE and both the asset price and volatility are stochastic.

4. To price the Asian and average-Asian options after the incorporation
of jumps into the diffusion process.

1.3 Research Significance

Options are important financial derivatives for risk management that mini-
mizes the adverse effect of asset price jumps and the potential market manip-
ulation threat. Asian options are widely used as hedging instruments for the
said purpose. As anything that reduces the up-front premium in an option
contract makes it more popular (Wilmott, 2007), the average-Asian option
would be of significant practical importance in real life.

5



In the financial market, the design and analysis of financial derivatives as
insurance and risk management products protecting against undesirable and
unpredictable conditions is a challenging and demanding area of research
(STORE, 2019). Consequently, the design and analysis of the proposed
average-Asian option is expected to be a valuable addition to the family
of financial derivatives.

1.4 Thesis Structure

Chapter 2 starts with introduction to stochastic process and its applications
to Finance, in particular the basic theory of Lévy processes, followed by
important Lévy processes including Brownian motion, Poisson process, and
compound Poisson process.

In chapter 3, basic stochastic differential equations and their Euler schemes
are given. Then popular financial models are explained including the Black-
Scholes model, Merton’s jump-diffusion model, and stochastic volatility mod-
els. Here, considering highly volatile Chicago board options exchange (CBOE)
volatility index during the year of 2018, a Poisson-Diffusion model is proposed
to represent the dynamics of highly volatile assets where large deviation from
the mean price is expected.

In chapter 4, after introducing the standard and Asian options, the pop-
ularity of Asian options for the purpose of financial risk management is reen-
forced. In addition, the usage of Asian option as an executive compensation
package is also discussed. Then, a new type of path-dependent options,
referred to as average-Asian options, are developed with the purpose of re-
ducing the underlying price volatility and the option prices. It is further
demonstrated that the expected value of an average-Asian call option is less
than that of the standard and Asian call options in different practical sit-
uations. Moreover, the average-Asian option is also less sensitive to price
manipulation than the Asian option.

In chapter 5, the three options, standard, Asian, and average-Asian op-
tions are first priced by sampling through a tree method as well as the Monte
Carlo simulation method, where the volatility is considered constant. Then,
these three options are priced by using a stochastic volatility model, where the
volatility is given as a stochastic process. Finally, the option prices are cal-
culated for the newly-proposed Poisson-Diffusion stochastic volatility model.
The numerical results show that the average-Asian option is less expensive
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than the standard option in all the cases, while it is also less expensive than
the Asian option when granted in-the money or at-the money.

The conclusion, as well as the potential future work, is presented in chap-
ter 6.
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Chapter 2

Lévy Processes

A quantity whose value changes through time in an uncertain way is said to
follow a stochastic process, a typical example of which is the stock price. For
a stochastic process, the mean change per unit time is called the drift rate
and the variance per unit time is called the variance rate.

This chapter gives a concise introduction to the class of stochastic pro-
cesses known as Lévy processes, which are used to model financial quantities
such as asset price, interest rate, or currency exchange rate. The fundamen-
tal Lévy processes such as Brownian motion, Poisson process, and compound
Poisson process are also explained.

2.1 Definition and Properties

2.1.1 Definition

Let N(t0) be a random value when t = 0, and N(t1) be another random value
when t = 1, and so on. When N(t) for t ∈ [0,∞) is considered collectively,
N(t) is said to be a stochastic process, or a Random Process.

A stochastic process L = Lt : t ≥ 0 is called a Lévy process if:

1. L0 = 0

2. L has independent and stationary increments

3. L is stochastically continuous i.e., for every 0 ≤ t ≤ T and ε ≥ 0,

lim
h→0∞

P (|Lt+h − Lt| ≥ ε) = 0

A Lévy process represents the motion of a quantity whose successive dis-
placements are random as well as independent, and are statistically identical
over time intervals of the same size.

Linear drift, a deterministic process, is the simplest Lévy process, and
Brownian motion is the only non-deterministic Lévy process with continuous
sample paths (Papapantoleon, 2008). Except for Brownian motion, all other
Lévy processes have discontinuous paths. Other popular examples are the
Poisson and compound Poisson processes.
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2.1.2 Properties

There is a strong relationship between Lévy processes and infinitely divisible
distributions as the distribution of a Lévy process has the property of infinite
divisibility.

The Law PX of a random variable X is infinitely divisible, if for all
n ∈ N there exist independent and identically distributed random variables
X

(1/n)
1 , X

(1/n)
2 , ....., X

(1/n)
n such that (Papapantoleon, 2008)

X = X
(1/n)
1 +X

(1/n)
2 + .....+X(1/n)

n

Equivalently, the law PX of a random variable X is infinitely divisible if for
all n ∈ N there exists another law PX(1/n) of a random variable X(1/n) such
that

PX = PX(1/n) × PX(1/n) × .....PX(1/n)

Alternatively, an infinitely divisible random variable can be characterized by
using its characteristic function.
The law of a random variable X is infinitely divisible, if for all n ∈ N , there
exists a random variable X such that

ϕX(u) = (ϕX(1/n)(u))n

Furthermore, if (PK)K≥0 is a sequence of infinitely divisible laws and PK →
P , then P is also infinitely divisible (Papapantoleon, 2008). Another impor-
tant result in the concept of infinite divisibility is the following statement.

The law PX of a random variable X is infinitely divisible if and only if
there exists a triplet (b, c, ν), with b ∈ <, c ∈ <≥0 and a measure satisfy-
ing ν(0) = 0 and

∫
<(1 ∧ |x|2)ν(dx) < ∞, such that (Papapantoleon, 2008;

Kyprianou, Schoutens, & Wilmott, 2006)

E[eiuX ] = exp[ibu− u2c

2
+

∫
<

(eiux − 1− iux1|x|<1)ν(dx)]

The distribution of a Lévy process is characterized by its characteristic func-
tion, which is given by the Lévy-Khintchine formula (Papapantoleon, 2008;
Kyprianou, Schoutens, & Wilmott, 2006).

Theorem 2.1 (Lévy-Khintchine representation) If L = (Lt)0≤t≤T is a
Lévy process, then its characteristic function ϕX(u) is given by

ϕX(u) = E[eiuLt ] = etψ(u) = exp[t(ibu− u2c

2
+

∫
<

(eiux− 1− iux1|x|<1)ν(dx))]

9



where ψ(u) is the characteristic exponent of L1, a random variable with an
infinitely divisible distribution. Here b ∈ <, c ≥ 0, 1 is the indicator function,
and ν is called the Lévy measure of L satisfying the property

∫
< 1∧|x|2ν(dx) <

∞.

Consequently, a Lévy process has three independent components: a lin-
ear drift, a Brownian motion, and a superposition of independent Poisson
processes with different sizes where ν(dx) represents the rate of arrival of
the Poisson process with jump of size x. These three components of a Lévy
process and the Lévy-Khintchine representation are thus determined by the
Lévy-Khintchine triplet (b, c, ν).

A Lévy process can be decomposed into the sum of independent Lévy
processes. This property is known as the Lévy-Itô decomposition (Papapan-
toleon, 2008).

Theorem 2.2 (Lévy-Itô decomposition) Consider a triplet (b, c, ν) where
b ∈ <, c ∈ <≥0 and ν is a measure satisfying ν(0) = 0 and

∫
< 1∧|x|2ν(dx) <

∞. Then, there exists a probability space (Ω,F , P ) on which four independent
Lévy processes exist, L(1), L(2), L(3) and L(4), where L(1) is a constant drift,
L(2) is a Brownian motion, L(3) is a compound Poisson process, and L(4) is a
pure jump martingale with an a.s. countable number of jumps of magnitude
less than 1 on each finite time step. Taking L = L(1) + L(2) + L(3) + L(4),
there exists a probability space on which a Lévy process L = (Lt)0≤t≤T with
characteristic exponent

ψ(u) = ibu− u2c

2
+

∫
<

(eiux − 1− iux1|x|<1)ν(dx)

for all u ∈ <, is defined.

The process defined by L = L(1) +L(2) +L(3) +L(4) is then a Lévy process
with triplet (b, c, ν).

2.2 Brownian Motion

The modern Financial Mathematics has roots in the discovery of the Brow-
nian motion (Brown, 1828) in 1827 by Robert Brown, who observed random
motion of microscopic particles resulting from their collision with atoms or
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molecules in a fluid moving with different velocities and in different directions.
Louis Bachelier, who developed the theory of option pricing and became pi-
oneer in Financial Mathematics, was the first to introduce Mathematics of
Brownian motion in 1900, to compare its trajectories with stock prices be-
havior, and to calculate option values (Bachelier, 1900). Albert Einstein in
1905 suggested a mathematical model and expressed that the displacement
of a Brownian particle is proportional to the square root of the time elapsed
(Einstein, 1911). However, Norbert Wiener in 1921 provided the rigorous
mathematical construction of standard Brownian motion (Wiener, 1921).
Hence, the standard Brownian motion is also called a Wiener process.

The position of a variable following Brownian motion is considered as 0
when the observation starts at time 0. The increment in the variable over
disjoint time intervals is continuous and independent. By the central limit
theorem of probability theory, the sum of a large number of independent
identically distributed random variables is approximately normal, so each
increment is assumed to have a normal probability distribution. The mean
increment is zero as there is no preferred direction. As the position of a par-
ticle spreads out with time, it is assumed that the variance of the increment
is proportional to the length of time that the Brownian motion has been
observed.

A random process z(t) where t ∈ [0,∞) is called a standard Brownian
motion or Wiener process if:

1. z(t) = 0

2. z(t) has independent increments over non-overlapping time. That is,
for all 0 ≤ t1 < t2 < t3... < tn the random variables z(t2)−z(t1), z(t3)−
z(t2), ..., z(tn)− z(tn−1) are independent.

3. The increment over any time interval tn−tn−1 has a normal probability
distribution with mean 0 and variance equal to the length of this time
interval. That is, for all 0 ≤ t1 < t2, z(t2)− z(t1) ∼ N(0, t2 − t1)

4. z(t) has continuous sample paths.

The change in a variable following Brownian motion, ∆z, during a small
period of time ∆t is

∆z = ε
√

∆t (2.1)

where ε has a standardized normal distribution with mean 0 and variance 1.
The uncertainty about the value of the variable z at a certain time in the
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future, as measured by its standard deviation, increases in the scale of the
square root of the time duration.

The numerical approximations have been typically based on a time dis-
cretization of the life T of the quantity into N time steps of length ∆t .
The change in the variable z from time 0 to T is hence divided in N small
intervals

N = T∆t

The equation 2.1 in discrete terms can then be written as

z(T )− z(0) =
i=N∑
i=1

εi
√

∆t,

which is used to simulate Brownian motion. In Matlab, normally distributed
random numbers are generated through the command randn, and the cu-
mulative sum is obtained by using the cumsum command.

Figure 2.1: A Sample Path of a Brownian Motion

2.2.1 Brownian Motion with Drift

In the limit ∆t→ 0, the change in Brownian motion ∆z could be written as
dz and a Brownian motion with drift, or generalized Wiener process, for a

12



variable x can be defined in terms of dz as

dx = adt+ bdz

Where a and b are constants.
The Brownian motion with drift has an expected drift rate of a and

variance rate of b times a Brownian motion, z. In discrete terms the change
∆x in the value of x during a small interval of time ∆t is given as

∆x = a∆t+ bε
√

∆t

Figure 2.2: Sample Paths of a Brownian Motion dz and a Brownian Motion
with Drift dx with a = 0.3 and b = 1.5

2.2.2 Geometric Brownian Motion

Applying the Brownian motion with drift to stock price S with expected drift
rate of µ and a variance rate, or volatility, of σ, gives

dS = µdt+ σdz

For stock prices, more precisely, the expected percentage change, rather than
the expected absolute change, is constant. Meanwhile, uncertainty, or the
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volatility, about the future stock prices is proportionate to the current prices.
The stock price process then follows

dS = µSdt+ σSdz,

which is known as the geometric Wiener process, or geometric Brownian
motion (Hull, 2015). It is the most widely used model of stock price behavior.
The variable µ is the stock’s expected rate of return. The variable σ is the
volatility, or standard deviation, of the stock price. The famous Black-Scholes
model for option pricing is based on this geometric Brownian motion.

The discrete-time version of the geometric Brownian motion is

∆S = µS∆t+ σSε
√

∆t

Figure 2.3: Sample Paths of Stock Price Processes with Different µ and σ

2.2.3 Itô Process and Itô’s Lemma

An Itô process can be defined as a Brownian motion with drift where the
parameters a and b are functions of the underlying variable and time, i.e.,

dx = a(x, t)dt+ b(x, t)dz

Let G be a function of x and t, substituting dx into Itô’s lemma (Itō, 1951)

dG =
∂G

∂x
dx+

∂G

∂t
dt+

1

2

∂2G

∂x2
b2dt
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gives

dG = (
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2)dt+

∂G

∂x
bdz

which was used by Black and Scholes in pricing stock options (Black & Sc-
holes, 1973). However, there are some shortfalls in the pricing model. The
model assumes that volatility is a known constant, whereas empirical evi-
dences show that the volatility is highly unstable and unpredictable, and so
a random variable itself. The model also assumes that an asset price changes
continuously and follows a lognormal distribution. However, it has been
proven that financial quantities, i.e., stocks, currencies, or interest rates, do
not follow the lognormal distribution, but with jumps (Wilmott, 2007; Hull,
2015).

In addition to the aforementioned drawbacks in the Black-Scholes model,
Rama Cont studied the statistical issues with asset returns in more detail.
The main problem is that log returns on real data exhibit (semi) heavy tails
while log returns in the Black-Scholes model are assumed to be normally
distributed and hence lightly tailed (Cont, 2001). Among the many sugges-
tions which were proposed to address this particular problem was the simple
idea to substitute the use of a Brownian motion with drift by Lévy processes
(Kyprianou, Schoutens, & Wilmott, 2006).

2.3 Poisson Process

Sometimes it is important to count number of occurrences or arrivals over
time. For example, the number of customers arriving between time t1 and t2
in a store, or the number of times a stock price reaching a certain maximum
or minimum value. In these cases, a counting process denoted by N(t) is
dealt with. The most widely used counting process is Poisson process. It
is used in conditions where some occurrences have certain rate (λ) but are
completely random. That is, the rate, the average number of times in a
certain time period, is known, but not the exact time when it occurs. The
occurrences are at random times and follow a Poisson distribution which is
closely related to the exponential distribution, which is mainly employed to
model the time elapsed between arrivals or events.

A continuous random variable X is assumed to have an exponential dis-
tribution with parameter λ > 0, written as X ∼ Exponential(λ), if its prob-
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ability distribution function (PDF) is given by

fX(x) = λe−λx, x > 0

The expected value and variance of the exponential random variable X are
given by

E[X] =
1

λ
and V ar[X] =

1

λ2

The cumulative distribution function (CDF) of the exponential random vari-
able X is given by

FX(x) =

∫ x

0

λe−λxdt = 1− e−λx, x > 0,

which is invertible and its inverse is

F−1
X = −1

λ
ln(1− x), ∀x ∈ [0, 1]

A simple consequence is that if U is uniformly distributed on [0,1], then
− 1
λ
lnU is exponentially distributed with parameter λ.

A critical property of the exponential random variable is the characteristic
of memorylessness, which states that if X is an exponential random variable
with parameter λ > 0, then X is a memoryless random variable, that is

P (X > x+ a|X > a) = P (X > x), for a, x ≥ 0

The memoryless property says that, it does not matter how long the time has
been elapsed. If no arrival has been observed until time a, the distribution of
the next arrival from time a is the same as when the observation was started
at time zero.

The number of arrivals of an event within a specified time interval has a
Poisson distribution with parameter λ if the time elapsed between two suc-
cessive arrivals of the event has an exponential distribution with parameter
λ and it is independent of the previous arrivals. Thus, a Poisson distribution
is a discrete probability distribution that exhibits the probability of a given
number of arrivals of an event in some time interval if these arrivals occur
with a constant rate and independently of the time since the last arrival.

A discrete random variable X is assumed to have a Poisson distribution
with parameter λ > 0, written as X ∼ Poisson(λ), if its probability mass
function (PMF) is given by

PX(x) = e−λ
λx

x!
, x = 0, 1, 2, 3, ...
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where PX(x) is the probability of observing x events in a time interval t. The
expected value and variance of the Poisson random variable X are the same,
and are given by

E[X] = λ and V ar[X] = λ

Specifically, for a fixed rate λ > 0, a counting process is called a Poisson
process N(t), t ∈ [0,∞) if the following three conditions are held

1. N(0) = 0

2. N(t) has independent and stationary occurrences

3. The occurrences in the time interval t > 0 has a Poisson(λt) distribu-
tion

P (N(t) = n) =
e−λt(λt)n

n!

Here λ is the arrival rate, t is the time, and n is the number of the occurrences
or arrivals. The arrivals are zero at time t = 0, the start of observations, are
independent of each other, and follow the Poisson(λt) distribution.

If T is the time until the next arrival, then the probability of the first
arrival after time t where t < T is equivalent to that that no event has
occurred up to time t. That is,

P (T > t) = P (N(t) = 0) =
e−λt(λt)0

0!
= e−λt

The distribution function of T is thus

P (T ≤ t) = 1− e−λt

The Poisson process also exhibits memoryless property that means time and
events must not be overlapped and must be subtracted in the subsequent
counting, i.e.,

P (N(t2) = n2)|N(t1) = n1) = P (N(t2 − t1) = n2 − n1)

Let N(t) be the Poisson process with rate λ and the events be jumps. The
first jump occurs at time X1, second at time X2, and so on, where X1, X2,
... are independent exponential random variables all with the same mean 1

λ
,

then
Xi ∼ Exponential(λ), i = 1, 2, 3, ...
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and the random variables Xi are called interarrival times and are given by

Sn =
n∑
i=1

Xn

where Sn is the time of the nth jump, and the Poisson process N(t) counts
the number of jumps from time zero to t. In addition, the sum Tn of n
independent Exponential(λ) random variables

Tn = X1 +X2 + ...+Xn

is a gamma random variable, i.e.,

Tn ∼ Gamma(n, λ), for n = 1, 2, 3, ...

Figure 2.4: A Sample Path of a Poisson Process with λ = 15

2.3.1 Merging and Splitting Poisson Processes

If N1(t), N2(t), ..., Nm(t) are m Poisson processes with rates λ1, λ2, ..., λm re-
spectively, then the merged N(t), i.e.,

N(t) = N1(t) +N2(t) + ...+Nm(t)
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for all t ∈ [0,∞) is also a Poisson process with rate λ = λ1 + λ2 + ...+ λm
Similarly, the Poisson process N(t) could be splitted into many indepen-

dent Poisson processes. For example, N1(t) is a Poisson process with rate λp
and N2(t) is a Poisson process with rate λ(1− p), where N1(t) and N2(t) are
independent Poisson processes.

2.3.2 Compound Poisson Process

In a standard Poisson process, jumps are of constant size. Meanwhile, jumps
in stock price processes are with random sizes. In compound Poisson pro-
cess, jumps arrive randomly according to a Poisson process and the size of
the jumps is also random with a specified probability distribution. The com-
pound Poisson process with rate λ > 0 and jump size distribution G is given
by

Y (t) =

N(t)∑
k=1

Zk

where N(t) is a Poisson process, and Zk is a sequence of independent and
identically distributed random variables with distribution function G inde-
pendent of N(t). The jump size

∆Y (t) = Y (t)− Y (t− 1) at time t is given by the relation
∆Y (t) = ZN(t)∆N(t)

where
∆N(t) = N(t)−N(t− 1) ∈ [0, 1]

denotes the jump size of the standard Poisson process.

Summary

In this chapter, basic theory of Lévy processes and some fundamental Lévy
processes are presented. In addition, the simulations of these processes are
also performed. Chapter 3 is devoted to the applications of these processes
in financial mathematics.
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Figure 2.5: A Sample Path of a Compound Poisson Process with λ = 15 and
Normally-Distributed Jump Size
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Chapter 3

Stochastic Differential Equations

A variable that changes with time is explained through a differential equation
and when a variable changes with time randomly, it is explained through a
stochastic differential equation (SDE). The process of writing a stochastic
differential equation to describe changes in financial quantities, e.g., asset
price, interest rate, currency exchange rate, etc., over time is called financial
modelling. Stochastic differential equations have become standard models
for financial quantities and their derivatives (Sauer, 2012). An important
goal in financial mathematics is to find models for these financial quantities
in order to value and hedge derivative securities, value at risk (VaR), and
risk management purposes (Kyprianou, Schoutens, & Wilmott, 2006).

This chapter begins with an introduction to the SDE, followed by popular
financial models, such as the Black-Scholes, Merton and Kou’s jump-diffusion
models, and stochastic volatility models. In Section 3.1.6, a Poisson-Diffusion
Model to represent the dynamics of highly volatile asset is proposed. Fi-
nally in Section 3.2, the Euler scheme for SDEs and some financial models is
demonstrated.

Consider a variable X that changes with time randomly and the source
of randomness is a Brownian motion. Then, the general form of the SDE is
given by

dX(t) = µ
[
t,X(t)

]
dt+ σ

[
t,X(t)

]
dz(t)

where dX(t) is the stochastic process, and µ
[
t,X(t)

]
is the drift coefficient,

the expected drift rate of the variable X. If the drift coefficient is positive,
it is called a growth rate and if the drift coefficient is negative, it is called a

decay rate. The term σ
[
t,X(t)

]
is called the diffusion coefficient or volatility.

It is the standard deviation or the spread of a distribution. Also, z denotes a
Brownian motion. The term dX(t) represents change in the variable X over
a very short time interval from t to t+ dt, that is,

dX(t) = X(t+ dt)−X(t)

Integrating dX(t) from time 0 to T produces
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∫ t=T

t=0

dX(t) = X(T )−X(0) =

∫ t=T

t=0

µ
[
t,X(t)

]
dt+

∫ t=T

t=0

σ
[
t,X(t)

]
dz(t)

or

X(T ) = X(0) +

∫ t=T

t=0

µ
[
t,X(t)

]
dt+

∫ t=T

t=0

σ
[
t,X(t)

]
dz(t)

where the integral
∫ t=T
t=0

µ
[
t,X(t)

]
dt is called the pathwise ordinary integral

and the integral
∫ t=T
t=0

σ
[
t,X(t)

]
dz(t) is called the Itô stochastic integral.

3.1 Financial Models

Below a few popular financial models in terms of Lévy processes are discussed,
particularly, the Black-Scholes model, Merton’s jump-diffusion model, Kou
model, and stochastic volatility models.

3.1.1 Black-Scholes Model

The Black-Scholes model is based on the assumption that the asset price
follows a geometric Brownian motion SDE

dS = µSdt+ σSdz

Solving the SDE gives the dynamics of the asset price

S(T ) = S(0)exp
[(
µ− σ2

2

)
T + σε

√
T
]

The Black-Scholes model assumes that the log-returns follow normal distribu-
tion with mean µ and variance σ2, i.e., L1 ∼ Normal(µ, σ2). The probability
density function is then given by

fL1(x) =
1

σ
√

2π
exp
[
− (x− µ)2

2σ2
]

The characteristic function is

ϕL1(u) = exp
[
iµu− σ2u2

2
]
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The first and second moments are

E[L1] = µ, V ar[L1] = σ2

The canonical decomposition of L is

Lt = µt+ σWt

and the Lévy triplet is (µ, σ2, 0).

Figure 3.1: A Sample of Price Process under Black-Scholes Model with S0 =
50, µ = 0.1, σ = 0.4, and T = 1

3.1.2 Merton’s Jump-Diffusion Model

The Black-Scholes model assumes that the underlying asset follows a diffu-
sion process. However, Cox, Ross and Rubinstein in the famous binomial
tree model for option pricing suggest that the underlying assets actually fol-
low jumps rather than continuous change. Meanwhile, Robert C. Merton
extended this approach, what is called Merton jump diffusion model since it
combines jumps with diffusion terms.

The geometric Brownian motion Stochastic Differential Equation (SDE)
is given by

dS = µSdt+ σSdz
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or, equivalently
dS

S
= µdt+ σdz

Robert Merton incorporated jumps governed by compound Poisson process
into the diffusion model and introduced the mixed jump-diffusion model
(Merton, 1976). In the Merton’s model, the dynamics of the asset price
is given by the SDE

dS

S
= (µ− λk)dt+ σdz + dp

where µ is the expected return on the stock and σ is the volatility of the
geometric Brownian motion. Here, λ is the average number of jumps per
year and k is average jump size measured as a percentage of the asset price
such that k ≡ ε(Y − 1), where (Y − 1) is the random variable percentage
change in the asset price if the Poisson event occurs and ε is the expectation
operator over the random variable Y . Merton assumes that log stock price
jump size follows normal distribution, Normal(µ, δ2), where δ is the volatility
of jump size. Meanwhile, dz is the Brownian motion and dp is the Poisson
process generating the jumps. The processes dz and dp are assumed to be
independent. The probability of a jump in time ∆t is λ∆t. The average
growth in the asset price from the jumps is therefore λk.

If the Poisson event does not occur, i.e., λ = 0 and thus dp ≡ 0, the return
dynamics is identical to that of the Black-Scholes model. If the Poisson event
occurs, the return dynamics is given as

dS

S
= (µ− λk)dt+ σdz + (Y − 1)

where, with probability one, no more than one Poisson event occurs in an
instant, and if the event does occur, then (Y − 1) is an impulse function
producing a finite jump in S(t) to S(t)Y . Solving the stochastic differential
equation, the Merton’s model, gives the dynamics of the asset price

S(t) = S(0)exp
[(
µ− 1

2
σ2 − λk

)
t+ σz(t)

]
Y (n)

Here, Y (n) = 1 if n = 0 and Y (n) =
∑n

j=1 Yj for n ≥ 1 where the Yj are
independently and identically distributed and n is Poisson distributed with
parameter λt.
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Figure 3.2: A Sample Price Process under Merton’s Jump Diffusion Model
with µ = 0.1, σ = 0.2, λ = 2, k = −0.1, and δ = 0.1

The canonical decomposition of the driving process is

Lt = µt+ σWt +
Nt∑
k=1

Jk

where Jk ∼ Normal(µk, σ
2
k), k = 1, .... The probability distribution of the

jump size hence has density

fj(x) =
1

σj
√

2π
exp
[
− (x− µj)2

2σ
2

j

]

The characteristic function of L1 is

ϕL1 = exp
[
iµu− σ2u2

2
+ λ(e(iµju−σ2

ju
2/2) − 1)]

and the Lévy triplet is (µ, σ2, λ × fj). The density of L1 is not known in
closed form, while the first two moments are

E[L1] = µ+ λµj, V ar[L1] = σ2 + λµ2
j + λσ2

j
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Figure 3.2 shows the simulated sample path of the Merton’s jump diffusion
model when drift rate µ = 0.1, volatility σ = 0.2, average number of jumps
per year λ = 2, average jump size k = −0.1, and volatility of jump size
δ = 0.1.

3.1.3 Kou Model

Steven Kou also proposed a jump-diffusion model, where the jump size is
double-exponentially distributed (Kou, 2002). In this model, the dynamics
of the asset price is given by the SDE

dS

S
= µdt+ σdz + d

( N(t)∑
i=1

(Vi − 1))

where z is a standard Brownian motion, N(t) is a Poisson process with rate λ,
and Vi is a sequence of independent identically distributed non-negative ran-
dom variables such that Y = log(V ) has an asymmetric double exponential
distribution with the density

fY (y) = p.n1e
−n1y1y≥0 + q.n2e

n2y1y<0, n1 > 1, n2 > 0

where p, q ≥ 0, p+q = 1 represent the probabilities of upward and downward
jumps. In other words,

log(V ) = Y =

{
ξ+ with probability p
−ξ− with probability q

where ξ+ and ξ− are exponential random variables with means 1/η1 and 1/η2,
respectively. All sources of randomness, N(t), z(t), and Y s are assumed to
be independent. Solving this SDE gives the dynamics of the asset price

S(t) = S(0)exp
[(
µ− 1

2
σ2
)
t+ σW (t)

] N(t)∑
i=1

Vi

The canonical decomposition of the model is given by

Lt = µt+ σWt +
Nt∑
k=1

Jk
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Figure 3.3: A Sample of Price Process under Kou model with µ = 0.1, σ =
0.2, λ = 2, p = 0.4, η1 = 5, and η2 = 3

where Jk ∼ DbExpo(p, θ1, θ2), k = 1, .... The distribution of the jump size
then has density

fj(x) = pθ1e
−θ1x1x<0 + (1− p)θ2e

θ2x1x>0

The characteristic function of L1 is

ϕL1(u) = exp
[
iµu− σ2u2

2
+ λ
( pθ1

θ1 − iu
− (1− p)θ2

θ2 + iu
− 1
)]

and the Lévy triplet is (µ, σ2, λ× fj). The first two moments are

E[L1] = µ+
λp

θ1

− λ(1− p)
θ2

, V ar[L1] = σ2 +
λp

θ2
1

+
λ(1− p)

θ2
2

3.1.4 Stochastic Volatility Models

The Black Scholes model assumes that volatility remains constant over time.
However, in practice, volatility varies through time and should be given as
a stochastic variable (Wilmott, 2007). This results in financial models with
two stochastic variables, the asset price and its volatility. Stochastic volatil-
ity models are currently popular for the pricing of contracts that are very
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sensitive to the behavior of the volatility. Among stochastic volatility mod-
els, one important model is given by the following two stochastic processes
(Hull & White, 1987)

dS = rSdt+
√
V SdzS

dV = µV dt+ ξV dzV

where S is the asset price, V = σ2 is the instantaneous variance, r is the risk-
free interest rate, µ is drift, and ξ is the volatility of the volatility. The two
Brownian motions dzS and dzV of the asset price and variance, respectively,
have correlation ρ.

Another famous stochastic volatility model is Heston model, and is given
by the following coupled SDEs (Heston, 1993)

dS = rSdt+
√
V SdzS

dV = k(θ − V )dt+ σ
√
V dzV

where S is the asset price, V is the instantaneous variance, r is the risk-free
interest rate, k is the speed of mean-reversion, θ is the long-run variance,
and σ is the volatility of the variance process. The two Brownian motions
dzS and dzV of the asset price and variance, respectively, have correlation ρ.
Here, k, θ and σ are constants over time.

An advancement to the Heston model is the Bates model which incorpo-
rates jumps into the diffusion model through a compound Poisson process
(Bates, 1996). The Bates model is thus given by the following SDEs

dS

S
= (r − λk)dt+

√
V SdzS + dp

dV = k(θ − V )dt+ σ
√
V dzV

where λ is the average number of jumps per year, k is the average jump size,
and dp is the compound Poisson process. All other model parameters are the
same as those of Heston’s model.

3.1.5 GARCH Option Pricing Model

Duan introduced GARCH option pricing model where volatility is stochastic
and changes over time (Duan, 1995). The risk-neutral asset price process
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of the GARCH model is given by the following coupled stochastic difference
equations

ln
St+1

St
= r − 1

2
σ2
t+1 + σt+1εt+1

σ2
t+1 = β0 + β1σ

2
t + β2σ

2
t (εt − θ − λ)2

This implies that

ST = S0exp
[
rT − 1

2

T∑
s=1

σ2
s +

T∑
s=1

σsεs

]
where r is the risk-free interest rate, σ is the volatility, λ is the unit risk
premium, ε is a standard normal random variable, and θ is a non-negative
parameter that captures the negative correlation between asset return and
volatility innovations. The β0, β1, β2 are non-negative weights, where β0 +
β1 + β2 = 1.

3.1.6 Poisson-Diffusion Model

There are five option parameters: initial asset price S0, strike price K, risk-
free interest rate r, volatility of the asset price σ, and time to expiry T . All of
the option parameters are almost known except for the future volatility of the
asset price which is neither constant nor predictable, and not even directly
observable. It makes volatility the single most important determinant of an
option’s value. The volatility time series show the volatility to be a highly
unstable quantity. It is highly variable and unpredictable (Wilmott, 2007).

Markets move with investor expectations. One measure of future expec-
tations is the CBOE’s volatility index, VIX (Ackert, Kluger, & Qi, 2019).
Similar to a bond’s yield which represents the expected future return of
the bond, the VIX reflects expected future market volatility as expressed
through trade (Whaley, 2008). Figure 3.4 shows CBOE volatility index from
December 2016 to February 2019 where volatility of the volatility index is
too high during the year of 2018. The motivation here is then to propose a
jump-diffusion model where volatility of asset’s volatility is very high.

For high price volatility assets where large deviation from the mean price
is expected, the following dynamics is proposed to model the asset price
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Figure 3.4: Chicago Board Options Exchange Volatility Index (Source:
cboe.com)

dS

S
= β0

[
(r − λk)dt+ σdz

]
+ β1dp+ β2dq

which is essentially the incorporation of Poisson process into the Merton’s
jump diffusion process with non-negative weights β0, β1, and β2, where β0 +
β1 + β2 = 1. Here, r is the risk-free interest rate, λ is the average number
of jumps per year, k is the average jump size, and σ is the volatility of
the geometric Brownian motion. The processes dz, dp, and dq are Brownian
motion, compound Poisson process, and Poisson process, respectively, and
are assumed to be independent.

3.2 Weak Euler Scheme

The foundation of option pricing is based on the study of random walk of the
underlying, the asset prices or interest rates. The dynamics of the underlying
is modeled through an SDE which is a continuous time stochastic process,
while simulations are done at discrete time steps. Hence, the first step in
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a simulation technique is to discretize an SDE. The first and the simplest
numerical approximation method for SDEs is the Euler method (Maruyama,
1955).

Integrating the SDE dX(t) over a very short interval of time from t to
t+ dt gives∫ t+dt

t

dX(t) = X(d+dt)−X(t) =

∫ t+dt

t

µ
[
t,X(t)

]
dt+

∫ t+dt

t

σ
[
t,X(t)

]
dz(t)

Hence, the Euler scheme, or Euler discretization, of the given SDE represent-
ing the change in X over the short time ∆t is given by

X(t+ ∆t) = X(t) + µ
[
t,X(t)

]
∆t+ σ

[
t,X(t)

]√
∆tz

For financial derivatives and some other finance applications, weak order of
convergence, defined by error in the expected value of payoff, is needed (Giles,
2012).

Specifically, for an arithmetic Brownian motion SDE, the drift coefficient

and the diffusion coefficient are both constants. Hence, µ
[
t,X(t)

]
= µ and

σ
[
t,X(t)

]
= σ. The arithmetic Brownian motion SDE is thus given by

dX(t) = µdt+ σdz(t)

Integrating from time t to t+ dt gives∫ t+dt

t

dX(t) = X(d+ dt)−X(t) =

∫ t+dt

t

µdt+

∫ t+dt

t

σdz(t)

The Euler scheme representing the change in X over the short interval of
time ∆t is then given by

X(t+ ∆t)−X(t) = µ∆t+ σ
√

∆tz

or
X(t+ ∆t) = X(t) + µ∆t+ σ

√
∆tz

Accordingly, for a geometric Brownian motion SDE, the change in stochas-
tic process, dX(t), is with relation to the current value of X(t). This pro-
portional change dX(t)/X(t) is modeled as an arithmetic Brownian motion
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SDE. The SDE for a geometric Brownian motion, or an exponential Brownian
motion, SDE is given by

dX(t)

X(t)
= µdt+ σdz(t)

or equivalently

dX(t) = µX(t)dt+ σX(t)dz(t)

Integrating from time t to t+ dt gives∫ t+dt

t

dX(t) = X(d+ dt)−X(t) =

∫ t+dt

t

µX(t)dt+

∫ t+dt

t

σX(t)dz(t)

The Euler scheme representing the change in X over the short interval of
time ∆t is thus given by

X(t+ ∆t) = X(t) + µX(t)∆t+ σX(t)
√

∆tz

3.2.1 Black-Scholes Model

The Black-Scholes model assumes that the asset price S follows a geometric
Brownian motion SDE where the asset’s expected rate of return is the risk-
free interest rate r. The geometric Brownian motion SDE in terms of S where
µ = r is given by

dS(t) = rS(t)dt+ σS(t)dz(t)

and the Euler discretization is

S(t+ ∆t) = S(t) + rS(t)∆t+ σS(t)
√

∆tz

Practically, it is more precise to simulate lnS rather than S. Replacing
G = lnS, x = S, a = rS, and b = σS in

dG = (
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2)dt+

∂G

∂x
bdz

yields

dlnS = (
∂lnS

∂S
rS +

∂lnS

∂t
+

1

2

∂2lnS

∂S2
σ2S2)dt+

∂lnS

∂S
σSdz

32



Since
∂

∂S
lnS =

1

S
;

∂2

∂S2
lnS = − 1

S2
;

∂

∂t
lnS = 0

then

dlnS = (r − 1

2
σ2)dt+ σdz

Equivalently

lnS(t+ ∆t)− lnS(t) = (r − 1

2
σ2)∆t+ σε

√
∆t

Or, in exponential form

S(t+ ∆t) = S(t)exp[(r − 1

2
σ2)∆t+ σε

√
∆t]

Here r is the risk-free interest rate, σ is the volatility, ∆t is a small interval
of time, and ε is a random sample from standard normal distribution. This
equation is used to construct the path followed by the asset prices.

3.2.2 Hull & White Stochastic Volatility Model

The stochastic process for variance

dV = µV dt+ ξV dzV

is a geometric Brownian motion SDE in V . The Euler discretization for lnV
is given by

V (t+ ∆t) = V (t)exp
[(
µ− 1

2
ξ2
)

∆t+ ξε
√

∆t
]

Similarly, the Euler discretization for the asset price SDE

dS = rSdt+
√
V SdzS

is given by

S(t+ ∆t) = S(t)exp[(r − 1

2
V (t))∆t+

√
V (t)ε

√
∆t]

Or

S(t+ ∆t) = S(t)exp[(r − 1

2
V (t))∆t+ ε

√
V∆t]
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Hull and White concluded that the Monte Carlo simulation method for option
pricing can be used efficiently by assuming that the two Brownian motions
are uncorrelated (i.e., ρ = 0). In other words, the asset price and volatility
are uncorrelated, while allowing ξ and µ to depend on σ and t. This means
that the instantaneous variance V follows a mean-reversion process

µ = α(σ∗ − σ)

and it can be re-written as

dV = α(σ∗ − σ)V dt+ ξV dzV

where α is the speed of mean-reversion, and σ∗ is the long-run volatility.
Here, α, σ∗, and ξ are constants over time.

3.2.3 Poisson-Diffusion Model

The Euler scheme for the Poisson-Diffusion Model introduced in Section 3.1.6
is given by

S(t+ ∆t) = S(t) + β0

[(
r − 1

2
σ2 − λk

)
∆t+ σε

√
∆t
]

+ β1P (i) + β2Q(i)

where S(t + ∆t) is a small change in the asset price from S(t) during a
small time interval ∆t and ε is a random sample from the standard normal
distribution. A large number of parameters makes it very flexible and allows
better fit of the empirical distributions of the log-returns of financial data.

In the Poisson-Diffusion model, volatility remains constant over time,
while the Poisson-Diffusion stochastic volatility model where the volatility
varies through time is given by the following coupled SDEs

dS

S
= rdt+

√
V dzS

dV

V
= β0

[
(r − λk)dt+ σdzV

]
+ β1dp+ β2dq

The two Brownian motions dzS and dzV of the asset price and variance, re-
spectively, are assumed to be independent. The Euler scheme for the Poisson-
Diffusion stochastic volatility model is given as

S(t+ ∆t) = S(t)exp[(r − 1

2
V (t))∆t+ ε

√
V∆t]
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V (t+ ∆t) = V (t) + β0

[(
r − 1

2
σ2 − λk

)
∆t+ σε

√
∆t
]

+ β1P (i) + β2Q(i)

where ε is the random sample from the standard normal distribution.
Figure 3.5 shows simulations of the Poisson-Diffusion Model when drift

rate µ = 0.15, volatility σ = 0.45, the average number of jumps per year
λ = 1, the average jump size k = −0.1, and volatility of jump size is δ = 0.1.
The assigned weights are B0 = 0.9, B1 = 0.09999, and B2 = 0.00001.

Summary

In this chapter, the concept of SDEs in financial modeling is reviewed. Then,
popular financial models, their Euler schemes and simulations are presented.
The chapter also demonstrated how to incorporate jumps into the diffusion
process. The systematic presentation of jump-diffusion models enabled to
propose a new jump-diffusion model, referred to as the Poisson-Diffusion
Model. Finally, the Poisson-Diffusion stochastic volatility model for assets
with very high price volatility is proposed as a coupled SDEs.
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Figure 3.5: Simulations of Poisson-Diffusion model with µ = 0.15, σ =
0.45, λ = 1, k = −0.1,, δ = 0.1, B0 = 0.9, B1 = 0.09999, and B2 = 0.00001
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Chapter 4

Options

In general, there are two types of options, call and put. A call option is a
contract which gives the holder of the option the right to buy the underlying
asset by a certain date for an agreed price. Whereas, a put option gives the
holder the right to sell the underlying asset by a certain date for an agreed
price. Options that could only be exercised on the expiry date are called
European style options, while options that could be exercised at any time up
to the expiry date are called American style options.

This chapter begins with describing the Black-Scholes model for a stan-
dard option, and then presents the arithmetic and geometric Asian option
formulas in the Black-Scholes world. The popularity of Asian options as a
hedging instrument is then reviewed. Here, a new type of path-dependent op-
tions, referred to as the average-Asian options, is proposed. The calculations
show that the average-Asian option reduces the underlying price volatility
and is cheaper than the standard as well as Asian options in different prac-
tical scenarios.

4.1 Standard Options

The payoff from the standard European-style options, also called the plain
vanilla products, depends on the price of the underlying at expiry, i.e., t = T .
The payoff from a call is max(ST −K, 0) and that from a put is max(K −
ST , 0), where ST is the price of the underlying asset at expiry and K is called
the strike or strike price.

The price of an option is a function of the underlying stock price S and
time t, that is, f = f(S, t). For S as given in the above equation, f(S, t)
satisfies the following equation (Itō, 1951)

df = (
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)dt+

∂f

∂S
σSdz

A riskless portfolio of the option and stock can then be created to eliminate
the Brownian motion from the above equation (Black & Scholes, 1973). This
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gives the Black-Scholes partial differential equation

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf

In the risk-neutral valuation approach, the expected rate of return µ from an
asset is the risk-free interest rate r. Hence, µ is replaced by r in the above
equation.

The European call option gives the payoff S −K at t = T when S > K
and is worthless otherwise, so the terminal condition is

C(S, T ) =

{
S −K if S > K

0 if S ≤ K

The option is worthless, that is, C(0, t) = 0 when S = 0. When the asset
price increases without bound, that is, S → ∞, the exercise becomes less
and less important. Hence, the boundary conditions are

C(0, t) = 0

C(S, t) ∼ S as S →∞
The solution to the Black-Scholes-Merton partial differential equation with
these terminal and boundary conditions is the famous Black-Scholes-Merton
option pricing formula for European-style call option

c = S0N(d1)−Ke−rTN(d2)

The functions N(d1) and N(d2) are the cumulative probability distribution
function for a standardized normal distribution, where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T

By the put-call parity for European option

c− p = S0 − e−rTK

the formula for European put option is

p = Ke−rTN(−d2)− S0N(−d1)

Table 4.1 shows option prices of European style standard options with two
different parameters.
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Table 4.1: Option Prices with Different Parameters using Black-Scholes Op-
tion Pricing Formula

Parameters Call Put

S0 = 50, K = 50, r = 0.1, σ = 0.4, T = 1 10.16 5.40

S0 = 42, K = 40, r = 0.1, σ = 0.2, T = 0.5 4.76 0.81

4.2 Asian Options

For an Asian option, the payoff depends on the average price of the underlying
asset during the life of the option. The payoff for an average price call option
is

f = max(A(0, T )−K, 0)

and that for an average price put option is

f = max(K − A(0, T ), 0)

where A(0, T ) is the average value of the underlying from t = 0 to t = T ,
inclusive, and K is the strike price. Two particular popularly used types are
the geometric and arithmetic average options.

4.2.1 Geometric Asian Options

The geometric average is defined by

G(T ) =
( n∏
i=1

S(ti)
)1/n

and the continuously sampled geometric average is defined to be

G(T ) = exp
( 1

T

∫ T

0

S(τ)dτ
)

The Black-Scholes model relies on the assumption that the underlying price
follows a lognormal distribution. The geometric average G(T ), whether dis-
crete or continuous, of a lognormally distributed random variable is also
lognormally distributed. The expectation and variance of G(T ) can then be

39



derived to price the European style average call and put options (Kemna &
Vorst, 1990). Specifically, for the continuous case,

logG(T ) = n
(1

2

(
r − 1

2
σ2
)
T + logS0,

1

3
σ2T

)
Where n(a, b) represents a normal distribution with mean a and variance b.
Hence, the expectation and variance of G(T ) are given by

µx =
1

2

(
r − 1

2
σ2
)
T + logS0

and

σ2
x =

1

3
σ2T

Substituting them into the generalized version of Black’s model (Black, 1976)

c = e−rT
(
eµx+ 1

2
σ2
xN
(µx + σ2

x − logK
σx

)
−KN

(µx − logK
σx

))
yields the formula for geometric Asian call and put options, i.e.,

c = e−rT
[
F0N(d1)−KN(d2)

]

p = e−rT
[
KN(−d2)− F0N(−d1)

]
The functions N(d1) and N(d2) are the cumulative probability distribution
functions for a standardized normal distribution, where

d1 =
ln(S0e

aT/K) + (1
2
σ2
A)T

σA
√
T

and

d2 = d1 − σA
√
T

where a = 1
2

(
r − σ2

6

)
, σA = σ√

3
, and F0 = S0e

aT .
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4.2.2 Arithmetic Asian Options

The arithmetic average of the underlying, A(0, T ) is calculated as

A(0, T ) =
1

N

N∑
i=1

S(ti)

The Black-Scholes model and Black’s model rely on the assumption that
the underlying price follows a lognormal distribution, while the arithmetic
average of a lognormally distributed random variable is not lognormally dis-
tributed.

To value the arithmetic average Asian options by using Black’s model,
alternatively, it is assumed that A(0, T ) is lognormally distributed with re-
spect to the first and second moments M1 and M2 (Turnbull & Wakeman,
2009), as shown in the following equation,

c = e−rT
[
F0N(d1)−KN(d2)

]
p = e−rT

[
KN(−d2)− F0N(−d1)

]
The functions N(d1) and N(d2) are the cumulative probability distribution
functions for a standardized normal distribution, where

d1 =
ln(F0/K) + σ2T/2

σ
√
T

and
d2 = d1 − σ

√
T

F0 = M1, and

σ2 =
1

T
ln
(M2

M2
1

)
where

M1 =
erT − 1

rT
S0

and

M2 =
2e[2r+σ2]TS2

0

(r + σ2)(2r + σ2)T 2
+

2S2
0

rT 2

( 1

2r + σ2
− erT

r + σ2

)
Using these formulas of arithmetic and geometric Asian options, the option
prices with parameters S0 = 50, K = 50, r = 0.1, σ = 0.4, and T = 1 are
listed in Table 4.2.
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Table 4.2: Arithmetic and Geometric Asian Option Prices with S0 = 50, K =
50, r = 0.1, σ = 0.4, T = 1

Arithmetic Geometric

Call Put Call Put

5.62 3.28 5.14 3.45

4.3 Average-Asian Options

4.3.1 Rationality

The averaging feature of the Asian options reduces the volatility inherent in
the option, and makes them less exposed to price jumps. They are hence less
expensive than the standard options. Since the creation of Asian options in
1987, they have been popular in financial markets (Chatterjee et al., 2018).
The dependence of payoff structure on the average price of the underlying
also makes them harder to be manipulated by large market participants.
This is particularly important in case of thinly traded commodities (Linetsky,
2004). In general, Asian options are the most popular option contracts in
the commodity market which is now a mainstream financial and investment
class (Kyriakou, Pouliasis, & Papapostolou, 2016).

In corporate finance, the conflict of interests between shareholders, the
principal who owns the company, and the top management, the agent who
runs the company on behalf of the shareholders, is referred to as the principal-
agent problem. In particular, shareholders want to maximize their wealth
through increment in the share price, while the top management, or the
executives, may look for corporate luxury, job security, or increment in their
own wealth at the expense of the shareholders. Consequently, stock options
are granted as an incentive paying to the executives to align the interests of
the management and shareholders to mitigate the principal-agent problem
in a company (Brealey et al., 2012). Still, despite their popularity, these
options could not adequately align the interests of the two parties. Besides,
there is also risk of stock price manipulations by the executives to boost their
compensation packages (Hall & Murphy, 2003; Tian, 2017). In a survey of
169 Chief Financial Officers of U.S. public companies, It is reported that
roughly 20% of the firms misrepresented their firm’s economic performance
and the main reason was the desire to influence the stock price (Dichev et
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al., 2013). It is then naturally recommended to utilize the averaging feature
in designing executive stock options (ESOs) to better link the interests of
the management and shareholders, as well as to preserve the value of options
to both corporations and employees (Chhabra, 2008). This suggests that
firms should consider granting Asian options instead of standard options
as compensation packages (Tian, 2013). In addition, the payoff structure
of an Asian option also resembles that of the variable annuity (Bernard,
Cui, & Vanduffel, 2017), an insurance contract that is typically a long-term
investment aimed at generating income for retirement.

By incorporating the average stock price into the payoffs of an ESO, which
is now called an Asian executive option in the literature of executive com-
pensations, it is shown that Asian options have advantages and are cheaper
than the traditional options (Tian, 2013). Considering this advantage, power
options in executive compensation were introduced where the option payoff
is based on a power of the stock price at expiry. The payoff function of power
option is given by (Bernard, Boyle, & Chen, 2016)

PT = ψ
(
SϕT −

K

ψ

)+

where ϕ = 1√
3

and ψ = S1−ϕ
0 exp

{(
1
2
− ϕ

)(
µ− q − σ2

2

)
T
}

.

It is evidenced that the power options are even cheaper than the Asian
options (Bernard, Boyle, & Chen, 2016). Both Asian and power executive
options were priced in the Black-Scholes world. However, as the power option
requires stock’s expected return which is difficult to estimate and violates
the risk-neutral valuation assumption of the Black-Scholes world, pricing
these power options is more challenging than pricing Asian options (Bernard,
Boyle, & Chen, 2016).

In addition, a payoff function as a weighted average of price at expiry and
the average price from time t = 0 to t = T is also considered (Jourdain &
Sbai, 2007)

f
(
αST + β

∫ T

0

Stdt
)

where α and β are non-negative constants such that α+β = 1. Note that, for
α = 0, this is the payoff of an Asian option. According to the fundamental
theorem of arbitrage-free pricing, the option price for this payoff function is
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(Jourdain & Sbai, 2007)

C0 = E
(
e−rTf

(
αST + β

∫ T

0

Sudu
))

Table 4.3: Option Prices Using Payoff Considered by Jourdain and Sbai with
Percent Weights α and β

α β r = 0.05, σ = 0.2 r = 0.1, σ = 0.3 r = 0.15, σ = 0.45

0.0 1.0 5.75 9.03 13.09

0.1 0.9 6.14 9.67 14.08

0.2 0.8 6.56 10.38 15.09

0.3 0.7 6.99 11.10 16.14

0.4 0.6 7.43 11.83 17.28

0.5 0.5 7.91 12.65 18.36

0.6 0.4 8.39 13.43 19.55

0.7 0.3 8.90 14.22 20.75

0.8 0.2 9.39 15.04 21.95

0.9 0.1 9.96 15.86 23.19

1.0 0.0 10.46 16.73 24.44

The prices for the options considered by Jourdain and Sbai are given in Table
4.3. Here, the option parameters used are S0 = 100, K = 100, T = 1 and
three different combinations of r and σ. As expected and as shown by the
table, the option is the cheapest when no weight is assigned to the ST , that
is, when α = 0 and β = 1. The prices are keep increasing when more weight
is assigned to ST . Therefore, in order to make an option cheaper, this payoff
is not useful. Another idea is to take the average of ST and AT , while in this
case the payoff will always remain between standard and Asian option, that
is, greater than the Asian and less than the standard option.

The variance of ST is greater than that of AT (Kemna & Vorst, 1990). It is
a well admitted fact that the greater the volatility, or standard deviation, the
greater the option value is. Then in the payoff function where the weighted
average of ST and AT is taken, the variance of ST needs to be reduced. This
can be done by taking difference of the average of ST and K with the K at
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expiry rather than the difference of ST with K. Mathematically, ST +K
2
−K

instead of ST − K. This further motivates to introduce the average-Asian
option defined below. It is in line with the option considered by Jourdain
and Sbai.

4.3.2 Definition and Properties

An average-Asian option is defined such as the payoff depends on the average
of:

1. the average price of the underlying asset during the life of the option,
and

2. the price of the underlying asset at expiry with the strike price.

The payoff from an average-Asian call is thus

f =
1

2
max

(
AT −K +

ST +K

2
−K, 0

)
=

1

4
max

(
2AT + ST − 3K, 0

)
where ST is the underlying price at expiry, AT is the average price of the
underlying asset from time t = 0 to t = T , andK is the strike price. Similarly,
the payoff from an average-Asian put option is

f =
1

4
max

(
3K − (2AT + ST ), 0

)
This option reduces the price volatility effectively. If the price is assumed to
follow a geometric Brownian motion SDE, the expected mean and variance of
ST , AT , andAAT = 1

4
(2AT+ST ) are given in Table 4.4 for both the arithmetic

and geometric averages. The SDE parameters considered are S0 = 100, r =
0.1, σ = 0.3, 0.4, 0.5, T = 1, and ∆t = T

m
where m = 100 and the simulations

are performed for n = 200, 000 times.

4.3.2.1 Expected Value

Consider the asset price S(T ) at t = T and the average price A(T ) from time
t = 0 to t = T . A(T ) and S(T ) can be written as

A(T ) =
n∑
i=0

1

n+ 1
S(Ti) and S(T ) =

n∑
i=0

1

n+ 1
S(T )
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Table 4.4: Expected Means and Variances of ST , AT , and AAT under a
Geometric Brownian Motion Price Process

Parameter ST AT AAT ST AT AAT

Arithmetic Geometric

σ = 0.3 110.37 105.12 80.15 110.48 103.75 79.49

Mean σ = 0.4 110.37 105.12 80.15 110.48 103.75 79.49

σ = 0.5 110.37 105.12 80.15 110.48 103.75 79.49

σ = 0.3 1148.31 345.71 294.98 1150.18 330.88 287.55

Variance σ = 0.4 2111.82 626.50 537.71 2113.34 585.45 516.56

σ = 0.5 3453.69 997.68 865.25 3458.86 915.22 822.99

Respectively, the value of the standard, Asian, and average-Asian call options
are given by

Cstandard = e−rTE
[
max

( n∑
i=0

1

n+ 1
S(T )−K, 0

)]

CAsian = e−rTE
[
max

( n∑
i=0

1

n+ 1
S(Ti)−K, 0

)]
and

CA.Asian = e−rTE
[1

4
max

(
2

n∑
i=0

1

n+ 1
S(Ti) +

n∑
i=0

1

n+ 1
S(T )− 3K, 0

)]

= e−rTE
[1

2
max

( n∑
i=0

1

n+ 1
S(Ti)−K +

n∑
i=0

S(T )+K
2
−K

n+ 1
, 0
)]

Proposition 4.1 The expected value of the average-Asian call option is less
than that of the standard call.

Proof. Clearly,

E
[
max

( n∑
i=0

S(T )
n+1

+K

2
−K, 0

)]
=

1

2
E
[
max

( n∑
i=0

1

n+ 1
S(T )−K, 0

)]
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< E
[
max

( n∑
i=0

1

n+ 1
S(T )−K, 0

)]
Also, by Kemna and Vorst (Kemna & Vorst, 1990),

E
[
max

( n∑
i=0

1

n+ 1
S(Ti)−K, 0

)]
≤ E

[
max

( n∑
i=0

1

n+ 1
S(T )−K, 0

)]
Then, since either

E
[1

2
max

( n∑
i=0

1

n+ 1
S(Ti)−K+

n∑
i=0

S(T )+K
2
−K

n+ 1
, 0
)]
≤ E

[
max

( n∑
i=0

1

n+ 1
S(Ti)−K, 0

)]
or

E
[1

2
max

( n∑
i=0

1

n+ 1
S(Ti)−K+

n∑
i=0

S(T )+K
2
−K

n+ 1
, 0
)]
≤ E

[
max

( n∑
i=0

S(T )+K
2
−K

n+ 1
, 0
)]

it thus results in,

E
[1

4
max

(
2

n∑
i=0

1

n+ 1
S(Ti)+

n∑
i=0

1

n+ 1
S(T )−3K, 0

)]
< E

[
max

( n∑
i=0

1

n+ 1
S(T )−K, 0

)]

Remark 4.2 At this point no definite relationship can be established between

E
[
max

( n∑
i=0

1

n+ 1
S(Ti)−K, 0

)]
and E

[
max

( n∑
i=0

S(T )+K
2
−K

n+ 1
, 0
)]

while by Kemna and Vorst (Kemna & Vorst, 1990), averaging reduces volatil-
ity by about 42%. In addition, considering Table 5.6, it could be argued that,
when K ≤ S0

E
[
max

( n∑
i=0

S(T )+K
2
−K

n+ 1
, 0
)]
≤ E

[
max

( n∑
i=0

1

n+ 1
S(Ti)−K, 0

)]
Then, a conjuncture for the case that K ≤ S0 could be

E
[1

4
max

(
2

n∑
i=0

1

n+ 1
S(Ti)+

n∑
i=0

1

n+ 1
S(T )−3K, 0

)]
≤ E

[
max

( n∑
i=0

1

n+ 1
S(Ti)−K, 0

)]
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4.3.2.2 Payoff

To compare the payoffs from the Asian and Power options, Bernard, Boyle, &
Chen (2016) used an example where they issued five year at-the-money and
in-the money options on July 1, 2003 and also on July 1, 2008. For the sake
of comparison, the same data (stock prices of Legg Mason Inc; Figure 4.1) are
adopted to compare payoffs by different options. On July 1, 2003, the stock

Figure 4.1: Legg Mason Closing Price from July 1, 1998 to July 1, 2013

price was 44.63 and it fell to 41.25 on July 1, 2008, while during this five year
of time period, the price rose dramatically and has a high average price. The
price further dropped to 31.31 on July 1, 2013. During this second five year
of time period, the price decreased even further and had a low average price.
The prices of two options, at-the-money (ATM) and in-the money (ITM),
the strike K, price at expiry ST , the average stock price AT from July 1,
2003 to July 1, 2008 and July 1, 2008 to July 1, 2013 are given in Table 4.5.

In addition to the fact that the power option is complex and difficult
to price (Bernard, Boyle, & Chen, 2016), as shown in Table 4.5, the payoff
in power option is not consistent with the Asian option, which are popular
hedging instruments and well understood by market participants. There are
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Table 4.5: Payoff Comparison on Standard, Asian, Power, and Average-Asian
Call Options

Issue K ST AT St. Asian Power A.Asian

July 1, 2003 ATM 44.63 41.25 77.94 00 33.31 00 15.81

July 1, 2003 ITM 30 41.25 77.94 11.25 47.94 10.04 26.78

July 1, 2008 ATM 41.25 31.31 27.54 00 00 00 00

July 1, 2008 ITM 30 31.31 27.54 1.31 00 5.16 00

scenarios when the Asian option is in-the-money but the power option is
out-of-money and vice versa. It would be a matter of concern for the holder
of the power option. Whereas, the average-Asian option is consistent with
the Asian option and is cheaper than the Asian option in the case when the
average rose dramatically. Hence, the average-Asian option is a good choice
as a hedging instrument where the asset price could rise or fall dramatically
during the life of the option or where a cheaper option is sought.

Table 4.6 compares the payoffs of the standard, Asian, and average-Asian
options in more detail where the initial asset price is assumed to be 100. It
is clear that not only the payoff from the average-Asian option is less than
that from the Asian option but also it is more stable in different practical
situations. The standard deviation of the payoffs of the average-Asian option
is always less than that of the Asian option. The dependence on both the
price at expiry and the average price makes the average-Asian option less
sensitive to sudden price jumps near the option expiry or during the life of
the option.

4.3.3 Impact of Price Manipulation

Yisong S. Tian (2017) analyzed the sensitivity of different type of options to
price manipulation in the executive compensation context, as well as calcu-
lated the potential gain from asset price manipulation both at the front-end,
the time of option contract, and at the back-end, the time of option expiry.

In case of a call option, the front-end gaming involves a downward manip-
ulation of the stock price in order to gain better terms, e.g., a lower exercise
price for the call option. After the option contract, gains in the option payoff
can only come from higher asset prices, which is called the back-end gaming.
In case of a put option, the front-end gaming involves an upward manipu-
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Table 4.6: Payoff Comparison on Standard, Asian, and Average-Asian Call
Options

ST AT St. Asian A.Asian St. Asian A.Asian

K = 100 K = 90

140 40 25 50 32.5

130 30 20 40 27.5

120 20 15 30 22.5

120 110 20 10 10 30 20 17.5

100 00 05 10 12.5

90 00 00 00 7.50

80 00 00 00 2.50

70 00 00 00 00

SD 15.81 9.80 19.59 11.76

130 30 17.5 40 25

120 20 12.5 30 20

110 110 10 10 7.50 20 20 15

100 00 2.50 10 10

90 00 00 00 05

80 00 00 00 00

SD 12.65 7.19 16.33 9.35

120 20 10 30 17.5

110 10 05 20 12.5

100 100 00 00 00 10 10 7.50

90 00 00 00 2.50

80 00 00 00 00

SD 8.94 4.47 13.04 7.16

110 10 2.5 20 10

90 100 00 00 00 00 10 05

90 00 00 00 00

SD 5.77 1.44 10.00 5.00
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lation of the stock price, whereas the back-end gaming involves a downward
manipulation of the stock price.

4.3.3.1 Front-End Gaming Sensitivity

If the asset price S0 is manipulated by δ, then the asset price after manipu-
lation is S1 = (1 + δ)S0 where δ is in percentage terms, i.e., δ = 0.05 for 5%
price manipulation, and is positive for upward manipulation and negative for
downward manipulation. The front-end gaming sensitivity (FEGS) is thus
given by

FEGS =
C[S0(1 + δ), K]− C[S0, K]

δC[S0, K]

Tian used an example to compare the sensitivities where a company an-
nounced that it will award its executives an option grant at an exercise price
equal to the current stock price S0 (Tian, 2017). It is assumed that the
executives manipulate the asset price downward, in order to get lower strike
price, to S1 = (1 + δ)S0 on or near the option grant date. The option price
then reduces to C1 = C(S1, K). Thus, the option gain translates into an
FEGS measure of

FEGS = −C[S0(1 + δ), K]− C[S0, K]

δC[S0(1 + δ), K]

Table 4.7 shows the FEGS measure for the standard, Asian, and Average-
Asian options when the strike price is 90, 100, and 110, S0 = 100, r =
0.1, σ = 0.4, and T = 3. The measure is given when δ is 1, 5, 10, and 25
percent, respectively. Here, FEGS measure is negative because asset price is
manipulated downward.

An FEGS measure of −1 means that a 1% downward manipulation in the
asset price results in a 1% gain in the value of the option value. Interestingly,
the Asian option is the most vulnerable to the front-end manipulation and the
standard option is the least vulnerable. Whereas, the average-Asian option
is less vulnerable to price manipulation threats than the Asian option.

4.3.3.2 Back-End Gaming Sensitivity

Once an option contract is written, gains in the option payoff can only come
from manipulation in the asset price, normally, at the time of the option
expiry, in case of a standard option, and during the life of the option, in case
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Table 4.7: Front-End Gaming Sensitivity Measure with S0 = 100, r =
0.1, σ = 0.4, and T = 3

δ -0.01 -0.05 -0.1 -0.25

Standard

K = 90 -1.9592 -2.1034 -2.3133 -3.2464

K = 100 -2.0615 -2.2184 -2.4475 -3.4765

K = 110 -2.1601 -2.3295 -2.5778 -3.7034

Asian

K = 90 -3.0365 -3.3716 -3.8914 -6.6963

K = 100 -3.3716 -3.7701 -4.3953 -7.8832

K = 110 -3.7054 -4.1716 -4.9107 -9.1694

Average-Asian

K = 90 -2.6736 -2.7732 -3.1283 -4.8741

K = 100 -2.4277 -2.9788 -3.3780 -5.4150

K = 110 -2.7401 -3.3145 -3.6624 -5.9327

of an Asian option. The option payoff sensitivity (OPS) (Tian, 2017) for
different types of options is then

OPST =
max[ST (1 + δ)−K, 0]−max[ST −K, 0]

δC0exp(rT )

for a standard call,

OPST =
max[AT (1 + δ)∆t/T −K, 0]−max[AT −K, 0]

δC0exp(rT )

for an Asian call, and

OPST =
max[2AT (1 + δ)∆t/T + ST − 3K, 0]−max[2AT + ST − 3K, 0]

δC0exp(rT )

for an average-Asian call, where ST is the asset price at expiry, AT is the
average price from time t = 0 to t = T , r is the interest rate, T is the life in
years of the option, K is the agreed strike price, δ is the percentage change in
the asset price due to manipulation, and C0 is the option price at the time of
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Table 4.8: Back-End Gaming Sensitivity Measure with S0 = 100, r = 0.1, σ =
0.4, and T = 3

∆t 0.5 1

δ 0.1 0.2 0.3 0.1 0.2 0.3

Standard

K = 90 1.4559 1.4823 1.5032 1.4588 1.4833 1.5023

K = 100 1.5390 1.5737 1.5991 1.5370 1.5736 1.5996

K = 110 1.6154 1.6601 1.6990 1.6151 1.6606 1.6981

Asian

K = 90 0.3320 0.3222 0.31301 0.6754 0.6634 0.6518

K = 100 0.3654 0.3560 0.3458 0.7436 0.7357 0.7251

K = 110 0.3960 0.3856 0.3762 0.8075 0.7999 0.7947

Average-Asian

K = 90 0.2869 0.2779 0.2695 0.5825 0.5708 0.5592

K = 100 0.3097 0.3010 0.2918 0.6288 0.6194 0.6084

K = 110 0.3210 0.3207 0.3122 0.6709 0.6619 0.6540

option contract. Here, ∆t is the manipulation period, that is, for how much
time the price is manipulated, and C0exp(rT ) is the option price at t = T .
As shown in Table 4.8, the standard option is the most vulnerable to the
back-end gaming. If the option is granted at-the-money, i.e., K = 100, the
BEGS measure is 1.5390, 1.5737, and 1.5991 when the percentage change in
the asset price due to manipulation is 10, 20, and 30 percent, respectively,
and the manipulation is maintained for 6 months. When the BEGS measure
is 1.5390, it means that, 1% increase in the asset price can provide a 1.5390%
gain in the expected payoff of the option. When δ is 10, 20, and 30 percent,
respectively, and ∆t is 6 months, the BEGS measure for the Asian option
is 0.3654, 0.3560, and 0.3458, which is 76.25, 77.38, and 78.38 percent less
sensitive than the corresponding standard option. Whereas, for these values
of δ and ∆t, the BEGS measure for the average-Asian option is 0.3097, 0.3010,
and 0.2918, respectively. Hence, the average-Asian option is 79.87, 80.87,
and 81.75 percent less sensitive than the corresponding standard option, and
15.24, 15.46, and 15.60 percent less sensitive than the corresponding Asian
option. This indicates that the average-Asian option is the least sensitive to
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asset price manipulation at the back-end gaming. Hence, the average-Asian
option is not only less sensitive than the Asian option against the front-end
gaming but also against the back-end gaming.

Summary

In this chapter, the Black-Scholes model for the European style standard
option is discussed, followed by the arithmetic and geometric Asian options.
Then, the popularity of the Asian options for the purpose of risk management
and executive compensation packages is discussed. The case where the price
at expiry and the average price are given as the weighted average in the option
payoff is also reviewed. Finally, with the intention to reduce the option price
and the underlying price volatility, the average-Asian option is proposed.
The numerical results demonstrate that the average-Asian option reduces
the underlying price volatility and is less sensitive to price manipulations.

54



Chapter 5

Numerical Approximations for Op-
tion Pricing

The random behaviour of financial quantities is modeled through SDEs,
which are continuous-time stochastic processes, while the numerical meth-
ods for solving these SDEs are based on a time discretization of the life T
of the financial quantity into n time steps. Hence, the first step in the nu-
merical methods is to discretize a continuous-time stochastic process into a
discrete-time stochastic process.

This chapter explains the Euler method of discretizing the life T of a
financial quantity into n time steps and updating its value at each step using
a financial model. The option values are then calculated by using the Monte
Carlo simulation method and sampling through a tree method. The option
prices are then calculated using the stochastic volatility models including the
newly proposed Poisson-Diffusion stochastic volatility model.

When the random behaviour of an asset is modeled through a geometric
Brownian motion SDE for example, its discrete-time version is given by

S(t+ ∆t) = rS(t)∆t+ σS(t)ε
√

∆t

Suppose a financial institute holds a 3 month option where the underlying
is this asset, so T = 3

12
= 0.25. The initial price is 100, the risk-free interest

rate is 5%, the volatility of the asset price is 30%, and the time T is divided
into 100 equal intervals, i.e ∆t = T

n
= 0.25

100
= 0.0025. That is, S0 = 100, r =

0.05, σ = 0.3, and ∆t = 0.0025. The change ∆S in the current asset price,
price at t = 0, S0 = 100 during the time interval ∆t = 0.0025 is then given
by

S(t+ ∆t) = (0.05)(100)(0.0025) + (0.3)(100)(0.0835)
√

0.0025

which gives S(t + ∆t) = 0.1378, and so S1 = 100 + 0.1378 = 100.1378.
Similarly, S2, after a time of 0.0025+0.0025=0.005, can be obtained as

S(t+ ∆t) = (0.05)(100.1378)(0.0025) + (0.3)(100.1378)(0.52)
√

0.0025

which gives S(t+∆t) = 0.7936 and S2 = 100.1378+0.7936 = 100.9314. Here,
0.1378 and 0.52 are normally distributed random numbers and are generated
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in Matlab through the >> randn command. This discrete-time method of
modeling the asset price over time is called the Euler method.

The average-Asian option is contingent on both the price at expiry and
the average price during the life of the option. In the absence of a closed-form
solution, the sampling through tree and Monte Carlo simulation methods are
probably the most suitable option pricing methodologies.

5.1 Sampling Through Tree Method

D. Mintz introduced the sampling through a tree method (Mintz, 1997).
In this method, an m-step binomial tree is used to sample from the 2m

paths that are possible. Consider a binomial tree where the probability of
an up movement is p and the probability of a down movement is 1− p. The
procedure is as follows:

1. At each node, a uniformly distributed random number between 0 and
1 is obtained. If the number is greater than or equal to 1− p, it takes
an up movement and down movement otherwise.

2. Once the path from the initial node (t = 0) to the end of the tree
(t = T ) is complete, the price at expiry ST is obtained and the average
price AT is calculated.

3. Calculate the payoff of the average-Asian option. The first trial is now
complete.

4. A similar procedure from step 1 to step 3 is repeated to complete more
trials.

5. The mean of the expected payoffs is discounted at the risk-free interest
rate to obtain an approximate value of the average-Asian option.

Now, consider a three-month arithmetic average-Asian option with S0 =
100, r = 0.1, σ = 0.4, K = 100, and T = 0.25. The life of the option is
divided into seven intervals, that is, ∆t = T

m
= 0.25

7
= 0.035714. By the

binomial model for option pricing (Cox, Ross, & Rubinstein, 1979),

u = eσ
√

∆t = e0.4×
√

0.035714 = 1.0785
d = e−σ

√
∆t = e−0.4×

√
0.035714 = 0.9272

a = er
√

∆t = e0.1
√

0.035714 = 1.0036
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Figure 5.1: Binomial Tree for Stock Price Movement with m = 7.

p = a−d
u−d = 1.0036−0.9272

1.0785−0.9272
= 0.50475

Then, the upward movement is
100× 1.0785 = 107.852, 107.852× 1.0785 = 116.321, ...
and the downward movement is
100× 0.9272 = 92.7194, 92.7194× 0.9272 = 85.9688, ...
The value of the Asian call is

c(Asian) = e−rT5.70 = e−0.1×0.255.70 = 5.56

and the value of the average-Asian call option is

c(A.Asian) = e−rT4.37 = e−0.1×0.254.37 = 4.26

The seven step binomial tree is given in Figure 5.1. The twenty trial paths
are completed using the steps described above and are given in Table 5.2,
where the last column is showing the payoff of the average-Asian option for
each trial. The mean of these payoffs is 4.37, which is discounted at the
risk-free interest rate to estimate the value of the average-Asian option.

In practice, more time steps, at least 30, on the tree and a sufficiently
large number of simulation trials are needed to better approximate the option
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Table 5.1: Pricing Asian and Average-Asian Options by Sampling through
Tree Method with S0 = 100, r = 0.1, σ = 0.4, K = 100, and T = 0.25

Trial Path ST Average Asian Payoff A.Asian Payoff

1 UUDUUDD 107.85 112.25 12.25 8.09

2 UUUDUUD 125.46 119.02 19.02 15.87

3 UDDUUUU 125.46 106.28 6.28 9.50

4 DUUUUUD 125.46 112.89 12.89 12.81

5 UDUDDDD 79.71 96.76 0 0

6 UUDUDDD 92.72 106.11 6.11 1.24

7 UUDDDUU 107.85 104.07 4.07 4.00

8 UDUUDDD 92.72 104.07 4.07 0.22

9 UDUDUDU 107.85 103.93 3.93 3.93

10 UUUUDDD 107.85 116.82 16.82 10.37

11 UDUDUDD 92.72 102.03 2.03 0

12 DUDDUUU 107.85 96.50 0 0.21

13 UDUUDUD 107.85 108.01 8.01 5.97

14 DUUUDUD 107.85 106.11 6.11 5.02

15 DDDUDUD 79.71 86.22 0 0

16 UDUUUDD 107.85 110.21 10.21 7.07

17 DUDUUUD 107.85 102.18 2.18 3.05

18 DDUDUUU 107.85 94.74 0 0

19 DDDUDUD 79.71 86.22 0 0

20 DDDUUUD 92.72 91.23 0 0

Average 5.70 4.37

value. Table 5.3 shows the standard, Asian, and average-Asian arithmetic
and geometric call option prices with 100, 000 simulations and for different
time steps on tree with S0 = 100, r = 0.1, σ = 0.4, K = 100, and T = 1.
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Table 5.2: Prices of Standard, Asian, and Average-Asian Call Options by
Sampling through Tree Method

Steps Standard Asian Average-Asian

Arith Geom Arith Geom

10 19.8961 11.0274 10.0623 10.3744 9.8690

20 20.2529 11.1948 10.1885 10.4758 9.9032

30 20.3325 11.1729 10.1646 10.4594 9.9257

40 20.2652 11.1199 10.1488 10.4014 9.8864

50 20.1302 11.0917 10.2380 10.3486 9.9365

60 20.3792 11.1841 10.2125 10.4486 9.8967

70 20.1256 11.0702 10.3403 10.3248 10.0314

80 20.1329 11.0147 10.1845 10.2976 9.8824

90 20.2719 11.1062 10.1909 10.3724 9.8711

100 20.2886 11.1208 10.2035 10.3837 9.9171

5.2 Monte Carlo Simulation

Updating the asset price from time t = 0 to t = T using the Euler method as
described above completes one sample path. In the Monte Carlo simulation
method, a sufficiently large number of sample paths are generated to obtain
the expected payoff of an option. Phelim Boyle in 1977 introduced the Monte
Carlo simulation method for pricing options by simulating paths for the asset
price in the risk-neutral world and calculating the payoff from the option
(Boyle, 1977). The mean of the sample payoffs was discounted at the risk-
free interest rate to approximate an option value. Consider the risk-neutral
random walk for the asset price S

dS = rSdt+ σSdz

whose Euler discretization is given by

S(t+ ∆t) = S(t) + rS(t)∆t+ σS(t)ε
√

∆t

Phelim Boyle simulated lnS rather than S as given in Chapter 3, which gives
the dynamics of the asset price as

S(t+ ∆t) = S(t)exp[(r − 1

2
σ2)∆t+ σε

√
∆t]
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From time t = 0 to t = T , it gives

S(T ) = exp[(r − 1

2
σ2)T + σε

√
T ]

The option value is therefore given as

Option Value = e−rTE
[
Payoff(S)

]
The procedure for valuing an option is thus outlined as follows:

1. Simulate the asset price S using the equation for S(T ) given above.

2. Calculate the option payoff.

3. Repeat steps 1 and 2 for a sufficiently large number of times to obtain
the sample payoffs.

4. Calculate the arithmetic mean of these payoffs to approximate the ex-
pected option payoff.

5. Finally, discount the expected option payoff at the risk-free interest
rate to estimate the option value.

The standard error of the approximations is calculated as

Standard Error =
w√
M

where w is the standard deviation of the payoff results and M is the number
of simulations or trials. Hence, a 95% confidence interval for the price f of
an option is given as

µ− 1.96w

M
< f < µ+

1.96w

M

The approximate value must be between this range at the 95% confidence
interval.

The precision of the results by the Monte Carlo method critically depends
on the number of simulations. Any technique that can reduce the variance
is of great advantage. Antithetic variable technique is a simple and effective
technique to reduce the variance. For example, a payoff f1 is calculated
from the stock price path constructed in the usual manner as above with
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Table 5.3: Monte Carlo Simulation using Antithetic Variable Technique to
Value Call Option with S0 = 50, r = 0.1, σ = 0.4, K = 52, and T = 1

No. of Trials Call Value Standard Error Confidence Interval

20,000 9.1972 0.0637 9.0723 - 9.3221

40,000 9.3113 0.0452 9.2227 - 9.3999

60,000 9.2194 0.0366 9.1477 - 9.2912

80,000 9.2479 0.0320 9.1851 - 9.3107

100,000 9.2711 0.0287 9.2148 - 9.3273

120,000 9.3067 0.0263 9.2552 - 9.3582

140,000 9.2414 0.0241 9.1942 - 9.2886

160,000 9.2492 0.0226 9.2049 - 9.2935

180,000 9.2424 0.0213 9.2006 - 9.2842

200,000 9.2614 0.0202 9.2217 - 9.3010

positive ε. According to the antithetic variable technique, another payoff f2

is calculated from a second path constructed with negative ε, that is −ε.
Then, the average of these two payoffs is taken, that is

f =
f1 + f2

2

5.2.1 Black-Scholes Model

The binomial option pricing model assumes that the price movement follows a
binomial distribution. For a large number of trials, the binomial distribution
approaches the lognormal distribution assumed by the Black-Scholes option
pricing model. The two resulting prices should then coincide (Cox, Ross,
& Rubinstein, 1979). This is shown in the next pricing method when the
average-Asian option is priced using the Monte Carlo simulation method.

Now assume that the asset price follows a geometric Brownian motion
SDE (an assumption used by Black-Scholes model)

dS = rSdt+ σSdz

And the solution to this SDE gives the dynamics of the asset price, that is

S(t+ ∆t) = S(t)exp[(r − 1

2
σ2)∆t+ σε

√
∆t]
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The average-Asian option price can then be calculated by using the Monte
Carlo method. The process is described below.

1. Divide the time T of the option life by m, i.e., ∆t = T
m

.

2. Simulate the stock price using the solution to the geometric Brownian
motion SDE and use the time step ∆t instead of T .

3. Repeat step 2 m times by continuously updating S0 by ST for each
time. Also, calculate the average price at each step.

4. After m times, the final price is ST and the final average is AT . Using
this ST and AT , calculate the payoff of the average-Asian option.

5. This completes the first trial. Repeat steps 1 to 4 to perform n trials.

6. Calculate the average payoff from n trials and discount it to the risk-
free interest rate. This is the average-Asian option price.

Table 5.4: Prices of Standard, Asian, and Average-Asian Call Options by
Monte Carlo Simulation Method

Simulations Standard Asian Average-Asian

Arith Geo Arith Geo

20,000 20.5312 11.1156 10.1489 10.4341 9.8403

40,000 20.3281 11.1182 10.2921 10.3807 10.0160

60,000 20.2792 11.1153 10.2337 10.3690 9.9393

80,000 20.2698 11.1020 10.2313 10.3590 9.9382

100,000 20.3137 11.1185 10.3022 10.3800 9.9943

120,000 20.3345 11.1408 10.2092 10.3970 9.9126

140,000 20.2775 11.0800 10.2183 10.3514 9.9136

The option prices of the standard, Asian, and average-Asian call options are
given in Table 5.4 when the number of time steps m is 100, i.e., ∆t = T

m
, and

for different number of simulations, with S0 = 100, r = 0.1, σ = 0.4, K = 100,
and T = 1. Accordingly, Table 5.5 shows price comparison of these three
types of different options by different pricing methodologies.
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Table 5.5: Standard, Asian, and Average-Asian Option Prices Using Different
Pricing Methods with S0 = 100, r = 0.1, σ = 0.4, K = 100, and T = 1

Pricing Method Standard Asian Average-Asian

Black-Scholes 20.32 Arith Geo Arith Geo

Sampling through Tree 20.27 11.12 10.25 10.38 9.94

Monte Carlo Method 20.33 11.11 10.26 10.38 9.95

Kemna and Vorst ... ... 10.27 ... ...

Turnbull and Wakeman ... 11.23 ... ... ...

Table 5.6 shows the prices of the standard, Asian, and average-Asian options
with two different parameters and different strikes. From the table, it indi-
cates that the resulting price from the average-Asian option is more stable in
possible practical life as the strike price is very unlikely to be so large than
the initial asset price. It is hence a good choice for reducing the volatility
inherent in the option price.

The strike price, as shown in Table 5.6, remains an important factor in
the determination of the option value comparison between the Asian and
average-Asian options. The average-Asian call is fairly cheap compared with
the Asian call when the option is in-the-money and slightly cheap when the
option is at-the-money. With parameters S0 = 100, r = 0.15, σ = 0.45, T =
1, when option is granted deep-in-the-money, i.e., K = 90, the standard
option costs the firm $29.5142 per share. Whereas, it costs the firm $18.5279
per share if the Asian option is granted at this strike price. In the case of an
average-Asian option, its cost is $16.3836 per share, which is 55.511% and
88.426% of those of the standard and Asian options, respectively. Similarly,
when the option is issued at-the-money, i.e., K = 100, the standard option
costs the firm $24.4169 per share. Whereas, it costs the firm $13.0875, i.e.,
53.6% of the standard option, and $12.3747, i.e., 50.68% of the standard
option and 94.55% of the Asian option, per share in the case of the Asian
and average-Asian options, respectively. The average-Asian option is thus
cheaper than the Asian option when the option is granted at-the-money also.

63



5.2.2 Stochastic Volatility Model

To price options in stochastic volatility model where volatility varies through
time and is given as a stochastic variable, the Euler scheme for the Hull &
White stochastic volatility model (Hull & White, 1987) is given by

S(t+ ∆t) = S(t)exp[(r − 1

2
V (t))∆t+ ε

√
V∆t]

V (t+ ∆t) = V (t)exp
[(
µ− 1

2
ξ2
)

∆t+ ξε
√

∆t
]

The average-Asian option price can then be calculated by using the Monte
Carlo simulation method. The process is described below.

1. Divide the time T of the option life by m, i.e., ∆t = T
m

.

2. Simulate the stock price using the above equation S(t+ ∆t) where the
variance V is the initial variance.

3. Update the variance using the above equation V (t + ∆t) and use this
updated V to calculate S(t+ ∆t) in the subsequent simulation.

4. Repeat steps 2 and 3 m times by continuously updating S(t+ ∆t) and
V (t+ ∆t) each time. Also, calculate the average price at each step.

5. After m times, the final price is ST and the final average is AT . Using
this ST and AT , calculate the payoff of the average-Asian option.

6. This is the completion of the first trial. Repeat steps 1 to 5 to perform
n trials.

7. Calculate the average payoff from n trials and discount it to the risk-
free interest rate. This is the average-Asian option price.

In Part A of Table 5.7, the variance V follows a mean-reversion process
with speed α = 10 and the long-run volatility σ∗ = 0.35. Hence, µ in the
variance process is replaced by 10(0.35 −

√
V (t)). In Part B, the drift is

allowed in the variance process as well. The other option parameters used
in calculating the option prices are S0 = 100, K = 100, r = 0.15, T = 1, and
the volatility of the volatility is ξ = 0.45. It is constant throughout the life
of the option. Here, the time T is divided into 100 steps, i.e., m = 100, and
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simulations are performed for n = 200, 000 times. Note that when a drift in
the stochastic volatility is allowed, the option prices, shown in Table 5.7, are
higher compared to those, as shown in Table 5.6, from the model where the
volatility is considered a constant.

5.2.3 Poisson-Diffusion Model

When jumps are incorporated into the price process S(t + ∆t), the stan-
dard option prices can be calculated in the usual manner using the Monte
Carlo simulation method, while the Asian and average-Asian option prices
do not converge to a single value. They are hence priced using the Poisson-
Diffusion stochastic volatility model instead of the Poisson-Diffusion model,
where jumps are incorporated into the variance process V (t+ ∆t).

The Euler scheme for the Poisson-Diffusion stochastic volatility model is
given by

S(t+ ∆t) = S(t)exp[(r − 1

2
V (t))∆t+ ε

√
V∆t]

V (t+ ∆t) = V (t) + β0

[(
r − 1

2
ξ2 − λk

)
∆t+ ξε

√
∆t
]

+ β1P (i) + β2Q(i)

The average-Asian option prices can be calculated by the Monte Carlo sim-
ulation method using the steps described above for the stochastic volatility
model. Here, P (i) and Q(i) are compound Poisson and Poisson processes,
respectively. All sources of randomness are assumed to be independent. In
pricing options, the full truncation scheme (Lord, Koekkoek, & Dijk, 2010)
is used for the stochastic volatility models to avoid negative variance. The
asset price process thus takes the form

S(t+ ∆t) = S(t)exp[(r − 1

2
V +(t))∆t+ ε

√
V +∆t]

where V + = max(V, 0).
In Table 5.8, the prices of the standard, Asian, and average-Asian call

options are calculated, in the case that the initial volatility of the underlying
asset σ =

√
V and the volatility of the volatility ξ first at 0.35 and then

at 0.45, with a drift being allowed. The other option parameters are S0 =
100, r = 0.15, T = 1, and the strike prices K are 90, 100, and 110. For the
Poisson-Diffusion model, the average number of jumps per year is λ = 1, the
average jump size is k = −0.1, and the volatility of the jump size is δ = 0.1.
Also, the assigned weights are β0 = 0.9, β1 = 0.09999, and β2 = 0.00001.
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Here, the time T is divided into 100 steps, i.e., m = 100, and simulations
are performed for n = 200, 000 times. Comparing the option prices in Table
5.8, where σ = ξ = 0.45, with those in Part B of Table 5.7, where drift is
allowed, it can be noted that the prices are higher than the usual stochastic
volatility model, with the incorporation of jumps in the variance process.

Summary

In this chapter, the standard, Asian, and average-Asian option prices are cal-
culated using different financial models for both the cases when the volatility
is constant and when it is stochastic during the life of the option. It is shown
that the value of the average-Asian call option is consistently less than that
of the standard call option and that of the Asian call when granted in-the-
money or at-the money. Thus, the numerical results confirm the usefulness
of the average-Asian options with the target being to reduce the underlying
price volatility and the option price.
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Table 5.6: Comparison of Standard, Asian, and Average-Asian Option Prices
with Different Strikes

K European Option Call Put

Average Type Arith Geom Arith Geom

Part A. S0 = 100, r = 0.15, σ = 0.45, T = 1.

90 Standard 29.5142 6.9426

90 Asian 18.5279 17.2313 3.1156 3.4871

90 Average-Asian 16.3836 15.7362 3.0346 3.2365

95 Standard 26.8550 8.6260

95 Asian 15.6389 14.3920 4.5421 4.9772

95 Average-Asian 14.2697 13.6410 4.1641 4.3883

100 Standard 24.4169 10.5116

100 Asian 13.0875 11.9187 6.3152 6.7892

100 Average-Asian 12.3747 11.7770 5.5122 5.736

105 Standard 22.1986 12.5417

105 Asian 10.8866 9.7933 8.3809 8.9445

105 Average-Asian 10.7018 10.1411 7.0347 7.3064

110 Standard 20.0891 14.8014

110 Asian 8.9695 7.9594 10.7885 11.4261

110 Average-Asian 9.1930 8.6825 8.7806 9.0774

Part B. S0 = 50, r = 0.1, σ = 0.4, T = 1.

46 Standard 12.1803 3.8133

46 Asian 7.7255 7.2453 1.7693 1.9463

46 Average-Asian 6.7821 6.5500 1.7123 1.8077

48 Standard 11.1109 4.5779

48 Asian 6.5649 6.1158 2.4320 2.6300

48 Average-Asian 5.9336 5.7156 2.2339 2.3346

50 Standard 10.1553 5.4004

50 Asian 5.5520 5.1188 3.2107 3.4382

50 Average-Asian 5.1856 4.9659 2.8262 2.9411

52 Standard 9.2438 6.3047

52 Asian 4.6454 4.2441 4.1205 4.3741

52 Average-Asian 4.4994 4.2989 3.5022 3.6269

54 Standard 8.4276 7.2873

54 Asian 3.8787 3.4960 5.1503 5.4265

54 Average-Asian 3.9043 3.7054 4.2550 4.3845
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Table 5.7: Standard, Asian, and Average-Asian Option Prices Using Hull &
White Stochastic Volatility Model

Standard Asian Average-Asian

Part A. a = 10, σ∗ = 0.35

K = 90 27.80 17.97 15.75

K = 100 22.44 12.39 11.59

K = 110 17.83 8.13 8.26

Part B. Drift is allowed

K = 90 29.83 18.60 16.48

K = 100 24.87 13.21 12.53

K = 110 20.56 9.10 9.36

Table 5.8: Standard, Asian, and Average-Asian Option Prices Using Poisson-
Diffusion Stochastic Volatility Model

K Standard Asian Average-Asian

90 29.50 17.93 16.04

σ = 0.35 100 24.15 12.09 11.79

110 19.65 7.80 8.48

90 31.38 19.02 17.03

σ = 0.45 100 26.36 13.59 13.06

110 22.06 9.53 9.93
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Chapter 6

Conclusion

In this thesis, a new path-dependent option, named the average-Asian op-
tion, is introduced, to further reduce the price of the option and to minimize
the adverse effect of asset price jumps as well as the potential market ma-
nipulation threat. The average-Asian option is priced by using the Monte
Carlo simulation method for both the cases when the volatility is constant
and when it is stochastic during the life of the option. The resulting option
prices are consistently more stable in the practical situations. The mathemat-
ical proof that the expected value of the average-Asian call is less than that
of the standard call is given. The numerical results show that, on average,
the average-Asian call option is about 49.3% cheaper than the standard call
option when granted at-the-money. Through simulation, it is shown that, for
K ≤ S0, the expected value of an average-Asian call is less than that of an
Asian call. The numerical results show that, on average, the average-Asian
call option is about 5.4% cheaper than the Asian call option when granted
at-the-money, i.e., when K = S0.

In executive compensation context, the average-Asian option is more cost
effective than the Asian option both when the option is granted in-the-money
and at-the-money. Besides, the average-Asian option is also less sensitive
than the Asian option to managerial manipulation at both the front-end and
the back-end gaming.

The price of crude oil is one of the leading indicators of the economy
in forecasting the economic trends (Kyriakou, Pouliasis, & Papapostolou,
2016). An important example where the Asian option potentially becomes
very expensive is the crude oil price from February 2018 to February 2019,
given in Figure 6.1. The price in February 2018, as the initial price S0,
is greater than that in February 2019, as ST . Whereas, the average price
during this period is higher, which makes the Asian option an expensive
choice. These are the particular situations where dependence on both the
average price and the price at expiry, would have significant advantage over
the average price alone.

As anything that reduces the up-front premium in an option contract
makes it more popular (Wilmott, 2007), the average-Asian option would
have significant practical importance in real life. The dependence of the
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Figure 6.1: Brent Crude Oil Prices from February 2018 to February 2019
(Source: oilprice.com)

option payoff on both the average price of the underlying during the life of
the option and the price at expiry makes the average-Asian option a powerful
hedging instrument. Besides, as the Asian options are common in financial
markets and well understood by market participants as well as academics,
the average-Asian options would be easier to understand and trade, instead
of being considered as abstract, technical, and complicated derivatives.

6.1 Research Implications

An Asian option is contingent on the average price of the underlying asset
during the life of the option. The averaging feature reduces the price volatility
which makes it less exposed to crashes or rallies in an asset price. Asian
options are thus popular in the commodity market for the purpose of risk
management.

It is evident from several numerical tests conducted in this research study
that the Average-Asian option further reduces the underlying price volatility
and also provides insurance against high average price but low price at the
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time of option exercise.

6.1.1 Theoretical Implications

Options are important derivatives and are widely used for the purpose of risk
management. The average-Asian option is expected to be a valuable addition
to the literature of derivatives. The dependence of the option payoff on both
the average price of the underlying during the life of the option and the price
at expiry makes the average-Asian option a powerful hedging instrument.

There are several useful financial models, with and without jumps, where
only the asset price is considered as a stochastic variable, as well as where
both the asset price and volatility are considered as stochastic variables. The
proposed Poisson-Diffusion and Poisson-Diffusion stochastic volatility models
are also expected to be useful models for highly volatile assets.

6.1.2 Practical Implications

In the energy market, for example the electricity or oil market, the contracts
are written to supply continuous energy over the life of the option. The newly
proposed path-dependent average-Asian options are particularly appropriate
for such a market, as it is reasonable for the energy market to refer to the
average price over the period of the contract while keeping the current market
situation in account.

Another important applications of the average-Asian option is the re-
newable power production market where the weather condition, for example
wind and cloud cover, has a strong effect on the supply side of the market.
This could result in frequent price drops or rallies in the market. The design,
i.e., dependence on both the average price and the price at expiry, and anal-
ysis, i.e., reduced volatility, of the average-Asian option make it a favorable
financial derivative for both the producer and the consumer, in protecting
against undesirable weather conditions and energy prices.

The average-Asian option is expected to be an effective risk management
tool for businesses involved international trade and frequent currency ex-
change. It could be a simple but effective measure to avoid the extra risk
imposed by the variability in the currency exchange rates. Also, it is ex-
pected to be a cost-effective tool to align the interest of management and
shareholders and to mitigate the principal-agent problem in a firm.
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6.2 Future Work

In section 4.4, it is argued that the expected value of an average-Asian call
option is less than or equal to that of an Asian call option when K ≤ S0,
using results shown in (Kemna & Vorst, 1990) and Table 5.6. An immediate
step could then to ascertain a full mathematical relationship between the
expected values of the Asian and average-Asian options.

Besides the models introduced in this thesis, the standard, Asian, and
average-Asian option prices could also be calculated by using the GARCH
option pricing model with Meixner innovations (Fengler & Melnikov, 2018).
In addition, the average-Asian option could be further priced when the un-
derlying is modeled as an SDE driven by a general meromorphic Lévy pro-
cesses (Kuznetsov, Kyprianou, & Pardo, 2012). In the thesis, the basic Euler
scheme is used to discretize the associated SDE, while the newly developed
Euler-Poisson scheme (Ferreiro-Castilla, Kyprianou, & Scheichl, 2016) could
be employed when the financial model is based on meromorphic Lévy pro-
cesses. Furthermore, multilevel Monte Carlo (Giles, 2008) and empirical mar-
tingale (Duan & Simonato, 1998) are also promising simulation techniques
for pricing the average-Asian option.

Options are used to hedge the underlying price risk. Similarly, Greeks,
or Greek letters, are important in the hedging of an option position and
play key roles in risk management (Hull, 2015; Wilmott, 2007). Greeks, i.e.,
delta, theta, gamma, vega, and rho, of the average-Asian option can hence
also be calculated and analyzed. The Greeks of the Asian and average-Asian
options could then be compared to measure the change in the option value
with respect to the change in any individual option parameter.

In case of a geometric Asian option, when the underlying is assumed
to follow a geometric Brownian motion SDE, the mean and variance are
calculated and a closed-form formula is derived. An attempt could also be
made to calculate the mean and variance of an average-Asian option in order
to derive a closed-form formula for a geometric average-Asian option.

In section 3.7, a new stochastic process namely the Poisson-Diffusion
model is proposed. The Poisson-Diffusion stochastic volatility model as a
coupled SDEs is also given. However, most commodity prices tend to get
pulled back to a long term mean and follow mean-reverting processes (Hull,
2015). the mean-reverting models are thus usually more popular to model
commodity prices. Consequently, the mean-reversion form of the Poisson-
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Diffusion and Poisson-Diffusion stochastic volatility models could also be
designed and analyzed.
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Appendices

Matlab Codes

Sampling through Tree Method for Option pricing

S=100; K=100; r =0.1 ; V=0.4; T=1; N=100; M=200000;
sum=0; BSPayoffSum=0; AsianPayoffSum=0; AAsianPayoffSum=0;
dt=T/N;
a = exp ( r∗dt ) ;
U = exp (V∗ s q r t ( dt ) ) ;
D = exp(−V∗ s q r t ( dt ) ) ;
P = (a−D)/(U−D) ;
Q = 1 − P;
f o r J=1:M

S = 100 ;
sum = 100 ;
f o r k=1:N
i f rand >=Q

S = S∗U;
e l s e

S = S∗D;
end
sum = sum+S ; % For geometr ic : sum = sum∗S ;
end
A = sum/(N+1); % For geometr ic : A = (sum)ˆ(1/ (N+1)) ;
BSPayoff = max(S−K, 0 ) ;
AsianPayof f = max(A−K, 0 ) ;
AAsianPayoff = 0.25∗max(2∗A+S−(3∗K) , 0 ) ;
BSPayoffSum = BSPayoffSum + BSPayoff ;
AsianPayoffSum = AsianPayoffSum + AsianPayof f ;
AAsianPayoffSum = AAsianPayoffSum + AAsianPayoff ;
end
BSPayoffAverage = BSPayoffSum/M;
BSCall = exp(−r∗T)∗BSPayoffAverage
AsianPayoffAverage = AsianPayoffSum/M;
AsianCal l = exp(−r∗T)∗AsianPayoffAverage
AAsianPayoffAverage = AAsianPayoffSum/M;
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AAsianCall = exp(−r∗T)∗AAsianPayoffAverage

Monte Carlo Simulation for Option pricing

S=100; K=100; r =0.1 ; V=0.4; T=1; m=500; n=200000; dt=T/m;
BSPayoffSum=0; AsianPayoffSum=0; AAsianPayoffSum=0;
f o r I =1:n

S = 100 ;
STSum = 100 ;

AT = 100 ;
f o r J=1:m

ST = S∗exp ( ( ( r−Vˆ2/2)∗ dt )+(V∗ randn∗ s q r t ( dt ) ) ) ;
STSum = STSum + ST; % For geometr ic : STSum = STSum∗ST;

AT = STSum/( J+1); % For geometr ic : AT = (STSum)ˆ(1/ ( J +1)) ;
S = ST;

end
BSPayoff = max(ST−K, 0 ) ;
AsianPayof f = max(AT−K, 0 ) ;
AAsianPayoff = 0.25∗max(2∗AT+ST−(3∗K) , 0 ) ;
BSPayoffSum = BSPayoffSum + BSPayoff ;
AsianPayoffSum = AsianPayoffSum + AsianPayof f ;
AAsianPayoffSum = AAsianPayoffSum + AAsianPayoff ;
end
BSCall = exp(−r∗T)∗ ( BSPayoffSum/n)
AsianCal l = exp(−r∗T)∗ ( AsianPayoffSum/n)
AAsianCall = exp(−r∗T)∗ ( AAsianPayoffSum/n)

Hull & White SV Model with Mean-Reversion

f unc t i on Asian = SVModel ( so , k , r , vo , t ,m, n)
dt = t /m; BSPayoffSum=0; AsianPayoffSum=0; AAsianPayoffSum=0;
f o r i =1:n
s = so ;
v = vo ˆ2 ;
dv = vo ˆ2 ;
stSum = so ;
at = so ;
f o r j =1:m
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s t = s∗exp ( ( ( r−1/2∗dv)∗ dt )+( randn∗ s q r t ( dv∗dt ) ) ) ;
dv = v∗exp ( ( 1 0∗ ( 0 . 3 5 − s q r t ( v ) ) − 0 .5∗ vo ˆ2)∗ dt+vo∗ randn∗ s q r t ( dt ) ) ;
stSum = stSum + st ;
at = stSum /( j +1);
s = s t ;
v = dv ;
end
BSPayoff = max( st−k , 0 ) ;
BSPayoffSum = BSPayoffSum + BSPayoff ;
AsianPayof f = max( at−k , 0 ) ;
AsianPayoffSum = AsianPayoffSum + AsianPayof f ;
AAsianPayoff = 0.25∗max(2∗ at+st−3∗k , 0 ) ;
AAsianPayoffSum = AAsianPayoffSum + AAsianPayoff ;
end
BSCall = exp(−r∗ t )∗ ( BSPayoffSum/n)
AsianCal l = exp(−r∗ t )∗ ( AsianPayoffSum/n)
AAsianCall = exp(−r∗ t )∗ ( AAsianPayoffSum/n)

Poisson Random Generator

f unc t i on y = Poisson ( lambda )
X = 0 ;
Sum = 0 ;
f l a g = 0 ;
whi l e f l a g == 0
E = −l og ( rand ) ;
Sum = Sum + E;
i f Sum < lambda

X = X + 1 ;
e l s e
f l a g = 1 ;
end
end
y = X;

Poisson-Diffusion Model

f unc t i on Poi s sonDi f fus ionMode l (mu, sigma , lambda , k , d e l t a )
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T = 1 ;
N = 5000 ;
dt = T/N; t = ( 0 : dt :T) ;
I = ze ro s (N, 1 ) ;
X = ze ro s (N+1 ,1) ; Q = ze ro s (N+1 ,1) ; X(1) = 0 ;
P = ze ro s (N+1 ,1) ;
f o r i = 1 :N
I ( i ) = Poisson ( dt∗ lambda ) ;
Q( i +1) = Q( i ) + I ( i ) ;
i f I ( i ) == 0 ;
P( i ) = 0 ;
e l s e P( i ) = k∗ I ( i ) + s q r t ( d e l t a )∗ s q r t ( I ( i ) )∗ randn ;
end
X( i +1) = X( i ) + 0 . 9∗ ( (mu−0.5∗ sigmaˆ2−lambda∗k)∗ dt +
sigma∗ s q r t ( dt )∗ randn ) + 0.09999∗P( i ) + 0.00001∗Q( i ) ;
end
p lo t ( t ,X)

Poisson-Diffusion Stochastic Volatility Model

f unc t i on PoissonDi f fus ionSV ( so , k , r , v , t , lambda , k , d e l t a )
m = 100 ; n = 100000; dt = t /m;
BSPayoffSum = 0 ; AsianPayoffSum = 0 ; AAsianPayoffSum = 0 ;
I = ze ro s (m, 1 ) ;
X = ze ro s (m+1 ,1) ; Q = ze ro s (m+1 ,1) ;
P = ze ro s (m+1 ,1) ;
f o r j =1:n

X(1) = v ˆ2 ;
s = so ;
stSum = so ;
at = so ;

f o r i = 1 :m
I ( i ) = Poisson ( dt∗ lambda ) ;
Q( i +1) = Q( i ) + I ( i ) ;
i f I ( i ) == 0 ;
P( i ) = 0 ;
e l s e P( i ) = k∗ I ( i ) + s q r t ( d e l t a )∗ s q r t ( I ( i ) )∗ randn ;
end
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s t = s∗exp ( ( ( r−1/2∗max(0 ,X( i +1)))∗ dt )+( randn∗ s q r t (max(0 ,X( i +1))∗dt ) ) ) ;
X( i +1) = X( i ) + 0 . 9∗ ( ( r−0.5∗vˆ2−lambda∗k)∗ dt + v∗ s q r t ( dt )∗ randn ) +
0.09999∗P( i ) + 0.00001∗Q( i ) ;
stSum = stSum + st ;
at = stSum /(m+1);
s = s t ;
end
BSPayoff = max( st−k , 0 ) ;
BSPayoffSum = BSPayoffSum + BSPayoff ;
AsianPayof f = max( at−k , 0 ) ;
AsianPayoffSum = AsianPayoffSum + AsianPayof f ;
AAsianPayoff = 0.25∗max(2∗ at+st−3∗k , 0 ) ;
AAsianPayoffSum = AAsianPayoffSum + AAsianPayoff ;
end
BSCall = exp(−r∗ t )∗ ( BSPayoffSum/n)
AsianCal l = exp(−r∗ t )∗ ( AsianPayoffSum/n)
AAsianCall = exp(−r∗ t )∗ ( AAsianPayoffSum/n)
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