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Foreword on the Low Carbon Observatory 

The LCEO is an internal European Commission Administrative Arrangement being 

executed by the Joint Research Centre for Directorate General Research and Innovation. 

It aims to provide top-class data, analysis and intelligence on developments in low 

carbon energy supply technologies. Its reports give a neutral assessment on the state of 

the art, identification of development trends and market barriers, as well as best 

practices regarding use private and public funds and policy measures. The LCEO started 

in April 2015 and runs to 2020.  

Which technologies are covered? 

• Wind energy

• Photovoltaics

• Solar thermal electricity

• Solar thermal heating and cooling

• Ocean energy

• Geothermal energy

• Hydropower

• Heat and power from biomass

• Carbon capture, utilisation and storage

• Sustainable advanced biofuels

• Battery storage

• Advanced alternative fuels

How is the analysis done? 

JRC experts use a broad range of sources to ensure a robust analysis. This includes data 

and results from EU-funded projects, from selected international, national and regional 

projects and from patents filings. External experts may also be contacted on specific 

topics.  The project also uses the JRC-EU-TIMES energy system model to explore the 

impact of technology and market developments on future scenarios up to 2050.  

What are the main outputs? 

The project produces the following report series: 

 Technology Development Reports for each technology sector

 Technology Market Reports for each technology sector

 Future and Emerging Technology Reports (as well as the FET Database).

How to access the reports 

Commission staff can access all the internal LCEO reports on the Connected LCEO page. 

Public reports are available from the Publications Office, the EU Science Hub and the 

SETIS website. 

https://connected.cnect.cec.eu.int/groups/low-carbon-energy-observatory
https://ec.europa.eu/jrc/en/publications-list
https://setis.ec.europa.eu/
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1 Introduction 

This is the first iteration of the Technology Development Report for Advanced Alternative 

Fuels, there not having been a version of this report in previous rounds of LCEO work. As 

will be seen from this report, the fuel production pathways studied tend to be ‘ground-

breaking’ or relatively new, with much work being carried out at laboratory scale. While 

that means projects tend to be at low-TRL, it is possible they could become applicable at 

higher TRL levels. When seeking to define what constitutes an advanced alternative fuel 

(AAF), a number of important sources have been referred to. Principally, the SET-Plan 

Integrated Roadmap description has been used as the main guide to define the fuel types 

considered. The roadmap states such fuels represent new technological concepts for the 

introduction of non-biomass and non-fossil based alternative fuels in transport. This 

includes: 

- CO2-based and CO2-neutral liquid and gaseous fuels such as methanol, ethanol,

green gas or other fuel molecules using renewable energy, and

- Artificial photosynthesis and fuel from photosynthetic microorganisms (in water

and land environments) and from artificial photosynthesis mimics (SET-Plan

Integrated Roadmap, 2014).

It is critical to note that hydrogen holds great promise as an important fuel in itself, and 

one in which there is currently a considerable amount of interest both in the EU and 

across the globe. For example the Fuel Cell and Hydrogen Joint Undertaking1 (FCH JU), 

with an EU contribution of some €665 million under H2020, shows the level of interest 

and prioritisation being applied to the use of hydrogen as a fuel. 

However, the use of hydrogen itself as a fuel is not a focus here. This report is concerned 

with the use of hydrogen as a ‘feedstock’ with which to make other fuels. Some broad 

information on the production of hydrogen is given as a summary, as it is such an 

important ingredient for many of the fuels discussed within this report. But interested 

readers wishing to know more about hydrogen as a fuel, including aspects related to its 

production, storage, transportation and use in fuel cells, and to get a full picture on 

research efforts being conducted in this technology are directed to the extensive ‘Fuel 

Cells and Hydrogen’ LCEO TDR, D2.1.13. 

In a similar fashion to H2, this TDR is concerned with the use of CO2 or carbon containing 

gases to make other fuels – although a brief overview on CO2 technologies is again 

provided herewith. Readers wishing to get a detailed picture on carbon capture, 

utilisation and storage are kindly directed towards the LCEO TDR D2.2.9 ‘Technology 

development report on Carbon Capture Utilisation and Storage (CCUS)’. 

Returning to the consideration of the definition of advanced alternative fuels for the 

purposes of this report, the recast of the Renewable Energy Directive (RED) 

(2009/28/EC) was published in December 2018 (EU 2018/2001). It contains two new 

types of advanced alternative fuels which Member States (MS) can choose to promote, 

namely: 

- Recycled carbon fuels and

- Renewable fuels of non-biological origin

Renewable fuels of non-biological origin are liquid or gaseous fuels, used in transport 

(and not biofuels) whose energy content comes from renewable energy sources other 

than biomass. Generally, it is expected the energy for these fuels would come from 

renewable electricity, so-called electrofuels. The other category, ‘recycled carbon fuels’ 

are defined as ‘liquid and gaseous fuels produced from liquid or solid waste streams of 

non-renewable origin which are not suitable for material recovery, or from waste 

processing gas and exhaust gas of non-renewable origin which are produced as an 

1 https://www.fch.europa.eu/ 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG
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unavoidable and unintentional consequence of the production process in industrial 

installations (Directive EU 2018/2001). 

Degree of renewability 

Structuring or grouping the technological pathways on the basis of their potential to be 

renewable (or otherwise) is indeed challenging. For example, power to fuel (PtF) can be 

completely renewable, and provide high GHG savings if the H2 is produced from RES 

(renewable energy sources) electricity, and the carbon in the CO2 is of biological origin 

(e.g. from biogas upgrading to biomethane). On the other hand, PtF can be produced 

using RES energy blended with some electricity from the grid, thus not entirely 

renewable electricity is used as an input, but such a situation may be necessary to allow 

the fuel facility to continue production during periods of low-renewable electricity 

availability. Also the carbon used as a feedstock for some processes can be derived by 

oxidation of biological carbon, or possibly fossil carbon, depending on where and how the 

fuel production facility is set up. The carbon intensity calculation can be considered as a 

proper tool for assessing the renewability of a specific plant or initiative. 

On the basis of these considerations, in preparing this report, the authors decided to 

approach the problem from a technical point of view. The technologies have been 

grouped generally according to the SET-Plan description, while allowing consideration 

under the RED recast. The focus has been on renewable pathways, but we noted some 

pathways could be partially renewable, depending on their feedstock/power source. The 

most notable of these would be the so-called recycled carbon fuels whose projects have 

been focussed on recycling fossil type carbon sources. 

Technological areas considered 

In some cases, a fuel pathway can employ both power to fuel technology and the use of 

CO2. Indeed, PtF has two big sub-groups, related to the production of the main process 

inputs, H2 and CO2, while microbial fermentation focuses on the use of carbon containing 

gases as feedstocks for microbes, which subsequently produce a liquid fuel. 

Nonetheless, in order to be coherent with the SET-Plan roadmap, the RED recast, and to 

match the broad categories of technological areas the reviewed H2020 projects fit into, 

the work areas have been categorised as follows (please see also Table 1 below): 

- Power-To-Fuels, or electrofuels, includes water-splitting/artificial photosynthesis 

fuels2. This is a very broad title, and some of the projects investigated describe a 

‘sub-aspect’ of this category. It represents the majority of work considered. It 

begins by looking at the provision of the main materials considered feedstocks in 

this report, namely H2 and CO2, followed by a section looking at fuel synthesis 

steps. 

- Microbial fermentation; a smaller category, describing a relatively new technology 

proposed principally by one company, but there appears to be quite a degree of 

interest in this pathway. How it progresses in moving towards large-scale 

production will be of interest. It considers carbon from non-bio sources, but it is 

applicable nonetheless to using carbon from biomass. 

 

 

 

 

 

 

                                           
2 Fuels from photosynthetic microorganisms (microalgae) are already in the LCEO – Technology Development 

Report Sustainable Advanced Biofuels, Deliverable D2.2.12 
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Table 1. Relevant technological pathways 

Technologies: 

Power to fuel (electrofuels) 

H2 production using renewable electricity * 

    Alkaline electrolysis 

    Solid-oxide electrolysis cell (SOEC) 

    PEM (Proton exchange membrane) electrolysis 

   Water-splitting/artificial photosynthesis 

  CO2 capture using renewable electricity 

Waste high concentration CO2 from renewable sources ** 

Amine-based post combustion capture ** 

   Fuel Synthesis (methanol, synthetic petrol or diesel, methane) 

  Microbial fermentation 

Industrial off-gases processed by bacteria into ethanol 

Mixture of sewage gas and natural gas processed by bacteria into 
ethanol 

* Production aspects of H2 are summarised below, but for a comprehensive report on this 

topic interested parties are referred to the Hydrogen & Fuel Cells TDR D2.1.13. 

** These aspects are summarised below, while a comprehensive picture on these 

technologies is available in the ‘Carbon Capture, Utilisation and Storage’ TDR D2.2.9. 

Further note on recycled carbon fuels 

The RED recast considers recycled carbon fuels as non-renewable, because the main 

sources considered for the carbon inputs have been fossil - simply because of their 

abundance. Nonetheless, the new RED recognises these fuels can contribute towards 

transport decarbonisation, if they reach the appropriate minimum greenhouse gas (GHG) 

savings threshold compared to regular fossil fuels. Member States can use these fuels 

towards the overall EU-target for energy from renewable sources (Directive EU 

2018/2001). Such systems which transform fossil carbon containing off-gases into liquid 

fuels, will therefore be noted separately as for now, they are predominantly non-

renewable fuels. Other descriptors for non-renewable fuels are available in literature; 

E4Tech (2018) in a report for the UK Government, described a range of fuels from non-

renewable sources, but which do provide GHG savings, as ‘low carbon fossil fuels 

(LCFFs)’. They considered fossil based fuels which do not provide emissions reductions 

compared to the 94g CO2 fossil fuel comparator, as simply alternative fossil fuels. 

 

The fuels in this report represent comparatively new technologies 

Finally, compared to biofuels (advanced or conventional), the authors note these fuels 

represent technology chains which are generally emerging, and have not yet, or are only 

beginning to enter large-scale or industrial scale production, in limited or single sites. 

Therefore information may in some cases be relatively scarce, but nonetheless, a 

comprehensive attempt at describing them has been carried out. It is likely that in the 

coming years, more information will be available, and it is certainly a growing area, 

which warrants further investigation and monitoring. Advanced alternatives aim to 

provide important benefits, and hope to avoid some of the problems associated with 

other fuel production pathways, such as the need for land and input requirements for 

making biomass, or indeed alternative fuels try to improve on the efficiency of natural 

functions (such as plant photosynthesis). 
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1.1 Methodology 

In this report, we focus on state-of-the-art, ongoing and future R&D needs of power-to-

fuel (and artificial photosynthesis) processes, using hydrogen from renewable energy and 

CO2, and further, on microbial fermentation processes, to make fuels for use in the 

transport sector. Hydrogen in its use as a fuel is outside the scope of this report but is 

considered from the point of view of its use as a feedstock to make other fuels. 

The research focussed initially on advanced alternative fuel technologies which have 

technological readiness levels (TRLs) approaching commercial relevance, but due to the 

emerging nature of these fuel production pathways, it was found that most development 

is happening at lower TRLs. The information on projects has been collected from the 

CORDIS website and the project’s websites where available. Relevant keywords have 

been used to define proper queries in the tools, in order to identify relevant projects, 

under the Horizon 2020 (H2020) programme. Further analysis, to describe objectives and 

main achievements was conducted, in order to define the projects impact on the 

technology development. A search was carried out for relevant national projects and 

SET-Plan ‘flagship projects/activities’, provided by the Temporary Working Group (TWG) 

on the ‘Implementation Plan for the SET-Plan Action 8 on Bioenergy and Renewable Fuels 

for Sustainable Transport’ have also been included in the analysis. Flagship activities are 

defined in the Implementation Plan as “prominent on-going R&I activities contributing to 

achieving the (SET Plan) targets and of interest to the public at large”; a flagship activity 

can be a project or programme with an innovation potential and the capacity to “lead by 

example” (Implementation Plan, Action 8, 2018). Most of the projects under analysis are 

on-going and therefore the assessment of their impact is limited to the available 

deliverables.  

  

1.2 Data sources 

In addition to the above-mentioned Commission information sources, the main sources 

used to analyse the sector’s state-of the-art and to identify advanced alternative fuel 

technologies plants (if any, either at pilot, demo or other stage) were, through expert’s 

scientific publications, information gained through the JRC own work on this topic, plants’ 

websites, and also linked LCEO reports, as some technologies described here have 

partially been the focus of other TDRs. The identification of technologies status 

worldwide, as well as technical barriers and potential challenges to the large-scale 

deployment of advanced alternative fuels has been based on major international studies 

and peer-reviewed papers. 

 

1.3 Legislative context 

European legislation, in particular that linked to GHG savings in the transport sector, is 

now beginning to recognise advanced alternative fuels, and this could help their 

progression onto the market.  

The Renewable Energy Directive recast (EU 2018/2001) or RED2 contains a 14 % 

target for renewable energy in transport, an increase from the previous 10 % target. It 

encourages the continuous development of alternative renewable transport fuels which 

now includes renewable liquid and gaseous transport fuels of non-biological origin (and 

renewable electricity in transport). New alternative fuels, are seen as an up and coming 

possibility to help decarbonise the transport sector, still dependent on liquid fuels, and it 

is possible for MS to promote these fuels. Existing alternatives have their own restrictions 

because of well-known issues: conventional biofuels for e.g., once seen as a key part of 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG
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reducing GHG emissions, have been limited in RED2 - at national level at 2020 values 

+1 %, but are capped at 7 % on an energy basis. Moreover, advanced biofuels are 

subject to a specific sub-target, or, if produced from feedstocks listed in annex IX part b, 

they count only up to 1.7 % towards the overall 14 % target. Therefore, new alternative 

fuels are increasingly being encouraged, namely recycled carbon fuels, and renewable 

fuels of non-biological origin. 

The RED2 recognises recycled carbon fuels can contribute towards the policy objectives 

(of energy diversification and transport decarbonisation) when they fulfil the appropriate 

minimum greenhouse gas (GHG) savings threshold (which the Commission must decide 

upon and publish before 2021). RED2 considers it appropriate to include those fuels in 

the obligation on fuel suppliers (to use a minimum amount of renewable energy in their 

fuels), whilst giving Member States the option not to consider these fuels in their 

obligations. Renewable fuels of non-biological origin can contribute to low carbon 

emissions, stimulating decarbonisation of transport, and improving energy diversification 

in transport, amongst several other positive aspects, and the RED2 considers these fuels 

can increase the share of renewable energy in sectors that are expected to rely on liquid 

fuels in the long term. For example, the communication of the Commission of 20 July 

2016 entitled "A European Strategy for Low-Emission mobility" highlighted the 

particular importance, in the medium-term, of advanced biofuels and fuels of non-

biological origin for aviation. It highlights that in order to ensure such fuels contribute to 

GHG reductions the electricity used in their production must be renewable.  

Renewable fuels from non-biological origin can be produced using peaks in the RES 

production, consequently potentially increasing the renewable energy plant’s availability. 

Otherwise, if grid electricity is used, it is proposed that a reliable methodology (also to be 

developed by the Commission) should be used to properly assess the impact on the grid 

and the resulting emissions. For example, RED2 states renewable fuels of non-biological 

origin can’t count as fully renewable if produced when the renewable generation unit is 

not generating electricity. Critically, it notes the concept of additionality, i.e. the fuel 

producer should be adding to renewable deployment (or to the financing of renewables) 

(EU 2018/2001). 

Not directly linked to advanced alternative fuels, the authors nonetheless note the 

directive on the deployment of alternative fuels infrastructure (2014/94/EU) describes 

‘alternative fuels’ as fuels or power sources which serve (at least partly) as a substitute 

for fossil oil sources in the energy supply to transport, and which have the potential to 

contribute to its decarbonisation. The alternatives described include electricity, hydrogen, 

biofuels, synthetic and paraffinic fuels, natural gas (& biomethane) both gaseous and 

compressed (CNG) and liquefied form (liquefied natural gas (LNG), and liquefied 

petroleum gas (LPG). 

 

1.3.1 Note on GHG emissions savings 

Unlike the methodology for traditional biofuels GHG evaluation as per current legislation, 

a different methodology is applied to define the GHG intensity of advanced alternative 

fuel pathways. The principles upon which such calculations will be based are described in 

a guidance document prepared by JRC (JRC, 2016). The approach moves beyond the 

traditional attributional approach: where the supply of input (feedstock) is rigid (i.e. the 

overall supply of the input cannot be expected to expand to meet increased demand), the 

GHG of the input should be assessed by considering the impact of removing a quantity of 

that input from its current use (also commonly referred to as ‘displacement’). Such 

upstream emissions could in theory be also negative. This important distinction is 

especially relevant when considering electrical inputs to a fuel production system. But 

where the supply of the input is elastic (i.e. its supply can be expanded to meet 

increased demand), the GHG of the input should be assessed through an attributional 

lifecycle assessment of its production process (JRC, 2016). 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG
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2 Technology state of the art and development trends 

 

As described in the introduction, this Technology Development Report for ‘Advanced 

Alternative Fuels’ is a first iteration, as there was no version of this report produced in 

previous years of the LCEO. The pathways analysed are summarised in Table 1. 

 

2.1 Power to Fuel or Electrofuels 

The three main constituents of power-to-fuels are electricity, CO2 and water, producing a 

gaseous or liquid fuel. The fundamental technological steps for electrofuel production are 

(a) electrolysis, in which water is broken down into hydrogen and oxygen with the use 

of electrical energy, and (b) chemical fuel synthesis in which hydrogen is reacted with 

the carbon from carbon dioxide to produce more complex hydrocarbons (Cerulogy, 

2017). 

This conversion of electricity (via water electrolysis), and subsequent synthesis (with CO 

or CO2) into a gaseous or liquid fuel, potentially enables a coupling of various sectors, 

which in turn can offer strategic advantages for the whole energy system. Power-to-Gas 

(PtG) and Power-to-Liquids (PtL) are often discussed as important elements in a future 

renewable energy system (Buttler & Spliethoff, 2018). This opens enormous storage or 

absorption capacities for excess energy with high electricity generation from renewable 

energies in excess of demand. It also supports the integration of fluctuating renewables 

like wind and solar power in the energy system, including the provision of balancing 

power. 

 

Figure 1. Generic scheme for PtL production (source Schmidt et al., 2018) 

Interestingly, many of the technological steps required for liquid electrofuel production 

are already widely used in other industrial applications, while some parts of the Power-

to-fuel chain have lower TRLs. Despite the on-going activities, some authors (i.e. 

Cerulogy, 2017) consider that full process from electricity to synthetic fuel has never 

been demonstrated at commercial scale (although pilot scale facilities exist). 
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Figure 2. Potential pathways implying PtX processes (source (Brynolf et al., 2018)*) 

* A further option for hydrogen production can be via the concentrated solar thermochemical process, which
has the advantage of avoiding the need to produce electricity, and in theory having a higher efficiency as one
uses most of the entire incoming energy.

As already indicated, something crucial for the future development of PtX is the 

possibility to act as storage for balancing fluctuating RES (Blanco & Faaij, 2018). PtG and 

PtL are options complementing the common application of storage for short-term 

applications and balancing of variable RES fluctuations with a long-term (seasonal) 

function. Blanco (Blanco & Faaij, 2018) pointed out that the role of storage becomes 

more relevant for variable RE penetration higher than 30 %, as below this threshold the 

curtailment is usually the best option. A schematic showing the potential storage capacity 

of Ptx is provided in Figure 3.  

The rest of the chapter thus broadly introduces the concept of H2 production from 

renewable electricity, followed by describing the principle methods of CO2 capture, and 

then focusses on the fuel synthesis steps from these feedstocks; namely Power to Gas 

and Power to Liquids production. 

Figure 3. Storage capacity of PtG (source Ma et al. (2018)) 
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2.1.1 Electrolysis: H2 production using renewable electricity 

The aim of this section is to provide an overview of how H2 can be produced from the 

electrolysis of water, using renewable electricity as a power source. As this topic has 

been comprehensively described in another LCEO TDR (Deliverable D2.1.13 Fuel Cells 

and Hydrogen, 2016), but it is critical for the description of the fuel production pathway 

here, we provide a brief summary directly from D2.1.13, and our own other research and 

literature reviews, focussed on the subsequent fuel production aspects. 

2.1.1.1 Introduction to the process 

Electrolysis is an old technology, beginning as far back as the early 1890’s; today, 

electrolysers are working at full industrial scale, some using over 100 MW of electrical 

power input. Currently the main water electrolysis technologies are Alkaline Electrolysis 

(AEL), Polymer Electrolyte Membrane Electrolysis (PEMEL) and Solid Oxide Electrolysis 

(SOEL) (Buttler and Spliethoff, 2018). PEM and alkaline type electrolysers are low 

temperature in operation. High temperature electrolysis is also available which uses 

steam, and which has the effect of reducing the electrical input needed for electrolysis. 

Solid Oxide Electrolyser Technology (SOEL) type electrolysers use this high temperature 

approach (Schmidt et al, 2018).  

2.1.1.2 Electrolysis state of the art 

In Deliverable D2.1.13, the JRC scientific and technical report on the assessment of 

hydrogen and fuel cell technologies developed as part of the SET-Plan report series 

provides a good overview of the technology state-of-the-art (SoA) of alkaline and PEM 

electrolysers (Cerri, 2015). 

Table 2 Overview Electrolyser SoA (source LCEO TDR D2.1.13) 
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The performance requirements for these applications (as outlined in chapter 3.5 of the 

report) can be translated into KPIs: efficiency/energy consumption, degradation, 

investment cost, operational flexibility, start/stop response. The Fuel Cells and Hydrogen 

(FCH) JU's multi-annual work program (MAWP 2014-2020) contains an overview of the 

targets set for key performance indicators (KPIs) for decentralised electrolyser systems 

(see Table 3). The values for 2012 express the SoA of the technology and final targets 

are defined for 2023. 

Table 3 Electrolyser targets FCH JU (source LCEO TDR D2.1.13) 

Recently Buttler and Spliethoff (2018) published a review paper on the status of water 

electrolysis for energy storage. The authors reported that electrolysers feature an 

increase in performance in part-load. Rated efficiency and specific energy consumption of 

commercial electrolysis stacks are in the range of 63–71 % LHV and 4.2–4.8 kWh/Nm3 

for AEL and 60–68 % LHV and 4.4–5.0 kWh/Nm3 for PEMEL (based on the next table). 

The authors indicated the specific energy consumptions of electrolysis systems (including 

rectifier and utilities, excluding external compression) are in the range of 5.0–5.9 

kWh/Nm3 (LHV = 51–60 %) for AEL and 5.0–6.5 kWh/Nm3 (LHV = 46–60%) for PEMEL. 

They further note reduced performance at lower capacity is observed for electrolysis 

systems below a hydrogen production rate of approx. 100 Nm3/h (0.5 MW), mainly due 

to the decreasing efficiency of the utilities. 
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Table 4. Summary of parameters of state-of-the-art of water electrolysis technologies. 

(source Buttler and Spliethoff  (2018)) 

Lifetime is another important parameter for the economic analysis of electrolysis 

systems, as voltage degradation results in reduced performance during operating life. 

Regarding the lifetime of an electrolyser, it has to be distinguished between the stack 

and the plant. Balance of plant has a typical lifetime of about 20 years for SOEL and 

PEMEL with up to 30–50 years stated for stationary operated AEL. 
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Table 5. Overview of commercial electrolysis systems 

(Please note, these are not exhaustive, only the largest systems from each supplier are 

listed) – source ‘Overview of commercial electrolysis’, (Buttler and  Spliethoff, 2018). 

Summarizing the technology status, it is possible to affirm that alkaline electrolysis (AEL) 

represents the most mature technology, with the lowest specific investment and 

maintenance costs. There are manufacturers able to supply AEL with single-stack 

capacities up to 6 MW. In contrast, the development of PEMEL has been driven very 
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strongly by flexible energy storage application in recent years. PEMEL has entered the 

MW class and several pilot plants in the MW range up to 6 MW have recently been 

realised. PEMEL offers several advantages compared to AEL with regard to compact 

design (high current-densities), pressurised operation and flexibility. Investment costs 

are likely to fall in the future due to the higher volume production of electrolysers, supply 

chain development, improvements in manufacturing and technology innovations  

supporting the competitiveness of electrolysis against other storage options. In view of 

using this technology for storage and grid stabilising, both PEMEL and AEL systems offer 

very fast load dynamics (response<1 s). Differently from the latter, SOEL has the 

potential to increase the efficiency of hydrogen production and offers interesting features 

as reversible operation but the development of SOEL systems and the proof of lifetime, 

pressurised operation and cycling stability have to be continued. 

2.1.1.3 Artificial photosynthesis 

There are other methods in addition to electrolysis using renewable electricity as noted 

above, from which so-called ‘green’ hydrogen can be obtained namely: (i) photo-catalysis 

(or photo-electrochemical water splitting (PEC)) and (ii) photo-biological water splitting. 

A considerable global initiative which is driven by the European Union called Mission 

Innovation, has also a specific solar challenge which aims to considerably progress solar 

fuels SotA through high level international cooperation (Mission Innovation, 2018). 

Photo-catalysis or photo-electrochemical water splitting (PEC) is a process which splits 

water into hydrogen and oxygen, using the energy of absorbed light and semiconductor 

based photo-electro-chemically active materials (also called photo-catalysts). The photo-

catalyst absorbs the light photon, transmits its energy and uses it to perform redox 

reactions in water. The photo-catalyst consists of a photo-anode and photo-cathode 

connected together. Depending on the design set-up, the produced gasses (hydrogen 

and oxygen) are collected from the same (mixture) or separated volumes (pure gasses). 

The reference method for PEC production of green hydrogen is the use of green 

electricity coupled to an electrolyser. In this way, PEC can be said to directly harvest sun 

energy and convert it into hydrogen. PEC technology is said to have shown considerable 

progress in the last 10-15 years; the solar-to-hydrogen conversion ratio for example, has 

grown from approximately from 3 % to well above 10 % (with a claim of 18.3 %). 

However, the technology is still considered to be at the lower end of the TRL-scale, i.e. 

TRL 3. 
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Figure 4. Schematic diagram of a photo-electrochemical cell (source: Ahmad et al, 2015) 

Photo-biological water splitting uses some bacteria and algae to produce hydrogen. This 

process makes use of cyanobacteria or unicellular green algae, which are able to absorb 

sun light and split water (also called photolysis). It relies on the same mechanisms 

involved in photosynthesis to fix CO2 and the enzyme hydrogenase for conversion 

protons into H2. It can be also based on natural microbes, or by replacing living cells with 

a technology to mimic the biochemical reactions, and can be integrated into photo-

catalysis devices to optimise hydrogen production. 

 

2.1.1.4 H2 as a fuel 

Before moving to fuel synthesis (in which hydrogen is used to form fuels), a brief 

introduction to the use of hydrogen as a fuel is made. Today hydrogen is chiefly used as 

a chemical feedstock or reducing agent in oil refineries, for biofuels production, and in 

the ammonia, methanol and metal industries. The hydrogen demand by these industries 

is typically met by natural gas reforming or coal gasification as these are the cheapest 

among the currently available production technologies.  

As fuel in itself, hydrogen-powered fuel cell electric vehicles are at a very early stage of 

deployment (SETIS Magazine 2015), and other surface transport application have been 

proposed, for instance for trains (Alstom, 2018). In particular the hydrogen plus fuel 

solution proposes a way to help ‘green’ the heavy transport sector and offers some 

advantages compared to battery-equipped machines: the possibility to operate the fleet 

for a whole day, refuelling during night-time, and low expected cost of H2 (when 

produced to cut the peak of RES production). In spite of these strong advantages, the 

direct use of H2 does have some drawbacks: safety risks, the need to create a 

widespread dedicated supply chain, etc. For aviation, hydrogens low energy density 

precludes it for the time being.  

A considerable number of pilot and demo initiatives exist which it is hoped will begin to 

improve the levels of penetration of H2 as a fuel compared with other alternative fuels. 

For a more full picture of the work in the direct usage of H2 as a fuel, and in hydrogen 
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and fuel cells technologies for transport and stationary applications, interested parties 

are directed to the Fuel Cells and Hydrogen LCEO TDR (as referred to previously), and 

also to the European ‘Fuel Cells and Hydrogen Joint Undertaking’ initiative3.  

Alternatively, if H2 can be produced at low cost using renewable energy, a route is 

opened to e-fuels (as discussed in more detail in the following sections) that do not 

require any other modification to the infrastructure nor to the rolling stock, but are 

energetically heavy to produce. 

2.1.2 CO2 capture and utilization 

The topic of carbon capture for re-use (or storage) is fully detailed in another LCEO TDR 

‘Carbon Capture, Utilisation and Storage (CCUS)’ (LCEO TDR, 2018). Therefore, the main 

points from this report have been briefly summarised here, and complimented with a 

recent literature review. In addition, the JRC has recently carried out extensive LCA work 

on fuels which require carbon capture, for possible use in future legislation, and some of 

this research has been also used to build this section.  

 High concentration CO2 waste stream capture;

 Amine-based post combustion capture;

 Other capture technologies.

2.1.2.1 Waste high concentration CO2 from renewable sources 

Large stationary sources of emissions from industry are widely distributed throughout the 

world. The four main carbon emitting industries, responsible for a majority of industrial 

CO2 emissions are: the iron and steel industry, the cement industry, petroleum refining 

and the pulp and paper industry (Leeson et al, 2017). Of these, the authors found that 

the cement sector is likely to be able to capture the highest proportion of emissions due 

to the simplicity of the process and the single flue stream (Leeson et al, 2017). Certainly, 

the cement industry is one of the largest industrial emission sources of CO2, contributing 

approx. 5 % of global anthropogenic CO2 emissions. At a state of the art, cement plants 

emits the 60 % of their total CO2 from calcination of the CaCO3 containing raw material, 

while 40 % come from the supply of heat for the process. This large share of CO2 from 

calcination, limits the effect of efficiency improvements from the fuel combustion side, 

and makes CO2 capture technologies especially useful to reduce a cement plant’s CO2 

emissions (Hornberger et al, 2017). 

Given the relevance and suitability of the industry towards CO2 capture, Hornberger et al 

(2017) further showed in a project funded under Horizon 2020 called CEMCAP, testing at 

a 200 kWth pilot plant scale (considered to be TRL 6) proved successful, and high CO2 

capture rates (even above 95 %) were been achieved over a wide range of operating 

conditions. 

2.1.2.2 Amine-based post combustion capture 

Post-combustion capture (PCC) is regarded as the most feasible, near-term technology to 

significantly reduce CO2 emissions from existing coal-fired power plants, due to the 

following potential benefits (Yu, 2018). 

PCC technologies can use adsorbents, absorbents, membrane, chemical looping and 

cryogenic processes. The most advanced, near-term technologies use amine-based 

solvents or solvents that contain amino groups such as ammonia and amino-acid salts. 

Some technologies have been installed commercially in coal-fired power stations, 

3 https://www.fch.europa.eu/page/who-we-are 
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including the Boundary Dam and WA Parish power plants in Canada and Texas 

respectively (Yu, 2018). For more detail on the state of the art of the principal individual 

developments in post combustion capture, please see Table 6 in the Annex. 

 

2.1.2.3 Other capture technologies 

As already presented, there are several technologies to capture CO2 but only amine has 

been discussed, as it is widely recognised as a particularly promising technology for 

alternative fuel production. Nevertheless if more detail is required on the subject, a wide 

description of the state of the art of the other technologies is available in paragraph 2.2.2 

of the LCEO TDR D2.2.9 ‘Technology development report on Carbon Capture Utilisation 

and Storage (CCUS). 

 

2.1.3 Fuel synthesis: Power-to-Gas 

Power to Gas technology is based on the methanation reaction: 

 

CO2+4H2→CH4 + 2H2O 

 

There are three main pathways to obtain methanation from H2 and CO2: biological 

methanation, isothermal catalytic methanation and the adiabatic fixed-bed methanation. 

Biological methanation is suitable for small power plants as waste heat can be used to 

supply the process. CO2 is used as the feedstock for microorganisms. The main 

advantage of the biological pathway is that it is highly tolerant to impurities: some of the 

minor disruptive components such as sulphur and oxygen can be partly removed during 

biological methanation. Therefore, the cleaning process of feed gas can be simplified.  

Biological methanation remains in the laboratory and demonstration stage (Sterner et al., 

2014). For very large scale (exceeding 100 MW), the adiabatic fixed-bed methanation 

method is the most effective type of plant and it has already entered commercial 

production (Shaaf et al., 2014). 

The isothermal catalytic methanation method, including three- phase methanation and 

fluidized-bed reactors, is typically considered as the most suitable pathway for regular 

plant sizes (Ma et al., 2018). However, this technology is still in the experimental phase 

and is undergoing large-scale testing (Gotz et al, 2016). 

The main advantage of PtG plant is today related to the possibility to act as storage for 

fluctuating RES.  

PtG is to be seen as an option to deal with power surpluses rather than a technology to 

satisfy the current gas demand in a sustainable way. The reason for this is its low 

efficiency and relative sizes of the electricity and gas sectors. The energy efficiency of the 

entire PtG conversion chain from renewable energy to gas and then to electricity can 

reach 30–40 % which is equivalent to that of conventional thermal power plants, and this 

value is expected to reach 40–50 % by 2030 (Sauer, 2012). 

Due to the high technology cost, one option for PtG is to increase the size of the facilities 

to benefit from economies of scale. On the other hand, the amount of power needed for 

such plants places uncertainty over the fact that plants will only operate with power 

surplus from RES. A further complication can be the sources for CO2 (in the required 

quantities and location) which will directly affect the system overall performances. 

However, PtG has the main advantage of being able to produce different compounds and 

for different sectors; this gives more robustness to the technology as it provides more 

revenue streams. 
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2.1.4 Fuel synthesis: Power-to-Liquid 

The main constituents of PtL are electricity, water and carbon dioxide (CO2). The generic 

PtL production process consists of hydrogen production in an electrolyser, using 

renewable electricity and water as feedstock; then, hydrogen and CO2/CO are 

synthesized to form hydrocarbons. The generic PtL terms is used to refer to two main 

pathways: the Fischer-Tropsch (FT) pathway and the methanol pathway. 

The literature review reveals significant differences among the studies, resulting in a 

broad range of electrofuel production cost estimates, 10–3500 EUR2015/MWh (Brynolf et 

al., 2018). According to Cerulogy (2017), production costs in the near term are likely to 

be EUR 3 000/ton for electrodiesel (or electrojet or electropetrol), possiblly reducing to 

EUR 1 200/ton for a scenario with electricity cost of 5 cEUR/kWh and a facility with 50 % 

conversion efficiency. 

 

2.1.4.1 Fischer-Tropsch 

FT synthesis, originally designed to produce liquid fuels from coal, uses syngas (a 

mixture of hydrogen and carbon monoxide) to produce liquid hydrocarbon fuels. The 

syngas can be generated from virtually any carbonaceous feedstock (Schmidt et al, 

2018). Large scale FT plants using coal or natural gas feedstocks are running 

successfully. The Fischer-Tropsch synthesis theoretically can produce a variety of 

hydrocarbons, including gasoline and diesel: 

2H2(g) + CO(g) → –CH2 – (l) + H2O(g) + 165 kJ(at 400K), 

where –CH2 – is part of a hydrocarbon chain. 

The relevance of FT synthesis for PtL is based on the fact that syngas can be generated 

from virtually any carbonaceous feedstock. Apart from coal, this includes methane 

(natural gas, flare gas or biogas from fermentation) in the gas-to-liquids (GtL) pathway 

as well as dry biomass, but also syngas electrochemically generated from CO2 and water, 

as in the case of PtL. 

Although FT synthesis has a long history of industrial application, new production 

pathways give rise to new developments in FT technology. The main difference between 

the conventional FT processes and new enterprises is scale, as the trend is to reduce the 

average plant size to match different and more widespread sources of CO2. 

Microstructured reactor designs allow increased surface areas in relation to the reactor 

volume, strongly enhancing heat transfer and improving temperature control.  Examples 

of companies driving the commercialization of microchannel FT technology are Velocys 

Inc. and Ineratec GmbH. 

According to a review of literature, the investment costs for FT liquids are defined as 

being in the range of EUR 300–2100/kWfuel, for different plant sizes (Brynolf et al., 

2018). 

 

2.1.4.2 Methanol route 

An alternative to FT synthesis for producing liquid fuel is related to the production of 

methanol, to be used as an intermediate product (although a minor percentage of 

methanol is allowed in the EN228 European road gasoline fuel standard). Today methanol 

is produced at industrial scale from synthesis gas, typically generated from natural gas or 

coal, using catalysts (topically the ternary Cu-ZnO-Al2O3). Methanol is also of importance 

in the production of transport fuels, such as methyl ethers (e.g. DME); or as marine fuel. 
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CO + 2H2 -> H3COH 

The reaction needs CO and but is boosted by the presence of small quantities of CO2 

(about 10 % in the feed stream (Martin, 2016). 

Current research focusses on the development of processes supporting direct 

hydrogenation of CO2, without requiring prior reaction to generate CO. The direct 

conversion of CO2 poses several technical challenges, particularly with respect to required 

pressures (higher than 30 MPa) (Schmidt et al, 2018). 

An interesting option for road and aviation transport sectors is the possibility to convert 

methanol into liquid hydrocarbons. In addition to the more commonly known methanol-

to-gasoline (MtG) process that is currently deployed in several commercial plants, the 

route has also demonstrated the conversion of methanol into middle distillate (diesel and 

kerosene), with a yield up to 80 % (Schmidt et al, 2018). The investment costs for 

methanol synthesis have been estimated at EUR 200–1200/kW fuel in the literature, for 

different plant sizes. 

 

2.2 Microbial fermentation 

Principally promoted or certainly publically associated with the Lanzatech Company, this 

process involves biological conversion of carbon to product alcohols through fermentation 

of residual gases. These engineered microorganisms are able to grow on gases (rather 

than sugars, as in traditional fermentation) and carbon-rich off-gases, using them as 

source of carbon. This technology provides a novel approach to carbon capture and reuse 

(Lanzatech, 2018). 

 

2.2.1 Industrial off-gases processed by bacteria into ethanol 

As introduced, the process (most currently identified with Lanzatech) can use industrial 

off-gases (such as from the steel industry, and oil refineries) to produce liquid 

commodities. Lanzatech use proprietary microorganisms to feed on the gases and make 

alcohols. The alcohols obtained from fermentation can be further refined for producing 

fuels, such as alternative aviation fuels (Figure 5).  

 

 

Figure 5: General process flow synthesized iso-paraffin pathway (source: Wang et al., 
2016) 

 

The technology appears to be advancing, at least to pilot/demo stage; the world’s first 

aeroplane test flight using fuel made via microbial fermentation was publically announced 

for October 2018. The announcement was made by Virgin Atlantic, who have partnered 

with Lanzatech since 2011 (Virgin, 2018). Earlier this year, Virgin disclosed that 

Lanzatech had successfully produced 12 tonnes of jet fuel derived from their ethanol 
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(Virgin, 2018a), while the authors also note the public reports from the middle of 2018 

about a large-scale demo plant beginning construction (see also section 3.3.3). 

The key issue from a GHG saving point of view, would be to consider the existing use (if 

any) of such feedstock gases: simply defining them as waste may not always represent 

the current uses of these streams in industry, for instance, they are widely used for 

energy recovery in CHP plants.  

 

2.2.2 Mixture of sewage gas & natural gas processed by bacteria into 

ethanol 

A similar process to the above, but first involves a step coupling together sewage gas 

and natural gas by using a concentrated plasma to create syngas. Following this, a gas 

fermentation technology step similar to that in the previous point is used to make 

ethanol. This chain appears to relate to a single firm with little recent information, 

therefore it is not considered in detail. 

 

2.3 Other possible unconventional fuel production pathways 

Other alternative pathways may worth a brief description, in view of making a more 

comprehensive description of the alternatives to current fuel production technologies. In 

particular, ammonia can be produced from renewable H2 by cyanobacteria-based 

process, resulting in an interesting fuel for the road sector. A second option, using a 

waste stream such as plastic, is also considered for liquid fuels production, with a 

potential to lower GHG emissions in the transport sector. The authors note there is an 

Unconventional Fossil Fuels LCEO TDR, however this is primarily concerned with fuels 

from hydraulic fracturing (or fracking), and while their production process differs from 

traditional fossil fuel production methods, the end products are the same. 

 

2.3.1 Ammonia brief description 

While hydrogen is a possible enabler of a low carbon economy, it faces (amongst others), 

issues around its storage and distribution. Indirect storage media such as ammonia (or 

indeed methanol) are other options, as are their possible direct use as fuel. Ammonia is 

carbon free and has an established and flexible transportation network, and it is seen by 

some researchers as possibly providing a next generation system for energy 

transportation, storage and use (Valera-Medina et al, 2018). 

Indeed ammonia can be seen as having favourable properties for use as an automotive 

fuel, namely good storage properties and its mature production and distribution 

infrastructure. However, the sustainability of ammonia is questionable due to the 

environmental impact from conventional production technology, and the need for a 

secondary hydrocarbon fuel to promote combustion when used in internal combustion 

engines. Care would have to be applied with respect to its handling, as it is both caustic 

and hazardous in concentrated form. Researchers conducting a life cycle analysis of an 

ammonia-fuel system, found the most significant parameter was end-user vehicle fuel 

economy - they therefore recommended improving vehicle technology to enable the use 

of ammonia (Angeles et al, 2018). With regards to an alternative method of producing 

the ammonia, the researchers found a cyanobacteria-based process was optimal 

(Angeles et al, 2018). 
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2.3.2 Fuel from waste plastics pyrolysis 

Synthesis of liquid fuels from waste is another promising pathway for reducing the 

carbon footprint of transportation industry (and helps progress waste management 

towards zero landfilling).  

Two main thermochemical processes can be used: gasification + FT and pyrolysis. Both 

these technologies have been widely described in Deliverable D2.2.12 for the Low Carbon 

Energy Observatory: Technology Development Report Sustainable Advanced Biofuels-

2018 for biomass feedstock. Indeed the used of sorted MSW (or Refuse-derived fuel 

(RDF)), basically constituting plastics, poses different technological challenges to these 

technologies. 

Demo scale plants exist that pyrolyse plastics from post-consumer recycled materials, 

and directly mine feedstock from old landfills without any pre-treatment. The pyrolysis 

oil, consisting of over 95 % hydrocarbons within the gasoline and diesel ranges, can be 

upgraded to transportation fuels in existing refineries.  

Enerkem is a commercial scale process able to convert solid wastes into methanol, 

ethanol or other renewable chemicals. The methanol is considered not only as a possible 

fuel, but also as a chemical building block for the production of secondary chemicals, 

such as olefins, acrylic acid, n-Propanol, and n-Butanol. 

 

Figure 6: ENERKEM process scheme (source: https://enerkem.com) 

 

Velocys plc (VLS.L) is another example of the renewable fuels company active in the field 

of MSW to fuel technologies. In particular Velocys is a technology provider for FT 

medium-to small scale reactors. Velocysis provided their reactor to the ENVIA plant 

(https://www.enviaenergy.com/) but recently the Board of ENVIA Energy has decided to 

suspend operations at the Oklahoma City plant and undertake a review of strategic 

alternatives in order to preserve the value inherent in the facility. 

https://www.enviaenergy.com/
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More recently Fulcrum BioEnergy (http://fulcrum-bioenergy.com) started site 

construction for Phase 2 of its first waste-to-fuels project, the Sierra BioFuels Plant in 

Nevada.  

It worth noting that these plastics are more likely to be from fossil origin, and so may not 

be considered renewable, or at best, only partially renewable. In the framework of the 

aviation industry’s ICAO-CORSIA activities, for the definition of Core LCA default values 

for alternative aviation fuels, the Alternative Fuel Task Force proposed an integrated 

methodology for defining credit for plant able to divert MSW from landfilling. The 

methodology allows the calculation of GHG emissions on the basis of the biological 

carbon content in the sorted MSW, plus credits for the biogas avoided emission from 

landfill and additional recycled materials associated with the fuel production (source: 

www.icao.int/environmental-protection/CORSIA/Pages/default.aspx).  

 

 

 

http://fulcrum-bioenergy.com/
http://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx
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3 R&D Overview  

3.1 Overview of H2020 projects 

The following provides an overview of the projects now running and funded under the 

Horizon 2020 program. Many projects noted in this chapter have multiple areas of 

interest, and as such, their classification could fall into more than one category. The 

approach taken was to group projects based on their likely main focus. So while a piece 

of work may be considered within the ‘projects using CO2‘ section, it could also include 

elements related to H2. The projects include fuel synthesis as an aim, or at least claim to 

have possible applications in fuel production (i.e. the preference was to cover projects 

which are not pure H2 projects or which are principally linked to the use of H2 itself as a 

fuel which are outside the scope of this report). In other initiatives such as KIC-

Innoenergy, projects for fuels appear to be focussed on bio-based systems, while 

InnovFin do not appear to have advanced renewable fuel specific projects currently.  

Due to the relatively new nature of most of the pathways, we note a low TRL can be seen 

in many projects, nonetheless the advances gathered by such research, are aimed to 

impact production pathways at higher TRL, making them more efficient (from an 

energetic or carbon-saving point of view), or indeed furthering the possible feedstock 

bases for fuel production. 

- The H2020 projects can thus be broadly categorised into those primarily focussed 

on H2 generation, through the use of electrolysis or water-splitting 

processes. The focus is on fuel production linked schemes, so there is often a 

synthesis step, whereby the obtained hydrogen is combined with carbon (such as 

from CO2) to make fuels. A total of three H2020 projects were identified as 

belonging to this category. As noted, the wider area of hydrogen R&D, i.e. those 

projects not focussed on or including further fuel synthesis work is considerable, 

and readers wishing to see a more complete H2 R&D picture are kindly directed to 

both the LECO TDR D2.1.13 and the EU’s FCH JU. 

- The second broad category of research projects has been those more aimed at 

improving the use of carbon dioxide, or other carbon containing gases as a 

feedstock for subsequent fuel production. Successful use of CO2 as a feedstock 

could have significant impacts on GHG balances of fuel production pathways, 

certainly compared to traditional methods. A total of six H2020 projects were 

identified as belonging to this category. 

- A third category, which we define as various, contains other projects which 

either do not simply fit into either of the above categories, or conversely, sit 

evenly between both categories. By that, it is meant that some fuel production 

research projects consider both H2 production and CO2 capture and use with equal 

priority. A total of six H2020 projects were identified as belonging to this 

category. 

With regards to EU funding, a total amount of just over EUR 43 million was observed to 

have been awarded to the projects. Projects focussed principally on using carbon 

containing gases, or CO2 as a feedstock, were awarded 21 % of grants, or EUR 8.9 

million. Projects mainly on H2 production, electrolysis or water-splitting, and received 

EUR 12.4 million, or 29 % of the total funding. While approximately 50 % of funds 

(amounting to EUR 21.7 million) was awarded to projects engaged in both the above 

categories, or in research in other projects (please see also Figure 7). 

As previously mentioned in the report, the number of projects in this area is relatively 

small, with one or two projects generally running per MS, in the group of MS active in 

H2020 projects in this area. The exception is in Germany, where 4 projects are active. It 

is not surprising then that Germany is seen as having been awarded the most amount of 

funding, followed by Belgium, Spain and Italy (please see Figure 8). 
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Figure 7. Breakdown of H2020 funding by technology group to advanced alternative fuel 
projects 

 

 

Figure 8. Breakdown of H2020 funding by Member State to advanced alternative fuel 

projects 

 

3.2 SET-Plan flagship projects in this area 

Certain SET-Plan ‘flagship projects/activities’ as provided by the Temporary Working 

Group (TWG) on the ‘Implementation Plan for the SET-Plan Action 8 on Bioenergy and 

Renewable Fuels for Sustainable Transport’ are included briefly in the following section. 

The authors note these projects generally focus on the production or direct use of H2 as a 
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fuel, ultimately for transport purposes. Indeed only the ‘Balance’ project mentions a 

further fuel synthesis part specifically, reflecting the comparatively emerging nature of 

interest in this field. 

 

Project “CO2-free logistics”, Linz, Austria 

The project “CO2-free logistics“ is based on the idea to reduce emissions in the freight 

transportation sector, by using hydrogen as a fuel. Hydrogen will be produced by an 

electrolyser, which is operated using renewable energy sources. Partners: DB/Schenker, 

Fronius, HyCentA, Energieinstitut an der JKU. 

 

Balance (EU- ECRIA) 

Aims at aiding increasing penetration of renewable power, alternative fuels and grid 

flexibility by cross-vector electrochemical processes using Reversible SOC. Partners: VTT 

FIN, coordinator DTU, DK; CEA, F; ENEA, IT; TU Delft, NL; University Birmingham, UK; 

IEN, PL; EPFL, CH; liaises with IEA, IEC, Sunfire (DE company), FZ Juelich. 

 

H2Future/Steel plant of voestalpine in Linz 

A large-scale 6 MW PEM electrolysis system will be installed and operated at the 

voestalpine Linz steel plant in Austria. Hydrogen will be produced using electricity from 

hydro-power and will initially be burned for power generation displacing NG. At a second 

stage it will also be provided for transport. Electricity grid services will also be provided 

when producing hydrogen. The long term view is to use Hydrogen in the steel industry 

for direct iron ore reduction, slashing CO2 emissions from the steel industry by 90 %. 

Partners: Verbund Voestalpine, Siemens, ECN. 

 

DEMO4GRID/Food Industry of MPreis Innsbruck, Austria 

A large-scale 4 MW pressurised (33 bar) alkaline electrolyser will be installed and 

operated at the Mpreis food industry in Innsbruck, Austria. Hydrogen will be produced 

using electricity from hydro-power and be burned in a suitably modified boiler (special 

combustor) for heating oil, displacing NG. At a second stage this green hydrogen will be 

provided to fuel hydrogen fuel cells busses, as planned by the local community. Partners: 

IHT, Diadikasia, Mpreis, FHA, Inycom, fensystems. 

 

3.3 Focus of national and international projects 

Given the relatively small number of research projects identified as belonging to the area 

of advanced alternative fuels, there was a similar trend seen in MS, where projects were 

not numerous. The following section summarises the projects found of relevance, 

beginning with MS work followed by work occurring in other significant areas of the 

world. 

There does not yet appear to be combined, or coherent international programmes 

specifically designed for the purposes of developing advanced alternative fuels. The JRC 

are participants in the IEA’s Bioenergy Task 39 (on biofuels), and it appears they (or 

another Task) will likely begin considering some advanced alternative fuels in more detail 

in their coming triennium period of work. It will be therefore useful to see how this new 

work progresses. 
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3.3.1 Europe 

 

In Germany, ETOGAS (on behalf of Audi AG, in a project partly-funded by the German 

Ministry of Education) has invested in a 6 MW plant in Germany, which uses renewable 

electricity from wind power and CO2 from a nearby biogas processing plant to produce e-

methane (ETOGAS). 

Carbon Recycling International (CRI) in Iceland, is producing methanol by using 

geothermal energy and CO2 from the same source. A commercial plant has been 

operated by CRI since the end of 2011 with a capacity to produce 5 million litres of 

methanol per year (Carbon Recycling International, 2014). They are set to receive 

further funding to aid development from the Nordic Environment Finance Corporation 

(Carbon Recycling, 2018). 

The overall objective of the BioCat Project is to design, engineer, construct and test a 

commercial-scale power-to-gas facility at a wastewater treatment plant in Denmark and 

demonstrate its capability to provide energy storage services to the Danish energy 

system. The project is funded by EUDP, and the consortium consists of 7 companies from 

3 different countries (BioCat website). 

In Sweden, their Energy Agency funded a project titled “The role of electrofuels: a cost-

effective solution for future transport?” aiming at the assessment of the potential of the 

electrofuels production in Sweden. This work led to a recent publication (Hansson et al., 

2017). 

 

 

Figure 9 Existing pilot and demonstration electrofuels facilities (source Cerulogy, 2017) 

 

3.3.2 United States 

Regarding electrofuels, in the US, ARPA-E is the only U.S. government agency currently 

funding research on electrofuels. They have a slightly different description of what 

constitutes an electrofuel, and their program is using microorganisms to create liquid 

transportation fuels in a new and different way that they say could be up to 10 times 

more energy efficient than current biofuel production methods, with a focus on 

photosynthesis. They say most biofuels are produced from plant material that is created 
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through photosynthesis, converting solar energy into stored chemical energy in plants. 

But they say photosynthesis can be considered inefficient, while the energy stored in 

plant material can require significant processing to produce biofuels. 

Their electrofuels bypass photosynthesis by using microorganisms that are self-reliant 

and don't need solar energy to grow or produce biofuels (although they say these 

microorganisms can directly use energy from electricity and chemical compounds like 

hydrogen to produce liquid fuels from CO2). Because these microorganisms can directly 

use these energy sources, the overall efficiency of the fuel-creation process is said to be 

higher than current biofuel production methods that rely on the more passive 

photosynthesis process. ARPA-E note their scientists can also genetically modify the 

microorganisms to further improve the efficiency of energy conversion to liquid fuels. 

And, because electrofuels don't use photosynthesis, they don't require prime agricultural 

land or water resources of current biofuels (ARPA-E, 2018). 

For other technologies, the gas fermentation technology is principally being driven by one 

company, and thus R&D information appears to be scant. For photo-electrochemical 

water splitting (PEC) (looking at hydrogen production, and thus not strictly aimed at 

liquid fuel production), two principle research centres are running, namely the Joint 

Centre for Artificial Photosynthesis (JCAP) at Caltech, and the Nocera Laboratory at 

Harvard. 

 

3.3.3 China 

Clear information on progress in this area in China, is hampered somewhat by news often 

being announced only in Chinese. Nonetheless, in the area of off-gas fermentation (i.e. 

carbon containing gas recycling), LanzaTech and partners (the state-owned Shougang 

Group), announced the start-up of the world’s first commercial facility to convert 

industrial emissions to ethanol. The facility is at a steel mill in Hebei Province, and was 

said to have begun operations on May 3rd of 2018 (Lanzatech, 2018a). It will be 

important to see how progress develops at what is in effect a part Chinese-state funded, 

first-of-a-kind facility. It is claimed to have an annual capacity of 46 000 tonnes. China is 

also engaged in artificial photosynthesis (water splitting) research, with joint research 

currently running between the East China University of Science and Technology and 

University College of London in this area. 
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4 Impact assessment 

 

This section deals with providing an analysis of the main objectives and expected results 

of H2020 projects in terms of TRL. An overview of the few national and projects identified 

as SET-Plan flagship projects was provided in the previous section. The overall goal is to 

assess the most relevant projects for each technology, and to highlight how the selected 

projects contributed or are going to contribute to improve the development of a certain 

technology.  

The indicators considered were: improvement in TRL, expanded feedstocks, improved 

fuel production step, GHG emissions savings and improving market penetration. It should 

be noted that the analysis reports the objectives and results (if available) as they are 

presented by the projects partners; the calculations were not independently verified or 

endorsed by the JRC.  

 

4.1 H2020 projects 

This section collects information on relevant EU H2020 funded projects supporting 

advanced alternative fuels technologies. They do not represent the full range of H2-linked 

H2020 projects; this is more fully described in the LCEO TDR D2.1.13. Information was 

collected from CORDIS, with some review taking place of information provided on the 

relevant project website where appropriate. 

 

4.1.1 Water splitting, H2 generation and electrofuel related projects 

BioAqua (Project ID: 648026) aims to use water as an electron donor for 

oxidoreductases, a class of enzymes used in organic synthesis to lead toward fuel 

production. So far, high-energy co-substrates such as glucose are used to promote 

oxidoreductases which sometimes have negative ethical, economic and environmental 

consequences. The project aims to activate water using visible light as an external 

energy source and chemical catalysts, linking in this way photocatalysis and biocatalysis. 

It aims to bridge the gap between photocatalysis and biocatalysis enabling cleaner and 

more efficient reaction schemes. 

 

Photofuel (Project ID: 640720) aims at the advancement of the biocatalysts, for the 

production of solar-fuels. This technology start from TRL 3 and the project aims to 

increase it. In the frame of the Photofuel, biocatalysts are defined as microbial cells that 

directly excrete hydrocarbon and long chain alcohol fuel compounds to the medium from 

which they are separated. The best biocatalytic system(s) will be upscaled and operated 

outdoors in photobioreactors modified for direct fuel separation at a scale of several cubic 

meters (TRL 4-5). The identification of optimal future fuel blends with a fossil fuel base 

and Photofuel biofuels as additives, as well as the analysis of performance and emissions 

in car or truck engines, will be evaluated by the oil and automotive industry partners 

(note: does include work on algae).  

 

SUN-to-LIQUID (Project ID: 654408) intends to establish a non-biomass non-fossil path 

to synthesize renewable liquid hydrocarbon fuels from H2O, CO2 and solar energy. It aims 

to advance solar fuel technology from the laboratory (TRL 3 or 4, to TRL 5) since the first 

production of solar jet fuel has been recently demonstrated at laboratory scale. Expected 

key innovations include an advanced high-flux ultra-modular solar heliostat field, a 50 
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kW solar reactor, and optimized redox materials to produce synthesis gas that is 

subsequently processed to liquid hydrocarbon fuels. Project is still on-going. 

STORE&GO (Project ID: 691797) this project is working to bring PtG technology, namely 

Power-to-Methane together with various innovative methanation processes, currently at 

a TRL 5, close to maturity (namely TRL 6-7). The project hopes to demonstrate this 

technology at a considerable scale between 300 kW and 1 MW in three different 

demonstration environments (in Italy, German and Switzerland). It also intends to add to 

the demonstration by also having considerable economic and logistics and placement 

analyses. 

 

4.1.2 Projects using CO2 & carbon gases linked to further fuel production 

ACETOGENS (Project ID: 741791) Acetate-forming bacteria (acetogens) can be used in 

bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate 

producing biofuels or platform chemicals. This project aims at providing basic knowledge 

about metabolic routes and their regulation in the acetogenic model strain 

Acetobacterium woodii - which has the ability to fix CO2. Unravelling the function of 

“organelles” (a subunit within a cell which has a specific function) found in this bacterium 

and exploring their potential as bio-nanoreactors for the production of biocommodities is 

intended to pave the road for the industrial use of A. woodii in energy (hydrogen) 

storage. This project is of interest principally as it could develop pathways for using CO2 

as a feedstock to make fuel, as opposed to (for example during fermentation), producing 

CO2 while making a biofuel.  

 

C2B (Project ID: 744548) aims to use flue gases from factories (cement plants, power 

plants and refineries) as a feedstock to produce n-butanol (a possible drop-in fuel to 

replace gasoline), using a proprietary microbial strain owned by a company called 

Oakbio. This strain utilizes CO2 from any flue gas and H2 as a feedstock to produce n-

butanol. N-butanol can be used to make durable acrylic plastics or a biofuel. The process 

proposed will allow factories to cut 70 % of their direct GHG emissions and aims to 

generate an (estimated) return of EUR 25 per t CO2 captured. The project successfully 

made investigations which would likely improve operation of a pilot plant. 

 

EMES (Project ID: 744317) microbial electrosynthesis (MES) provides an attractive 

synthetic route for the production of valuable products through the reduction of CO2. In 

MES, certain microbes capture electrons from a negatively poised electrode and thus 

convert CO2 to fuels (and high-value chemicals). This project intends to develop highly 

efficient cathode materials using hollow nanostructures and three dimensional graphene 

scaffolds to maximize biofuel production through MES. Also, the project aims to design a 

p-type CaFe2O4 semiconductor/Shewanella biofilm hybrid system as a photobiocathode 

to power MES with solar light through photo-generated electrons. Finally, a novel 

analytical technique will be developed to visualize the metabolic activity of the cathode-

attached microbes using a fluorescent dye.  

 

ENGICOIN (Project ID: 760994) aims to develop, from TRL3 to TRL5, three new 

microbial factories (MFs) integrated in an organic waste anaerobic digestion (AD) 

platform, based on engineered strains exploiting CO2 sources and renewable solar 

radiation or H2 for the production of value-added chemicals, namely: 

MF.1) the cyanobacteria Synechocystis to produce lactic acid from either biogas 

combustion flue gases (CO2 concentration ~15 %) or pure and costless CO2 streams from 

biogas-to-biomethane purification. 
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MF.2) the aerobic and toxic metal tolerant Ralstonia eutropha to produce PHA bioplastics 

from biogas combustion flue gases and complementary carbon sources derived from the 

AD digestate. 

MF.3) the anaerobic Acetobacterium woodii to produce acetone from the CO2 stream from 

biogas-to-biomethane purification (TRL3 to TRL5). 

 

EQUIP (Project ID: 661063) aims at 1) ranking of three phytoplankton groups (diatoms, 

dinoflagellates and coccolithophores) for use in clean energy generation and carbon 

sequestration; 2) assessment of the degree of divergence in element composition 

between the representative species, environmental conditions and physiological states; 

3) first-of-its-kind single-cell analysis of phytoplankton, both cultured and from the field; 

4) accurate conversion factors to be used in global biogeochemical models; 5) expertise 

imparted to the host laboratory in XRMA analysis, phytoplankton biogeochemistry and 

ecological perspectives for bioenergy generation and carbon sequestration and 6) 

expertise imparted to the fellow in ToF-SIMS analysis, biochemical characterisations and 

laboratory culturing of phytoplankton. Despite the low TRL, this kind of research can lead 

to disruptive change for fuel production technologies. 

 

STEELANOL (Project ID: 656437) aims to produce bioethanol via an innovative gas 

fermentation process using off-gases emitted by the steel industry. The Blast 

Furnace/Basic Oxygen Furnace (BF/BOF) gaseous emissions are an unavoidable by-

product from the steelmaking process and are currently used for electricity production (or 

possibly being flared). Nevertheless, they can be used to produce bioethanol, thereby 

reducing the usage of fossil fuel molecules in transport applications, and thus reducing 

GHG emissions (although displacement effects would need to be accounted for in the 

event the energy containing off-gases are used to generate useful heat and power for the 

factory). The project aims to bring the technology all the way to TRL 8 or 9, by building 

and operating a 25,000 tonne/year demonstration plant. 

 

SYBORG (Project ID: 637675) this project is focussed on exploiting the principle of 

reductive carboxylation, as a method to fix CO2, with applications in the fuel production 

area. Basic research will enable the engineering of novel carboxylation reactions and 

products. Moreover, optimal artificial ("synthetic") CO2-fixation pathways that are based 

on reductive carboxylation and that have been calculated to be kinetically and bio-

energetically favoured compared with naturally existing CO2-fixation pathways will be 

selected, in the hope of developing the first functional in vitro module for CO2-fixation, a 

"synthetic organelle". The optimised in vitro pathways will be implemented in isolated 

chloroplasts, as well as alpha-proteo-bacterial hosts to create novel CO2-fixing organelles 

and organisms, the scale of the work will be at laboratory. 

 

4.1.3 Other projects 

ELECTHANE (Project ID: 673824) aimed to commercialise a biological process to 

convert CO2 and H2 (after electrolysis of renewable electricity) to CH4. Project concept 

intends to help offer a solution to inherent imbalances in the energy grid, by converting 

excess electricity to H2 and using (waste) CO2 to produce CH4 that can be injected into 

the gas grid (they planned to build a demonstration plant in phase 2 of the project). The 

final report was not obtainable, but the interim report noted positive progress towards 

achieving its aims was being made by the project. 

 



 

 

LCEO Advanced Alternative Fuels Technology Development Report 2018 

29 

 

MefCO2 (Project ID: 637016) aims at encompassing flexible (with regards operation and 

feed) methanol synthesis with high CO2 concentration input streams, originating from 

thermal power stations. The technology may alternatively be intended for the application 

of existing biomass combustion and gasification system streams, operating for the 

production of electric/thermal energy, as opposed to chemical synthesis. The other 

synthesis reactant, hydrogen, is to originate from water hydrolysis using surplus energy, 

which would be conversely difficult to return to the grid. The principal technological 

challenge to be overcome was anticipated to be the development of a suitable catalyst 

and process, allowing high-CO2-content feeds, and economically viable operating 

conditions. 

 

MetEmbed (Project ID: 745967) applicable to enhancing energy storage, through the 

production of H2. It aims at developing and applying quantum mechanical (QM) methods 

targeted at metalloenzymes, for which the methods in use today often fail. The target 

enzymes of the project are hydrogenases and polysaccharide monooxygenases (PMOs). 

Hydrogenases mediate the reversible conversion of dihydrogen into hydride ions and 

protons, while PMOs have shown great potential for biofuel production. The MetEmbed 

project will thus predict energetics with a new level of confidence for two systems with 

high potential in the areas of energy efficiency and low-carbon energy production. Low 

TRL but any advances made would have possible applications to larger scale projects, 

using such enzymes.  

 

Plasmapower (Project ID: 735818) aims at using the PlasmaPower technology to 

transform products including waste or low-value streams (e.g. woodchips, nut shells, 

crop & farm wastes, paper, plastic and MSW) into high energy. The project used a 

plasma cracking system to produce a syngas (H2 enriched and tar-free). The project 

claimed that when compressed into an engine to generate electricity, it resulted in a 

greater than 40 % electrical efficiency (vs. 25-30 % of current solutions). 
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5 Technology development outlook 

 

Bringing advanced alternative fuels to the point of production, at any significant scale, 

requires processes that are generally currently still being developed at lab-scale, 

although they may have applications at larger (pre-commercial or demonstration stage), 

as discussed in the technology state of the art section. Commercial production of such 

fuels is not yet the case anywhere in the world, principally due to production costs being 

too high and/or technical barriers that still need to be overcome. A number of 

technological trends are observed in each sector, and the needs to address key 

constraints are summarized. Given the dominance of high costs as a limiting factor to the 

proliferation of certain fuel technologies (as opposed to only technical difficulties), there 

is a consideration of economics, e.g. projections of CAPEX and OPEX, where most 

appropriate. However most of the technological pathways analysed are at very low TRL, 

therefore consequent economic analysis may lack elements. It is proposed therefore to 

focus on an evaluation of the main barriers to large scale deployment, and to try to 

identify possible solutions. 

 

5.1 Technology trends and needs 

5.1.1 H2 production and Electrofuels 

For this section, the main technology need identified is really to try and lower costs which 

can considerable. While such issues for H2 production have been addressed in LCEO TDR 

(Deliverable D 2.1.13 Fuel Cells and Hydrogen), here they have been summarised and 

complemented with other researches based on literature review. 

The review indeed reveals significant differences among the studies, resulting in a broad 

range of electrofuels production costs. A recent review study carried out by Brynolf 

(Brynolf et al., 2018) proposes a range of EUR 10–3 500/MWh; considering an average 

LHV of 44 MJ/kg, the range per ton of fuel is EUR 120–42 000/ton. According to Cerulogy 

(2017), production costs in the near term are likely to be EUR 3 000/ton of electrodiesel 

(or electrojet or electropetrol), a possible reduction is a scenario with an electricity cost 

of 5 cEUR/kWh and a facility with 50 % conversion efficiency. 

 

 

Figure 10. AEL and PEMEL capital costs, source Buttler and Spliethoff (2018). 
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Hydrogen production via electrolysis represents today the major proportion of the 

investment costs (CAPEX) for PtG and PtL plants. A review carried out by Buttler and 

Spliethoff (2018) allows defining CAPEX in the range of EUR 800–1500/kWel for Alkaline 

Electrolysis (AEL); for installations above 500 kW. Polymer Electrolyte Membrane 

Electrolysis (PEMEL) system costs are almost twice as high with given uninstalled costs 

ranging from EUR 1300-2200/kWel. Due to the pre-commercial status of Solid Oxide 

Electrolyser Technology (SOEL), there is a high level of uncertainty about investment 

costs. 

In a recent E4tech study (E4tech, 2018), cost reduction trend lines are derived based on 

stakeholder consultations; in a central scenario the mid-term cost reduction in AEL was 

set at about EUR 630/kWel by 2020 and EUR 580/kWel by 2030 (central scenario). For 

the innovative SOEL, E4Tech sets expected commercial costs in EUR 2000/kWel between 

2012 and 2020, EUR 1000/kWel between 2020 and 2030, with a long term target of 

EUR 300/kW. The operational costs per year (excluding electricity) are often provided, 

based on a percentage of the CAPEX. The E4tech study reports OPEX in the range of 2–

5 % of the CAPEX. 

Production of electro fuels from renewable Hydrogen and CO2 is recognised as of great 

interest for the medium term. The potential of using renewable electrical energy peaks 

which may be otherwise wasted, is a strong strategic advantage, by being able to 

increase the RES plant availability and average productivity. In addition, the possibility to 

temporarily fix CO2 streams, ether from biological sources or not, makes the technologies 

attractive for a wide range of stakeholders. Finally, conversely to H2 as a fuel option, 

eFuels production technologies potentially produce a drop-in fuel, ready to be blended 

without the need to develop specific infrastructures. All these points considered, it is 

possibly better to discuss the current challenges as a need to reduce costs, rather than 

technological barriers potentially limiting further development. Cerulogy (2017) state that 

while many of the technological steps required for liquid electrofuel production are now 

widely used in other industries, some parts of the chain have lower TRLs. The full process 

from electricity to synthetic fuel has not yet been demonstrated at commercial scale 

(although pilot scale facilities exist). 

 

5.1.2 CO2 capture and utilization 

The topic of carbon capture has been addressed in a recent report for LCEO: TDR Carbon 

Capture, Utilisation and Storage (CCUS), 2018. Moreover technologies for capturing CO2 

from biogas streams have been comprehensively presented in the Deliverable D2.2.12 

for the LCEO; Technology Development Report Sustainable Advanced Biofuels (2018). Of 

more interest for this report, is to comment on current barriers to the further 

development technologies for CO2 utilization, in particular for fuel production purposes. It 

is worth remarking that, apart from a specific case, the technologies presented are all at 

low TRL, hindering to a large extent an accurate consideration of their expected CAPEX 

and OPEX, as well as enabling useful detail on likely final fuel production costs. In the 

specific case of gas fermentation, this information is scarcely available, as it is a 

propriety technology, developed mainly by a single operator. The company itself reports 

their success in overcoming the main barriers for commercialization and in a recent press 

release (Lanzatech, 2018a) announced the start-up of their first commercial plant. 

 

5.2 Patents 

Despite the relatively recent nature and general trend of low TRL in the technologies 

studied, a consideration of patents was carried out, using targeted searches of the 

European Patents Office tool, and a relatively small number of patents were uncovered. 

The searches have been aided somewhat, given the fact there is a dominant or sole-
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technology provider in certain cases. For microbial fermentation, a search was carried 

out, and specifically targeting the key company Lanzatech who are certainly the main 

company behind this technology. The search yielded 379 patents linked to this company, 

but considering that they are not only focussing on the production of fuel, the search was 

refined further to mirror their main fuel molecule, ethanol, resulting in 53 patents 

worldwide.  

Using the EPO tool with “CO2” + “fuel” + “synthesis” as query yielded 347 results. 

Afterwards, the results were refined using PTG as the query, and this resulted in 80 

results. Respectively, the result for “power-to-gas” was 6 results. When “ptl” + “fuel” 

were used as keywords the result was 4 patents and when “power-to-liquid” itself was 

used, the result was 2 patents. 

A similar situation was seen in the area of fuel from waste, which is dominated by 3 large 

companies; Canada’s Enerkem have filed 59 relevant patents, Falcon Bioenergy filed a 

surprisingly low 3 patents, while the European (UK based) company Velocys, have 11 

patents - but again refining the queries to the fuel sector and/or FT, the number of found 

patents reduces to 5. 

 

5.3 Main barriers to deployment 

The main barriers hindering the deployment of the technologies analysed in this report 

can be broadly categorised as follows. Costs remain the significant barrier for 

electrofuels, as the individual steps for their production are in existence, but the linkage 

to make the fuel production pathway complete is still lacking, certainly at large scale. A 

secondary barrier would be the likely large extra loading on electricity grids, and possibly 

– if electrofuels production was to take place in large volumes – the associated extra 

need for new renewable electricity could be highly significant, and would have to be 

taken into account. Improved electrolysis systems, which maximise H2 production, while 

proving robust in operation and at pressure, are a barrier. 

Within the area of water splitting, the energy inputs remain significant, and the question 

of how to handle the resulting H2 remains. The direct use of H2 as fuel is restricted 

somewhat by infrastructure to provide the fuel, plus the appropriate vehicles would need 

to be in circulation in order to be able to use the fuel. 

Regarding fuel synthesis, and how to combine the H2 (and carbon gases), PtG while 

improving overall chain efficiencies remains hampered by costs. PtL (using Fischer-

Tropsch) has been shown to work at large scale, but the challenge is to show the 

technology can work well at a lower scale - and thus match this technology to the likely 

available CO2 sources. For PTL involving methanol synthesis, it also works, but the high 

process pressures are seen as an issue to be improved. 

Regarding CO2 capture, general improvements in this system continue, with a view in 

particular, to try and reduce the energy inputs required for operation. For a more in-

depth consideration, it is suggested to review the aforementioned LCEO report on CCUS. 

Gas fermentation is a pathway somewhat dominated by one player, and while it does 

appear to be progressing, this remains difficult to independently verify. It is reported to 

be at the pilot/test plant stage, with latest reports suggesting a large-scale first of a kind 

plant beginning operation in China. It will be most useful to monitor how this pathway 

progresses. 
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6 Conclusions & Recommendations  

 

The term advanced alternative fuels covers a broad range of fuel production pathways, 

and they appear to hold a considerable degree of promise, in particular as possible 

options to aid the decarbonisation of the transport system. These fuels are taking new 

approaches to fuel production, such as by trying to make use of excess renewable 

electricity, or by recycling CO2 and using it as a feedstock, thus aiming to avoid some of 

the pitfalls of other more traditional fuel production pathways which dominate the 

landscape today. There are nonetheless some drawbacks to these technologies, not least 

linked to their relatively new nature and low TRL. It is suggested that R&D efforts are 

aimed in certain areas to help overcome these difficulties and give the technologies a 

better chance to move toward production.  

This report is somewhat unique, as certain fuel pathways are largely based on 

technologies that are of interest to other energy sectors. For electrofuels, this is 

particularly apparent, as they use both H2 (renewable) and carbon (CO2), possibly from 

biomass based sources. 

For electrofuels, individual steps of the production chain are available at high TRL, but a 

complete production chain appears not yet to be in existence. The advantage of such 

fuels is that they can be a method for converting excess renewable electricity into liquid 

fuels, and thus become an energy storage medium. For this pathway, production costs 

appear to be a considerable drawback, and thus work to alleviate this could prove useful 

in increasing the TRL of a production chain. Indeed Schmidt et al (2018) note the main 

requirement towards their large‐scale implementation is a continued cost reduction in 

particular of renewable hydrogen production from water electrolysis powered by solar 

and wind energy. Important secondary considerations would be the large effect on the 

electrical grid in order to supply enough power to production units. In the medium-term, 

there is a strong need for alternative fuels, in particular in aviation, while for the other 

transport modes, an important further aspect would be to look at the direct use of the 

renewable electricity in transport, which appears currently to be more energy efficient. 

With regard to renewable hydrogen supply for electrofuels, alkaline electrolysis (AEL) is 

the most mature technology, with the lowest specific investment and maintenance costs. 

Other electrolysis systems; PEMEL and AEL, offer fast load dynamics, while SOEL can 

potentially increase the efficiency of hydrogen production but need to be made more 

robust for industrial operations. Research focussing on part-load electrolyser operation is 

seen as being a particular area of interest, as it will help enable the use of power from 

variable renewable sources, possibly curtailed power which is otherwise not being used. 

For photo-electrochemical water splitting (PEC), while efficiencies of the process are 

improving, work continues to make the process scalable and affordable. Hydrogen can be 

used directly as a fuel, but direct use as electrofuels negates the need to change engines 

(for fuels combustion), and develop refuelling infrastructure (particularly interesting for 

the aviation sector). 

Fuels using carbon in the form of CO2 or CO are also the subject of growing interest. For 

technologies looking at CO2 capture it is advised to see the other LCEO report focussed 

on this area. Nonetheless, it is noted that amine based PCC is favoured, linked to single-

stream emission sources (such as the cement industry or power plants), however these 

sources are likely going to provide fossil CO2. 

Regarding the fuel synthesis part of electrofuels, it has been seen that a number of 

options are available, which utilise Fischer-Tropsch technology, or methanolysis (to 

produce hydrocarbon fuels or alcohol fuel respectively). Power-to-Gas (PtG) has overall 

chain efficiencies approaching that of large thermal power plants, but costs remain a 

large inhibiting factor, while Power-to-Liquid (PtL) - employing FT - has worked at large 

scale, but now attempts are being made to ensure it succeeds at a lower scale more 

suitable to match the likely available volumes of the most favourable CO2 sources. 
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Whereas for PtL, methanol synthesis is also largely functional, but work is on-going to try 

and reduce the operating pressures of such systems. 

Alternatively to thermo-chemical processes, microbial fermentation, in which 

microorganisms are fed by carbon containing gases, have gained a lot of attention and 

coverage. One company are the dominant party in this area, and it is of interest to note 

they announced during the middle of this year their production chain is going into 

industrial scale production (with a c.45 000 ton/annum facility) in China. The large 

H2020 project in which the company are involved in appears (at time of writing) to be 

behind their original schedule but is progressing. The carbon gas sources may be fossil 

based, but the technology is likely to be transferrable to bio-carbon sources also. If the 

feedstock gases are already being used as a fuel (to provide heat or power), this would 

need to be taken into account. 

Internationally, it would be advisable to note progress from other principle regions in this 

area, along with significant multi-national or global information sources such as the IEA, 

and to see how new initiatives and work plans on these relatively new technologies 

develop. Finally, if a fuel can save GHG emissions compared to the regular predominant 

fuels (and in a verifiable manner such as via a robust life cycle analysis which takes into 

account the existing uses of feedstock materials), it would seem a rational approach to 

include such fuels in future analyses of advanced alternative fuels, even if the pathway is 

not entirely renewable. 
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List of abbreviations and definitions 

AAF Advanced Alternative Fuels 

AEM Anion Exchange Membrane  

AEL Alkaline Electrolysis  

ATO Antimony doped tin oxide  

ATR Auto-thermal Reforming  

AWP Annual Work Plans of the FCH JU  

CAPEX Capital Expenditures 

CCS Carbon Capture and Storage 

CCUS Carbon Capture Utilisation and Storage 

CHP Cogeneration of Heat and Power  

CNG Compressed Natural Gas 

CORDIS Community Research and Development Information Service  

DME Dimethyl Ether 

DOE Department of Energy  

EC European Commission  

EPO European Patent Office 

EU European Union  

FC Fuel Cell  

FC&H Fuel Cells and Hydrogen  

FET Future Emerging Technology 

FP6 6th Framework Program  

FP7 7th Framework Program  

FT Fischer Tropsch 

GHG Green House Gas 

H2020 Horizon 2020 Program  

HHV Higher Heating Value  

IEA International Energy Agency  

IEE Intelligent Energy Europe  

IPC International Patent Classification  

JCAP Joint Centre for Artificial Photosynthesis 

JRC Joint Research Centre 

KPI Key Performance Indicators  

LCEO Low Carbon Energy Observatory  

LCFF Low Carbon Fossil Fuels 

LHV Lower Heating Value  

LNG Liquefied Natural Gas 

LPG Liquefied Petroleum Gas 



 

 

LCEO Advanced Alternative Fuels Technology Development Report 2018 

39 

 

MAWP Multi-Annual Work Program 

MEA Membrane Electrode Assembly  

MS Member State  

MW Mega Watt 

Nm3 Normal cubic meter 

O&M Operative and maintenance (costs)  

OPEX Operational Expenditures 

PEC Photo-Electrochemical Water Splitting 

PEM Proton-Exchange Membrane  

PEMEL Polymer Electrolyte Membrane Electrolysis  

PMO Polysaccharide monooxygenases 

PtG Power-to-Gas  

PtH Power-to-Hydrogen  

PtL  Power-to-Liquid 

PtX Power-to-X 

RDI Research Development and Innovation  

R&D(D) Research and Development (and Demonstration)  

RED Renewable Energy Directive  

RES Renewable Energy Sources  

SET Strategic Energy Technology 

SotA State-of-the-art  

SOEL Solid Oxide Electrolysers  

SOFC Solid Oxide Fuel Cell  

SMR Steam Methane Reforming  

TDR Technology Development Report 

TCR Thermo-Catalytic Reforming 

TRL Technology Readiness Level 

TWG Technical Working Group 
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Annexes 

Annex 1. State of the Art  of PCC technologies 

 

Table 6. State of the art of PCC technologies (Yu, 2018) 

Technology 

provider 

Solvent Comments 

Shell 

Cansolv 

Cansolv 

chemical 

solvents 

The first commercial PCC plant in a coal-fired power 

station came into operation at the SaskPower Boundary 

Dam Power Station in October 2014. The project uses 

Cansolv's amine-based SO2 and CO2 capture technology 

with a capture capacity of ~ 1 million tonnes/yr. 

The total capital investment for the project was more 

than CAD$1.4 billion. The CO2 capture plant cost more 

than CAD 800 USD million. The project was the first of 

its kind. SaskPower claimed that the total capital cost of 

future plants could be reduced by 20%–30%. 

MHI KS-1 sterically 

hindered 

amine solvent 

NRG Energy and JX Nippon Oil & Gas Exploration are 

jointly carrying out the Petra Nova Carbon Capture 

Project at WA Parish Power Plant at Thompsons, near 

Houston, Texas. The WA Parish project will use the KM-

CDR process, with a proprietary KS-1 high-performance 

solvent used for CO2 absorption and desorption. The 

CO2 capture capacity is 1.4 million tonnes per annum. 

The plant is the world's largest CCS project from a coal-

fired power station and has been operational since 2017. 

MHI claims that the KM-CDR circulation rate is 60% of 

that for (unspecified) monoethanolamine (MEA), the 

regeneration energy is 68% of MEA, and the solvent loss 

and degradation are 10% of MEA. MHI is working on 

process improvements said to have the potential to 

reduce the regeneration heat requirement from 2790 to 

1860 kJ per kg of CO2. 

Fluor Econamine FG 

Plus 

Fluor's Econamine FG Plus technology is claimed to 

reduce steam consumption by more than 30% compared 

with ‘generic’ MEA technology and has been used in 

more than 25 commercial plants for the recovery of CO2 

from flue gas at rates from 6 to 1000 metric tonnes per 

day. 

The technology has been applied to demonstrate 

removal of CO2 from flue gas at E.ON's Wilhelmshaven 

coal-fired power plant. The Wilhelmshaven pilot plant 

can capture 70 t per day when operating at full capacity. 
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GE Advanced 

amine solvent 

Dow Oil & Gas and GE are jointly developing an 

advanced amine process technology that uses 

UCARSOL™ FGC 3000, an advanced amine solvent from 

Dow, in combination with advanced flow schemes. The 

demonstration plant was located at the EDF thermal 

power plant in Le Havre, France, and captured its first 

tonne of CO2 in July 2013. The test program was 

completed in March 2014. 

The technology has successfully been demonstrated in 

the field at > 99.9% pure CO2 product quality at 90% 

capture rates. The process design has been optimised for 

emissions mitigation and control and has less solvent 

degradation than MEA. 

Babcock & 

Wilcox 

Power 

Generation 

Group, Inc. 

OptiCap Babcock & Wilcox completed a three-month test 

campaign in 2011 using OptiCap solvent. The test run 

spanned approximately 2000 h. 

The solvent has low corrosivity and regeneration energy, 

and an expected high resistance to solvent degradation. 

The lowest regeneration energy measured was 2.55 MJ 

per kg of CO2. In addition, the capture process can be 

operated at elevated pressures due to the solvent's 

thermal stability, which will significantly reduce the 

mechanical compression energy requirement. 

Aker Clean 

carbon 

(ACC) 

ACC 

proprietary 

solvents 

ACC tested its solvent at the CO2 technology Centre 

Mongstad in 2012. ACC advanced solvents S21 and S26 

had good energy performance and were superior to 

30 wt% MEA with respect to solvent degradation, 

ammonia emission and nitrosamine formation. For 

example, the reboiler duty for S21 and S26 was 

approximately 10% lower than that for MEA. Solvent 

amine losses were approximately 2.6 kg amine per tonne 

CO2 captured for MEA, 0.5–0.6 kg amine per tonne CO2 

captured for S21, and 0.2–0.3 kg amine per tonne CO2 

captured for S26. 

Siemens Postcap The Postcap technology is based on a biodegradable 

amino-acid salt that has a very low vapour pressure, 

with practically no solvent vapour emitted to the 

environment. The solvent has a high selectivity to CO2 

and a good absorption property, which leads to high 

purity of CO2 product and use of less solvent. The 

specific heat required in the process amounts to around 

2.7 GJ per tonne of CO2 separated. The technology was 

verified in a pilot plant at the E.ON coal-fired power 

plant Staudinger near Frankfurt, Germany. 

BASF OASE blue The OASE blue amine-based technology was developed 

as an optimised large-scale PCC technology. It has low 

energy consumption, low solvent losses and an 

exceptionally flexible operating range. Testing using a 

0.45-MWe pilot plant using lignite-fired power plant flue 

gas showed that the solvent was stable; little 
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degradation was observed over 5000 h, whereas the 

reference MEA solvent started to degrade appreciably 

under the same conditions. 

Linde is refining a PCC technology incorporating BASF's 

OASE® blue-based process to reduce regeneration 

energy requirements by designing, building, and 

operating a 1-MWe equivalent slipstream pilot plant at 

the National Carbon Capture Center. 

University 

of Texas at 

Austin 

Piperazine-

based solvent 

Compared with MEA-based solvents, piperazine-based 

solvents are more stable, have a faster CO2 absorption 

rate and higher capture capacities and allow high-

pressure generation. Pilot-plant trials at the university 

have shown that with an advanced flash stripper, the 

capture process based on 5 M piperazine (mole·kg− 1 

water) can achieve regeneration energies of 2.1–2.5 GJ 

per tonne CO2. 

China 

Huaneng 

Group 

Amine-based 

solvents 

The China Huaneng Group has been operating an amine-

based PCC demonstration plant at Shanghai Shidongkou 

No. 2 Power Plant since 2009. The CO2 capture capacity 

is 100000–120000 t per annum. The chemical 

composition of the solvent is not reported in the open 

literature. 

CO2CRC 

(Australia) 

Precipitating 

potassium 

carbonate 

CO2CRC's UNO MK 3 technology uses a precipitating 

potassium carbonate (K2CO3) process. It has many 

advantages over conventional amine processes, 

including low energy usage for regeneration, low overall 

cost, low volatility and environmental impact, multi-

impurity capture and production of valuable by-products. 

The technology was demonstrated in an Australian 

power station capturing one tonne of CO2 per day from 

power plant flue gas. 
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Europe Direct is a service that answers your questions about the European Union. You can contact this 
service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 
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