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Remote Characterization of Dominant Wavelengths From
Surface Folding on Lava Flows Using Lidar and Discrete
Fourier Transform Analyses
Nicholas Deardorff1 , Adam Booth2 , and Katharine Cashman3

1Department of Geoscience, Indiana University of Pennsylvania, Indiana, PA, USA, 2Department of Geology, Portland
State University, Portland, OR, USA, 3School of Earth Sciences, University of Bristol, Bristol, UK

Abstract Surface folding is common in lava flows of all compositions and is believed to be due to changes
in viscosity and flow velocity between the cooling crust and the more fluid flow interior. However, our
understanding of the relationship between surface folding and flow rheology is incomplete. In this study
we analyze digital terrain models of eight lava flows ranging in composition from basaltic andesite to
rhyolite using a discrete Fourier transform analysis to quantitatively determine dominant surface fold
wavelengths. Our discrete Fourier transform analyses show that each lava flow hasmultiple fold generations
and that dominant wavelengths are more closely related to calculated effective viscosity than to lava
composition. At our Oregon sites, average dominant wavelengths generally increase with viscosity
(r2=0.68), and the correlation improves (r2=0.87) when expanded by including previously measured fold
wavelengths and viscosities from the global database. However, there are a few exceptions to this positive
trend where a few lava flows have lower or higher than expected dominant fold wavelengths, which we infer
are due to secondary factors such as differences in eruption conditions (eruption rate, temperature, etc.).
Additionally, over a 5 order of magnitude range in viscosity, there is significant overlap between the ranges
of fold wavelengths, particularly from 10 to 20m, for lavas from basaltic andesite to rhyolite, making it
difficult to determine a numeric correlation between surface folds and lava rheology that would allow
remote characterization of lava.

Plain Language Summary Folding of the surface crust of lava flows is common and is believed to
be due to the interior of the lava flow flowing more easily and quickly than the lava crust, which is much
stiffer and more brittle. However, our understanding of the relationship between surface folding and how
lava flows and deforms is incomplete. In this study we analyze three‐dimensional digital models of the
surfaces of lava flows over a range in composition. Our analyses look at patterns of periodicities within the
lave surfaces, which can detect differences in roughness between lava flows as well as the size and distance
between surface folds. Our findings show that typically lavas that are thick and sticky, flowing less easily,
have larger fold wavelengths (distances between folds) and lavas that flow more easily have smaller fold
wavelengths. This type of analysis provides a versatile tool for characterizing lava flows without ever visiting
the location physically and has significant implications for possible future analyses of volcanic terrains on
Earth in hard to reach locations and on other planets and moons.

1. Introduction

Traditionally, lava flows have been studied primarily in the field with manual measurements, mapping, and
sample collection, with a focus on active eruptions at particularly productive mafic volcanoes (e.g., Hawaii,
USA, andMt. Etna, Italy). The focus on mafic eruptions has led to flow parameters (mass eruption rate, flow
duration, etc.) and rheology (i.e., viscosity) for basaltic lava flows being very well constrained (e.g., Calvari
et al., 2003; Guest et al., 1987; Hon et al., 1994; Kauahikaua et al., 1998; Lipman & Banks, 1987; Harry
Pinkerton & Wilson, 1994; Wadge et al., 1975; Walker, 1971), while emplacement conditions for flows of
intermediate and silica‐rich compositions are less well constrained (Deardorff & Cashman, 2012; Tuffen
et al., 2013). The paucity of data on more evolved lavas is largely due to infrequent eruptions and the inher-
ent difficulty in collecting morphologic measurements, due to flow margins tens of meters high and block
sizes decimeters to meters in diameter. Few intermediate to silica‐rich lava flows have been observed
by scientists during emplacement, including Arenal, Costa Rica (andesite: A Borgia & Linneman, 1990;
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Andrea Borgia et al., 1983; Cigolini et al., 1984); Lonquimay, Chile (andesite: Naranjo et al., 1992);
Santiaguito, Guatemala (dacite: Harris et al., 2003; Rose, 1973); Mount St. Helens, USA (dacite: Sherrod
et al., 2008; Swanson & Holcomb, 1990; Vallance et al., 2008); Kameni Islands, Greece (dacite: Pyle &
Elliott, 2006); Chaitén, Chile (rhyolite: Major & Lara, 2013; Pallister et al., 2013); and Cordón Caulle,
Chile (rhyolite: Tuffen et al., 2013). Evolved lavas occur primarily within volcanic arc settings and are typi-
cally located at relatively high elevations, often in remote locations.

Advances in new technology (e.g., satellite, aerial, and ground‐based remote sensing techniques) have dras-
tically increased our ability to quantitatively characterize lava flows in the last few decades (K. V. Cashman
et al., 2013; Katharine V Cashman & Sparks, 2013 and refs therein). Airborne Laser Swath Mapping (e.g.,
lidar [light detection and ranging]) is particularly useful in quantifying lava morphologies as it produces
high‐resolution (<1m horizontal) and high‐precision (centimeter to decimeter vertical) three‐dimensional
digital data, from which vegetation can be removed via filtering. Three‐dimensional digital terrain models
(DTMs) derived from lidar point clouds can be used to extract accurate morphologic measurements from
emplaced lava flows. This is particularly useful on large blocky lava flows, typically of more evolved compo-
sitions, where field measurements are difficult or impossible. Simple morphologic measurements can then
be used in numerical models to determine effusion rates and emplacement durations for prehistoric lava
flows (Deardorff & Cashman, 2012). Such numerical models often require assumptions on lava rheology,
particularly viscosity, and knowledge of bulk composition, requiring manual sample collection. Therefore,
truly remote (i.e., inaccessible) lava flows would require additional assumptions on composition in similar
numerical modeling, increasing the potential error in such analyses.

In this study, we use lidar data from eight lava flows over a range of compositions (basaltic andesite to
rhyolite) in the central Oregon High Cascades to analyze surface features, specifically the dominant
wavelengths of surface folds, and their relationship to the composition and rheology of the flows. For
our analyses we apply a discrete Fourier transform (DFT) analysis to along‐channel profiles extracted
from lidar‐derived DTMs to objectively determine dominant wavelengths (the most prominent and per-
iodic surface folds) for each flow. We define “dominant wavelengths” as topographic wavelengths, mea-
sured with the Fourier transform, with spectral power greater than that of a power law spectrum at the
95% confidence level. We focused our analyses on more evolved lavas to fill the knowledge gap
described above, and because basaltic lavas often produce surface folding on a smaller scale than is
detectable using DTMs gridded at 1‐m horizontal resolution. We then compare our results to published
measurements from a wide range of flow types (basalt to rhyolite) to evaluate the potential use of flow
surface morphologies for inferring the composition of remote lava flows, with the potential for use on
extraterrestrial lava flows (e.g., Mars and Venus). While we primarily focus our analyses on lava flows
in Oregon, the techniques used in this study can be used to remotely characterize any lava flow on
Earth or other planetary bodies for which DTMs are available.

1.1. Area of Study

We selected the central Oregon Cascades as the study area for this project due to the wide range in accessible
lava compositions over a relatively small area and the availability of lidar‐derived high resolution DTMs
(available through the Oregon Lidar Consortium). The central Oregon Cascades has produced volcanic
deposits over the past 35 million years ranging from basalt (<52 wt%SiO2) to rhyolite (≥72 wt%SiO2) and
consisting of lava flows, pyroclastic flow deposits, and tephra fall deposits (Sherrod et al., 2004).

Our study is focused primarily around the Three Sisters volcanic complex and Newberry Volcano within the
Deschutes National Forest and near Bend, OR (Figure 1). We have selected eight flows ranging in composi-
tion from ~52 to 73.5wt% SiO2 (see Table 1 for compositions, references, and ages) that are relatively young
(mostly <7ka) and mostly unvegetated. Symbols (e.g., Lava Butte [LB]) are listed in Table 1. Lava flows
>7,700years old in the area are blanketed by Mazama ash from the catastrophic eruption that produced
the Crater Lake Caldera, potentially muting or partially obscuring their fold morphology. The only flow used
in this study older than the Mazama eruption is Kokostick Butte (27.3±2.6ka; Fierstein et al., 2011), chosen
as the best preserved dacite lava flow in the study area. All other flows used in this study are uncovered and
only very lightly vegetated.

10.1029/2019GC008497Geochemistry, Geophysics, Geosystems

DEARDORFF ET AL. 3953



1.2. Lava Surface Folds

The surface of lava flows is commonly folded into arcuate ridges, bent such that the convex ridges point
down flow (Figure 2a). Surface folding is common in lava flows of all compositions, from basalt (i.e., ropy
pahoehoe; <52wt% SiO2) to rhyolite flows (>69wt% SiO2), and is believed to be due to changes in viscosity
and flow velocity between the cooling crust (solidified, brittle surface of flow) and the more fluid flow inter-
ior. Surface folds record the dynamics of flow emplacement and are formed by the competition between the
fluid processes driving the flow (controlled primarily by lava flux and rheology) and the restraining presence
of a growing (and confining) crust (e.g., Applegarth et al., 2010; Griffiths, 2000). Surface folds have been
interpreted as compression of the advancing flow against a solidifying crust (J. Fink, 1980; J. H. Fink &

Figure 1. Locations of the lava flows analyzed in this study are depicted in orange. Lava flows are all located in the
central Oregon High Cascades (star on insert) either on the south flank of the southernmost peak of the Three Sisters
volcanic complex, in Newberry volcano, along the Northwest Rift Zone on the north flank of Newberry, or south of the
Wickiup Reservoir). Coordinate system is NAD 1983 UTM zone 10N.
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Fletcher, 1978). However, folds often initiate near eruptive vents and are well developed in most lava
channels (e.g., Pyle & Elliott, 2006), which suggests that at least some folds may form because of lateral
extension within the channel (Smith & Houston, 1994). Alternatively, the surface folds may form when
fluid traction along the base of the higher viscosity lava surface creates enough instability to induce
buckling (Slim et al., 2009). Here the interior must travel at higher velocity than the higher viscosity
surface to induce shear, but a flow constriction is not required for buckling to occur. The purpose of this
study is not to extend previous studies on the processes of surface fold formation but to identify and
quantify surface fold wavelengths remotely and determine their relation to lava composition and rheology.

In theory, the geometry of flow surface folds can be used to constrain the thickness and viscosity of the fold-
ing layer (from the fold wavelength) and the compressional stress (from the fold amplitude; e.g., J. H. Fink &
Fletcher, 1978; Gregg et al., 1998). Crustal thickness is controlled primarily by lava composition and extent of
cooling. Less evolved (e.g., mafic) flows, erupting at higher temperatures and effusion rates than evolved
lavas, will initially produce thin crusts that may develop into small fold wavelengths. As a flow cools, visc-
osity increases, and the crust thickens, which may produce additional generations of folding with increas-
ingly greater wavelengths (J. H. Fink & Fletcher, 1978; Gregg et al., 1998). Lavas of more evolved
compositions (higher silica content) advance more slowly and have thicker crusts, which should generate
surface folds with larger wavelengths, and may still produce multiple fold generations as the crust thickens.

Lava viscosity is partially controlled by crystallinity, which can vary significantly between lava compositions
and tectonic settings. While phenocrysts and microphenocrysts form deeper within the crust, microlites may
form duringmagma ascent or emplacement. Mafic lavas often erupt close to their liquidus temperatures with
relatively low H2O contents and cool and crystallize during emplacement. In Hawaii syneruption

Table 1
Compositional Data, Age, Dominant Wavelengths, Crystallinities, and Calculated Viscosities for Lava Flows in This Study

Lava flow (symbol)
South Sugarpine

(SSP)
Lava Butte

(LB)

Lava
Cascade
(LC)

Mokst
Butte
(MB)

Black Rock
Lava‐Hamner
Butte (BRL)

Kokostick
Butte (KB)

Big Obsidian
Flow (BO)

Rock
Mesa
(RM)

Major elements wt%

SiO2 52.72 55.83 56.46 57.61 58.06 63.5‐63.1c 73.24f,g 74.04
TiO2 1.36 1.130 1.25 1.25 0.85 0.22 0.278
Al2O3 17.03 17.08 16.26 15.81 18.01 14.20 13.87
FeO* 8.84 7.55 7.60 7.95 6.19 2.03 1.85
MnO 0.16 0.136 0.14 0.14 0.11 0.06 0.046
MgO 5.73 4.86 4.00 4.26 4.34 0.19 0.46
CaO 9.45 7.95 7.24 7.23 7.26 1.12 1.68
Na2O 3.64 3.93 4.14 3.92 3.91 5.22 4.30
K2O 0.78 1.29 1.46 1.63 1.06 4.09 3.41
P2O5 0.28 0.244 0.28 0.20 0.21 0.27 0.058
Age of flow ~7,000a BPa

6927±300a BP
~7,000a BPa ~7,000a BPa ~7,000a BPa 5,451±307a BPb 27.3±2.6ka BPc ~1,300a BPe <2,500a BPd

Dominant wavelengths (m) 11, 15, 18, 23 9, 11, 14‐15,
18, 24

7, 8, 13,
17, 19

9, 16, 23,
26, 33, 45

14, 16, 19‐20,
24, 34, 77

3, 30, 38 2‐3, 8, 10, 13,
15, 19, 24, 33

2, 37, 63, 91

Crystallinity
(BSE; Petrologic scope)

32% 47% 3% 30% 40% 17‐23%c 3.7% 25%

Eruption liquidus
temperature (°C)
calculated using MELTSg,h

1,193.46 1,179.39 1,172.75 1,163.57 1,188.77 N/A 1,071.58 1,058.11

Viscosity ‐ Pa s
(after Pinkerton &
Stevenson, 1992)

423 4,152 550 2,331 5,287 N/A 1,454,623 9,049,271

Note. Compositional data for SSP, MB, and BRL are averages from multiple XRF analyses conducted through this study. LB, LC, and RM are analyses from just
one sample each, not an average. BO and KB compositions are referenced by superscript numbers next to their SiO2 values. Uncertainty of viscosity calculations
is within 1 order of magnitude. N/A, not available. Regarding Crystallinity, bold values were determined using backscatter electron images from a scanning elec-
tron microscope, while the italicized values were determined using images from a petrologic microscope. Remaining crystallinity values are referenced values
from the literature.
aMckKay et al. (2009) and MacLeod et al. (1995). bMacLeod and Sherrod (1992). cFierstein et al. (2011). dFierstein et al. (2011) and Scott (1987). eJensen
et al. (2009). fMurase and McBirney (1973). gAsimow and Ghiorso (1998). hGhiorso and Sack (1995).
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crystallization dramatically changes both the rheology and surface morphology (converting from pahoehoe
to a′a) through increasing shear rate (Soule & Cashman, 2005). Volcanic arc magmas, in contrast, are H20‐
rich and typically more evolved, often experiencing extensive decompression‐driven crystallization during
magma ascent (e.g., Blundy & Cashman, 2005; K. Cashman & Blundy, 2000; Geschwind & Rutherford,
1995; Hammer & Rutherford, 2002). Increased crystallinities will increase magma viscosity but not
necessarily affect bulk composition of a lava flow. Therefore, although magmas of more evolved
compositions should have thicker crusts and produce larger surface fold wavelengths, due to variability in
crystallinities between magmas of similar compositions, composition alone may not directly correlate to
resulting surface fold wavelengths.

A detailed comparison of lava flow viscosity with surface fold wavelengths and amplitudes has not been
accomplished. In fact, very few surface fold wavelengths of lava flows have been reported in the literature.
In this study we use a common digital signal processing technique, DFT analysis, to remotely quantify
surface fold wavelengths of eight lava flows by analyzing lava surface profiles extracted from high

Figure 2. Example 1,000‐m along‐channel profile. (a) Lidar digital terrain model of surface folds within a well‐channe-
lized lava flow. The white line represents the location of 1,000‐m‐long profile from which the elevation data were
extracted. (b) Plot of extracted elevation data showing pronounced surface folds at multiple wavelengths. (c) Detrended
elevation profile from (b) used in discrete Fourier transform analyses. Note that the large‐scale rise and fall of profile (c) is
due to changes in slope observed in (b). A small window size (≤300m) for the discrete Fourier transform analyses was
chosen to avoid detection of such large‐scale features, unrelated to surface folding.
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resolution lidar DTMs. We then compare dominant fold wavelengths with lava composition and viscosity.
The wavelengths of surface folds should scale with crustal thickness and flow viscosity, which depend on
effusion rate and lava composition. However, there is not currently a numeric model that directly relates sur-
face fold wavelengths with lava rheology.

2. Methods
2.1. Discrete Fourier Transforms

To determine the characteristic scale of prominent surface folds, we extracted 500‐ or 1,000‐m along‐channel
profiles at 1‐m sample intervals from lidar‐derived DTMs gridded at 1‐m horizontal resolution in ArcGIS.
Profiles were selected from segments of pronounced surface folds (Figures 2a and 2b) from eight lava flows
of varying compositions. About 500‐m profiles were chosen for shorter or confined segments of folding,
and 1,000‐m profiles were used for all other segments. All profile segments used in this study are available
in Supporting Information S1. All lava profile elevations were detrended by subtracting the best fit line so
their average elevation and slope were both zero (Figure 2c). This reduces the effect of large steps in profile
elevation at either end of the profile on the spectral analyses and eliminates the overall first‐order trend
(slope) of the profile. All adjusted profiles were then analyzed using the DFT, consisting of an averaged
modified periodogram.

Our detailed analyses of the surface folds measured the characteristic wavelengths (defined as the distance
from crest to crest between folds in the direction perpendicular to the ridge crests) for each representative
profile by one‐dimensional (1‐D) DFT analysis (Figure 3a), which can be used to determine the mean‐
squared amplitude and spatial scale (wavelength) of periodic and quasiperiodic surface features (Booth
et al., 2009; Perron et al., 2008; Rayner & Golledge, 1972). A DFT of a 1‐D data set z(x) consisting of Nx mea-
surements spaced at an even interval Δx is written as

Z kxð Þ ¼ ∑
Nx−1

m¼0
z mΔxð Þe−2πi kxm

Nxð Þ (1)

where kx is the wavenumber in the x direction, m is the index in the z profile (x = mΔx), Δx is the grid spa-
cing, and i is the imaginary number

ffiffiffiffiffiffi
−1

p
(Priestley, 1981). For efficiency of the DFT algorithm, profiles were

padded with zeros on both ends so that the profile length was increased to the next highest power of 2. The
power spectrum for the DFT analysis is estimated using the power spectral density (PSD):

PPSD kxð Þ ¼ Δx
Nx

Z kxð Þj j2
� �

(2)

where the brackets indicate the magnitude, and which has units of amplitude squared per unit x frequency
(m2/frequency). This DFT analysis and all calculations were completed using Matlab version R2015a
(MathWorks, Inc.). An example of our Matlab code used for DFT analyses of the lava flow profiles is pro-
vided in Supporting Information S2.

Our DFT analysis measured the PSD of the input profile (elevation with distance) using Welch's PSD esti-
mate (pwelch) with a 200 m (most flows SS, Lava Cascade [LC], LB, Mokst Butte [MB], and Big Obsidian
Flow [BO]) or 300m (Black Rock Lava‐Hamner Butte [BRL], Kokostick Butte [KB], and Rock Mesa [RM])
Hamming window with 50% overlap. Window size was chosen to (1) minimize the local slope effects, which
typically vary over several hundredmeters, and (2) to produce the most defined spectral peaks over the range
of frequencies observed. The PSD analyses produce 1‐D power spectra, which describe how the amplitude of
lava surface topography varies over a range of spatial scales (wavelength), or equivalently, over a range of
spatial frequencies (Figure 3a). DFT spatial frequencies have units of m‐1, the inverse of which provides fold
wavelengths (ʎ) in meters. To statistically identify characteristic wavelengths of lava surface morphology,
the 1‐D power spectra were normalized by dividing representative segments by their best fit power law
trendline, making deviations from the power law (background spectra) more apparent (Figure 3b).
Rednoise background spectra were also fit to each profile; however, they do not fit the power spectra well
at intermediate and high frequencies. Therefore, power law trendlines provided the best fit background
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Figure 3. (a) Example 1‐D array of spectral density derived from our discrete Fourier transform (DFT) power
spectral density analyses using the lava profile from Figure 2. Note the strong deviations (bumps) from the power
law trendline (solid black line), which represent dominant wavelengths of surface folds that exceed the 95% confidence
(dotted red line). The shaded region represents data that exceeds the DFT analysis window size, not included in our
discussion. (b) Normalized power spectral density, allowing easier viewing of dominant wavelengths that exceed the
95% confidence.
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spectra. Examples of the power spectral densities and normalized spectra for each lava flow analyzed are
shown in Supporting Information S3.

Deviations of the power spectra above the power law trendline objectively define characteristic morphologic
features. Those with at least 95% significance have peaks three times greater than the background power law
spectra (Torrence & Compo, 1998; represented by red dotted lines in Figures 3a and 3b and S3 in the support-
ing information). Although PSD has units of amplitude squared per unit frequency (m2/frequency), it does
not directly represent the amplitude of the lava surface fold waveforms that one would measure in the field.
This is because the folds are neither exactly periodic nor perfectly sinusoidal, such that their spectral power
is spread out over a range of wavelengths. PSD quantifies the contribution of each discrete wavelength
sampled to the total variance of the detrended profile.

2.2. Field Samples

Rock samples were collected from seven lava flows (none from KB) of varying compositions in the central
Oregon Cascades. Samples were sent to the GeoAnalytical Lab at Washington State University for
ThermoARL X‐Ray Fluorescence spectrometer analysis of all major and trace elements. This data set was
supplemented by bulk composition analyses within the literature. Geochemical data are reported in
Table 1. Thin sections were produced for petrographic analyses and scanning electron microscopy.
Petrographic microscope and scanning electron microscopy back scatter electron images were used to quan-
tify crystallinities (ϕ) using ImageJ software. Many of the lava samples collected were completely crystalline,
having continued crystallization synemplacement and postemplacement. While lava may crystallize during
and postemplacement, tephra is rapidly quenched by air and can provide an estimate of microlite crystalli-
nity at the time of the eruption. Therefore, we analyzed tephra samples from South Sugarpine (SSP), LB, MB,
and BRL, assuming that the tephra collected were immediately quenched, ceasing crystallization upon
eruption. No tephra was collected for LC, BO, and RM. For these flows, thin sections of the lava flows were
analyzed, in which we separated dual populations of crystals, including only those ≥30‐100 μm in length
(minimum accepted size varied for each lava flow) were considered, ignoring all groundmass microlites
(<30 μm). While this method likely produced minimum possible crystallinities for LC, the BO and RM
values are likely representative as rhyolites typically have limited decompression and syneruption crystalli-
zation (K. Cashman & Rust, 2016).

2.3. Lava Viscosities

The primary goal of this study is to link surface features (i.e., dominant wavelengths of folds) to lava compo-
sition or rheology, such as viscosity. The lava flows of this study were not observed during emplacement.
Therefore, we calculated lava viscosities (η) using the numeric model of Pinkerton and Stevenson (1992)
using the known variables, composition, and crystallinity. In the equation

η ϕð Þ ¼ ηf e
2:5þ ϕ

ϕmax−ϕ

� �0:48
h i

ϕ
ϕmax

n o
(3)

ϕ is the measured crystallinity (considering only phenocrysts and microphenocrysts ≥ 30‐100 μm) and ϕmax

is an assumed maximum crystallinity (0.7) above which flow ceases/viscosity becomes infinite (Gay et al.,
1969; Marsh, 1981; H. Pinkerton & Stevenson, 1992). ηf is the fluid viscosity calculated as a function of com-
position and temperature (after Shaw, 1972), using

ln ηf
� �

¼ s
104

T

	 

−scT þ cη (4)

where T is eruption liquidus temperature (calculated using MELTS [Asimow & Ghiorso, 1998; Ghiorso &
Sack, 1995]), s is a characteristic slope for η‐T relationship (calculated using composition), and cT and cη
are T‐ and η‐dependent constants. Due to uncertainties associated with unknown eruption conditions, par-
ticularly eruption temperature, during emplacement of the lava, viscosities calculated in this manner can be
estimated to within an order of magnitude (H. Pinkerton & Stevenson, 1992). Viscosities calculated using the
Pinkerton and Stevenson (1992) method should be considered minima as crystallinities, and resulting visc-
osities, will increase during lava emplacement as lava cools and groundmass crystallinity increases.
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2.3.1. A Note on Viscosity Calculations
The authors recognize the Pinkerton and Stevenson (1992) model is
dated and there are numerous more recent, and possibly more robust,
viscosity calculations, including (but not limited to) Costa et al. (2009);
Caricchi et al. (2007); Giordano et al. (2008); Harris and Allen (2008);
and Mader et al. (2013). We have chosen to use the Pinkerton and
Stevenson model due to its extensive use in the literature over the last
few decades. In section 4.1 we compare our results to those recorded
in the literature and many use the same viscosity calculations. We
therefore opted to use the more dated model in order to produce a more
direct comparison. Our approach of comparing dominant surface fold
wavelengths with calculated viscosities would work using any viscosity
numerical model.

3. Results
3.1. DFT Surface Analysis

DFT analysis of 500‐ and 1,000‐m profiles provide a measure of spectral
power over a range of frequencies. The spectral power of the analyzed lava
profiles decrease with increased frequency, as expected for landforms
(Perron et al., 2008). A relatively flat lava profile with no topographic fea-
tures (other than block sizes) would follow this trend (the power law
trendline) without significant deviations. Prominent morphological fea-
tures (such as surface folds, tumuli, and extensional cracks) produce
deviations from the trend in the form of vertical fluctuations at intermedi-
ate frequencies (Figure 3). The underlying assumption is that surface fold-
ing is quasi‐periodic such that it concentrates spectral power over a
narrow range of frequencies, and other features, such as extensional
cracking and tumuli, are not, which allows us to extract the dominant
wavelengths of folding by looking for peaks in the power spectra.

Because the lava surface features are not perfectly sinusoidal or periodic, the vertical fluctuations tend to
form somewhat broad, rather than sharp, peaks, particularly at longer wavelengths. We refer to spectral
peaks that rise above the 95% significance level (red dotted line, Figure 3) as dominant wavelengths repre-
senting the most prominent and periodic surface folds. We confine our analysis of dominant wavelengths
to frequencies of 0.5‐0.01m‐1 (λ = 2‐100m) for DFT analyses using 200‐m windows and 0.5‐0.0067m‐1 (λ =
2‐~150m) for analyses using 300‐m windows. Wavelengths longer than these cutoff values (lower frequen-
cies) deviate from power law scaling and are possibly influenced by the zero padding on both ends of
the window.

In all flows, low spectral power at high frequencies are noisy above 0.2m‐1 (λ < 5m), smoothing out
(less noisy) with decreased frequency. The lowest spectral power values lie at frequencies ~0.3‐0.5m‐1 and
vary among lava flows (Figure 4), and between some profiles from the same flow, suggesting that the signal
is not a gridding artifact. Instead, the noisy, high‐frequency signals may be due to surface roughness or
the inherent uncertainty in the lidar data (discussed further in section 4.2). No signals are detected beyond
0.5m‐1 (λ ≤ 2m), which corresponds to the Nyquist frequency, defined as twice the spacing of the gridded
lidar data (1m horizontal) from which the profiles are extracted.

DFT spectra show variations in surface folding characteristics at intermediate frequencies (Figure 3).
Vertical fluctuations are enhanced and objectively defined by normalization to the power law of the spectral
signal (Figure 3b), and, in this example, show distinct peaks at wavelengths of 40‐50m, 20m, and 5‐10m that
reflect the frequency range (0.025‐0.2m‐1) of elevated spectral density. Only the 20‐m and 5‐ to 10‐m
wavelengths exceed 95% significance and are considered dominant wavelengths. Small wavelength signals
of 5‐10m are present in all spectra and may represent first generation folding that is not visually discernible
directly from the DTM or using profiles extracted from the DTM. DFT analyses, therefore, provide a techni-
que to quantitatively and objectively define surface features that may be indistinguishable or present some

Figure 4. Representative discrete Fourier transform (DFT) spectral
density arrays for each lava flow analyzed in this study. Low spectral
density signals have rapid fluctuations at high frequencies (above 0.2m‐1)
but smooth out to form broad peaks at intermediate and low frequencies.
The power spectral density arrays vary between lava flows and, to a lesser
extent, from one lava profile to the next from the same lava flow (not shown
in figure). The power spectra of Kokostick Butte lies below the spectra of
all other flows at intermediate and high frequencies, likely due to blanketing
of Mazama ash filling in troughs and depressions and reducing the
periodicities detected.
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ambiguity during manual measurements. Folds with wavelengths larger than 5‐10m probably represent
subsequent fold generations. Multiple fold generations are common in Hawaiian pahoehoe flows and
record thickening of the surface crust during flow (e.g., Fink, 1980; Fink & Fletcher, 1978; Gregg et al., 1998).

In general, more evolved compositions (RM and BRL, but excluding BO) appear to have deviations
(increased spectral signatures) from their power law trendlines at longer wavelengths, and more mafic flows
(SSP and LB) have deviations at intermediate and shorter wavelengths. To test this hypothesis, a simple
linear regression was calculated using the average dominant wavelengths (large circles in Figure 5) fro-
m each flow to predict dominant wavelengths based on SiO2 content, resulting in a regression equation
(F[1,6] = 1.746, p < 0.235), with an r2 of 0.225 and 95% confidence intervals (CIs) on the regression slope
of [‐0.6, 2.0]. For this analysis the CI includes zero, meaning we cannot reject the null hypothesis that there
is no relationship between dominant wavelength and SiO2 content. Regressions in this study are all analyses
of variance where F is the test statistic with the degrees of freedom for both the regression and residual
reported in parentheses, respectively, and p is the p‐value indicating the significance of the test. Although
there was not a statistically significant relationship when all flows were considered, dominant wavelengths
range from ~11‐23m for the most mafic lava (SSP) to 37‐91m for the most felsic lava (RM). The relatively low
r2 value is likely due to a few outliers, where some lavas have lower (BO) or higher (BRL and RM) than
expected average dominant wavelengths. These outliers are discussed more fully in section 4.2. Dominant
wavelengths for each lava flow are listed in Table 1, and individual spectra are shown in Supporting
Information 3.

4. Discussion

Several authors have attempted to relate surface folding to lava rheology (e.g., Fink, 1980; Fink & Fletcher,
1978; Gregg et al., 1998). Fink and Fletcher's (1978) analysis assumes that lava viscosity decreases exponen-
tially from the surface to a constant interior value. Minimum lava viscosity can be estimated if wavelength
and crustal thickness are known. Crustal thickness is typically estimated from measured fold amplitudes or
depths of surface cracks. However, fold amplitudes measured in this way may be too low if compression has

Figure 5. Dominant wavelengths of lava surface folds vs SiO2 content in weight percent. Discrete Fourier transform ana-
lyses of each lava flow segment identified multiple dominant wavelengths (small circles), likely representing multiple
generations of surface folding. The large circles represent average dominant wavelengths for each flow. The black line
represents the average dominant wavelength trendline, showing a general increase in dominant wavelength with SiO2.
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pinched off the anticlinal trough or if the trough has been filled with debris. Additionally, in more evolved
lavas the fold wavelengths may be large enough that the folding process is influenced by the base of the flow
(Gregg et al., 1998), which negates Fink and Fletcher's (1978) original assumption that the flow interior has
an infinite depth.

In a folding analysis of layered obsidian and pumice in rhyolitic lava, Castro and Cashman (1999) relate
dominant wavelength (Wd) to layer thickness (T) and the shear viscosity ratio (μl/μm) between layers
through:

Wd ¼ 2πT
μl
6μm

	 
1=3

(5)

assuming that both the fold and matrix behave as Newtonian fluids (after Biot, 1961). In this relationship,
dominant wavelength increases as a function of thickness andweakly, to the one‐third power, with the shear
viscosity ratio. Remotely one cannot determine the shear viscosity ratio between lava surfaces and their
interiors. However, the wavelengths of surface folds should also scale with crustal thickness and flow visc-
osity, which depend on effusion rate, lava composition, and crystallinity. Therefore, increases in surface fold
wavelengths should correlate with more evolved (higher viscosity) lava compositions.

Gregg et al. (1998) attempted to link surface folding with lava composition by calculating the ratio (Λ) of
second generation folds to first‐generation folds. The authors determined, while Λ generally decreased with
more evolved lavas, there was significant overlap for andesite, dacite, and rhyolite lavas, disallowing a
unique correlation between folding and composition. The conclusions of Gregg et al. (1998) are quite similar
to our study in that we also find significant overlap in dominant surface fold wavelengths for lavas ranging
from basaltic andesite to rhyolite (Figure 5).

4.1. Dominant Wavelengths Versus Viscosities

Using results from our DFT analyses, a comparison of dominant wavelengths with composition does not
show a significant trend between average dominant wavelengths and SiO2 content (Figure 5), and has a lim-
ited goodness of fit (r2 = 0.225), due to the relatively large variability in dominant wavelengths within a given
flow compared to the variability among different flows. Specifically, SSP and LB have higher average domi-
nant wavelengths than the slightly more evolved LC; the andesite lavas, BRL and MB, have higher average
and maximum dominant wavelengths than the dacitic KB; and BO has significantly lower wavelengths than
the other rhyolite flow analyzed, RM.

It is important to note our data set does not represent the full range of possible lava compositions.
Specifically, we did not analyze any true basalt (<52wt% SiO2) and do not adequately cover the dacite‐
rhyolite transition (63‐72wt% SiO2). In an attempt to fill these gaps we have supplemented data from the
literature (Figure 6), using maximum and minimum reported surface fold wavelengths and compositions
from Kilauea and Mauna Loa, Hawaii; Arenal, Costa Rica; Santorini, Greece; the Chao dacite from the cen-
tral Andes Altiplano‐Puna Volcanic complex in Chile; and Big Glass Mountain, California (references listed
in Figure 6). With this more robust data set we see that the Chao dacite, in particular, has much higher fold
wavelengths than all other lava flows (Figure 6 inset), including rhyolite. Additionally, basalt has much
lower fold wavelengths, ranging from a few centimeters to 10m. It should be noted that most basalt flows,
particularly those with fold wavelengths ≤2m, cannot be identified using the airborne‐derived DTMs, as
in this study, but could be analyzed with higher resolution DTMs derived from terrestrial laser scanning
or through manual measurements. Andesite and rhyolite surface fold measurements from the literature
appear to have similar values to those produced by DFT analyses in this study.

Considering the fold wavelengths from this study and the literature, there may be a general nonlinear trend
showing dominant wavelengths increasing with SiO2 content. However, the deviations from this nonlinear
trend, especially for dacite and rhyolite, and the low goodness of fit from our DFT‐derived average dominant
wavelengths (Figure 5), suggest the relationship between fold wavelength and SiO2 content is not a direct
correlation. Instead, plotting average dominant wavelengths against calculated viscosities (Figure 7a; calcu-
lated viscosities listed in Table 1) results in an improved simple linear regression equation (F[1, 5] = 10.71,
p < 0.022), with an r2 of 0.682 and 95% CI [6.6×10‐7, 5.6×10‐6]. Since the CI does not include zero, we reject
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the null hypothesis and find that there is a positive trend. The quality of the regression (i.e., the value of r2) is
improved if we expand the range of viscosities by supplementing the data set with average fold wavelengths
and viscosities from the Chao dacite (Desilva et al., 1994) and basalt from Mauna Loa and Kilauea
(H. Pinkerton & Stevenson, 1992), producing a simple linear regression (F[1, 8] = 51.64, p < 9.37×10‐5),
with an r2 of 0.866 and 95% CI [1.4×10‐10, 2.7×10‐10] (Figure 7b). This analysis also has a CI that does not
include zero, allowing us to reject the null hypothesis and state there is a positive correlation between
dominant wavelength and viscosity. Overall, we suggest that fold wavelength and composition have an
indirect correlation that is only partially due to SiO2 content. A more direct relationship is found between
fold wavelength and effective viscosity, controlled, in part, by composition, but also crystallinity.

Although melt viscosity increases as compositions become more evolved, effective viscosity is also strongly
influenced by the crystal content of the lava. For example, obsidian flows by definition typically have low
crystallinities. In contrast, H2O‐rich andesite and dacite lavas often have high crystallinities due to extensive
decompression‐driven crystallization, while rhyolitic lavas show very little decompression crystallization
(K. Cashman & Rust, 2016). The effects of crystallization are twofold: addition of solid particles increases
the effective viscosity (e.g., Costa, 2005) and crystallization increases the silica content (and viscosity) of
the remaining matrix melt. Thus, andesitic lavas may have matrix glass compositions that approach low‐
Si rhyolite, while dacite lavas often have high‐Si rhyolite matrix melt compositions (e.g., K. Cashman &
Blundy, 2000).

The influence of crystallinity on effective viscosity is observed in Figure 7 as deviations from the predicted
order (based purely on composition) of lava flow viscosities. Effective viscosity, controlled largely by crystal-
linity, does not simply increase with SiO2 (Table 1). Specifically, LB has a slightly less evolved composition
relative to LC and MB but has an effective viscosity an order of magnitude higher than LC and almost twice
that of MB, due to differences in crystallinity of 44% and 17%, respectively. BRL has a similar composition to
MB but has viscosities over 2 times greater due to 10% greater crystallinity. BO and RM are very similar com-
positionally, but RM has >7.5×106 Pa s higher viscosity, likely due to the ~20% greater crystallinity.

Figure 6. Dominant wavelengths determined in this study, plotted on a log plot with others from the literature (references
listed in legend) vs SiO2 content. Inset shows the same data in a nonlog plot. There is significant overlap of dominant
wavelengths for lavas ranging from basalt to rhyolite, particularly for basaltic andesite and andesite lavas. However,
note the much lower dominant wavelengths of basalt from Kilauea and the extremely high fold wavelengths of the
Chao dacite.
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Similarly, the extreme fold wavelengths and flow front thicknesses
(<400m) of the Chao lava flow likely reflect dacitic lava with crystalli-
nities of 40‐60% creating viscosities ranging from 1010‐1012 Pa s for inter-
nal plastic viscosities to 1015‐1024 Pa s for surface viscosities (Desilva
et al., 1994; Figure 7b). Basaltic lava flows, with dominant fold wave-
lengths on the order of centimeters (J. H. Fink & Fletcher, 1978) to meters
(K. V. Cashman et al., 2013; light gray region‐ Figure 7b), have a large
range in viscosity (102‐105 Pa s) that is strongly influenced by crystallinity
(e.g., Harris & Allen, 2008; Lipman & Banks, 1987).

In this study, each lava flow exhibits a range of dominant surface fold
wavelengths, which likely represent multiple generations of folding due
to fluctuations in viscosity during emplacement. The viscosity of a lava
flow increases during emplacement as the lava cools, solidifies forming
surface crust, and crystallinity increases. This process is important in
the development of surface folds, and, particularly, in multiple fold gen-
erations as viscosity increases and surface crust thickens (e.g., J. H. Fink
& Fletcher, 1978). The surface folds detected with our DFT analyses likely
represent a range of viscosities, with larger fold wavelengths representing
greater viscosities and temporally younger (occurring later in eruption
sequence) fold generations, due to greater viscosities and thicker crust.
Therefore, the maximum dominant wavelengths for each flow should
represent the maximum viscosity that the lava flow surface crust experi-
enced. However, as each of these flows was not observed and measured
syn‐emplacement, we cannot determine the total range of viscosities that
influenced formation of surface folding. We have presented lava viscos-
ities as single (minimum) values, which should best represent the average
or smaller dominant wavelengths. Additionally, although the maximum
dominant wavelength for each flow generally increases with effective
viscosity, with the exceptions of LC, LB, and BO (Figure 7), the relation-
ship between max dominant fold wavelength and viscosity has a linear

regression of (F[1, 5] = 4.71, p < 0.082), with an r2 of 0.485, producing a
weaker correlation with viscosity than average dominant wavelengths.

While the average dominant wavelengths vs viscosity provides a reason-
able goodness of fit and is statistically significant, it is a somewhat weak
correlation and we are not completely confident in using this correlation
for the purposes of prediction due to gaps in our current data set.
Additional DFT analyses of lavas with viscosities of 103‐>1012 Pa s are
needed to create a more robust data set from which a numeric model
can be produced to remotely characterize the viscosity of lava flows strictly
from their dominant fold wavelengths. This will include analyzing lava
flows ranging from basaltic andesite to rhyolite in composition but also

requires analysis of lava flows of similar compositions, but over a range of crystallinities, which will allow
us to more fully determine the influence of crystallinity on viscosity and resulting dominant
fold wavelengths.

4.2. Eruption Conditions

In addition to composition and viscosity, the range of fold wavelengths observed for an individual flow is
likely influenced by effusion rate and eruption temperature. Eruption rate will influence the rate of crust for-
mation as well as flow velocity differentials between the lava crust (margins and surface) and flow interior.
The effect of effusion rates on surface folding is poorly understood, as high eruption rates will create greater
instabilities between fluid interiors and forming crust, but will also transport surface crust a greater distance
before and during solidification. The rate of lava crust formation is largely controlled by eruption

Figure 7. (a) Discrete Fourier transform dominant wavelengths vs calcu-
lated effective viscosities showing a generally increasing trend, with only a
couple of exceptions (see section 4.1). Big Obsidian flow, in particular,
has much lower dominant wavelengths than expected for a rhyolite flow
with high viscosity. (b) The discrete Fourier transform dominant fold
wavelengths vs viscosity on a log‐log plot. The shaded regions represent
ranges of fold wavelengths and viscosities reported in the literature for basalt
(light gray) and the Chao dacite, Chile (dark gray).

10.1029/2019GC008497Geochemistry, Geophysics, Geosystems

DEARDORFF ET AL. 3964



temperature and cooling rate. For example, a hot, incandescent basaltic flow will not have a solidified crust
until cooling further from the vent, while a cooler, more evolved flow will emerge with a surface crust that
exhibits a yield strength and could experience greater microlite growth.

Eruption conditions appear to affect the dominant wavelengths of flows analyzed in this study. The basaltic
andesite LB has a calculated viscosity bracketed by the andesite lavas MB and BRL, but with lower maxi-
mum and average dominant wavelengths, possibly due to higher eruption temperatures. Alternatively,
MB and BRL may have higher than expected dominant wavelengths, based on viscosity, which could be
due to cooler eruption temperature and perhaps greater microlite crystallization within the conduit and
syn‐eruption. BO has dominant wavelengths lower than expected, based on its viscosity, and significantly
lower than RM, which cannot easily be explained by variations in eruption conditions. However, obsidian
flows, including BO, are commonly composed of alternating layers of obsidian, vent‐facies rhyolite, finely
vesicular pumice, and coarsely vesicular pumice (Castro et al., 2002; Manley & Fink, 1987). The pumiceous
layers are much more compressible than obsidian and could be deformed during emplacement affecting the
resulting surface fold wavelengths, allowing more compression than in nonpumiceous lava, potentially nar-
rowing the distance between waveform crests. Castro and Cashman (1999) found that the relative thickness
between pumice and obsidian layers governed the style of folding and fold wavelengths and that local
flattening and extension were often observed in pumice layers around fold hinges. Obsidian flows with
significant pumiceous layers of varying thicknesses may have somewhat unpredictable dominant fold wave-
lengths. If BO is removed from the linear regression of average dominant wavelengths from our DFT analy-
sis (Figure 7a), the correlation is slightly improved; (F[1, 4] = 13.38, p < 0.0.021), with an r2 of 0.77.

4.3. Lava Flow Roughness

The variation observed in the spectral power of lava profiles is greatest at intermediate and low frequencies
(intermediate and high λ) but also varies at high frequencies (low λ). Since all lidar data were collected with
similar spatial point densities and all DTMs were gridded at 1‐m horizontal resolution, we suspect that the
power spectra are recognizing natural features, rather than inherent variability in the lidar data itself, even
at the high frequencies recognized. To examine the high frequency variability, we calculated lava flow
roughness on all detrended lava profiles using a root‐mean‐square height (RMSH) analysis (after Shepard
et al., 2001).

RMSH ¼ 1
n−1

∑
n

i¼1
z xið Þ−zð Þ2

� �1=2
(6)

In this analysis, n is the number of sample points and z (xi) is the height of each point (xi) above or below the
mean elevation of the detrended profile (z). The RMSH quantifies fluctuations (both positive and negative)
from the mean (z), providing a roughness value comparable between lava flows. Unlike the DFT, the RMSH
does not parse the contributions of individual wavelength features to the overall topographic variance. The
calculated roughness, therefore, may include large block sizes or clusters of blocks, surface folds (peaks and
troughs), extensional cracks, and small changes in slope not corrected during detrending.

Dominant wavelengths of surface folds when plotted against lava surface roughness produce a simple linear
regression (F[1, 6] = 23.43, p < 0.003), with an r2 of 0.796 (Figure 8a). This suggests that longer wavelength
folds tend to be higher in amplitude than shorter wavelength ones, thereby contributing more to the RMSH.
This is consistent with the power law decrease observed in all lava flow power spectra. LB and BO both have
higher roughnesses than expected, suggesting that they may have larger block sizes, or other influencing
factors, than lavas with similar dominant fold wavelengths.

In Figure 8b we have plotted the power law trendlines for the power spectral densities shown in Figure 4, but
only showing the high frequency end of the spectra (i.e., wavelengths shorter than 10m). With the exception
of KB and BO, the highest frequency signals (right end of trendlines) increase power spectral densities from
one lava flow to the next in the same order that roughness increases in Figure 8a (SSP‐LC‐MB‐LB‐BRL‐RM).
This is expected as our DFT analysis is measuring the topographic variance (standard deviation squared) as a
function of individual wavelengths. The total sum of the DFT periodogram equals the total variance of the
profile being analyzed. The RMSH analysis is essentially the standard deviation of height (=sqrt [variance]),
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creating a tight coupling between RMSH and our DFT power spectra, with a few differences due to the DFT
being a windowed analysis. The high frequency power spectral densities of KB and BO are lower than
expected due to other influencing factors. KB has a much lower PSD at high frequencies than all other
flows but has similar PSD at low frequencies (Figure 4). This is likely due to its partial covering of
Mazama ash, which was deposited during the catastrophic eruption that formed Crater Lake, filling in
troughs between surface fold ridges and, perhaps between lava blocks. The partial covering and
smoothing of KB is likely decreasing its original surface roughness and reducing its PSD at high
frequencies. BO has been consistently different from the other flows in all of our analyses. We suggest
that the compressible pumice layers of BO alter the dynamics of surface crust formation and surface

Figure 8. (a) Dominant fold wavelengths vs calculated lava profile roughness. Surface folding appears to strongly impact
the overall roughness of each lava profile generating a positive correlation. (b) Trendlines for each discrete Fourier
transform (DFT) power spectral density from Figure 4 are plotted. Power spectral densities at the highest frequencies
increase with increased roughness with only two exceptions: KB and BO (see section 4.2 for discussion).
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folding significantly, and, therefore, effect roughness and PSD. The implications from our analyses is that
fold wavelength, total roughness (from the RMSH), and high‐frequency roughness (from the DFT) all covary
and generally increase with calculated viscosity, which implies that more viscous flows not only produce
longer fold wavelengths but also produce rougher surfaces over the full range of spatial frequencies.

5. Conclusions

In this study we have shown that DFT analyses can be used on lava surface profiles to extract dominant fold
wavelengths, a technique that has been rarely used on volcanic landforms. For each lava flow analyzed at
least three dominant surface folds were identified, suggesting that the DFT analyses detect multiple fold gen-
erations. Multiple‐fold generations for each flow likely represent progressive thickening of the lava crust and
increased viscosity as the flow advances and evolves, as seen in basaltic flows in Hawaii. In this study we
found that average dominant wavelengths did not increase with more evolved composition but did increase
with calculated lava viscosity, with only a few exceptions. However, the ranges of dominant wavelengths
show significant overlap for most lava flows ranging from basaltic andesite to rhyolite. Specifically, the
10‐ to 20‐m dominant wavelengths are present in nearly all lavas (missing only from KB, likely due to its
coating of Mazama ash) and likely represent early fold generations. Because our calculations presented
minimum viscosities, our analyses seem to best represent the average dominant viscosities, which have
the most statistically significant correlation. However, the maximum dominant wavelength for each flow
may be the most representative as they indicate the final and maximum viscosity and crust thickness
achieved. Additionally, larger dominant wavelengths are often still apparent even with some sedimentation
on the lava and are detectable with DFT analyses, even though the overall power spectra (and overall rough-
ness) will likely be reduced relative to a fresh, uncovered flow. Another viscosity calculation that better
represents maximum viscosity of the lava may be needed for future studies.

In our analyses we observed a few exceptions to the fold wavelength vs viscosity trend, which include varia-
tions in fold wavelength from lavas of similar composition or viscosity and, for most flows, may be explained
by differences in eruption temperature, eruption rates, or emplacement conditions. Analyses of a larger
number of flows and a wider range of lava compositions and viscosities may allow us to determine typical
ranges of surface fold wavelengths for a given composition or viscosity. Obsidian flows, however, may be
more difficult to remotely characterize as BO has significantly lower dominant wavelengths than other rhyo-
lite lavas, likely due to compressible pumice layers within the obsidian that altered the formation of surface
folds. Therefore, obsidian flows with significant pumice contents may require an alternative means of
remote characterization. It is also possible the relatively low dominant wavelengths and high surface rough-
ness of BO may suggest a signature for obsidian flows with significant pumice layers and low crystallinity.
More obsidian flows will need to be analyzed by DFT to determine if the low dominant fold wavelengths
detected at BO is typical for all obsidian flows.

We have also shown that DFT power spectral densities (particularly at the highest frequencies) correlate with
lava profile roughness and that dominant fold wavelength is closely related to lava surface roughness. Due to
the resolution of the airborne lidar data used in this study and the nature of DFT analyses, we are unable to
directly measure lava block sizes. However, the highest frequencies (>0.2m‐1) that produced the lowest
power spectral densities may represent differences in relative block sizes. All lava profiles analyzed have
strong deviations from the trendline at frequencies >0.2m‐1 (Figure 4 and Supporting Information S3), sug-
gesting a natural signal that may represent first generation folds or, perhaps, relate to block size. The most
evolved lavas (KB, BO, and RM) have deviations with 95% confidence at frequencies >0.2m‐1 that have been
reported as dominant wavelengths in this study. These 2‐ to 3‐m dominant wavelengths are of a significantly
different scale than the other dominant wavelengths detected (>30m for KB and RM), suggesting that they
may instead represent large block sizes or block clusters. These high‐frequency, low PSD signatures
may provide a means to remotely estimate block sizes of evolved lavas in extremely remote regions and
extraterrestrial environments.

A primary goal of this project was to determine a numeric correlation between dominant wavelengths of sur-
face folds and lava rheology that would allow remote characterization of lava flows. Although the average
dominant wavelengths determined in this study produce a statistically significant positive linear
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regression (r2=0.68), we do not feel confident producing a numeric model defining this relationship due to
the limited data set and the significant overlap of dominant wavelengths between flows. To produce a viable
model that can be used to remotely characterize the rheology (viscosity) of lava flows, a more robust data set
is needed, specifically including DFT‐derived analyses of basalt and dacite. With lidar DTMs becoming
increasingly available, we suspect that the appropriate data sets and lava flows will soon be accessible. In this
study we have shown that DFT analyses can be used to quantitatively characterize surface morphologies,
such as dominant surface folds, of lava flows, which can then be compared to lava rheology. DFT analyses
provide a versatile tool for remotely characterizing lava flows with significant implications for possible
future analyses of volcanic terrains on Earth and other extraterrestrial bodies.
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