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ABSTRACT

NONLINEAR OPTICAL RESPONSES IN TYPE-II

WEYL SEMIMETALS

Gerui Liu

Ritesh Aagrwal

Weyl semimetals are gapless topological states of matter with broken inversion

and/or time reversal symmetry. In this thesis, we will firstly discuss the observa-

tion of a novel photogalvanic effect in type-II Weyl semimetals including Td −MoTe2,

Mo0.9W0.1Te2 and Mo0.3W0.7Te2. A circulating photocurrent is obtained under the illu-

mination of normally incident light with circular polarization and the circulating cur-

rent direction is opposite with different light helicity. Through temperature induced

phase transition of MoTe2, this effect is further confirmed to exclusively occur in the

Weyl phase. Since this CPGE current is controlled by the spatially varying beam pro-

file, we define the effect as a spatially dispersive circular photogalvanic effect (sCPGE)

and current amplitude is proven to be proportional to the beam gradient. By perform-

ing frequency-dependent measurements on the Weyl phase, we observe a sign reversal

of sCPGE current at high energy excitation and low energy excitation. Our theoretical

derivation shows that sCPGE is controlled by a unique symmetry selection rule related

to asymmetric carrier excitation and relaxation, explaining the difference between Weyl

phase and trivial phase as well as frequency dependent properties.

Photoinduced anomalous Hall effect (AHE) is also observed in type-II Weyl semimet-

als. Longitudinal CPGE current is obtained under normally incident light while apply-

ing transverse bias, and the current magnitude is observed to be proportional to the bias

voltage. Comparing the AHE conductivity in the 1T’ phase and the Td phase of MoTe2,

photoinduced AHE is found to be much more significant in Weyl phase. This effect can
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be understood by symmetry arguments and is described by a Fermi surface modula-

tion under the external electric field; meanwhile, the difference between two phases is

evaluated. This model further predicts that under low energy excitation, Weyl points

can be partially muted with tilted Fermi level, which provides a promising method to

probe the band topology and Weyl nodes as well as encode more degree of freedom in

device applications.

Our studies on sCPGE and photoinduced AHE in type-II Weyl semimetals pro-

vide a new idea of probing and controlling nonlinear optical responses of topological

semimetals and will potentially promote the applications of those new material sys-

tems.
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Chapter 1

Introduction

1.1 Topological Semimetal

For a long history, materials were simply divided into metal, semiconductor and

insulator according to their conductivity. For insulators and semiconductors, the filled

valence band is separated from the empty conduction band by a band gap. On the

contrast, the conduction band for a metal is partially filled leading to an appreciable

density of states at Fermi level. Semimetal is a material partway between metals and

semiconductor, with a slight overlap between the conduction band and the valence

band. The density of states at the Fermi level for semimetal is much smaller than real

metal even though it has no band gap. More specifically in semimetals, topological

FIGURE 1.1: Energy spectra of (a)Dirac semimetal, (b)Weyl semimetal and (c)nodal
line semimetal. Reprinted figure with permission from reference [1] Copyright (2019)

by the American Physical Society.
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semimetal is characterized by the topologically band crossing, which is a new class

of quantum materials. [1] In recent decade, topological semimetals has attached a lot

of interests in fundamental studies as well as macroscopic phenomena for promising

technological applications.

Based on properties of the band crossing, such as the degeneracy and the geometry,

topological semimetals are distinguished into several types including Dirac semimetal

[2–4], Weyl semimetal [5, 16] and nodal line semimetal [7]. Simply speaking, Dirac

semimetal consists of a pair of degenerate linear band; bands of Weyl semimetal touches

at a pair of isolated points; in nodal line semimetal, two bands cross each other along

a closed curve. The energy spectra of these three topological materials are given in the

Fig 1.1. [1] With different band crossing structure, topological semimetals host different

low energy excitations and exhibits various properties, motivating studies in wide area.

In this thesis, we mainly works on one of these topological materials - Weyl semimetal.

1.1.1 Basic Concepts of Weyl Semimetal

Hermann Weyl simplified the Dirac equation to demonstrate the existence of mass-

less fermion with finite chirality in 1929. [8]. With m=0, the Dirac equation can be

expressed as:

ih̄
∂

∂t
χ± = ±cσ · pχ± (1.1)

This is the Weyl equation and the χ is referred to the Weyl fermions and a pair of op-

posite charality Weyl fermions can be combined to obtain a Dirac fermion. The Weyl

semimetal is a solid state crystal with Weyl fermions acting as low energy exitations. In

Weyl semimetal, non-degenerate bands touching occurs in the three-dimensional mo-

mentum space forming linear dispersion. Suppose two bands touching at point k0 and

energy ε0, the Hamiltonian can be expressed as:

H(k) = ε0σ0 ± h̄v f (k− k0) · σ (1.2)
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where σ0 is a unit matrix, σ is the Pauli matrix, k represents the momentum and v f

is the Fermi velocity. [9] If the band touching point is set to be zero and this Hamil-

tonian becomes the exact Weyl Hamiltonian. Clearly, the band crossing is robust and

irremovable no matter how to change parameters in this expression if non-degenerated

bands in three-dimensional system is satisfied. To meet these requirements, time rever-

sal symmetry and inversion symmetry can not be preserved at the same time, which

means that Weyl semimetal breaks either inversion symmetry or time reversal symme-

try.

The topology of the Weyl point is understood by the Berry curvature. The eigen-

states of Eqn 1.2 can be labelled by the sign of σ projected on k (helicity). For each

helicity, the expectation value of σ forms a vector field around the Weyl point in mo-

mentum space, acting as a source or a sink. The Weyl points behave as monopole and

antimonopole correspondingly, characterized by a topological invariant:

Ω(k) = ± k
2|k|3 (1.3)

[9] The sign represents the chirality of the Weyl nodes. The chirality χ is defined as:

χ =
1

2π

∮
Ω(k) · ds(k) (1.4)

This flux of vector enclosing the Weyl nodes by a surface in k space is called Berry

curvature. For a pair of Weyl nodes, the chirality is opposite. [10]

1.1.2 Discovery of Weyl Semimetal

As mentioned above, since time reversal or inversion symmetry needs to be broken

for Weyl semimetal, two categories of Weyl semimetals were theotically calculated and

predicted. The first one is time reversal symmetry broken candidates such as magenetic

pyrochlories A2 Ir2O7 [11], ferromagenetic hald-metal HgCr2Se4 and Hg1−x−yCdx MnyTe

[12,13]. However, these compounds were failed to be experimentally observed. In 2016,
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Co-based Heusler compounds were proposed as Weyl semimetal [14] and proven by

giant anomalous Hall effect [15]

FIGURE 1.2: (a) Body-centered tetragonal structure of TaAs, shown as stacked Ta and As layers.
The lattice of TaAs does not have space inversion symmetry.(b) First-principles band structure
calculations of TaAs without spin-orbit coupling. The blue box highlights the locations where
bulk bands touch in the BZ. (c) Illustration of the simplest Weyl semimetal state that has two
single Weyl nodes with the opposite (T1) chiral charges in the bulk. (d) In the absence of spin-
orbit coupling, there are two line nodes on the kx mirror plane and two line nodes on the ky
mirror plane (red loops). In the presence of spin-orbit coupling, each line node reduces into six
Weyl nodes (small black and white circles). Black and white show the opposite chiral charges

of the Weyl nodes. Reprinted figure with permission of [18]

The other category is achieving Weyl semimetal by breaking inversion symmetry

with strong spin-orbit coupling. Angle-resolved photoemission spectroscopy (ARPES),

a tool can directly observe the band structure of a material, was utilized to obtain

the band crossing and Weyl nodes in nonmagentic Weyl semimetals. In 2015, TaAs,

TaP, NbAs, and NbP were calculated by theorists [16, 17] and the Fermi arc in TaAs
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was directly observed by ARPES in the same year, indicating the realization of three-

dimensional Weyl semimetal. [18–20]. Later on, more and more compounds of Weyl

semimetals were discovered in theory and observed in experiments, including Na3Bi,

Cd3 As2, MoTe2, MoWTe2 alloys, WTe2 and TaIrTe4. [21–24, 26–31]

Take TaAs family as example. (Fig 1.2) This compound is a semimetallic mate-

rial whose crystallization is body centered tetragonal lattice and space group is I41md

(number109, C4v). [18] Calculation has demonstrated that the conduction band and the

valence band cross on the kx and ky plane when the SOC is turned off. When the SOC is

turned on, the band structure would form spin splitting because of the noncentrosym-

metric structure. Each line node will be gapped out and shrink into six Weyl nodes

away from the original mirror planes, which will finally result in 24 bulk Weyl nodes.

8 Weyl nodes are located at the kz = 2π
c plane marked as W1. The other 16 nodes

that are away from this plane as marked by W2. These 24 Weyl cones are all linear

dispersive and are associated with single chiral charge of ±1. [18] In experiments, the

surface and bulk electronic structure of TaAs including the topological Fermi arc and

bulk Weyl cones were observed by the vacuum ultraviolet and soft X-ray ARPES. Bea-

cuse of the unique band structure, the discovery of the Weyl semimetals motivated

researchers to characterize the nontrivial topology of these materials such as the un-

usual magnetoresistance and the chiral anomaly. Negative magnetoresistance induced

by chiral anomaly was observed in TaAs [25] and extremely large magnetoresistance

and ultrahigh mobility were also obtained in the TaAs family [32].

1.1.3 Type-II Weyl Semimetal

The concept of type-II Weyl semimetal was firstly introduced by Soluyanov in the

late 2015 [26] according to the calculation on the layered transition-metal dichalco-

genide WTe2. To distinguish from the previously discovered Weyl semimetal whose

Fermi surface at Weyl point is point-like, this new type Weyl semimetal has Weyl

fermions emerging at boundary between electron and hole pockets. Since the forma-

tion of the Weyl point is different, the Weyl cone for type-II has a tilted shape as shown
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FIGURE 1.3: Possible types of Weyl semimetals. (a) Type-I WP with a point like Fermi sur-
face. (b) A type-II WP appears as the contact point between electron and hole pockets. The
grey plane corresponds to the position of the Fermi level, and the blue (red) lines mark the

boundaries of the hole (electron) pockets. Reprinted figure with permission of [26]

in Fig 1.3, even though it is still linear dispersive. The crystal structure of WTe2 is or-

thorhombic with space group Pmn21(C7
2v), which is a layered structure. By calculating

the band structure of WTe2 with and without SOC, the Weyl points were found to be

located only slightly (0.052eV and 0.058eV) above the Fermi energy with very small

separation, which was very difficult to be observed in the resolution of ARPES. Actu-

ally, whether WTe2 is Weyl semimetal is still controversial due to the tiny Fermi arc.

Then, MoTe2 was found to be a strong candidate for this new type Weyl semimetal and

the calculation was proposed very soon by Sun. [33]

MoTe2 which is also a layered transition metal dichalcogenide, has three crystalline

phsaes: 2H, 1T’ and Td phases, in which 2H phase is semiconducting having Mo atom

trigonal primatic coordinated with Te atoms. The 1T’ and Td are semimetallic phases

exhibiting very similar layered structure. 1T’ phase structure has inversion symmetry

with space group P121/m1, No. 11, while the Td (space group Pmn21, No. 31) breaks

the symmetry by slightly sliding the later stacking of the monoclinic lattice of 1T’ phase.

Since 1T’ preserves both time reversal symmetry and inversion symmetry, Td phase is

the only one that could be Weyl semimetal. Via ab initio DFT calculation, four pairs of

Weyl points were found in the band structure of Td-MoTe2. [33]
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FIGURE 1.4: (a) Orthorhombic crystal lattice structure of Td phase MoTe2 in the space group of
Pnm21. (b) Brillouin zone (BZ) in the kz = 0 plane. WPs with positive and negative chiralities
are marked as green and gray dots. The evolution of Wannier charge centers between the Γ
and S points is calculated along the red curve (c)Bulk band structure around the Γ point in the
Y− Γ− X direction without and with the inclusion of SOC. Reprinted figure with permission

from reference [33] Copyright (2019) by the American Physical Society.

As shown in Fig 1.4, each pair of Weyl points showed about 4.2% spacing in the

Brillouin zone where two Weyl points located merely 6mV and 59mV above the Fermi

energy respectively. Different from the WTe2, this large spacing in the reciprocal lattice

vector of Weyl points as well as small energy difference between Weyl points and Fermi

energy make Fermi arcs much easier to be observed in experiment by ARPES. [33] Sim-

ilarly, MoxW1−xTe2 alloys were also predicted to be Type-II Weyl semimetals, sharing

the same property with Td- MoTe2. Besides, the length of the Fermi arcs was tunable

by the concentration x of Mo composition according to the calculation. The Fermi arc

would be enlarged with higher Mo doping, which agreed with the previous calculation

on MoTe2 and WTe2. [34] The tunability of the length of the Fermi arcs also shines light

on studying the influence of the Fermi arc by adjusting the doping level.

With the rapid development of theory prediction, MoTe2 family was directly ob-

served as type-II Weyl semimetal very soon. Take the MoTe2 as an example. (Fig

1.5) [27] Comparing the calculated band structure of Td phase MoTe2 and the real

structure obtained by ARPES, an agreement indicated a clear evidence of Weyl points

formed by the electron pocket and hole pocket. With the absence of Fermi arc in cen-

trosymmetric 1T’ phase, the origin of the Weyl semi-metallic state in this material was

further confirmed.
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FIGURE 1.5: (a) Dispersions for type-I Weyl fermion near Fermi energy. The WPs are labelled
by yellow and green dots. (b) Type-II Weyl semimetal with electron and hole pockets touching
at two different energies. (c1) Calculated dispersion along the X − Γ − X direction. (c1&2)
Measured dispersions along the X− Γ−X direction with horizontal and vertical polarizations
at photon energy of 32.5 eV. (d) Calculated spectral function at Fermi energy. (d1&2) Intensity
maps measured at Fermi energy with p polarization using a 6.3 eV laser source with light
polarizations perpendicular to the b and a axis respectively. The electron and hole pockets are

highlighted by blue and green colour. Reprinted figure with permission of [27]

Other than the transport measurements of unusual magnetoresistance [35], the in-

version symmetry breaking property also inspires the possibility of nonlinear optical

response. such as the second harmonic generation, photovoltaic and photogalvanice

effect. In this thesis, we will focus on the nonlinear optical response, especially the

photogalvanic effect in type-II Weyl semimetal.

1.2 Photogalvanic Effect

Photogalvanic effect (PGE) is the phenomenon of a direct current (dc) generated in

a homogeneous medium under uniform illumination, which occurs in media lacking

of centrosymmetry. PGE has been widely studied in a lot of materials such as fer-

roelectircs, piezoelectrics and gyrotropic crystals for probing the symmetry and band

information as well as potential electronics applications.
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1.2.1 Phenomenological Description

For a phenomenological description, the electric current in a homogeneous medium

can be expanded in a power series of the electric field:

ji = σ0
ijEj + β0

inlElEn + σ0
ilnmElEnEm + γilnmElE′nE′∗m + βilnE′l E

′∗
n (1.5)

where E is the electric field and E′(ω) = E′∗(−ω) is the intensity of illumination. The

first three terms represents the conductivity considering the nonlinear correction. The

fourth term is the photoconductivity, defined as jph
i . PGE is described by the last term

with second order of E and the property of PGE is governed by the photogalvanic

tensor βiln(ω). [36]

Since the current jph
i should changes sign under inversion but E′l E

′∗
n keeps the sign,

βiln(ω) needs to consist of centrosymmetric breaking elements. Besides, for real jph
i ,

photogalvanic tensor satisfies βiln(ω) = β∗inl(ω), indicating real component of βiln(ω)

is symmetric with index l and n. The independent components is determined by the

crystal structure. In the crystals of class T and Td, there is only one independent com-

ponent in the tensor. [36] The type-II Weyl semimetal, such as the MoTe2 and MoWTe2

alloys with Td phase, is expected to exhibit PGE in principle.

1.2.2 Circular Photogalvanic Effect

Among all PGE, we mainly focus on the circular photogalvanic effect (CPGE) which

descibes the helicity-dependent photocurrent. Photocurrent of CPGE only appears un-

der the exciation of circularly polarized light and the photocurrent direction is reversed

while changing the sign of circular polarization. The CPGE photocurent can be under-

stood by a simple explanation that the photon angular momenta is transformed into the

motion of a free carrier for two reasons: wheel effect and screw effect. [37] The photon

helicity can be described by the degree of circular polarization:

Pc =
Iσ+ − Iσ−
Iσ+ + Iσ−

(1.6)
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where Iσ± are the light intensity of right (σ+) and left (σ−) handed circularly polarized

light.

From the phenomenological equation of current response mentioned above, the ten-

sor β can be separated into two parts:

ji = βilnE′l E
′∗
n =

1
2
(βiln + βinl)E′l E

′∗
n +

1
2
(βiln − βinl)E′l E

′∗
n (1.7)

The first term is the symmetric part, describing the linear photogalvanic effect (LPGE);

while the second term is the antisymmetric part, describing CPGE, which can be written

as:

ji,CPGE =
1
2
(βiln − βinl)E′l E

′∗
n = βanti

iln PcE′l E
′∗
n (1.8)

The antisymmetric tensor βanti
iln is related to the point group and gyrotropy of the sys-

tem. In all 21 crystal classes breaking inversion symmetry, 3 of them are nongyrotropic

which are Td, C3h and D3h. [37] This effect, predicted by Ivchenko and Belinicher in

1978 [38,39], was experimentally obtained by Asnin [40] in the same year. Later on, this

effect was broadly studied in quantum well structures, topological insulators and other

materials due to the reduction of symmetry.

1.2.3 CPGE in Weyl Semimetal

The discovery of Weyl semimetal with topological band crossing motivated the

study of nonlinear optical response in these materials, including the CPGE. The theo-

retical calculation was proposed in 2017 by Chan, who predicted a significant photocur-

rent in Weyl semimetal with inversion symmetry breaking and tilted Weyl cone. [42]

As shown in the Fig 1.6, in the Dirac system, the electron in two branches will be

excited symmetrically by the circularly polarized light. The excited electrons have same

magnitude but opposite direction momentum resulting in zero net current. Different

from the Dirac system, the Weyl semimetal breaks either time reversal symmetry or

inversion symmetry, and each Weyl cone has finite chirality. In a single Weyl cone, the

asymmetric excitation by circularly polarized light allows the net photocurrent whose
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FIGURE 1.6: Schematics of photocurrent generations in Dirac and Weyl systems. Circularly
polarized photons propagating along the z axis induce spin-flip vertical transitions denoted
by the red arrows. (a) In an ideal 2D Dirac system, the excitations are symmetricabout the
node and thus the photocurrent vanishes. (b) In a 3D Weyl system with an upright crossing
spectrum, the extra dimension allows an asymmetric particle-hole excitation along qz and cre-
ates a chirality-dependent photocurrent from each Weyl cone. However, the chiral currents
from a monopole and an antimonopole negate each other, yielding no net current. (c) In the
presence of tilt along some direction qt , asymmetric excitations can happen when the system
is doped away from the neutrality. The resultant photocurrent is not just determined by the
node chirality and the total current is generically nonzero. Reprinted figure with permission

from reference [42] Copyright (2019) by the American Physical Society.

direction is governed by the chirality of this Weyl cone. However, the Weyl cones in

Weyl semimetal appear in pairs with opposite chairlaty, which means that a pair of

Weyl cones will generate the same magnitude of photocurrent but different sign, thus

vanish each other. As mentioned above, the type-II Weyl semimetal has tilted Weyl

cone which can further reduced the symmetry, making the net photocurrent possible.

For some Type-II Weyl semimetals, such as MoWTe2 family, the inversion symmetry

is broken but time reversal symmetry is preserved. Therefore, the monopoles and an-

timonopoles are not symmetry related but have different tilts, suggesting a finite net

current. The combination of inversion symmetry breaking and tilted Weyl cone allows

the existence of photocurrent, in other words, CPGE is expected in these materials. [42]

Shortly after this prediction, Ma observed the CPGE in TaAs, a type-I Weyl semimetal,

and concluded it as a direct observation of Weyl fermion chirality. To detect the chiral-

ity of Weyl fermion, sensitivity to the WF chirality is required, and CPGE is a good
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FIGURE 1.7: (a) Schematic illustration of the mid-IR photocurrent microscope setup. A laser
power about 10 mW was used throughout the main text. (b) A photograph of the measured
TaAs sample. The crystal axes a, b, c are denoted. Scale bar: 300 um. (c,d) Polarization-
dependent photocurrents at T=10 K measured along the b axis (c) or c axis (d) direction with
the laser applied at the horizontally (c) or vertically (d) aligned pink, black and blue dots in b.

LCP, left-handed circularly polarized. Reprinted figure with permission of [43]

option. TaAs has inversion symmetry breaking and the tilt of the Weyl cone was also

claimed to be large enough for net photocurrent according to Ma’s calculation. [43] Mid

IR laser with 10.6um wavelength was used in their experiments to excite electrons from

the lower part of Weyl cone to the upper part. Controlling the light polarization by a

quarter wave plate, they detected maximum current in b axis for RCP light, minimum

for LCP and zero for linearly polarized light, without considering the polarization in-

dependent current. The total photocurrent was a cosine function in agreement with the

CPGE behavior. In the c direction, the CPGE current was not observable because of the

symmetry. The photcurrent can be expressed as : [43]

Jα = ηαβγEβ(ω)E∗γ(ω) (1.9)
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in which the ηαβγ was the second order photocurrent response tensor, an intrinsic prop-

erty of the material. According to the symmetry of TaAs, there was cancellation in

certain directions. Because the photon energy for the excitation was 120meV, they ex-

cluded other mechanisms and focused on the transition in the Weyl cone. By micro-

scopic model, they founded that the photocurrent from W2 Weyl cone was negligible

and the current direction predicted from W1 agreed with the experimentally measured

results. Therefore, they thought this CPGE current singly probed the chirality of the

W1 Weyl cone. By different doping, they predicted that the other Weyl point could also

be probed by CPGE.

1.3 Thesis Outline

In this thesis, we are going to show our effort to broaden the concept of conventional

CPGE via different methods to reduce the symmetry such as beam profile gradient and

electric field, and demonstrate for further device applications. Utilizing the platform of

Weyl semimetal with strong spin orbit coupling and inversion symmetry breaking, we

will try to achieve new types of CPGE with novel response function working in a wider

range of energy, which can be used as a more general tool to study the band topology

of the material.

In Chapter 2, we will show the observation of CPGE in Type-II Weyl semimetal

under the condition that the conventional CPGE should be forbidden. By the measure-

ments on different locations of the sample, we discovered a unique spatial dependent

property of this CPGE. Through repeating the CPGE experiments on different phases of

MoTe2, we also found that this new type of CPGE only exists in Weyl phase and named

it as spatially dispersive CPGE (sCPGE).

Chapter 3 explores more properties of this sCPGE and confirms that the sCPGE

current is swirling around the beam center, instead of flowing in a certain direction as

conventional CPGE. Using a microscopic model to explain this sCPGE, we also per-

formed wavelength dependent sCPGE measurements and confirmed that the results
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were in good agreement with the prediction by the model, helping us to deep dive

the topological physics of Weyl semimetal including the electric band structure and the

Berry curvature.

Chapter 4 further discusses another way to break the symmetry in Weyl semimetal

to obtain CPGE. The CPGE current can be induced and controlled by a transverse bias

voltage. In other words, we observed photoinduced anomalous Hall effect in Weyl

semimetal which has time reversal symmetry without magnetic field. The symmetry

is broaken by the circularly polarized light. This Chapter ends up with the discussion

of a microscopic model to explain the origin of the phenomenon, and a low energy

excitation experiment was designed to separate the contribution from two Weyl cones

under different transverse bias.
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Chapter 2

Observation of Spatially Dispersive

Circular Photogalvanic Effect in

Type-II Weyl Semimetal

Reproduced in part with permission from "Ji, Z., Liu, G., Addison, Z., Liu, W., Yu, P., Gao,

H., Liu, Z., Rappe, A.M., Kane, C.L., Mele, E.J. and Agarwal, R., 2018. Spatially dispersive

circular photogalvanic effect in a Weyl semimetal. arXiv preprint arXiv:1802.04387."

2.1 Introduction

The unique band structure of Weyl semimetal has attracted a lot of attention in

studying their electronic and transport properties [1–12]. Recently, these studies have

been extended to their optical properties, especially through the measurements of non-

linear responses. Until now, most experiments were focused on the type-I Weyl semimetal,

such as monopnictide TaAs, where a zero-bias photocurrent under chiral optical excita-

tion at mid-infrared frequencies [13] has been attributed to the distinct chirality of each

tilted Weyl cone, and exceedingly large values of the second order nonlinear optical

susceptibility at visible frequencies were observed [14]. Some theoretical work have

also been conducted to understand the mechanism of injection photocurrent under low

frequency excitation at Weyl semimetal [15–19]. In this chapter, a novel circular photo-

galvanic effect discovered in type-II Weyl semimetal will be discussed.
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MoTe2, which was theoretically predicted and confirmed by experiments to be a

type-II Weyl semimetal [20,21], provides a promising platform for studying the optical

response in this kind of topological material. Bulk MoTe2 has three different crystal

phases: hexaginal 2H, monoclinic (P21/m) 1T’ Fig(2.1.a) and orthorhombic (Pmn21) Td

phase Fig(2.1.b), in which the 1T’ phase and Td phase will be discussed in this work.

FIGURE 2.1: Crystal structures of 1T’ (a) and Td phase of MoTe2 (b). Yellow (purple)
spheres represent Te (Mo) atoms.

As reported in the previous work [24, 25] on MoTe2, this material shows a phase

transition at about 250 K between the high temperature centrosymmetric semimetal 1T’

phase (trivial phase) and the inversion symmetry broken Td phase (non-trivial phase).

1T’ phase and Td phase possess both layered structures and share the same in-plane

symmetry, while the atomic stacking in the c axis of these two phases are different.

As shown in Fig 2.2.b, the structural phase transition is revealed by an abrupt change

in the temperature-dependent resistivity, which occurs at about 260 K upon warming

and around 250 K upon cooling. By comparing the Raman spectra in Fig 2.2.c, two

new peaks labeled by A and D only show in low temperature phase, which strongly

indicates the existence of phase transition.
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FIGURE 2.2: (a) Crystal structures of 1T’ (shadow) and Td (solid) phases. (b) Resis-
tivity measurement shows a temperature-induced phase transition. The inset shows
a photograph of the high-quality single crystal; scale bar, 5 mm. (c) Raman spectra at
320 and 80 K. The letters inside the parenthesis indicate the polarization directions for

incident and scattering lights. Reprinted figure with permission from [24]

Following the discovery of MoTe2 as an inversion symmetry broken type-II Weyl

semimetal below 250 K, MoxW1−xTe2 has also been demonstrated as room temperature

type-II Weyl semimetal similar to the structure of MoTe2. [22, 23] The band structure of

different tungsten doping concentration in MoTe2 was studied via ARPES [26], which

shows that the Fermi arc becomes shorter with higher tungsten doping and disappears

when x<0.07. [Fig(2.3)] Novel ab initio calculations were performed to pinpoint the
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topological phase transition and the results agreed well with the experimental obser-

vation, indicating that the topological phase transition can also be induced by compo-

sition doping. This phase change property of MoWTe2 family made it possible to com-

pare two phases and study the unique response of the inversion broken Weyl phase.

FIGURE 2.3: (a-f) As the bands invert, they first touch at a point (b). This point can
be viewed as a band crossing consisting of two chiral charges on top of each other in
momentum space (purple dot). Upon further inversion, the chiral charges separate,
giving a Weyl semimetal (c-f). (g-j) Schematic of the configuration of Weyl points.
With higher Mo doping, the band crossing occurs and the Fermi arcs become longer.

Reprinted figure with permission from [26]

2.2 Experimental Setup

2.2.1 Sample preparation and characterization

Large, well-formed, ribbon-like single crystals of MoTe2 and MoxW1−xTe2 (x=0.3

and 0.9) alloy were grown and provided by Zheng Liu’s gorup. The phase and the

quality of the Mo0.9W0.1Te2 were confirmed through Transmission Electron Microscope
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FIGURE 2.4: Mo0.9W0.1Te2 diffraction pattern under TEM

(TEM). Bulked Mo0.9W0.1Te2 was exfoliated by scotch tape for several times and then

the tape was put into acetone. The acetone was heated and sonicated for 2 hours. TEM

carbon grid was used to scoop in the acetone to transfer the Mo0.9W0.1Te2 onto the

grid. [Fig(2.4)] The diffraction pattern of the material shows single-crystallinity of the

sample. The zone axis was the crystallographic c axis.

FIGURE 2.5: SHG data is collected at each half wave plate angle. At each angle, the
data is collected for 30 seconds. The half wave plate is rotated from 0 to 360◦ and SHG

is plotted as function of half wave plate angle.

Optical second harmonic generation (SHG) was also utilized to check the crystal

structure. Focused beam at wavelength 950 nm was performed to generate SHG and
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scanned on the sample surface. A half wave plate was placed in the optical path to

control the linear polarization. (Fig 2.5) SHG signal did not show spatial dependence

and four periods were obtained while rotating the half wave plate from 0 to 360◦. The

result satisfied the surface symmetry of Mo0.9W0.1Te2, suggesting high quality samples.

Bulked Mo0.9W0.1Te2 was exfoliated by scotch tape and transferred onto Si/SiO2

substrate. The thickness of the sample was about 100nm and the dimesion was about

10um × 10 um. Two parallel contacts were patterned on AutoCAD and written by

E-beam resist (PMMA) spin coating and electron beam lithography exposure. The elec-

trodes were made by 100 nm Ti layer and 50 nm Au layer through physical vapor de-

position.

2.2.2 Optoelectronic Measurement Setup

The excitation source was provided from a wavelength tunable Ti-Sapphire pulsed

laser in the 680-1080 nm. The laser was focused to a near perfect Gaussian spot by a

60X objective and the full width at half maximum (FWHM) of the spot was controlled

in the range of ∼2-20 um FWHM, with total power on the sample stage in the 1-15 mW

range. The laser wavelength performed in this work was chosen to be 750 nm, and the

beam size was ∼ 2 um. The light was polarized via a polarizer and the extinction ratio

of linearly polarized light was ensured to be larger than 1000:1 before measurements.

Quarter wave plate (QWP) mounted on a motorized precision rotation stage driven

by a servo motor (Thorlabs) was used to vary the angle continuously from 0-360◦ to

obtain different laser polarizations (from linear polarization to circular polarization).

The laser polarization on the sample plane was also monitored carefully to ensure ac-

curacy. By rotating the quarter waveplate, it can change the linear polarized incident

light to different light helicity output. If the angle between the fast axis of the quarter

wave plate and the linear polarization direction was defined as φ, the polarization of

the output light was linear polarization when φ = 0◦, 90◦, 180◦ and 270◦; when φ= 45◦

and 225◦, it was left circular polarization; when φ= 135◦ and 315◦, it was right circular

polarization.
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FIGURE 2.6: Experimental setup for photocurrent measurements. The light polariza-
tion is controlled by a polarizer and a quarter waveplate. Focused by a 60X lens, the
beam is normal incident on the sample plane. The sample has two parallel electrodes

which are connected to the electrical setup to collect photocurrent.

The experimental setup is shown as Fig 2.6. The light polarization controlled by

the polarizer and quarter waveplate has been checked via the experiments mentioned

above. Guided by two beamsplitter cubes, the beam was focused to 2-3 um diameter

through a 60X lens and normal incident onto the sample stage. The light incident direc-

tion was aligned to the c axis of the MoWTe2 crystal structure (Fig 2.1). When scanning

the light beam over the sample using piezoelectric stages, the spatial coordinates were

recorded with an accuracy of ∼200 nm. Photocurrents were recorded using a current

preamplifier (DL instruments model 1211) for which the bias voltage was sourced and

the output signal from the preamplifier (photocurrent was converted to an amplified

voltage signal) was recorded continuously (∼10 data points per second) by the PCI

card (National Instrument, NI PCI-6281). The time constant of the preamplifier was

chosen in the range of 100-300 ms. The quarter wave plate was rotated at the rate of

7◦/sec using a motorized precision rotation stage with a servomotor.

The zero bias photocurrents were measured under different light power by adjust-

ing the optical density filter. Incident light intensity was obtained by power meter and

the photocurrent was plotted as the function of light intensity. Shown in the Fig 2.7, the

photocurrent scaled linearly with laser power and all measurements in this work were
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performed within this power regime.

FIGURE 2.7: Photocurrents at light power = 0 mW, 3.95 mW, 4.98 mW, 6.27 mW and
7.89 mW are extracted and plotted as function of light intensity, shown as the black

squares. The red line is linear fitting of the data.

2.3 Experimental Results

2.3.1 Observation of PGE in Mo0.9W0.1Te2

As mentioned in the experimental setup, the light polarization was controlled by the

quarter waveplate. For CPGE current, the response was dependent on the light helicity,

meaning that the current measured at right circular polarization should be different

from the current at left circular polarization. Therefore, the CPGE current, JC should

be periodical if the quarter wave plate is continuously rotating and the period is 180◦.

CPGE current can be expressed as JC(φ) = JCsin(2φ).

Photocurrents were collected while the quarter wave plate was rotated for a circle

and plotted as function of the angle φ shown in Fig 2.8. Obviously, the photocurrent

under right circular polarization light (φ= 135◦ and 315◦) was smaller than the pho-

tocurrent under left circulat polarization light (φ= 45◦ and 225◦) and period was 180◦.

However, the photocurrent data was not a sine function as the pure CPGE current JC,
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FIGURE 2.8: (left) Polarization controlled by quarter waveplate. (right) Black dots
are the photocurrent data plotted as the function of quarter waveplate angle. The
polarizatoin of light is marked above for each angle. The red line is the fitting curve
for the total photocurrent. The green line and the blue line are the CPGE and LPGE

current component respectively.

indicating another polarization dependent contribution. Thus, linear photogalvanic ef-

fect (LPGE) was considered in this experiment.

For LPGE, the photocurrent can be modified by the linear polarization, but is not

sensitive to the handedness of circularly polarized light. Therefore, the photocurrent

amplitude for LPGE, JL, at φ = 0◦, 90◦, 180◦ and 270◦ (linear polarization) should be

different from the photocurrent amplitude at φ= 45◦, φ= 135◦, 225◦ and 315◦ (circular

polarization). The period for LPGE current should be 90◦ and LPGE current can be

written as JL(φ) = JLsin(4φ + φ0).

Considering both CPGE and LPGE, the total photocurrent can be fitted into the

equation:

J = JCsin(2φ) + JLsin(4φ + φ0) + J0 (2.1)

where, JC is the magnitude of the CPGE, JLis the magnitude of the linear photogalvanic

effect (LPGE) with a phase shift φ0. J0 is the polarization-independent background cur-

rent which could be thermocurrent or Dember effect due to the heat gradients induced

by asymmetric illumination on the sample. The fitting curve is shown as red line in Fig

2.8. CPGE current JC = 77nA and LPGE current JL = 127nA. These two contributions
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are plotted in green line and blue line respectively.

Therefore, CPGE and LPGE currents were both observed in the type-II Weyl semimetal

Mo0.9W0.1Te2. Before studying the photogalvanic effect, we needed to excluded some

factors that could influence the measurements, such as the edge effect [32], polarization

independent photocurrent and external field.

Edge effect could be observed by measuring the photocurrent when beam spot was

close to edges and far from the edges. To minimize the influence of thermocurrent,

the beam was scanning in the middle of two electrodes from left edge to right edge

in a consistent speed as shown in Fig 2.9. The spatial dependent photocurrent was

collected. Initially, the photocurrent was zero, implying that the beam was out of the

sample. Once the beam arrived at the edge of the sample, the photocurrent showed

up and gradually increased in negative direction. After reaching maximum value, the

photocurrent magnitude started to decrease and become zero at certain location. Then,

it flipped to positive direction and reached maximum. The current became zero when

the beam moved out of the right edge. The photocurrent showed a significant spa-

tial dependence. This property was confirmed to be repeatable by measurements on

different samples.

FIGURE 2.9: (left) two parallel electrodes are patterned on the top and bottom of the
sample to collect photocurrent. The beam is scanning from left to right side in the
middel of two electrodes indicated by red dash line. (right) Photocurrents are col-
lected when the beam is scanning in a constant speed and plotted as function of beam

location
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The spatial dependent photocurrent measurement indicated that the edge effect ex-

isted in the photocurrent measurements. To exclude edge effect, Mo0.9W0.1Te2 was ex-

foliated to size larger than 20um× 20um and the beam was focused inside the sample

to avoid touching edge.

FIGURE 2.10: Polarization independent photocurrent, J0 (black dotted line), as a func-
tion of the laser spot location, from A to B, scanned along the line connecting the two
electrodes. The position where J0 equals to zero, is approximately at the center of the
two electrodes, and its two extremes occur at the ends of the electrodes. Inset shows

the device geometry.

In the measurement of Fig 2.8, there was a polarization independent contribution.

To confirm the origin of this term, beam was scanned from one electrode to the other

with fix polarization. The photocurrent J0 reached maximum value with opposite sign

at the ends of the electrodes and vanish near the mid-point (Fig 2.10), implying that it

was mostly a result of the Dember effect due to the heat gradients induced by asym-

metric illumination on the sample. [28] Since J0 did not affect polarization dependent

currents JC and JL, it will not be discussed in this work.

Another factor which could affect the PGE measurement was the external electric

field. Therefore, photocurrent was measured at a fix beam spot while applying various

external field. At each external field, photocurrent was collected while rotating the

quarter wave plate and plotted as function of rotation angle. Eqn 2.1 was used to fit the

data and PGE current JC was obtained. In all these conditions, CPGE and LPGE were

observed, and the amplitude of CPGE JC is 59 nA and LPGE JL is 90.8 nA consistently,
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suggesting a bias voltage independent behavior. Thus, this photogalvanic effect is not

caused by external voltage.

FIGURE 2.11: Photocurrents are collected while rotating the quarter waveplate for a
circle and plotted as function of rotating angle when external bias voltage is applied.
The measurements are repeated when the bias voltage is 0 mV, 1 mV, 2 mV and 3 mV.
The black dots are the experimental data and the red line is fitting curve using Eqn

2.1.

2.3.2 Spatially dispersive CPGE in MoWTe2

After the influence of edge effect, thermocurrent and external electric field was ex-

cluded, can we still observe CPGE and LPGE on Weyl semimetal Mo0.9W0.1Te2 under

normally incident light? PGE measurement was performed on a Mo0.9W0.1Te2 flake.

Both CPGE and LPGE current were observed when the beam spot was off-center of

the sample without touching sample edges. Spot a was defined as the beam spot at

left side of the sample and the spot b was the right side. As given in Fig 2.12, pho-

tocurrent at two spots was measured and plotted as quarter wave plate rotattion angle.
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Shapes of these two photocurrents were flipped. By fitting the data into the Eqn 2.1,

the contribution from CPGE and LPGE can be extracted. At spot a, the CPGE current

JC = 36nA and LPGE current JL = −100nA; at spot b, the CPGE current JC = −43nA

and LPGE current JL = 63nA. The CPGE currents at two spots had similar amplitude

but different sign. In other words, if same circularly polarized light is incident on these

two spots, the CPGE currents flow in different directions suggesting spatial dependent

totoal photocurrent as well as CPGE.

FIGURE 2.12: Photocurrent plotted as a function of quarter wave plate fast axis ro-
tation angle φ at the location at spot a(left) and spot b (right). Black dots are the

experimental data and red solid lines are the fits to Eqn 2.1.

A question was raised that wheth·er this CPGE exclusively existed in Mo0.9W0.1Te2

or can be observed in other materials. Thus, MoTe2 was utilized to repeat the PGE

experiments on Mo0.9W0.1Te2. Even though the MoTe2 is not Weyl semimetal at room

temperature, it shares the same in-plane surface crystal structure as Mo0.9W0.1Te2. Pho-

tocurrent was measured at the off-center position on the MoTe2 at room temperature

and the results were in the Fig 2.13.

LPGE was clearly observed at two positions and the LPGE current direction flipped.

However, the photocurrent at right circular polarization and the photocurrent at left

circular polarization had similar values at both spots, suggesting that the CPGE was

not obvious in room temperature MoTe2. Comparing with the CPGE behaviour in

Mo0.9W0.1Te2, it is likely that this spatially dependent CPGE has different behaviours

in different materials.
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FIGURE 2.13: Photocurrents are collected on room temperature MoTe2 while rotating
the quarter waveplate for a circle and plotted as function of rotating angle. The lo-
cation of the beam is when the current reaches negative maximum (left) and positive
maximum (right). The black dots are the experimental data and the red line is fitting

curve using Eqn 2.1

The difference between MoTe2 and Mo0.9W0.1Te2 is that Mo0.9W0.1Te2 is inversion

symmetry breaking via W doping in MoTe2 and becomes Weyl semimetal. As men-

tioned before, MoTe2 has another topological phase transition method, similar to the

composition doping, that is the temperature induced phase change. At the tempera-

ture lower than 250 K, 1T’ phase MoTe2 will be changed to Td phase inversion sym-

metry breaking Weyl semimetal, the phase of room temperature Mo0.9W0.1Te2. Thus,

spatial dependent CPGE measurements were performed at low temperature MoTe2.

The sample was placed in a cryostat and connected with a turbo pump. The pres-

sure was maintained to be lower than 10−6 Torr. The temperature was monitored by

a thermocouple in the chamber and was controlled by the balance between liquid ni-

trogen and heating plate. In this experiment, the heating plate was close and the tem-

perature reached 77k after 30-min cooling to make sure that the MoTe2 was in the Weyl

phase.

As shown in Fig 2.14, pholarization dependent photocurrents were measured at

four locations: spot a and spot d were off-center position at left and right side, spot b

and spot c were near the center. Clearly, at off-center positions, photocurrent at right

circular polarization was different from left circular polarization, implying significant
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FIGURE 2.14: Photocurrents are collected at 77 K MoTe2 while rotating the quarter
wave plate for a circle and plotted as function of rotating angle. Four locations are
selected to measure CPGE data: from left to right is spot a to d (shown in schematic
figure). Photocurrent is plotted as function of quarter waveplate angle at all four po-
sitions as labeled in the figure. The black dots are the experimental data and the red

line is fitting curve using Eqn 2.1

CPGE current. By fitting the data into Eqn 2.1, contribution from each component was

be extracted. For spot a, CPGE current JC = 20.82nA and LPGE current JL = −40.57nA;

while at spot d, CPGE current JC = −14.26nA and LPGE current JL = 34.63nA. Similar

to the results observed in Mo0.9W0.1Te2, the CPGE and LPGE when beam was off-center

had comparable amplitude but opposite sign. When beam was close to the center, the

photocurrents at spot b and spot b were almost the same at both circular polarized

light, indicating that the CPGE current was negligible. Therefore, the spatial dependent

CPGE can only be observed in inversion symmetry breaking Weyl phase MoTe2 and

Mo0.9W0.1Te2, but not in trivial phase MoTe2.

In order to further confirm the observation above, the same MoTe2 sample was

heated up again to high temperature 1T’ phase. The stage was heated to 360 K and

maintained for 30 min before measurements, to avoid the phase lock and guarantee
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FIGURE 2.15: Photocurrents are collected after tempertaure back to 360 K on the same
MoTe2 sample at left side (left) and right side (right). Photocurrent is plotted as func-
tion of quarter waveplate angle. The black dots are the experimental data and the red

line is fitting curve using Eqn 2.1

that the sample was completely phase changed to high temperature phase. Same ex-

periments were performed on the sample and the results were shown in Fig 2.15. For

both left and right sides of the sample, the photocurrents were the same under all of

the circular polarization light, meaning that the CPGE current disappeared when the

temperature increased back to room temperature. The sample showed the same prop-

erty as before in Fig 2.13. Therefore, the spatially dispersive CPGE current can only be

observed in the low temperature Weyl phase and this experiment was repeatable after

phase transition back and forth.

FIGURE 2.16: New device design to confirm spatially dispersive CPGE

To further confirm the observation of spatially dispersive CPGE, measurements
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were repeated for many times on different MoTe2 and Mo0.9W0.1Te2 flakes. The ge-

ometry of eclectic contacts were also changed to different design. The results were all

the same as shown above. For example, vertical line contacts pattern instead of two

long parallel electrodes shown as Fig 2.16 were used for photocurrent measurements.

Spot 1 and spot 2 marked on the figure were two sides of the sample and photocurrent

were measured at these two spots.

FIGURE 2.17: (a) and (b) Total photocurrent measured at the two sides of the elec-
trodes (a) spot 1 and (b) spot 2 and plotted as quarter wavep plate angle. Black dots
are the experiment data and red solid lines are the fitted curves for total photocurrent

(Eqn(2.1)).

On Mo0.9W0.1Te2 flake at room temperature, the results were the same as before in

Mo0.9W0.1Te2. ]Fig 2.17 Both CPGE and LPGE contribution were significant and the

direction of these currents had opposite direction at two spots. Same results were ob-

served by repeating this experiment on another composition Mo0.3W0.7Te2, which is

also room temperature Weyl semimetal. These repeatable results strongly proved that

the spatially dispersive CPGE occurred in Weyl phase.

This electrode design was used for PGE current measurements on MoTe2 at 300 K

and 77 K. The process of experiments were similar as before. The sample was placed in

the temperature controlled cryostat and the dependence of photocurrent and quarter

wave plate angle was measured at spot 1 and spot 2 at room temperature. Then, phase

transition was achieved by cooling the sample to 77 k for more than 30 min and the
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FIGURE 2.18: Photocurrents plot as the function as quarter waveplate rotation angle
under different experiment condition: (a) spot a at 300 K; (b) spot b at 300 K; (c) spot a
at 77 K; (d) spot b at 77 K. Black dots are the experiment data and the red solid line is

the fitting curve.

photocurrent was collected at the same spot 1 and spot 2. All the data was fitted into

the Eqn 2.1 to get the contribution from CPGE and LPGE. The results were listed in the

table 2.1.

MoTe2
spot 1 spot 2

JL(nA) JC(nA) JL(nA) JC(nA)
300 K(1T’) 23 ∼0 -30 ∼0
77 K(Td) 34 14 -40 -21

TABLE 2.1: Fitting parameters for polarization dependent photocurrent
data measured on MoTe2 at two different spatial locations (spot 1 and
spot 2) at 77K and 300K. JL and JC are the LPGE and CPGE components,

respectively.

Similar to the experimental results above on MoTe2, (Fig 2.13 and 2.14) only LPGE

current can be measured at room temperature phase (1T’); while at 77 k, 14 nA and -21
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nA CPGE currents were obtained at spot 1 and spot 2 respectively. Repeated success-

fully, this experiment provided a strong evidence that the CPGE current only exists in

the inversion broken Td phase.

2.4 Conclusion

In conclusion, the photocurrent which is sensitive to the light polarization is ob-

served in the type-II Weyl semimetal MoWTe2. This photocurrent has both CPGE and

LPGE contribution; the former component is different under right and left circular po-

larization light, while the latter one is controlled by the linear polarization direction.

More interestingly, the CPGE current and LPGE current have significant spatial depen-

dence; current direction is opposite when the beam is focused on different side of the

sample. This experiment is repeatable and the current is giant (∼ 102nA under ∼ 1mW

laser power), indicating a very robust effect.

Additionally, this spatial dependent CPGE in proven to only exist in the inversion

symmetry breaking Weyl phase by the experiment on topological phase transition ma-

terial MoTe2. Even though the room temperature phase and low temperature phase

share the same in-plane structure and only different in the stacking pattern, the spatial

dependent CPGE current can only be observed at low temperature, suggesting a special

effect in the type-II weyl semimetal. By further studying the mechanism of this effect,

we can have a better understanding of the nature of type-II Weyl semimetal.

To distinguish from conventional CPGE due to the unique property, this novel

CPGE is defined as spatial disperse CPGE (sCPGE). Even though the CPGE current

is confirmed to be spatial dependent and exist in certain phase, the actual current dis-

tribution is still unclear and the reason why this effect disappears at the other phase

needs to be revealed. Furthermore, from symmetry considerations, in both the Td (C2v)

and 1T’ phases (C2h), under normally incident light on the x̂ − ŷ plane (propagation

direction, ẑ), any in-plane second order optical response such as PGE [29,30] or photon

drag effect [31] is forbidden by the two-fold rotation symmetry. Thus, JC and JL should
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both vanish in this material, which is contrary to our measurements. Therefore, the ob-

servations of position-dependent LPGE in the 1T’ and Td phases as well as CPGE only

in the Td phase indicate an unconventional origin of the PGE effects.

Therefore, in the following chapter, more experiments will be designed to study the

property of sCPGE. By analyzing these properties of sCPGE, we will try to build up a

model to discuss the mechanism of sCPGE in the Weyl semimetal.
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Chapter 3

sCPGE properties and mechanism

Reproduced in part with permission from "Ji, Z., Liu, G., Addison, Z., Liu, W., Yu, P., Gao,

H., Liu, Z., Rappe, A.M., Kane, C.L., Mele, E.J. and Agarwal, R., 2018. Spatially dispersive

circular photogalvanic effect in a Weyl semimetal. arXiv preprint arXiv:1802.04387."

3.1 Introduction

As discussed in Chapter 2, a strong spatial dependent CPGE current was observed

in Weyl phase MoWTe2 family. This CPGE only occured in Weyl phase by experiments

perform on phase transition MoTe2, which excluded the influce of edge effect as well.

Besides, conventional CPGE current should be forbidden under normal incident for

both the Td (C2v) and 1T’ phases (C2h) due to the symmetry [2, 3, 12]. To reveal the

origin of sCPGE, we need to understand the reason of spatial dependence and explore

more properties of this effect.

3.2 Experimental results and discussion

3.2.1 Swirling CPGE Current in Type-II Weyl Semimetal

The light source was still provided by a wavelength tunable Ti-Sapphire pulsed

laser working at 750 nm. The laser was focused to a Gaussian profile by a 60X objective

and the spot size was about 2 um diameter and 10 mW power. The light polarization
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was controlled by a polarizer and a quarter wave plate installed on a motorized preci-

sion rotation stage driven by a servomotor. The polarization quality has been checked

in the Chapter 2.

The bulk crystal MoxW1−xTe2 (x=0.3 and 0.9) and MoTe2 was provided by Zheng

Liu’s group. The sample was exfoliated to flakes (20 um × 20 um) larger than pre-

vious experiments to avoid the beam reaching device edges and lowering the noise

level. Layered structure MoWTe2 sample was transferred onto Si/SiO2 substrate and

the crystallographic c axis of MoTe2 was aligned to be parallel to the z axis which was

the normal incident light direction as shown in Fig 3.1.

FIGURE 3.1: (a, b) Crystal structures of 1T’ MoTe2 (a) and Td phase of MoWTe2 (b).
Yellow (purple) spheres represent Te (Mo) atoms. (c) Experimental set up of photocur-
rent measurement. 750 nm laser passes through a polarizer and a quarter waveplate
in z direction, then normally incident on to the sample (x-y plane) after focused to 2

um diameter. Z axis in the set up is aligned as the c axis in the crystal structure.

To further test the dependence of sCPGE on position, experiments were performed
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on Mo0.9W0.1Te2 at room temperature where the beam spot was scanned along the per-

pendicular bisector of the two electrodes from spot a to spot b step by step, photocur-

rents as function of φ were collected at each step. Then, the photocurrents can be plotted

and fitted by using the phenomenological photocurrent expression:

J = JCsin(2φ) + JLsin(4φ + φ0) + J0 (3.1)

The contribution from CPGE was extracted to get the position dependent CPGE. If the

CPGE current distribution was swirling around the beam center, the result should be a

sine shape.

FIGURE 3.2: CPGE current, JC, as a function of the laser beam position. Black squares
are the experimental data extracted from the total photocurrent by fitting.

As given in the Fig 3.2, sCPGE JC was zero when the laser spot was at the midpoint

of two electrodes, and changed polarity when the spot moved from the left side to the

right side, indicating that sCPGE current was an antisymmetric function of spot posi-

tion. The CPGE current approached maximum at opposition direction when the beam

position was about ±2um away from the center. When the beam was far from the sam-

ple center, the CPGE current gradually deceased and vanished at the end. The result
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was as expected for the swirling current explanation. If the beam was placed at the cen-

ter, two half circle with opposite current direction would cancel each other, ending up

with zero net current. When the beam was too far from the center, the electrode could

not collect enough current, which was swirling around the beam spot, to get measur-

able data. Therefore, the CPGE maximum occurred when the distance between beam

and electrode was about beam diameter, where the geometry was sufficiently asym-

metric and the electrodes highly efficiently collected current.

FIGURE 3.3: Schematic of our measurement set up to measure the circulating current in the
Weyl phase.

According to the experiment above, the CPGE current distribution was likely to be

circulating around the beam spot, however, the circulating current distribution was not

the only explanation. To confirm the circulation, we designed a multi-electrode device

where electrodes were arranged in a circle with the laser focused at the center and a

fixed spot size, shown in the schematic Fig 3.3. If the current was flowing as a circle

around the beam spot, current can be measured between two nearby electrodes. The

reason why a circulating current in a plane can be collected by these two electrodes in

our experimental setup can be simply explained by a electrostatic model (Fig3.4).

The electrons flowing out from the metal contacts were in equilibrium at the chem-

ical potential of the contact (grounded in our case). Therefore, in a one-dimensional

model, the electrons coming out of the grounded contacts were at zero chemical po-

tential. Then, via the continuity equation, the current flowing into the contact would

be J = vF(nin − nout) = vFnin, with the electron density at the interface being n =

nin + nout = nin. In a one-dimensional ring, the Boltzmann equation and Ohm’s law
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FIGURE 3.4: Schematic of our measurement set up to measure the circulating current
in the Weyl phase. JA (JB) is the current magnitude flowing in the shorter (longer)
segments of the loop, n1(2)

a , n1(2)
b are the electron densities at the two Weyl semimetal-

electrode interfaces of electrode 1 (2), adjacent to the shorter and longer segments,
respectively.

gives, j = σF/e− D ∂n
∂x , and continuity equation is ∇ · j = 0, where σ is the conductiv-

ity, F is the effective force on electrons due to optical illumination, and D is the electron

diffusion constant, D = vFl, where l is the electron mean free path.

For the ring geometry shown in Fig 3.4, a (b) stands for the shorter (longer) segment

of the circle, JA (JB) is the current magnitude flowing in the shorter (longer) segment of

the loop, n1(2)
a , n1(2)

b are the electron densities at the Weyl semimetal-electrode interface

1 (2), adjacent to the shorter and longer segments respectively. The measured current is

I = JA − JB and σF/e is the transverse sCPGE current produced by light. We can then

obtain,

JA = vFn1
a = −vFn2

a = Jtrans
sCPGE − D

n1
a − n2

a
LA

(3.2)

JB = vFn2
b = −vFn1

b = Jtrans
sCPGE − D

n2
b − n1

b
LB

(3.3)
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which can be solved to obtain,

I = Jtrans
sCPGE ·

2l(LA − LB)

(LA + 2l)(LB + 2l)
(3.4)

Since the electrodes have a finite length, the measured current would be a radial inte-

gral of I(r). Therefore, with this multi-electrode design, same direction CPGE currents

are expected to be obtain when photocurrents are measured between each two nearby

electrodes under the same circularly polarized light.
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FIGURE 3.5: Measurement of circulating current in the Td (Weyl) phase of
Mo0.9W0.1Te2 at room temperature under circularly polarized optical excitation. (a)
Optical image of the multi-electrode Mo0.9W0.1Te2 device (x-y plane). The five elec-
trodes are labeled a-e, and red and blue arrows indicate the circulating direction of
CPGE current under left and right circularly polarized light illumination (spot size
≈2um) respectively. (b-f) Photocurrents measured between each of the nearest elec-
trode pairs and plotted as functions of the fast axis rotation angle, φ, of the quar-
ter waveplate. Plots correspond to measurements performed between electrodes (b)
a→b, (c) b→c, (d) c→d, (e) d→e, and (f) e→a. Black dots are the experiment data, red
solid lines are the fitted curves for total photocurrent (Eqn (1)), and the green solid
lines represent the fitted CPGE currents, JC. The blue and red arrows represent the

circulating CPGE current under RCP and LCP illumination, respectively.
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For this multi-electrode measurement, the inversion symmetry broken Td phase

Mo0.9W0.1Te2 was performed at room temperature. With the laser spot fixed at a point

near the center of the circle surrounded by the electrodes, the photocurrent was col-

lected between each of the nearest electrode pairs around the laser spot in the sequence,

a→b, b→c, c→d, d→e and e→a. The optical photo of the device was given in Fig 3.5.

As expected, sCPGE existed in Mo0.9W0.1Te2 at room temperature and the polarization-

dependent photocurrents were fitted to Eqn 3.1. sCPGE current contribution can be

extracted from fitting.

All theses results between each two electrodes were shown in the Fig3.5. Obvi-

ously, the photocurrent at φ = 45◦ was larger than at φ = 135◦ in all these two mea-

surements. Through fitting, JC was find to be positive between all electrode pairs under

right circularly polarized (RCP) light illumination and negative under left circularly po-

larized (LCP) light illumination, demonstrating that JC was not biased in a single direc-

tion where the components collected by different electrode pairs would have different

signs. Instead, JC circulated clockwise (in the direction a→b→c→d→e→a) upon RCP

excitation and reversed the winding direction under LCP excitation, indicating that the

winding direction was determined by helicity of the light. Additionally, this circulat-

ing current by muti-electrode measurement can be repeated in different Mo0.9W0.1Te2

devices with three, four and five electrodes. All these sCPGE current had the same

circulating direction under same incident light helicity, indicating an intrinsic origin of

sCPGE.

As shown in Chaper 2, the spatial dependent CPGE can only be observed in the

Weyl phase by experiments on phase transition material MoTe2. [10, 11] To confirm

the CPGE current observed in low temperature phase MoTe2 was the same circulating

current as in Mo0.9W0.1Te2, the multi-electrode experiment was repeated at MoTe2 77 k

inversion symmetry broken Weyl phase.
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FIGURE 3.6: Measurement of circulating current in the Td (Weyl) phase of MoTe2 at
77 K under circularly polarized optical excitation. (a-d) Photocurrents measured be-
tween each of the nearest electrode pairs and plotted as functions of the fast axis rota-
tion angle, φ, of the quarter waveplate. Plots correspond to measurements performed
between electrodes (a) a→b, (b) b→c, (c) c→d, (d) d→a. Black dots are the experiment
data, red solid lines are the fitted curves for total photocurrent (Eqn (1)), and the green
solid lines represent the fitted CPGE currents, JC. On top of each photocurrent curve
is a schematic of the multi-electrode MoTe2 device (x-y plane), with four electrodes

labeled a-d.

In Fig 3.6, photocurrents were measured between each of the nearest electrode pairs

and plotted as functions of the fast axis rotation angle, φ, of the quarter waveplate. The

result was the same as the Mo0.9W0.1Te2: the photocurrent at φ = 45◦ was larger than at

φ = 135◦ in all measurements. All these sCPGE currents had the same sign, indicating

that the current was circulating clockwise under RCP light and counterclockwise under

LCP light. Therefore, this circulating CPGE was also proven at low temperature phase
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MoTe2, suggesting a unique effect only exists in the Weyl phase of MoWTe2.

However, there was suspicion that the photocurrent can also be purely tempera-

ture dependent, for instance, the CPGE decreases with higher temperature [26]. The

CPGE current at room temperature MoTe2 could be too small to be collected, instead

of being forbidden or suppressed by the 1T’ phase. To exclude this possibility, multi-

electrode measurements were performed at different temperatures between 300K and

77k on MoTe2 and Mo0.3W0.7Te2 for comparison. Mo0.3W0.7Te2 composition used in

this experiment can also check whether this effect is general in all Weyl phase composi-

tion at room temperature. At each temperature point, the measurement was similar as

the multi-electrode setup shown before — photocurrents would be collected between

two nearby electrodes and plotted as function of φ. By fitting the data into the phe-

nomenological equation, contribution of CPGE can be obtained. The circulating CPGE

amplitude was treated as the average of all of the CPGE current between two elec-

trodes. Then, the temperature dependent circulating CPGE in MoTe2 and Mo0.3W0.7Te2

was obtained(Fig 3.7).

From the results shown in Fig 3.7, the circulating CPGE was observed at room tem-

perature, consistent with the phenomenon in Mo0.9W0.1Te2, which has the same phase.

JC was found positively correlated with temperature, which decreased from about 40

nA at 300 k to 18 nA at 77 K. In MoTe2, JC increased with temperature below 250 K

where MoTe2 had the same Weyl phase as Mo0.9W0.1Te2 below 300 k, indicating a con-

sistent temperature trend. However, there was a sudden drop of JC when the temper-

ature increased above 250 k, the phase change temperature of MoTe2, and the CPGE

current vanished at higher temperature. If the temperature was the only factor that

affected the sCPGE current, the results above 250 K should have higher amplitude.

Therefore, this experiment provided further evidence that the sCPGE current only ex-

ists in the inversion broken Td phase.
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FIGURE 3.7: Temperature dependence of CPGE current measured on multi-electrode
devices fabricated from Mo0.3W0.7Te2 (top) and MoTe2 (bottom). The data points are
the average values of CPGE measured between four radially arranged electrode pairs.
In Td (Weyl) phase of MoTe2 and Mo0.3W0.7Te2 (top) and MoTe2 (bottom). The data
points are the average, which is represented by the green background color, the CPGE
current maintains the same rotation direction at different temperatures and its ampli-
tude increases with increasing temperature. In the bottom graph, above 250 K in the
inversion symmetric 1T’ phase of MoTe2, which is represented by the blue background

color, there is no obvious CPGE current.

3.2.2 Beam Gradient controlled CPGE Current Amplitude

According to previous experiments, the sCPGE has been demonstrated to be swirling

current in Weyl phase. However, the reason of the appearance of a CPGE current is still

uncleared, because its circulating character requires a breaking of C2v symmetry. The

polarization-controlled circulating current is unlikely to originate from spatial disorder

due to defects, in-plane strain during exfoliation, or formation of nanoscale junctions

due to intermixing of different phases or compositions. Since in all these cases the cur-

rent would flow in random directions depending on the direction of the local symmetry

breaking, the experiment results can not be repeated as the work above. The possibil-

ity of CPGE current flowing along the edges of the sample can also be eliminated in

Chapter 2.

However, a spatially inhomogeneous optical excitation due to a focused Gaussian
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FIGURE 3.8: Parameters set for fitting the spatially dependent photocurrent measure-
ment on Mo0.9W0.1Te2 (x-y plane) in Fig 3.2. Laser beam (spot size about 2um) is
scanned along the y axis, indicated by the green arrow. Le is the total electrode length

on the sample and L is the separation between the two electrodes.

beam profile performed in our experiments can effectively break the internal point sym-

metry to produce CPGE. This can be proven by analyzing the dependence of the CPGE

on spatial gradients of the optical field profile. The CPGE current is circulating around

the beam center with the amplitude assumed to be proportional to the beam intensity

gradient. With this assumption, the qualitative description of CPGE - position depen-

dence measurement in Fig 3.2 can be analyzed quantitatively.

FIGURE 3.9: CPGE current, JC, as a function of the laser beam position. Black squares
are the experimental data and the red solid line is the fitting curve to the phenomeno-

logical model.
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The parameters were defined in Fig 3.8. Two electrodes were separated by distance

L in x direction. The beam with radius c was scanning in x direction between two elec-

trodes. The electrodes had length Le to collect the photocurrent. The current density

at the circle with radius=r around the beam was proportional to the gradient of Gaus-

sian profile at r. When the beam was located at position y, the measured current can be

expressed as an integral of the current on electrode:

Jc =
∫ Le+L/2

L/2
dl · ye−

y2+( l
2 )

2

c2 βθrz (3.5)

Using the Eqn 3.5 to fit the position dependent CPGE, the result was given by the red

curve in Fig 3.9, which matched well with the data.

FIGURE 3.10: CPGE current, JC, plotted as a function of the Gaussian beam diameter
at a fixed distance y0 to electrodes. Black squares are the experimental data and the
red solid line is the fitting curve to the expression derived from the phenomenological

model of jsCPGE.

Another signature of sCPGE current can be observed upon varying the spot size

while keeping the beam position fixed. In these experiments, via moving the stage up

and down, the beam size was modified while the center of the beam was fixed and

the beam profile was still Gaussian. At each stage height, photocurrents were collected

while rotating quarter wave plate plot of photocurrent as function of φ. After fitting into

the phenomenological equation, CPGE current component Jc can be obtained. As given
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in Fig 3.10, Jc was plotted as function of beam size. The amplitude of JC decreased when

the spot size increased and the field gradients decreased. Besides, for large electrode

separation compared to spot size, JC again decreased because the circulating current

can not be collected efficiently at the electrodes. If we use the same assumption as in

the spatial dependent CPGE measurement, we can get the beam size dependent fitting

equation:

Jc ∼
∫ L/2+LE

L/2

1
c2 e−

2r2

c2 σθrzdr (3.6)

where c is the radius of the Gaussian beam. The fitting curve using Eqn 3.6 was plotted

in Fig 3.10, which well matched the experimental data. All these experiments indicated

that the observed strong sCPGE in the inversion broken phase was controlled by the

optical beam profile and polarization state.

In summary, we can conclude that the sCPGE is circulating around the center of

the beam and the current amplitude is controlled by the beam profile: the current has

opposite sign if measured at opposite side of the beam and reaches maximum when

the beam size is comparable to the distance between two electrodes, implying that the

current is proportional to beam gradient. The experiments above were all under high

energy excitation. Does this sCPGE keep the same property at low energy excitation?

3.2.3 sCPGE at Low Energy Excitation

To study the sCPGE at low frequency excitation around the Weyl cone, 6 um CW

laser was performed for photocurrent measurements. Mo0.9W0.1Te2 sample was exfo-

liated to about 500um× 500um size and transferred to a chip carrier. The reason why

the sample size was much bigger than the sample in experiments for 750 nm was that

the laser beam size at 6um was much larger than at 750 nm. Two Al wires were bonded

onto two sides of the sample, used as electrodes. Fig 3.11 was the optical image of the

device, and the laser light would be normally incident on the sample plane (x-y plane).

Since the 6 um laser was CW laser and 750 nm laser was pulsed laser and the beam
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FIGURE 3.11: Optical image of the Mo0.9W0.1Te2 , in which three red spots indicate
the three beam positions of photocurrent measurements.

size was much larger, the intensity gradient was significantly smaller than previous

experiments, resulting in lower CPGE current. Thus, the Lock-in amplifier was added

into the electrical setup for fine current measurements. (Fig 3.12) A chopper was placed

in the optical path to generate a reference frequency for the light, and was connected to

the Lock-in amplifier. The chopper was set to 377 Hz (lowest noise we found for mea-

surement) and the signal, which was coming from the light excitation, can be collected

only at this frequency.

FIGURE 3.12: Electrical setup for small current measurement using Lock in amplifier.

Firstly, 750nm photocurrent measuremenfts similar to the spatial dependent mea-

surements before were repeated on this sample. The beam size was adjusted to be com-

parable to the distance between two electrodes to get relatively large sCPGE current.

The beam was fixed while rotating the quarter wave plate at speed 7◦/s, meanwhile
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collecting the photocurrent. Photocurrent was plotted as a function of quarter wave

plate fast axis rotation angle φ. The data can be fitted into the phenomenological pho-

tocurrent equation:

J = JC + sin(2φ) + JLsin(4φ + φ0) + J0 (3.7)

As shown in Fig 3.13, sCPGE was clearly observed at both spot a (bottom left side) and

spot b (top right side) and the sCPGE currents at two spots have opposite direction as

expected.

FIGURE 3.13: Photocurrents measured on Mo0.9W0.1Te2 flake by 750 nm laser plotted
as a function of quarter waveplate fast axis rotation angle φ at spot a and spot b re-
spectively. Black dots are the experimental data and red solid lines are the fits to Eqn

3.7

Then, 6 um laser was performed on the same sample for low energy excitation

sCPGE measurements. Because the laser spot was not visible at this wavelength, the

relative position between the beam and sample was determined by sweeping the beam

all over the sample and mapping out the thermo-current J0. The positive and negative

maxima thermocurrent represented the position of two electrodes. The coordinates of

electrodes were recorded and the location of spot a and spot b can be calculated. The

experimental process was similar to the measurement at 750 nm. As shown in Fig 3.14,

the characteristics of the measured photocurrent agreed with the results at near-IR (750

nm) measurements, as the CPGE current JC was negative at spot a and positive at spot

b.
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FIGURE 3.14: Photocurrents measured on Mo0.9W0.1Te2 flake by 6 um laser plotted
as a function of quarter waveplate fast axis rotation angle φ at spot a and spot b re-
spectively. Black dots are the experimental data and red solid lines are the fits to Eqn

3.7

These results indicated that the CPGE current was also circulating around the beam

and sCPGE existed at the Lifshitz energy scale as well.

Furthermore, beam size dependent CPGE measurement was performed under 6 um

laser to prove that the sCPGE at low frequency excitation shared the same phenomenol-

ogy as high frequency. By moving the stage up and down, the beam size would be

modified while the center of the beam was fixed. At each stage height, photocurrents

were collected while rotating quarter wave plate to plot photocurrent as function of φ.

After fitting into the Eqn 3.7, CPGE current component Jc can be obtained and Jc was

plotted as function of stage height.

The beam profile at 6 um was also Gaussian beam, therefore, it can be fitted by

the same phenomenological model as 750 nm. Since the electric contact was made by

directly wire bond, the collected current was proportional to beam gradient at r, where

r is the distance between beam center and electrode. After focus the beam and move

the objective for distance x, the radius of the Gaussian beam R should be :

R2(x) = R2
0
[
1 + (

λx
πR2

0
)2] (3.8)
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FIGURE 3.15: When the 6um laser beam position is fixed, sCPGE current is plotted as
a function of the objective moving distance. The black square is sCPGE data and the

blue curve is the fitting function by the phenomenological model.

where R0 is the most focused beam radius. Therefore, at height x, the CPGE current can

be expressed as:

JC ∼
r

R2 e−
r2

R2 βθrz (3.9)

Fitting the CPGE current at different x at into the Eqn 3.9, we found that the CPGE

current magnitude was still controlled by the beam profile, similar to the result at 750

nm illumination. Besides, we got the radius of Gaussian beam at zero x: R0 ≈ 80um,

which matched very well with the design of objective. The beam size dependent exper-

iment assured that the sCPGE at low energy excitation was also circulating around the

beam center with current density determined by the beam profile gradient, suggesting

that the phenomenology of sCPGE can be used in a broad energy spectrum.

More interestingly, by comparing the results of the CPGE current at 750 nm and

6 um, we found that the sign of the currents were opposite. As can be seen in the

Fig 3.16, at spot a, the photocurrent at φ = 45◦ was larger than the photocurrent at

φ = 135◦ for 750 nm wavelength, while the photocurrent at φ = 45◦ was smaller than

the photocurrent at φ = 135◦ for 6 um. At spot b, vice versa. Therefore, the CPGE

current was swirling in opposite directions at these two wavelengths. In other words,
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FIGURE 3.16: The photocurrents as the function of φ at same electrical setup for 750
nm and 6 um wavelength. The results are compared at spot a and spot b.

the circulating CPGE had opposite handedness at high and low excitation energy.

To confirm the sCPGE dependence on wavelength, several more wavelengths laser

from 700 nm to 1050 nm were performed to measure the CPGE current at a fix beam

spot. As can be seen in Fig 3.17, all the CPGE currents had the same polarity when

the wavelength were at 700 nm, 750 nm, 800 nm, 950 nm and 1050 nm, which were

all above the Lifshitz energy. The amplitude of the CPGE had a trend to decrease with

longer wavelength.

FIGURE 3.17: The photocurrents as the function of φ at same electrical setup for light
wavelength at 700 nm, 750 nm, 800 nm, 950 nm and 1050 nm.
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For a brief summary of the experimental observation, sCPGE was observed in a

wide spectral range and kept the same phenomenology. However, the circulating cur-

rent direction reversed at 750 nm and 6 um wavelength. A microscopic model was then

derived to explain these observed properties of sCPGE.

3.3 Microscopic Model

Photogalvanic effect is a nonlinear dc response second order in the applied field,

mixing the oscillating electric field components at frequencies ω and -ω, [13]

Ji,PGE = ϑ+
ijk(ω,−ω)Ej(ω)Ek(−ω) + ϑ−ijk(ω,−ω)Ej(ω)Ek(−ω)

= ϑijk(ω,−ω)Ej(ω)Ek(−ω)
(3.10)

where JPGE is the photogalvanic current, Ei(t) = Ei(ω)eiωt + Ei(−ω)e−iωt is the inci-

dent field, Ei(ω) = E∗i (−ω), ϑ−ijk(ω,−ω) = ϑ+
jik(ω,−ω) and ϑijk(ω,−ω) = ϑ+

ijk(ω,−ω)+

ϑ−ijk(−ω, ω). The nonlinear response coefficient for PGE current ϑ−ijk(ω) is a third rank

tensor with the first index describing the direction of current, and the other two repre-

senting directions of the two electric fields.

General PGE expressions can be symmetrized with respect to frequency and indices

j and k. Circular photogalvanic effect response is odd in frequency ω, antisymmetric

under the interchange of j and k while linear photogalvanic effect response is even in ω

and symmetric under the exchange of j and k.

Ji,PGE = Aijk(ω)(
Ej(ω)Ek(−ω)− Ej(−ω)Ek(ω)

2
)

+Bijk(ω)(
Ej(ω)Ek(−ω) + Ej(−ω)Ek(ω)

2
)

(3.11)

CPGE is descirbed by Aijk(ω) = 1
2 (ϑijk(ω)−ϑijk(−ω), and LPGE is described by Bijk(ω) =

1
2 (ϑijk(ω) + ϑijk(−ω).

Spatially dispersive photogalvanic effect (s-PGE) is a specific photogalvanic response

when the optical field is spatially inhomogeneous, characterized by a spatial gradient

wavevector, q. In the perturbative (small q) limit, where s-PGE current is dominated
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by components with first order in q. sCPGE and sLPGE can be written as:

Ji
sCPGE(r) = Σq Ji

sCPGE(q)e
2iq·r = Σqβil jql(E(q, ω)× E(q,−ω))je2iq·r

Ji
sLPGE(r) = Σq Ji

sLPGE(q)e
2iq·r

= Σqγil jkql(
(Ej(q, ω)Ek(q,−ω)) + (Ej(q,−ω)Ek(q, ω))

2
)e2iq·r

(3.12)

where pseudo third rank tensor β and fourth rank tensor γ are the conductivity matri-

ces for s-PGE current. For small q, the equations adopt a simpler form,

Ji
sCPGE(r) = βil jql(E(r, ω)× E(r,−ω))j

Ji
sLPGE(r) = γil jkql(

(Ej(r, ω)Ek(r,−ω)) + (Ej(r,−ω)Ek(r, ω))

2
)

(3.13)

Furthermore, continuity equation ∂tρ + ∇ · J = 0 suggests that the steady state

s-PGE current satisfies ∇ · JsCPGE = 0 to obey charge conservation. If not, the longitu-

dinal part of JsPGE would be compensated by some in-plane scalar potential (chemical,

electric, etc) and would not contribute to the circulating current (q · JsPGE = 0). So, we

divide JsPGE into transverse and longitudinal parts, βil j =
1
2 (βil j − βlij) +

1
2 (βil j + βlij),

with the transverse s-PGE given by,

Jtrans
i,sCPGE(q) =

1
2
(βil j − βlij)ql(E(r, ω)× E(r,−ω))j ≡ σjl jql(E(r, ω)× E(r,−ω))j (3.14)

Jtrans
i,sLPGE(q) =

1
2
(γil jk − γlijk)ql

(Ej(r, ω)Ek(r,−ω)) + (Ej(r,−ω)Ek(r, ω))

2

≡ µil jkql
1
2
(γil jk − γlijk)ql

(Ej(r, ω)Ek(r,−ω)) + (Ej(r,−ω)Ek(r, ω))

2

(3.15)

As for the electric field of a Gaussian beam with photon energy h̄ω in real space,

E(r, t) = Σq,ωE0(q, ω)eiωteiq·r ∝ e−(r−rg)2/ω2
where r − rg is the radial coordinate of r

relative to the spot center rg, and ω is the Gaussian beam width. Using the equation

of continuity, the circulating CPGE current arises from the transverse part of jsCPGE,
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produced by the antisymmetric term in the conductivity: σil j = 1/2(βil j − βlij). The

direction of the transverse current jsCPGE is then determined by the direction of q and

the propagation direction of the optical field n̂ (n̂ defined by iÊ × Ê∗) : ĵsCPGE = q̂ × n̂.

Here q is in the radial direction, and its magnitude follows the distribution obtained via

a Fourier transform of the two-dimension Gaussian beam profile, while n̂ is along the

light propagation direction, i.e., ±n̂. Therefore, jsCPGE circulates around the beam cen-

ter with an amplitude proportional to the length of q and a sign determined by the pho-

ton helicity, as observed experimentally. The measured photocurrent magnitude can

be related to jsCPGE by a geometric factor associated with the electrode positions, and

photocurrent is captured by a simple electrostatic model as mentioned before. When

scanning the laser spot position perpendicular to the two electrodes Fig 3.9, JC collected

by the electrode pair reflects the antisymmetric dependence on spatial coordinates of

jsCPGE, and can be well fitted. The dependence of JC on the Gaussian beam width when

the laser beam position is fixed is also reproduced by our model, (Fig 3.10) indicating

that the phenomenological expression is consistent with the experimental data.

3.3.1 Calculation of electron density matrix under inhomogeneous optical

excitation

To describe s-PGE microscopically, the conductivity matrix needs to be derived. The

second order susceptibility formalism developed by Sipe et al. [14] is capable of de-

scribing most of the PGE responses for a spatially homogeneous beam excitation, but it

cannot be applied to our case of excitation with a spatially varying optical beam. This

type of excitation makes the spatially varying carrier excitation not captured in Sipe’s

formalism. Therefore, we started with the general kinetic equation of the quantum den-

sity matrix ρ(r, k, t) obtained from a Wigner transformation of the quantum Liouville

equation as derived by Sekine et al. [15] The equation for ρ(r, k, t) is then expanded to
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first order in spatial gradients to calculate the response functions for s-PGE. The quan-

tum kinetic equation is given by,

∂ρ(r,k, t)
∂t

+
i
h̄
[H0, ρ(r,k, t)] +

1
2h̄

DH0

Dk
· ∇ρ(r,k, t) + K(ρ(r,k, t)) =

eE
h̄
· Dρ(r,k, t)

Dk
(3.16)

where ρ(r, k, t) is a N × N density matrix. ρ(r,k, t) can be solved order by order in the

electric field which is shown in Z. Ji, et al’s work [29].

3.3.2 Spatially dispersive PGE response function

Photogalvanic response consists of injection [14], shift [14, 16] and anomalous cur-

rents [17, 18]. The full response at spatial local r is denoted by

jsPGE(r) = js−Inj(r) + js−Shi f t(r) + js−Ano(r) (3.17)

Injection current, or so called "circular photocurrent" appears only under circularly

polarized light excitation and is regarded as the dominate contribution to CPGE mea-

surements. Analogous to the injection current, jsPGE has a component like eΣk,nρ
(2)
nn vnn(k),

where Σk ≡
∫

k d3k
(2π)3 , and density matrix was derived in the work. [29]

There are two interband transition terms that are expected to control the response

functions at high energy excitation. The first term originates from the contribution of

the non-Fermi surface part of j(q) ∼ eΣk,nρ
(2,0)
nn · vnnvnn, and the current is:

ik
s−Inj,1(q) = ql ∑

k,n,m

2e3

h̄2 (Γnm(ω) + Γnm(−ω))( f0(εm)− f0(εn))Ri
nmRj

mn

(vl
nnvk

nnτ2
nn − vl

mmvk
mmτ2

mm)Ei(q, ω)Ej(q,−ω)

(3.18)

The second term is from j(q) ∼ eΣk,n,m(Rnmρ
(1,1)
mn − ρ

(1,1)
nm Rmn)vnn, and the current

can be written as:
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jk
s−Inj,2(q) = iql ∑

k,n,m

e3

2h̄
(Γ2

nm(ω) + Γ2
mn(−ω))Ri

nmRj
mn( f0(εn)− f0(εm))

(vl
nn + vl

mm)(v
k
nnτnn − vk

mmτmm)Ei(q, ω)Ej(q,−ω)

(3.19)

Spatially dispersive CPGE part (sCPGE)

The components in jk
s,1(q) and jk

s,2(q) that we are particularly interested in are those

odd of frequency giving rise to sCPGE. The expressions are:

jk
sCPGE,1(q) =ql ∑

k,n,m

e3

h̄2 (Γnm(ω) + Γmn(−ω))( f0(εm)− f0(εn))(Ri
nmRj

mn − Ri
mnRj

nm)

(vl
nnvk

nnτ2
nn − vl

mmvk
mmτ2

mm)Ei(q, ω)Ej(q,−ω)

(3.20)

jk
sCPGE,2(q) =iql ∑

k,n,m

e3

4h̄
(Γ2

nm(ω) + Γ2
mn(−ω))(Ri

nmRj
mn − Ri

mnRj
nm)( f0(εn)− f0(εm))

(vl
nn + vl

mm)(v
k
nnτnn − vk

mmτmm)Ei(q, ω)Ej(q,−ω)

(3.21)

The two jk
sCPGE expressions only involve the antisymmetric parts of τnn, which needs

inversion symmetry to be broken. If we further assume that τnn = τmm does not de-

pendent on band index, then jk
sCPGE,1 is purely longitudinal, while jk

sCPGE,2 contains a

transverse part. The quantity that appears in the equations, Ωk
nm(k) = −i(Ri

nmRj
mn −

Ri
mnRj

nm) along k̂ = î× ĵ is associated with the Berry curvatureBk
n(k), Bk

n(k) = ΣmΩk
nm(k).

It transforms like Berry curvature: Ωk
nm(k) = Ωk

nm(−k) under inversion symmetry, and

Ωk
nm(k) = −Ωk

nm(−k) under time reversal symmetry. Therefore, in a system with both

time reversal and inversion symmetry, Ωij
nm(k) vanishes, and so do sCPGE terms in the

equation 3.20 and 3.21.
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Spatially dispersive LPGE part (sLPGE)

Conventionally, linearly polarized light cannot produce injection current in cen-

trosymmetric materials. However, here we find that it can contribute to sLPGE in these

systems. Similar to jsCPGE, jsLPGE represents the spatially dispersive LPGE part. Again,

if we assume that the relaxation time does not depend on the band index (τnn = τmm),

the transverse part of jsLPGE is mainly from js−Inj,2:

jk
sLPGE,2(q) =iql ∑

k,n,m

e3

4h̄
(Γ2

nm(ω) + Γ2
mn(−ω))(Ri

nmRj
mn + Ri

mnRj
nm)( f0(εn)− f0(εm))

(vl
nn + vl

mm)(v
k
nnτnn − vk

mmτmm)Ei(q, ω)Ej(q,−ω)

(3.22)

The equation can also be written in the form of conductivity. A linearly polarized

light in the ith direction could give a sLPGE conductivity [29]:

µklii =i ∑
k,n,m

e3

2h̄
(Γ2

nm(ω) + Γ2
mn(−ω))Ri

nmRi
mn( f0(εn)− f0(εm))

(vl
nn + vl

mm)(v
k
nnτnn − vk

mmτmm)

(3.23)

The LPGE integral is not constrained by inversion symmetry, in accordance with

the experimental observation that sLPGE responses exist in both the inversion broken

Weyl phase and the 1T’ phase.

Spatially Dispersive Shift Current and Anomalous Current

The other part of the s-PGE response is the “spatially dispersive shift current” de-

noted as s-Shift current. Time dependent measurements have been done to distinguish

shift current from injection current. [19] However, compared to the injection current

whose magnitude in the no collision (large relaxation time) limit grows linearly to in-

finity, shift current is always finite, so in steady state CPGE measurements for materials

with long relaxation time (weak disorder) are not considered a dominating term. [20]
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Besides, s-Shift current has both CPGE and LPGE parts, but is not affected by in-

version operation. In our experiments, CPGE only appears upon phase transition to an

inversion broken Weyl phase, s-Shift current that would exist in both phases cannot be

the main contribution to the measured current.

Close to the Fermi surface, CPGE response will reflect intraband transitions related

to anomalous velocity, i.e., the cross product of Berry curvature and electric field, called

the nonlinear Hall effect. [17] It could be further studied by low frequency excitation,

which is not suitable for the previous experiments.

3.3.3 Experimentally observed s-PGE current

The three parts of jsPGE(r), i.e. js−Inj(r),+js−Shi f t(r) and js−Ano(r) have some sim-

ilar characteristics but are related to very different physical mechanisms. Among the

three types of currents, s-Inj produces a large CPGE current for inversion broken mate-

rials and does not have excitation energy constraints, so we attribute it as the origin of

our experimental observation. As a result, the CPGE part of s-Inj current is regarded as

the sCPGE current and is discussed in detail.

In summary, a general microscopic model has been developed to describe the ob-

served s-PGE current. The general quantum kinetic equation is obtained from the equa-

tion of motion for the Wigner transformation for ρ, which includes the spatial inhomo-

geneity of ρ through the electric field driving term. Analogous to the injection current

in a homogenous system, the derived steady state response functions of jsPGE consist of

ρ(2) which is quadratic in E and linear in q, and the band diagonal velocity, vnn = ∂εn(k)
∂k

, with εn(k) being the energy of band n at Bloch momentum k. We assume that the mea-

sured jsPGE is dominated by electronic interband transitions due to the high photon en-

ergy of the excitation beam (about 1.65eV), the two terms that control the conductivity

tensor β for jsCPGE in Eqn 3.12 are:

βil j,1 = ∑
k,n,m

ie3

2h̄2 (Γnm(ω) + Γmn(−ω))( f0(εm)− f0(εn))Ωi
nm(k)

(vl
nnvi

nnτ2
nn − vl

mmvi
mmτ2

mm)

(3.24)
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βil j,2 = ∑
k,n,m

e3

8h̄
(Γ2

nm(ω) + Γ2
mn(−ω))( f0(εm)− f0(εn))Ωi

nm(k)

(vl
nn + vl

mm)(v
i
nnτnn − vi

mmτmm)

(3.25)

where f0(εn(k) is the Fermi-Dirac distribution, τnn(k) is the relaxation time of excited

carriers in band n, Γnm(k, ω) = 1
h̄ω+εn−εm− ih̄

τnm
, and Ωi

nm(k) = −i(Rj
nmRk

mn − Rk
nmRj

mn) is

derived from interband matirx elements of the non-diagonal Berry connection, Rnm(k).

This quantity transform like the Berry curvature: Ωi
nm(k) = Ωi

nm(−k) under inver-

sion symmetry and Ωi
nm(k) = −Ωi

nm(−k) under time reversal symmetry. Therefore,

it is allowed only if time reversal or inversion symmetry is broken, which is in a good

agreement with the observation.

Although the response functions have no symmetry restrictions, the dominating

part (Eqn 3.24 and 3.25) would become vanishingly small under inversion symmetry.

Therefore, the expressions explain why sCPGE does not exist in the inversion symmet-

ric 1T’ phase of MoTe2 but arises only after a temperature or doping induced phase

transition to the inversion broken Td phase. Quantitively, jsPGE magnitude is sensitive

to the details of the band dispersion since these response functions carry two orders

of the band diagonal velocities, and are also closely related to the band resolved Berry

curvature Ωi
nm(k) involved in optical transitions.

Unlike conventional injection current, momentum space asymmetry in the electron

scattering rate is crucial for the existence of sCPGE since only the antisymmetric con-

tribution to the relaxation time, τnm(−k)(a) = −τnm(−k)(a) can give rise to nonzero β1

or β2. In general, the scattering probability function follows the crystal symmetry, [22]

so an antisymmetric modulation of the relaxation time of k is allowed only in the bro-

ken inversion phase in these materials. Furthermore, when large spin-orbit coupling is

present, spin-dependent skew scattering [23–25] of positive and negative k states occur

with different probabilities, i.e. Wkk′ 6= Wk′k, and would augment an isotropic scattering

rate by an antisymmetric contribution which is the main contribution to τnm(k)(a).

This microscopic description of the sCPGE response requires controlling the k-space

distribution of excited electrons using optical field gradients, in contrast to conventional
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FIGURE 3.18: Schematic of asymmetric interband excitation by a Gaussian beam,
where the band touching points are located along the x axis, and light propagates
in the z direction. (Main) Spatial intensity distribution of a Gaussian beam along the
y axis, with ycenter being the y coordinate of the Gaussian beam center. (Inset) Local
excitation patterns contributing to sCPGE current in the momentum space at the left
(yleft) and right (yright) tails of the Gaussian beam. The color map shows the nor-
malized difference between the excitation probability (nonequilibrium electron pop-
ulation) under right and left circularly polarized light illumination. A negative value
(blue region) implies that in comparison to homogenous excitation, the optical field
gradient results in less electrons being excited, while a positive value (red color) im-

plies excitation of more electrons.

CPGE which uses only the polarization of a spatially uniform optical field. The effect is

illustrated by a transition between the valence and conduction bands under Gaussian

beam excitation, shown in Fig 3.18. The bands are colored by the difference of excita-

tion probability (nonequilibrium electron population distribution) under RCP and LCP

light, derived from the density matrix formalism. [29]

Contrary to the conventional CPGE where the electrons would be excited following

the intrinsic distribution of Ωi
nm(k), (Fig 3.18 inset), the excitation probability of sCPGE

has an asymmetric component, which changes sign when the local q is reversed (i.e. on

the opposite side of the Gaussian beam), showing that the interaction of the bands with

the optical field can be controlled by the beam profile. The measured positive correla-

tion between sCPGE and temperature (Fig 3.7), which differs from most conventional

CPGE [26], is a novel feature that arises from this unique microscopic mechanism.

Overall, the sCPGE response in MoTe2 and MoxW1−xTe2 expressed in terms of

Ωi
nm(k) is allowed by the broken inversion symmetry and is related to a large spin-

orbit interaction (SOI) in Weyl semimetals. [27] This naturally raises a question about
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the effect of band crossings in a Weyl semimetal on sCPGE. To study the sCPGE at

low frequency excitations below Lifshitz energy near the Weyl cone, 6um laser was

performed for photocurrent measurements in the next section.

3.3.4 Minimal model at low energy excitation

To understand the sCPGE behaviour at low energy excitation, we calculated our re-

sponse functions using a minimal model describing a three dimensional Dirac semimetal.

By studying how it changes upon phase transition between two typical topological

phases (from Dirac to Weyl semimetal, accompanied with inversion symmetry break-

ing, which is similar to out experiments), we can extract more fundamental physical

insights into the origin of this novel sCPGE. The Hamiltonian describing a three di-

mensional Dirac semimetal is adopted by a A3Bi (A=Na, K, Rb) system. [28] Taking

into account the spin orbit coupling, the orbitals considered are |S+
1
2

, 1
2 >, |P−3

2
, 3

2 >,

|S+
1
2

,− 1
2 >, |P−3

2
,− 3

2 > and the leading order Hamiltonian around Γ point is:

HΓ(k) = ε0(k) +



M(k) Ak+ 0 B∗(k)

Ak− −M(k) B∗(k) 0

0 B(k) M(k) −Ak−

B(k) 0 −Ak− −M(k)


(3.26)

where k± = kx ± iky, ε0 = C0 + C1k2
z + C2(k2

x + k2
y), M(k) = M0 −M1k2

z −M2(k2
x + k2

y),

and B(k) = b3kzk2
+, which is taken to be zero. Two fold degenerate bands form two

Dirac points at (0, 0,
√

M0
M1

) along the k̂z axis (Fig 3.19). Because of the time reversal and

inversion symmetry, Ωij
nm(k) is zero, and all relevant terms in sCPGE vanished.

Now we add a small inversion breaking term controlled by the parameter L0 to

break the inversion symmetry:
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FIGURE 3.19: Band structure of a Dirac semimetal [29]

H′Γ(k) = HΓ(k) + L0kzσz ⊗ τz

= HΓ(k) + L0kz ·



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


(3.27)

where TH′Γ(k)T
−1 = H′Γ(k) and IH′Γ(k)I−1 6= H′Γ(k). The system then becomes an in-

version broken Weyl semimetal with broken inversion symmetry. This Weyl semimetal

has four Weyl points separated along the k̂z axis. (Fig 3.20) The nonvanishing Ωi
nm(k)

produces a nonzero JsCPGE and the transverse part of the conductivity, σzyx. This con-

ductivity matrix can be plotted as a function of frequency. It describes the case where

the electric field of circularly polarized light lies in the y-z plane, and the transverse

CPGE current is collected along z axis. The frequency dependence shows linear be-

havior at low frequency and 1
ω2 dependence at high frequencies, which can be fitted

by

σzyx(ω) =
αω + α′ω2

1 + βω3 + β′ω4 (3.28)
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FIGURE 3.20: Band structure of the inversion broken Weyl semimetal obtained from
Fig3.19 by adding an inversion breaking term from Eqn.3.27 [29]

where α, α′, β, β′ are the coefficients. The response function suggests that:

σzyx(ω) ∼∑
k

Ω(k)v(k)2(Γ2
mn(ω) + Γ2

mn(−ω)) (3.29)

where Γ2
mn(ω) + Γ2

mn(−ω) can be expanded in powers of ω
∆E(k) . [29] The low and high

frequency scaling behaviour can be rationalized as follows. In the low frequency regime,

due to the Pauli blocking, Ω(k)v(k)2 ∼ 1, ∆E(k) ∼ k > ω. The dominating expansion

term in ω
∆E(k) is linear to ω, so σzyx(ω) is linear to ω and the slope is determined by a k

space integral: [29] ∫
dk

Ω(k)v(k)2

(∆E(k)− i
τ )

3
(3.30)

For the high frequency regime, the k space integral can be divided into three parts,

determined by two boundaries k′ and k∗. k′ defines the small k regime so that when

k > k′, the high frequency scaling ω(k) ∼ 1
k2 , v(k) ∼ k and ∆E(k) ∼ k2 can be used. k∗ is

derived from ω = ∆E(k∗). When k < k∗, the expansion of Γ2
mn(ω) + Γ2

mn(−ω) is still in

powers of ∆E(k)
ω but when k > k∗, the expansion is in Taylor series of ω

∆E(k) . The response

would be dominated by the second (intermediate k) and the third (large k) k space

integrals. The second integral in leading orders of ω is proportional to a1

ω
3
2
+ a2k′

ω2 and the

third integral is proportional to a3

ω
3
2

, where a1, a2, a3 are constants. For our continuum
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FIGURE 3.21: Plots of the transverse sCPGE conductivity σzyx of the Weyl semimetal
as a function of optical frequency, ω at different Fermi energies and fittings to the

scaling function Eqn 3.28. [29]

model we employ a numerical large k cutoff so that a1

ω
3
2
< a2k′

ω2 , leading to an overall

integral scaled as ω−2 at high frequency. [29]

For comparison, conductivity of conventional CPGE current, described by:

Aijk(ω) ∼∑
k

Ω(k)v(k)(Γmn(ω) + Γnm(−ω)) (3.31)

is plotted as a function of frequency. (Fig 3.22) The conductivity, Azyz(ω), is calculated

for the same external field and current direction. Different from sCPGE, the frequency

dependence shows 1
ω dependence at high frequency, and can be fitted by:

Azyz(ω) =
λω

1 + δω2 +
λ′ω2

1 + δ′ω3 (3.32)

where λ, λ′, δ, δ′ are the coefficients. [29]

The behavior of the frequency dependence is significantly different between con-

ventional CPGE and sCPGE. Other than the 1/ω scaling at high frequency, the conduc-

tivity of conventional CPGE will keep the same sign at certain Fermi energy. However,

when the Fermi level is less than the Lifshitz energy, σzyx changes its sign at a certain
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FIGURE 3.22: Plots of the CPGE conductivity Azyz of the Weyl semimetal as a function
of optical frequency, ω at different Fermi energies along with the fits to Eqn. 3.32, to

compare with sCPGE. [29]

frequency determined by the chemical potential, which is related to band crossing in

Weyl semimetal. Upon increasing the inversion breaking parameter L0, the initial slope

α gradually increases, leading to a stronger sCPGE (Fig 3.23).

FIGURE 3.23: Plots shows the dependence of the fitting parameter α on the inversion
breaking parameter L0, at the Fermi energy µ = 0.3eV. [29]

For our system, the Fermi energy of MoTe2 is intrinsically below the Weyl points. As
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illustrated by this minimal model analysis, when changing the excitation energy from

high frequency to low frequency, the conductivity has a sign reversal. Also, since the

sCPGE conductivity is weighted by the relaxation and velocity terms, the sign reversal

would happen at a higher energy than Lifshitz scale, which means the CPGE sign is ex-

pected to be opposite at 750nm and at 6um excitation. This model is in good agreement

with the experimental results of Fig 3.16

3.4 Conclusion

In conclusion, a strong spatially dispersive CPGE with photon helicity dependent

circulating photocurrent is observed in type-II Weyl semimetal MoTe2 and MoxW1−xTe2

(x=0.3, 0.9). Different from conventional CPGE, this sCPGE current is circulating around

the beam center and the amplitude is affected by the gradient of the beam profile. The

sCPGE current properties are confirmed by multi-electrode measurements and beam

size dependence experiments. Besides, sCPGE can only be measured in the inversion

symmetry breaking Weyl phase via the experiment on MoTe2 phase transition.

The newly derived nonlinear susceptibilities encode the effects of spatially inhomo-

geneous field excitation and explain the existence of sCPGE in Weyl semimetals. In this

framework, these effects are attributed to the inversion symmetry breaking and asym-

metric carrier excitation in momentum space due to optical field gradients. The fre-

quency dependence is another significant difference between sCPGE and conventional

CPGE. The polarity is opposite when excitation energy changes from high energy to

low energy, which is related to the band crossing.

Overall, since sCPGE shows a different scaling behavior in comparison to conven-

tional CPGE at high frequency and is sensitive to detailed band parameters and topol-

ogy at low frequency, sCPGE may be a very useful spectroscopic probe of topological

materials. More generally it can be applied to control photogalvanic response via the

patterning of light intensity distribution and polarization, broadening the application

of conventional photogalvanic effect by providing an additional degree of freedom that
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can be experimentally accessed. Our work also demonstrates that precisely tailored

photon spin-dependent optoelectronic responses can be engineered in these systems

by shaping and patterning optical field profiles, which can greatly enhance the appli-

cations of topological materials over a broad spectral range.



79

Bibliography

[1] Ivchenko E., Ganichev S. Spin Physics in Semiconductors. Springer; 2008.

[2] Ganichev S. D., Prettl W.; Spin photocurrents in quantum wells; Journal of physics:

Condensed matter 15 (20), R935 (2003).

[3] Shalygin V., Moldavskaya M., Danilov S., Farbshtein I., Golub L.; Circular photon

drag effect in bulk tellurium; Physical Review B 93 (4), 045207 (2016).

[4] He X., Shen B., Chen Y., Zhang Q., Han K., Yin C., Tang N., Xu F., Tang C., Yang

Z.; Anomalous photogalvanic effect of circularly polarized light incident on the two-

dimensional electron gas in AlxGa1−x N/GaN heterostructures at room temperature;

Physical review letters 101 (14), 147402 (2008).

[5] Tang, Y.Q., Shen, B., He, X.W., Han, K., Tang, N., Chen, W.H., Yang, Z.J., Zhang,

G.Y., Chen, Y.H., Tang, C.G. and Wang, Z.G.; Room-temperature spin-oriented pho-

tocurrent under near-infrared irradiation and comparison of optical means with

Shubnikov de-Haas measurements in AlxGa1−x N/GaNN heterostructures. Applied

Physics Letters, 91(7), p.071920 (2007).

[6] Ganichev, Sergey D., and Wilhelm Prettl; "Spin photocurrents in quantum wells."

Journal of physics: Condensed matter 15.20 : R935(2003).

[7] Dyakonov, M. I., and V. I. Perel. "Current-induced spin orientation of electrons in

semiconductors." Physics Letters A 35, no. 6 : 459-460(1971).

[8] Hirsch, J. E; Spin hall effect. Physical Review Letters, 83(9), 1834(1999).



BIBLIOGRAPHY 80

[9] Hankiewicz, E. M., Jian Li, Tomas Jungwirth, Qian Niu, Shun-Qing Shen, and

Jairo Sinova; "Charge Hall effect driven by spin-dependent chemical potential gra-

dients and Onsager relations in mesoscopic systems." Physical Review B 72, no. 15

155305(2005).

[10] Wang Z., Gresch D., Soluyanov A. A., Xie W., Kushwaha S., Dai X., Troyer M.,

Cava R. J., Bernevig B. A.; MoTe 2: a type-II Weyl topological metal; Physical review

letters 117 (5), 056805 (2016).

[11] Kaminski A.; Spectroscopic evidence for a type II Weyl semimetallic state in

MoTe2, (2016).

[12] Ivchenko E., Ganichev S. Spin Physics in Semiconductors. Springer; 2008.

[13] Belinicher V., Sturman B.; The photogalvanic effect in media lacking a center of

symmetry; Physics-Uspekhi 23 (3), 199-223 (1980).

[14] Sipe J., Shkrebtii A.; Second-order optical response in semiconductors; Physical

Review B 61 (8), 5337 (2000).

[15] Sekine A., Culcer D., MacDonald A. H.; Quantum Kinetic Theory of the Chiral

Anomaly; arXiv preprint arXiv:1706.01200, (2017).

[16] von Baltz R., Kraut W.; Theory of the bulk photovoltaic effect in pure crystals;

Physical Review B 23 (10), 5590 (1981).

[17] Sodemann I., Fu L.; Quantum nonlinear Hall effect induced by Berry curvature

dipole in time-reversal invariant materials; Physical Review Letters 115 (21), 216806

(2015).

[18] Deyo E., Golub L., Ivchenko E., Spivak B.; Semiclassical theory of the photogal-

vanic effect in non-centrosymmetric systems; arXiv preprint arXiv:0904.1917, (2009).

[19] Bieler M., Pierz K., Siegner U., Dawson P.; Shift currents from symmetry reduc-

tion and Coulomb effects in (110)-orientated GaAs/Al0.3Ga0.7 As quantum wells;

Physical Review B 76 (16), 161304 (2007).



BIBLIOGRAPHY 81

[20] König E., Xie H.-Y., Pesin D., Levchenko A.; Photogalvanic effect in Weyl semimet-

als; Physical Review B 96 (7), 075123 (2017).

[21] Wang Z., Sun Y., Chen X.-Q., Franchini C., Xu G., Weng H., Dai X., Fang Z.; Dirac

semimetal and topological phase transitions in A3Bi (A= Na, K, Rb); Physical Review

B 85 (19), 195320 (2012).

[22] Olbrich P., Golub L., Herrmann T., Danilov S., Plank H., Bel’kov V., Mussler G.,

Weyrich C., Schneider C., Kampmeier J.; Room-temperature high-frequency trans-

port of Dirac fermions in epitaxially grown Sb 2 Te 3-and Bi 2 Te 3-based topological

insulators; Physical review letters 113 (9), 096601 (2014).

[23] Hirsch J.; Spin hall effect; Physical Review Letters 83 (9), 1834 (1999).

[24] Rubin L., Sample H. The Hall Effect and Its Applications, edited by CL Chien and

CR Westgate. Plenum, New York; 1980.

[25] Deyo E., Golub L., Ivchenko E., Spivak B.; Semiclassical theory of the photogal-

vanic effect in non-centrosymmetric systems; arXiv preprint arXiv:0904.1917, (2009).

[26] McIver J., Hsieh D., Steinberg H., Jarillo-Herrero P., Gedik N.; Control over topo-

logical insulator photocurrents with light polarization; Nature nanotechnology 7 (2),

96 (2012).

[27] Tamai A., Wu Q., Cucchi I., Bruno F. Y., Ricco S., Kim T., Hoesch M., Barreteau C.,

Giannini E., Besnard C.; Fermi arcs and their topological character in the candidate

type-II Weyl semimetal MoTe 2; Physical Review X 6 (3), 031021 (2016).

[28] Wang Z., Sun Y., Chen X.-Q., Franchini C., Xu G., Weng H., Dai X., Fang Z.; Dirac

semimetal and topological phase transitions in A3Bi (A= Na, K, Rb); Physical Review

B 85 (19), 195320 (2012).

[29] Ji, Z., Liu, G., Addison, Z., Liu, W., Yu, P., Gao, H., Liu, Z., Rappe, A.M., Kane, C.L.,

Mele, E.J. and Agarwal, R., 2018. Spatially dispersive circular photogalvanic effect in

a Weyl semimetal. arXiv preprint arXiv:1802.04387.



82

Chapter 4

Photo Induced Anomalous Hall

Effect in Weyl Semimetal

4.1 Introduction

4.1.1 Ordinary Hall Effect

In 1879, Edwin H. Hall made a momentous discovery that voltage difference can be

observed across an electrical conductor in the transverse direction of the electric current

in the conductor when a magnetic field is applied perpendicular to the current. [1] This

effect comes from the nature of current in a conductor. (Fig 4.2) When a magnetic field is

present, the carriers, such as electron and hole, will experience the Lorentz force whose

direction is vertical to the plane of magnetic field and current. The carriers, pressed by

this force, would accumulate at the side of the conductor and build up an electric field,

which is measured as Hall voltage.

The Hall voltage can be written as VH = Ix Bz
ned and Hall coefficient is defined as

RH =
Ey

jx Bz
= VHd

IB = − 1
ne , which is only dependent on the carrier density. This effect

provides a simple but useful tool to measure the carrier concentration in nonmagnetic

conductors and motivate the development of semiconductor physics and solid-state

electronics, which was honoured as the queen of solid-state transport experiments.
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FIGURE 4.1: Schematic interpretation of ordinary Hall effect in conductor. Hall volt-
age VH can be measured in y direction when external electric field is applied in x

direction and meganatic field in z direction.

4.1.2 Anormalous Hall Effect in Ferromagnetic Materials

Few years later, this effect measured in ferromagnetic iron was found to be ten times

larger than in nonmagnetic conductors that was known as the anomalous Hall effect. [2]

The theoretical and experiential study on the AHE has been last for almost a century,

and recently, the core concepts was given out. Different from the linear dependence

of the Hall resistivity ρxy on the field Hz in ordinary Hall effect, ρxy in ferromagnetic

materials increases steeply and saturates at large field and can be written as: [3–7]

ρxy = R0Hz + Rs Mz (4.1)

whereHz is the applied perpendicular field and Mz is the magnetization. R0 in the

first term is known to be dependent on the carrier density, while Rs in the second term

is unclear. In the following decades, the theory of AHE was controversial since sev-

eral explanations were raised in different views to describe the properties of this effect.

Karplus and Luttinger (KL) came up with the "anomalous velocity" theory that was

perpendicular to the electric field contributing to the Hall effect, which gives a relation-

ship of ρxy ∼ ρ2. [8] Because this mechanism is independent on scattering, it is named

as intrinsic contribution.

On the other side, some theories which focused on the disorder scattering argued
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FIGURE 4.2: Three main origin of the AHE current: intrinsic, side jump and skew
scattering. In any real material all of these mechanisms act to influence electron mo-
tion. Reprinted figure with permission from reference [12] Copyright (2019) by the

American Physical Society.

that skew scattering caused by spin orbit interaction concluded that extrinsic contribu-

tion was the main source, suggesting Rs ∼ ρxx. [9, 10] Another external contribution,

side-jump origin, was presented in 1970 by Berger who treated the AHE current as the

product of the side jump per scattering event. [11] This theory gave another different

power relationship: Rs ∼ ρ2
xx.

With the development of concepts about topology and geometry, the intrinsic con-

tribution was realized to come from the Berry phase supported anomalous velocity.

[12–16] According to Bloch’s theorem, the wave function for nth band:

|Φn(k, r) >= eik·r|un(k, r) > (4.2)
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where |un(k, r) > has the lattice periodicity. The Bloch electron group velocity is ex-

pressed by:

v =
∂εn

h̄∂k
− k̇×Ωn (4.3)

k̇ = − e
h̄
(E + ṙ× B) (4.4)

where Ω is the Berry curvature. The Berry curvature of band n is described by:

Ωn = −Im
〈∂un

∂k
| × |∂un

∂k
〉

(4.5)

The second term in Eqn 4.3 is zero when both time reversal and spatial inversion sym-

metry are preserved, which lead to zero Berry curvature. However, with non zero Berry

curvature, the direction of this term is perpendicular to the electric field E without ex-

ternal magnetic field B, giving a transverse component of the velocity. Therefore, by

adding up this term over all occupied states, the AHE can be defined as:

σAH =
e2

h̄ ∑
n

∫ dk
(2π)3 f (εn(k))Ωn (4.6)

where f (εn(k)) is the Fermi-Dirac distribution function. In ferromagnetic system, the

time reversal symmetry is broken. With SOI that couple the spin up and spin down

bands, a non zero Hall current can be derived. [17] Therefore, AHE can be obtained in

systems with broken time reversal symmetry as a consequence of spin-orbit coupling,

such as in ferromagnetic materials.

4.1.3 Photo induced Anormalous Hall Effect

Is it possible to observe AHE in non-ferromagnetic materials with time reversal

symmetry? Recently, photoinduced anomalous Hall effect has been theoretically pre-

dicted [18] and experimentally observed in quantum wells [19–21]. There is very strong
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Rashba spin orbit coupling (SOC) existing in the quantum well, such as the InGaAs/Al-

GaAs, Al0.25Ga0.75N/GaN heterostructures or n-type GaAs bulk. When circularly po-

larized light is incident in z direction and an external electric field is applied in x di-

rection, a Hall current can be generated in y direction, written as: J = σxyλE × ep,

where ep is the Poynting unit vector and λ = ±1 represents the helicity of the light.

For symmetry argument, with the time reversal symmetry broken by the circularly po-

larized light, the non zero Berry curvature leads to the AHE current. As measured

in Al0.25Ga0.75N/GaN heterostructures by CM Yin [22], the AHE current contribution

could be obtained by fitting the total photoccurent. Under different longitudinal elec-

trical fields, the AHE current changed linearly with varied filed, suggesting anomalous

Hall conductivity to be σAH = 9.0× 10−10Ω−1 (Fig. 4.3).

FIGURE 4.3: (left) The total photocurrent measured under the longitudinal electric
field of 20 V/cm in an Al0.25Ga0.75N/GaN heterostructure. The current is fitted
in to the equation: j = jAHEsin2ϕ + jLsin2ϕcos2ϕ + j0. (right) The amplitude of
the photoinduced AHE current as a function of the longitudinal electric field in an
Al0.25Ga0.75N/GaN heterostructure. The solid line is the linear fit. Reprinted figure

with permission from [22]

As mentioned before, the CPGE requires centrosymmety to be broken. In the pho-

toinduced AHE experiments, the transverse electric field breaks the in-plane symmetry.

In the system whose CPGE is forbidden by symmetry, CPGE current can be obtained

by applying transverse field. Under same illumination, CPGE current has opposite di-

rection when the transverse filed changes sign. This so called "helicity-dependent pho-

tocurrent induced by the in-plane transverse electric current" was reported in an InAs
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quantum well. [23] The CPGE current was observed to be proportional to the transverse

bias voltage.

Weyl semimetals consist of large spin orbit coupling was considered as a promising

candidate for AHE. Besides, since the Weyl semimetal breaks time reversal symmetry

or inversion symmetry, the Berry curvature is non zero. Obviously, if the splitting of the

Weyl points is due to time reversal symmetry breaking, which is ferromagnetic Weyl

semimetal, the intrinsic AHE was expected and was calculated. [24] However, for the

other class of Weyl semimetal, such as the MoWTe2 family, the time reversal symmetry

is preserved but the inversion symmetry is broken. Time reversal symmetry needs to

be broken for non-zero AHE current.

FIGURE 4.4: Schematic figure for a Weyl semimetal in momentum space under illumi-
nation of circular polarized light. Blue and red circles are Weyl nodes with opposite
chiralities χ

(I)
W . The node position are shifted by the photons in a chirality-dependent

manner and the shift is proportional to A2. The overall nonzero Chern vector shift,
δvk = ∑I χ

(I)
W · δq(I)

k 6= 0, will result in photo induced anomalous Hall conductivity.
Reprinted figure with permission from reference [25] Copyright (2019) by the Ameri-

can Physical Society.

In 2016, the theory for photoinduced anomalous Hall effects in Weyl Semimetals

was proposed. [25] In that work, AHE was proven to generally present in all Weyl

systmes when coupled to a CP light source, even though AHE was intrinsically absent
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in some typical Weyl materials for symmetry reason. Through a general tight - bind-

ing model analysis, Weyl node positions were calculated to be shifted by the circularly

polarized light and the shift was proportional to A2, where A was the electromagnetic

wave amplitude. (Fig 4.4) The electronic transport property would be changed because

of the Weyl node shift. For all Weyl nodes, the change of the anomalous Hall conduc-

tivity was written as:

δσij =
e2

2πh̄
εijkδvk (4.7)

and δvk was the change of the Chern vector:

δvk = ∑
I

χ
(I)
W · δq(I)

k (4.8)

where q(I)
k was the momentum shifts and the χ

(I)
W was the chirality of the Weyl node.

Even though the total momentum shift was zero, the sum of Chern vector shift had

finite value, leading to the A2 order AHE current, meaning a Hall current proportional

to the light intensity.

It can also be explained by symmetry argument. For Weyl semimetals breaking time

reversal symmetry and preserving inversion, the momentum shift of a pair of nodes

had the relation: δq(1)k = −δq(2)k . The two nodes with opposite chiralities would pro-

duce the same Chern vector change: χ
(I)
W · δq(I)

k and contribute to the Hall conductivity

together. On the contrary, in the Weyl system breaking the inversion symmetry and

keeping the time reversal symmetry, δq(1)k = δq(2)k and χ(1) = χ(2). The Chern vector

change would have the same non zero result.

According to the analysis above, observable AHE is expected in the type-II Weyl

semimetals by exciting the electrons with chiral light. Since the experimental study

is still absent, the work in this chapter focused on this photoinduced AHE in type-II

Weyl semimetal MoWTe2 family. Due to the symmetry of this material, the conven-

tional CPGE is forbidden under normal incident light, which means that this is also

an electric field induced helicity-dependent photocurrent effect. More interestingly, the
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topological phase transition property of MoTe2 provides with more degree of freedom

to analyze this effect via comparing the phenomenon in two phases.

4.2 Experimental Setup

A wavelength tunable Ti - Sapphire pulsed laser working at 750 nm was used as

light source in experiments. The laser was focused to a Gaussian profile by a 60X objec-

tive and the spot size was about 2 um diameter 10 mW power. The light polarization

was controlled by a polarizer and a quarter wave plate installed on a motorized pre-

cision rotation stage driven by a servo motor. (Fig. 4.5) The polarization quality has

been checked by the method stated in the Chapter 2. Photocurrents were recorded us-

ing a current pre-amplifier (DL instruments model 1211) for which the voltage bias was

sourced and the output signal from the pre-amplifier (photocurrent was converted to

an amplified voltage signal) recorded continuously (10 data points per second) by the

PCI card (National Instrument, NI PCI-6281). The time constant of the pre-amplifier

was chosen to be 300 ms for lower noise level. The quarter wave plate was rotated at a

fixed rate using a motorized precision rotation stage with a servo motor.

FIGURE 4.5: Optical and electrical setup for the Hall measurement. Polarization of 750
nm wavelength light is controlled by a polaizer and a quarter wave plate. The light is
focused by an 60x objective lens and normal incident on the sample plane. Photocur-
rent is measured by a pre-amplifier while the sample can be applied transverse bias

voltage.

The bulk crystal Mo0.9W0.1Te2 and MoTe2 was provided by Zheng Liu’s group, same
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as in Chapter 2. The sample was exfoliated to ∼ 20 um × 20 um flake and transferred

onto Si/SiO2 substrate. The crystallographic c axis of MoTe2 was aligned to be par-

allel to the the z axis which was the normal incident light direction as shown in Fig

4.5. The electric contact was fabricated by the E-beam lithography and physical vapor

deposition of Ti/Cu with total thickness equal to 500 nm.

FIGURE 4.6: Schematic figure of the device for Hall effect measurement. Light is nor-
mally illuminated on the center of the sample to generate photocurrent which and be
collected by a pair of electrodes. Transverse bias voltage is applied by the other pair

of electrodes in perpendicular direction.

Four electrodes were symmetrically arranged in four orientations as a cross geom-

etry for Hall measurements (Fig 4.6). While bias voltage was applied by a pair of elec-

trodes, photocurrent were collected by another pair of electrodes in the transverse di-

rection. The light was illuminated at the center of the sample to avoid the sCPGE effect

induced by Gaussian profile discussed in Chapter 2 and 3. At fixed bias voltage, while

rotating the quarter wave plate , photocurrent was measured as function of the quar-

ter wave plate rotation angle φ. If the time reversal symmetry can be broken by the

circularly polarized light, anomalous Hall current was expected to be obtained in this

experiment, and the current direction should be opposite under different light helic-

ity. Besides, photoinduced AHE current would be measured in MoTe2 at both room

temperature 1T’ phase and 77 K Weyl phase for comparison.
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4.3 Results and Discussion

Firstly, AHE measurements were carried out at room temperature Weyl semimetal

Mo0.9W0.1Te2. The photocurrent was obtained while the bias voltage was applied and

plotted as the the function of quarter wave plate angle. The result was fitted to the phe-

nomenological equation to get the current contribution from circular polarized light:

J = JCsin(2φ) + JLsin(4φ + φ0) + J0 (4.9)

As shown in Fig 4.7, at zero bias, the photocurrent at right and left circular polar-

ized light showed same amplitude, indicating negligible CPGE. With the knowledge

of sCPGE discussed in previous chapters, this result was as expected because the ge-

ometry symmetry was not broken when the beam was focus at the electrodes center.

FIGURE 4.7: Under certain transverse bias voltage, photocurrent on Mo0.9W0.1Te2
flake is measured while rotating the quarter wave plate and plotted as function of
rotation angle φ. From left to right, the condition is positive bias, zero bias and nega-
tive bias respectively. The black dots are the experimental data and the red curves are

the fitting function by the phenomenological equation.

Under transverse bias, CPGE was obtained in the same sample. At positive bias

(8 mV), photocurrent at right circular polarized light (φ = 135◦, 315◦) was higher than

at left circular polarized light (φ = 455◦, 25◦); while at negative bias (-17 mV), pho-

tocurrent at right circular polarized light was lower than at left circular polarized light.

Through fitting into the Eqn 4.9, the amplitude of CPGE JC can be extracted, which

was 9.92 nA at positive voltage and 10.13 nA at negative voltage. It was an obvious
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signal that the CPGE appeared under transverse bias voltage and the CPGE current

direction was opposite for positive and negative bias. The reason why the same CPGE

currents were observed at two different bias was the existence of fringe field in the de-

vice, which could be owning to the narrow width of the electrodes for transverse bias

and the imperfect sample geometry.

FIGURE 4.8: To avoid the influence of fringe field, two parallel electrodes are patterned
for applying bias instead of crossing shape. The electric field in the center regime
of the sample is considered to be perpendicular to the photocurrent measurement

direction.

To improve the measurement, two parallel electrodes were patterned through the

sample to minimize the field in other direction as shown in Fig 4.8. Two electrodes for

photocurrent measurement were pattern near the center of the sample flake separated

by 5 um. This pattern guaranteed that the electric field within the measurement area

was almost parallel. Another Weyl semimetal Mo0.9W0.1Te2 flake was used in this mea-

surement and process was similar as before, while the positive bias and negative bias

were same amplitude, 3 mV. The results were given in the Fig 4.9.

Same as the previous results, photocurrent at right circular polarized light (φ =

135◦, 315◦) was higher than at left circular polarized light; while at negative bias, it

was opposite, indicating the CPGE current induced by transverse bias. Additionally,

comparing the CPGE current direction shown in Fig 4.7, the CPGE at two flakes had

the same CPGE current direct if the bias and light helicity were the same, suggesting a

robust effect that caused by the intrinsic property of the material.

Before discussion of further experiments studying properties of AHE, we needed to
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FIGURE 4.9: Under positive and negative bias voltage applied by parallel electrodes,
photocurrent on Mo0.9W0.1Te2 flake is measured while rotating the quarter wave plate
and plotted as function of rotation angle φ in the left and right figure respectively. The
black dots are the experimental data and the red curves are the fitting function by the

phenomenological equation.

ensure that these photocurrent experiments were performed within the linear regime of

the light power. Measurements were carried out at various incident beam intensity by

adjusting optical density filters. With fixed beam position and same bias voltage, pho-

tocurrent was measured during rotating the quarter wave plate and plotted as angle

φ at each light intensity. CPGE current was extracted via fitting equation and corre-

sponded to the incident laser power measured by power meter. As given in the Fig

4.10, CPGE current had linear relationships with excitation power in our measurement

range.

To further explore the dependence of the photo induced CPGE current on the trans-

verse bias voltage, CPGE current at various transverse bias was required to be obtained,

instead of only positive and negative situations. However, during the attempt of the

measurement on photocurrent under various bias voltage magnitude, we found that

the resolution of the pre-amplifier was not high enough for current lower than 1nA

scale, as the photoinduced CPGE current JC was generally blow 10nA shown in previ-

ous results. Thus, it was not accurate to obtain the CPGE difference within small step

of bias.

To lower down the electrical noise and improve data quality, optical chopper and
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FIGURE 4.10: Dependence of CPGE current magnitude on 750 nm laser power.JC is
fitted to linear relationship with laser power.

lock-in amplifier were utilized in the measurement. The laser was chopped and illumi-

nated on the sample at a certain speed (377 Hz in this work), which was provided to the

lock-in amplifier as a reference frequency. Only the electrical signal with the reference

frequency which was generated by the incident light, can be measured. The photocur-

rent was collected by the lock-in amplifier, while transverse bias voltage was applied

by a source meter working at lower magnitude range (Keithley 2635).

Furthermore, according to the previous work on Chapter 2 and 3, the sCPGE cur-

rent exists on the sample plane when the focused Gaussian beam is incident on the

device. The reason why the CPGE is not measurable without bias is that the position

of beam is at the center and geometry symmetric electrodes can not collect net signal

from circulating current. Even though the signal is not measurable, the sCPGE is not

forbidden in room temperature Weyl semimetal Mo0.9W0.1Te2, which means that the

sCPGE current is swirling around the beam during the measurement above. It nat-

urally raises a hypothesis that the electric field acts as the driving force, pushing the

carriers on the sample to be off center-and breaking the symmetry of the geometry. For

instance, the carriers generated by the circular polarized light and circulating around

the beam center is possible to be driven be the transverse electric field and shifted in
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FIGURE 4.11: Optical and electrical setup for the Hall measurement. 750 nm wave-
length light is chopped and controlled by a polaizer and a quarter wave plate. The
light is focused by an objective and normal incident on the sample plane. Photocurrent
is measured by a Lock-in amplifier while applied transverse bias voltage is applied.

the field direction, resulting in the situation that the carriers are circulating off center.

This case is similar to the previous sCPGE experiment when the beam is incident at

the left or right side of electrodes leading to measurable sCPGE with the help of field.

For field in the opposite direction, the carrier would be shifted to the other side of the

sample, leading to CPGE current with opposite sign. The longitudinal field can only

shifts the carriers between two electrodes and the sCPGE is still not measurable due to

the symmetry. This explanation matches all of the observation above. To simplify the

origin of the CPGE current, homogeneous illumination is better to be carried out in the

measurement instead of focused Gaussian beam.

Therefore, the 60X objective lens was replaced by a 10X lens (Fig 4.11) to make the

beam few times larger than the sample flake. Weyl semimetal Mo0.9W0.1Te2 flake with

area 20 um× 20 um was illuminated by beam whose diameter was about 50 um. Within

the measurement regime in the center of the sample, the beam intensity gradient could

be negligible. Transverse bias voltage magnitude varied from -15mV to 15mV with

increments of 2 mV. The beam position and size were fixed during the whole measure-

ment process. At each transverse bias, total photocurrent was collected while rotating

the quarter wave plate and plotted as function of φ. The contribution from CPGE and

LPGE was taken out by fitting into the equation. In Fig 4.12, the CPGE and LPGE cur-

rent were shown as the function of transverse bias. Both CPGE and LPGE show linear
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FIGURE 4.12: CPGE (left) and LPGE (right) current on Mo0.9W0.1Te2 under illumi-
nated of big beam spot with transverse bias from -15 mV to +15 mV. The contribution
from circularly polarized light and linearly polarized light are obtained by fitting the
total photocurrent. The black dots are current data and the red line is linear fitting of

the CPGE/LPGE current dependence on bias voltage.

relationship with the transverse bias. Without the influence from sCPGE, this CPGE

current was confirmed to be the photoinducded AHE current. Thus, in one hand, the

results can be viewed as CPGE appearing in a symmetry forbidden system due to the

transverse electric field; in the other hand, it can also be treated as a hall effect in non-

magnetic system induced by circular polarized light.

According to the beam size dependence experiment in Chapter 3, sCPGE can not be

efficiently collected if the distance between electrodes is much larger or smaller than the

beam size. Therefore, by focusing the beam to be the smallest spot by 60X lens (∼ 2 um)

on a larger sample flake, the sCPGE contribute can also be excluded. To further confirm

the mechanism of this photoinduced AHE, the measurement was performed again on

a larger Mo0.9W0.1Te2 flake with electrodes separated for 10um with 2um size focused

beam. (Fig 4.13) The dependence of CPGE on bias voltage was the same as big beam

spot measurement in Fig 4.12, showing linear relationship. This result was another

strong evidence to prove that the sCPGE did not contribute to these photoinduced AHE

measruements. Avoiding the influence of edge, the noise of focused beam situation

(R=0.9931) was smaller than at big beam experiment (R=0.8756). Therefore, focused

beam would be utilized for the following experiments.

The result of the different beam size experiments was a strong evidence that the
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FIGURE 4.13: CPGE current extracted by photocurrent on Mo0.9W0.1Te2 under fo-
cused beam with transverse bias from -40 mV to +30 mV. The black dots are exper-
imental data and the red lines are linear fitting of the CPGE current dependence on

bias voltage.

observed CPGE does not come from the sCPGE shifted by the transverse electric field.

However, to further reveal the origin of this phenomena, more properties of this effect

were required to be explore by new experiments. To understand the generality of this

photoinduced AHE, the measurements were carried out on the central symmetric phase

MoTe2 at room temperature. Similar size MoTe2 flakes (20 um × 20 um) were prepared

on the SiO2/Si substrate with Ti/Cu electrodes patterned as Fig 4.8. Focused beam

with diameter 2 um was normal incident at the sample center and the electrode pair for

photocurrent measurement was separated for 10 um. Transverse bias voltage was cho-

sen to be 100 mV, 0 mV and -100 mV. Polarized dependent photocurrents were collected

at each bias and the results were shown in the Fig 4.14. Qualitatively, the observation

was similar to measurement on Mo0.9W0.1Te2: the CPGE contribution was zero without

bias; while under positive and negative transverse field, CPGE current showed up with

comparable amplitude but opposite sign. However, quantitatively speaking, the effect

was much weaker in MoTe2. Compare with the result in Mo0.9W0.1Te2 whose CPGE

current was 10 nA under 3 mV transverse bias, JC obtained in MoTe2 with 100 mV after

fitting is about 4 nA, meaning that the CPGE current in Mo0.9W0.1Te2 was almost 100
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FIGURE 4.14: Photocurrents collected on room temperature MoTe2 under illuminated
of focused beam with transverse bias at 100 mV (left), 0 mV (middle) and -100 mV
(right) is plotted as function of quarter wave plate angle. The black dots are current
data and the red line is the fitting curve using the phenomenological equation. At
positive bias, JC=4.5 nA and JL=56.9 nA; at negative bias, JC=-4.9 nA and JL=38.51 nA.

times larger than in MoTe2 for same circumstance.

As stated in Chapter 2 and Chapter 3, the in-plane crystal structure at room tem-

perature of Mo0.9W0.1Te2 and MoTe2 are very similar, the difference is that the former is

Weyl semimetal due to inversion symmetry breaking while the later one has inversion

symmetry. The significant magnitude difference between the 1T’ phase and Td natu-

rally raised a hypothesis that the inversion symmetry breaking Weyl phase was likely

to greatly enhance the anomalous Hall effect. To confirm this different behaviours at

1T’ phase and Td phase of photoinduced AHE, same compound of material at differ-

ent phase is better for comparison. The temperature induced phase change property in

MoTe2 could be utilized for comparing the 1T’ phase and the Td phase. Since the phase

change occurs at 250 K, the measurement was performed on MoTe2 at 77 K. The temper-

ature was controlled by a heating stage in a cryostat and liquid nitrogen and monitored

by a thermocouple. The pressure was maintained below 10−6Torr by a turbo pump.

Photocurrent was measured as the function of quarter wave plate rotaion angle

when bias voltage was applied at 20 mV, 10 mV, 0 mV, -10 mV and -20 mV. (Fig 4.15)

The result at low temperature was significantly different from room temperature: the

CPGE was greatly affected by the transverse bias; in other words, there was a signifi-

cant photoinduced AHE in the Td phase of MoTe2. With 20 mV bias, the photocurrent

at left circularly polarized light (φ = 45◦ and 225◦) was higher than at right circular
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FIGURE 4.15: Photocurrents collected on 77 K MoTe2 under illuminated of focused
beam with transverse bias at 20 mV, 10 mV, 0 mV, -10 mV and -20 mV (marked above)
is plotted as function of quarter wave plate angle. The black dots are current data
and the red line is the fitting curve using the phenomenological equation. By fitting,
CPGE at each bias can be obtained: JC=13.37 nA, 1.23 nA, -7.62 nA, -12.71 nA, -15.04

nA when bias was 20 mV, 10 mV, 0mV, -10 mV and -20 mV respectively.

polarized light (φ = 135◦ and 315◦); while under -20 mV bias, it was the opposite. By

fitting into the photocurrent equation, the CPGE current changed from -15.04 nA to

13.37 nA when transverse bias varied for 40 mV, indicating AHE conductivity to be

0.71 nA/mV. Comparing with the result at room temperature phase which was smaller

than 0.045 nA/mV, the effect was enhanced for more than an order. CPGE current was

extracted from all these five data via fitting and plotted with the corresponding bias

voltage, shown in Fig 4.16. Same as the Mo0.9W0.1Te2 at room temperature, the CPGE

current dependence on transverse bias voltage can be fitted to linear relationship. The

experiment was a good evidence to show that the transverse bias induced CPGE or

photoinduced AHE was significantly stronger in the Td Weyl phase compared with the

1T’ trivial phase.
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FIGURE 4.16: CPGE current on low temperature MoWTe2 under focused beam with
transverse bias from -20 mV to +20 mV. The contribution from circularly polarized
light are obtained by fitting the total photocurrent. The black dots are current data

and the red lines are linear fitting of the CPGE current dependence on bias voltage.

4.4 Mechanism

4.4.1 Symmetry arguments

CPGE effect and LPGE effect could be represented by two third rank tensors,

Ji,PGE = Aijk(ω)(
Ej(ω)Ek(−ω)− Ej(−ω)Ek(ω)

2
)

+Bijk(ω)(
Ej(ω)Ek(−ω) + Ej(−ω)Ek(ω)

2
)

(4.10)

Aijk(ω) = 1
2 (ϑijk(ω)−ϑijk(−ω)), describes CPGE and Bijk(ω) = 1

2 (ϑijk(ω)+ϑijk(−ω))

describes LPGE. Since MoTe2 has a C2v point group symmetry, CPGE is characterized

by two independent components, Axxz = −Axzx and Ayyz = −Ayzy. Thus, CPGE cur-

rent is forbidden by the two fold rotation symmetry in its x-y plane, when the light

proprogates in the z direction. Similarly, LPGE, and photon drag effect are not allowed

under normal incidence. It explains that in the experiment, without external electric

field, there was no CPGE nor LPGE observed.

Then, when an electric field is applied, at least one mirror symmetry in plane would
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be broken, and the symmetry of the system would be reduced to Cs. Assuming that the

electric field is applied along y direction (crystallographic a axis), CPGE tensor would

have two more nonzero components, Axxy = −Axyx. As a result, CPGE current could

be observed along x (crystallographic b axis) direction. When the electric field is ap-

plied along an arbitrary direction, i.e. having a θ polar angle, then four more nonzero

components would appear in CPGE tensor, Axxy = −Axyx, Ayxy = −Ayyx but those co-

efficients will be correlated as Axxy = Ayxy · tanθ. It implies that CPGE current would

always be perpendicular to the external electric field, as observed in the experiment.

4.4.2 Phenomenological description

With above symmetry arguments to explain the existence of this optically induced

Hall effect in MoTe2, here we use a phenomenological model to explore its physical

insights.

jCPGE,kij = ∑
k,n

ρ
(2)
nn vnn

= ∑
k,n,m

e3

h̄2 (δ(εm − εn −ω))( f0(εm)− f0(εn))(Ri
nmRj

mn − Ri
mnRj

nm)(vk
nn − vk

mm)Ei(ω)Ej(−ω)

(4.11)

ρ
(0)
nm = f0(εn(k))δnm is the Fermi-Dirac distribution at T=0. The matrix elements of

the velocity operator acting on Bloch states is given by vnm(k) =< un(k)| ∂H0
∂k |um(k).

At energy εn(k), the band-diagonal velocity is given by vnn = ∇kεn · D
Dk defined as

DO
Dk = ∇kO − i[R(k), O]is the momentum space covariant derivative operator on an

arbitrary matrix O, where Rnm(k) = i < un(k)| ∂um(k)
∂k > is the non-diagonal Berry con-

nection. When n 6= m, Rnm(k) =
vnm(k)

i(εn(k)−εm(k))
. ρ(2) is the second order in electric field

density matrix, or the so called transition matrix. The quantity that appears in equation

4.11, which we call a band resolved Berry curvature Ωk
nm(k) = −i(Ri

nmRj
mn − Ri

mnRj
nm)

along k̂ = î × ĵ is associated with the berry curvature Bk
n(k), Bk

n(k) = ΣmΩk
nm(k). It

transforms like Berry curvature: Ωk
nm(k) = Ωk

nm(−k) under inversion symmetry, and

Ωk
nm(k) = −Ωk

nm(−k) under time reversal symmetry. Therefore, in a system with both
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time reversal and inversion symmetry, Ωij
nm(k) vanishes. In a two band system, this

band density collapses into the real Berry curvature.

CPGE current vanishes in MoTe2 because the band velocity and the diagonal terms

of the second order density matrix, are both symmetric under C2v symmetry. In a weak

field limit, the effect of electric field on the CPGE tensor is reflected mostly on the elec-

tron density matrix. An external electric field would shift the electron distribution in

the Brilioun zone, rendering the Fermi-Dirac distribution ( f0(εm) − f0(εn)) asymmet-

ric on the Fermi surface. Consequently, ρ(2) = Ωij
nm(δ(εm − εn − ω))( f0(εm)− f0(εn))

would not be symmetric under C2v symmetry with the electric field.

To treat this perturbatively, the new tensor elements will be linear in the dc elec-

tric field. Density matrix ∆ρ(2) ∼ EdcΩij
nm(δ(εm − εn − ω))( f ′0(εm) − f ′0(εn)) is now

weighted by a new k-dependent Fermi-Dirac distribution. Therefore, the Hall angle is

expected to be highly dependent on the ’Berry curvature band density’ in the system.

To compare the two phases of MoTe2, the high temperature 1T’ phase has inversion

symmetry and no Berry curvature band density, while the low temperature Weyl Td

phase has a large Berry curvature. Although in both phases, the electric field mod-

ulation are allowed, their magnitude could be different by orders, which is in good

agreement with our measurements.

4.5 Conclusion

In summary, transverse bias induced CPGE was observed in room temperature

Weyl semimetal Mo0.9W0.1Te2 under normal incident light. The CPGE current showed

opposite direction when the transverse bias flipped the sign. The influence of circu-

lating sCPGE current by various beam size, this phenomenon was confirmed to be

photoinduced AHE. Applied by different transverse bias, the current generated by the

circular polarized light was revealed to have linear dependence on the transverse field.

Different behaviours at 1T’ phase and Td phase of this effect was obtained by per-

forming the measurements on topological phase transition material MoTe2 at room
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temperature (1T’) and 77 K (Td). The result at Weyl phase MoTe2 was the same as

Mo0.9W0.1Te2, suggesting consistent photoinduced AHE in Weyl semimetal. However,

the AHE response at 1T’ phase was much smaller or even negligible compared with

Weyl phase. This was the first time for the photoinduced AHE experimentally observed

in the time reversal symmetry preserved Weyl semimetal.

For symmetry argument, the in-plane symmetry of Weyl semimetal Mo0.9W0.1Te2

is reduced by transverse field, allowing the present of CPGE current. The observa-

tion of CPGE magnitude linearly dependence on transverse field is also explained by a

phenomenological equation. By derivation of response function of CPGE current, the

dominate term in CPGE current expression consist of the band resolved Berry curva-

ture, implying the significantly different AHE conductivity between the 1T’ phase and

the Td phase.

In the future, we will try to perform the photoinduced anomalous Hall effect within

the Liftshiz energy scale and explain the result by DFT calculation. With less band

involved, real band model could be easier to be carried out and the microscopic origin

of the AHE conductivity is expected to be extracted from the calculation. The significant

Hall conductivity difference with and without inversion symmetry in two phases of

MoTe2 is likely to be numerically calculated and fitted into the experimental results.

By this nonlinear optical response, we will try to probe the Berry curvature and band

structure of the Weyl semimetal.



104

Bibliography

[1] Hall, E. (1879). On a New Action of the Magnet on Electric Currents. American

Journal of Mathematics, 2(3), 287-292. doi:10.2307/2369245

[2] Hall, E., 1881, Philos. Mag. 12, 157.

[3] Kundt, A. "A. Kundt, Wied. Ann. 49, 257 (1893)." Wied. Ann. 49 (1893): 257.

[4] Webster, W.L., 1927, July. The Hall effect in single crystals of iron. In Mathematical

Proceedings of the Cambridge Philosophical Society (Vol. 23, No. 7, pp. 800-803).

Cambridge University Press.

[5] Smith, A.W., 1910. AW Smith, Phys. Rev. 30, 1 (1910). Phys. Rev., 30, p.1.

[6] Pugh, E.M. and Lippert, T.W., 1932. Hall emf and intensity of magnetization. Phys-

ical Review, 42(5), p.709.

[7] Pugh, E.M., 1930. Hall effect and the magnetic properties of some ferromagnetic

materials. Physical Review, 36(9), p.1503.

[8] Karplus, R. and Luttinger, J.M., 1954. Hall effect in ferromagnetics. Physical Review,

95(5), p.1154.

[9] Smit, J., 1955. The spontaneous Hall effect in ferromagnetics I. Physica, 21(6-10),

pp.877-887.

[10] Smit, J., 1958. The spontaneous Hall effect in ferromagnetics II. Physica, 24(1-5),

pp.39-51.

[11] Berger, L., 1970. Side-jump mechanism for the Hall effect of ferromagnets. Physical

Review B, 2(11), p.4559.



BIBLIOGRAPHY 105

[12] Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H. and Ong, N.P., 2010. Anoma-

lous hall effect. Reviews of modern physics, 82(2), p.1539.

[13] Xiao, D., Chang, M.C. and Niu, Q., 2010. Berry phase effects on electronic proper-

ties. Reviews of modern physics, 82(3), p.1959.

[14] MacDonald, A. and Niu, Q., 2004. New twist for magnetic monopoles. Physics

World, 17(1), p.18.

[15] Onoda, S., Sugimoto, N. and Nagaosa, N., 2006. Intrinsic versus extrinsic anoma-

lous Hall effect in ferromagnets. Physical review letters, 97(12), p.126602.

[16] Jungwirth, T., Niu, Q. and MacDonald, A.H., 2002. Anomalous Hall effect in fer-

romagnetic semiconductors. Physical review letters, 88(20), p.207208.

[17] Onoda, S., Sugimoto, N. and Nagaosa, N., 2006. Theory of Non-Equilibirum States

Driven by Constant Electromagnetic Fields: —Non-Commutative Quantum Me-

chanics in the Keldysh Formalism—. Progress of theoretical physics, 116(1), pp.61-86.

[18] Dai, X. and Zhang, F.C., 2007. Light-induced Hall effect in semiconductors with

spin-orbit coupling. Physical Review B, 76(8), p.085343.

[19] Miah, M. Idrish. "Observation of the anomalous Hall effect in GaAs." Journal of

Physics D: Applied Physics 40.6 (2007): 1659.

[20] Yu, J.L., Chen, Y.H., Jiang, C.Y., Liu, Y., Ma, H. and Zhu, L.P., 2012. Observation

of the photoinduced anomalous Hall effect spectra in insulating InGaAs/AlGaAs

quantum wells at room temperature. Applied Physics Letters, 100(14), p.142109.

[21] Yin, C.M., Tang, N., Zhang, S., Duan, J.X., Xu, F.J., Song, J., Mei, F.H., Wang, X.Q.,

Shen, B., Chen, Y.H. and Yu, J.L., 2011. Observation of the photoinduced anomalous

Hall effect in GaN-based heterostructures. Applied Physics Letters, 98(12), p.122104.

[22] Yin, C.M., Tang, N., Zhang, S., Duan, J.X., Xu, F.J., Song, J., Mei, F.H., Wang, X.Q.,

Shen, B., Chen, Y.H. and Yu, J.L., 2011. Observation of the photoinduced anomalous

Hall effect in GaN-based heterostructures. Applied Physics Letters, 98(12), p.122104.



BIBLIOGRAPHY 106

[23] Li, J.B., Wu, X.G., Wang, G.W., Xu, Y.Q., Niu, Z.C. and Zhang, X.H., 2016. Helicity-

dependent photocurrent induced by the in-plane transverse electric current in an

InAs quantum well. Scientific reports, 6, p.31189.

[24] Zyuzin, A.A. and Tiwari, R.P., 2016. Intrinsic anomalous Hall effect in type-II Weyl

semimetals. JETP letters, 103(11), pp.717-722.

[25] Chan, C.K., Lee, P.A., Burch, K.S., Han, J.H. and Ran, Y., 2016. When chiral pho-

tons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals.

Physical review letters, 116(2), p.026805.



107

Chapter 5

Future Work

5.1 Introduction

Even though the conventional CPGE was forbidden under normally incident light

[1–3] because of the in-plane two-fold symmetry, different methods were used to re-

duce the symmetry and CPGE current in MoWTe2 Weyl semimetal family was success-

fully observed. Breaking the symmetry by focused beam, a novel CPGE working in

a broad spectral range was obtained in type-II Weyl semimetals, such as Td −MoTe2,

Mo0.9W0.1Te2 and Mo0.3W0.7Te2 and was named as sCPGE. This effect exhibited same

properties in various Weyl semimetal compounds and showed same phenomenology

at different excitation energy. Photocurrent of sCPGE was proven to be circulating

around the beam center and the current magnitude was controlled by the beam gra-

dient. The circulating direction at high energy excitation was observed to be opposite

from the direction at low energy, which was related to the band crossing property of

Weyl semimetal. The frequency dependent phenomenon could inspire further inter-

ests in probing the band topology of Weyl semimetals. Besides, the sCPGE with more

degree of freedom could have promising application in current engineering.

CPGE was also achieved in type-II Weyl semimetal by applying transverse bias volt-

age while the sample was normally incident by homogeneous illumination. The CPGE

current magnitude showed linear relationship with the electric field. This effect was

called photoinduced anomalous Hall effect, which was also working in wide excitation
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energy. Observed by experiments and explained by response function, AHE conduc-

tivity was shown to be much larger in the inversion symmetry breaking Weyl phase but

negligible small in 1T’ phase. At low energy excitation, more information of the Berry

curvature and the Weyl node could be expected to be extracted by this photoinduced

AHE.

5.2 Probing band crossing of MoWTe2 alloys by sCPGE

FIGURE 5.1: (a)Band structures of WTe2 along momentum space cut. (b) Band struc-
tures of Mo0.2W0.8Te2 along momentum space cut. (c)The energy difference between
the extrema of the b2 and b3 bands as a function of Mo doping x. This characterizes

the magnitude of the band inversion. Reprinted figure with permission from [4]

Calculated by theory [4] and observed by ARPES [5], the Fermi arc in MoWTe2 al-

loys was shown to be tunable by different Mo concentration. As shown in Fig 5.1,

there is no band inversion in pure WTe2; while bands gradually touching each other

with Mo doping. The band inversion increases with higher Mo doping concentration.

As mentioned in Chapter 3, sCPGE current measured at the same spot of type-II Weyl

semimetal with same circularly polarized light reversed direction at 750nm wavelength

and 6um, which was related to the band crossing in the band structure of Mo0.9W0.1Te2.

Therefore, by adjusting the wavelength step by step, the sCPGE-wavelength depen-

dence can be obtained.

For MoxW1−xTe2 alloys with different concentration x, we can repeat the sCPGE-

wavelength dependence experiments and measure the zero sCPGE wavelength for
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each x. Because smaller band crossing is expected at higher x, the sign reverse of sCPGE

should occurs at lower photon energy and longer light wavelength. Through this ex-

periment, the mechanism of sCPGE can be further confirmed and the topological band

crossing in Weyl semimetal can be probe by nonlinear optical response. This effect can

be a promising tool to detect Weyl semimetal and study other topological materials in

the further.

5.3 CPGE Current Engineering by Beam Profile

Giant CPGE current was generated to circulating around the focused beam and

controlled by the beam gradient. The reason why the beam was circulating was because

the beam was Gaussian profile. What if the beam gradient has other distribution? In

principle, the CPGE current distribution can be patterned to any shape via engineering

the beam gradient. It will be very interesting and useful to manually control the current

in plane with optical excitation.

Multi-beam can be utilized and incident on the type-II Weyl semimetal at the same

time but different position. By controlling the helicity, beam position and beam size of

each light source, the CPGE current is expected to flowing on the sample surface as a

curve. Electrodes can be fabricated on the sample in the current path to confirm the

CPGE current magnitude and direction.

The in-plane current engineering can also be achieved by homogeneous light source.

Inhomogeneous polymer can be pre-coated on the top of Weyl semimetal Mo0.9W0.1Te2.

Even though the beam profile is even, the sample can experience spatially different light

intensity due to the coating layer. With well designed coating pattern, electrical circuits

on the sample can be switched on/off by right/left circularly polarized light. This ex-

periment has potiential application in on-chip lab and computing in the future.

Furthermore, with the information of beam profile and light helicity, sCPGE can

also be utilized for detector. Under the illumination of unknown beam, sCPGE current
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could be generated, whose sign and magnitude are controlled by light circular polar-

ization and beam gradient respectively. By patterning the electrode array on the Weyl

semimetal sample, we can measure the photocurrent between each two electrodes.

Therefore, the light polarization and beam profile can be detected and mapped out,

which is a promising tool for future sensor and detector.

5.4 Low Energy Excitation of Photoinduced AHE

FIGURE 5.2: Calculated band structure of MoTe2 with dc electric field modulated
Fermi surface

By applying electric field in x-y plane, the Fermi surface will be modified and tilted

in the momentum space. The band structure of the crossing regime was calculated and

shown in Fig 5.2. The tilted Fermi surface was represented by the grey color plane.

The tilting angle was determined by the field. Therefore, under certain bias, some Weyl

points will locate above the Fermi level while the other Weyl point below the Fermi

level.

Low energy excitation below Lifshitz energy can be designed for photoinduced

anomalous Hall effect. With small electrical field, all Weyl points are above the Fermi

level and the transition are allowed for all Weyl cones under circularly polarized light.

Gradually increase the transverse bias, transition of a Weyl cone will be muted eventu-

ally, since the Weyl point is too high above the tilted Fermi surface. Further increase the
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field, only the transition in the other Weyl cone is expected. Extract the CPGE current at

each transverse bias, photoinduced AHE current can be plotted as the function of bias.

The contribution of AHE current is different before and after some Weyl points are

muted, which means that the AHE conductivity is supposed to be discontinuous, rep-

resented by different AHE current-transverse bias slope. Through photoinduced AHE,

Weyl cones can be probed separately and more band information can be extracted.
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