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Abstract
Estimability and S-systems are important concepts when dealing with rank-defect models. In this contribution, we generalize
the concept of estimability to integer estimability and determine the necessary and sufficient conditions that need to be satisfied
for parameter functions to be integer estimable. This is then worked out and applied to the integer estimability analysis of
GNSS observation equations.We hereby consider both network ambiguity resolution and single-receiver PPP-RTK ambiguity
resolution. In our analyses, use is made of graph theory and properties of the ambiguity incidence matrices of the bipartite
and connected network graphs.

Keywords Global navigation satellite systems (GNSS) · Integer estimability · Integer ambiguity resolution (IAR) ·
Ambiguity graphs · Ambiguity S-basis

1 Introduction

TheundifferencedGNSSobservation equations of phaseφs
r , j

and code psr , j of receiver r (r = 1, . . . , n) tracking satellite
s (s = 1, . . . ,m) on frequency f j ( j = 1, . . . , f ) are given
as (Teunissen and Kleusberg 1998; Leick 2004; Hofmann-
Wellenhof et al. 2008; Teunissen and Montenbruck 2017)

E(φs
r , j ) = ρs

r − μ j ι
s
r + λ j (δ̄r , j − δ̄s, j + zsr , j )

E(psr , j ) = ρs
r + μ j ι

s
r + dr , j − ds, j

(1)

with ρs
r being the non-dispersive term that contains posi-

tioning parameters, zenith tropospheric delays and clock
parameters, and ιsr the first-order slant ionospheric delay on
the first frequency, having as coefficientμ j = ( f 21 / f 2j ), with
f j being the j th frequency. The receiver and satellite phase
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biases are denoted as δ̄r , j and δ̄s, j , respectively, and likewise
the receiver and satellite code biases as dr , j and ds, j . The
wavelength of f j is λ j , and the integer ambiguities of φs

r , j
are denoted as zsr , j and are given in units of cycles.

The advantages and flexibility of using an undiffer-
enced model formulation, as opposed to a priori differ-
encing or combining, have already been recognized for a
long time (Goad 1985; Teunissen 1995b; de Jonge 1998;
Schönemann et al. 2011; Lannes and Prieur 2013). With
an undifferenced approach, one can work with the simplest
observational variancematrix and have all parameters remain
available for a possible further model strengthening, while
parameters that are not of interest are easily eliminated at the
reduction level of the normal equations.

Working with an undifferenced approach implies in case
of GNSS, however, that one has to account for rank defi-
ciencies as not all unknown parameters can be estimated
unbiasedly. A proper understanding of the estimability of
the computed parameters is therefore essential, as different
sets of estimable parameters, each with its own interpre-
tation, exist, and each such set is defined by the chosen
singularity-basis or S-basis (Baarda 1973; Teunissen 1985;
Koch 1999). Such analysis was presented in Odijk et al.
(2015), where the rank deficiencies and null space of the
multi-epoch, multi-frequency undifferenced GNSS network
model were identified and used to construct a basis matrix
of the network’s null space, thus allowing the formulation
of proper S-transformations, see also (Teunissen and Khod-
abandeh 2015; Zhang et al. 2018).
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In all studies until now however, the standard concept of
estimability (Rao 1973; Arnold 1981) was employed, which,
as we show in this contribution, is too limited when dealing
with rank-defect models that have parameters of which some
are also integer. We show that for integer parameters, such
as the carrier-phase ambiguities, estimability is not guaran-
teed by merely asking of the estimable functions that they
are integer. We therefore generalize the concept of estima-
bility to integer estimability and determine the necessary and
sufficient conditions that need to be satisfied for parameter
functions to be integer estimable. This is then worked out
using concepts from graph theory for the integer estimability
analysis of GNSS observation equations. We hereby con-
sider both network ambiguity resolution and single-receiver
PPP-RTK ambiguity resolution.

This contribution is organized as follows. We start by pro-
viding a brief review of the required estimability concepts of
rank-defect linear models in Sect. 2. It discusses estimable
functions, their invariance and S-bases. This is then gen-
eralized to the estimability of parameter subsets as needed
when working with partitioned GNSS models. It shows that
although there are generally fewer estimable functions under
weakermodels, all these functions are linear combinations of
the estimable functions under the stronger model. In Sect. 3,
we discuss the ambiguity graph and the incidence matrix of
a GNSS network. Then in Sect. 4, we introduce the concept
of integer estimability and show how for GNSS networks
it is driven by the structure and properties of the incidence
matrix. It is hereby important to find that integer estimability
is not guaranteed bymerely asking of the estimable functions
that they are integer. We derive the necessary and suffi-
cient conditions that enable integer estimability and apply
these findings in Sects. 5 and 6, first for ‘all-in-view’ net-
works and then for the general case. It is hereby proven that
choosing spanning trees of the network ambiguity graph as
S-basis automatically guarantees that the estimable ambigu-
ity functions are integer estimable. In Sect. 7, we apply the
concept of integer estimability and its rulings to PPP-RTK
and show that PPP-RTK’s single-receiver ambiguity resolu-
tion should be seen as a special case of network ambiguity
resolution. The contribution is concluded with a summary in
Sect. 8.

Some of the notations used are as follows: Rm denotes
the m-dimensional space of real numbers and Z

n the n-
dimensional space of integers. E(.) and D(.) denote the
expectation and dispersion operators, respectively. The range
and null space of a matrix A are denoted as R(A) and
N (A), whereasR(A)⊥ denotes the orthogonal complement
of R(A). A basis matrix is said to be a matrix of which
the columns form a basis of its range space. Two subspaces
U and V of Rm are said to be complementary, denoted as
R
m = U ⊕ V , when the matrix [U , V ], formed from their

basis matrices U and V , is square and invertible.

2 Estimability under different model
strength

2.1 Estimable functions

Consider the rank-defect linear model

E(y) = Ax , A ∈ R
m×n, rank(A) = r < n (2)

Since themodel is rank defect, not all parameters nor all func-
tions of the parameters are estimable. Recall that a function
f T x is said to be estimable if it can be unbiasedly estimated
by a linear function of y (Rao 1973; Arnold 1981). The fol-
lowing lemma characterizes the class of estimable functions.

Lemma 1a (Estimable functions) Let F ∈ R
n×p. Then

x̃ = FTx (3)

is estimable under model (2) if and only if (iff)

R(F) ⊂ R(AT) = N (A)⊥ (4)

Thus, since x̃ is estimable iff F = ATL for some L ∈ R
m×p,

a function f Tx is estimable iff f can be written as a linear
combination of the rows of A. Since R(AT) = N (A)⊥, an
equivalent condition of f Tx being estimable is that f needs
to annihilate that part of x that lies in the null space of A.
Estimable functions of x are thus invariant for any changes in
x that lie inN (A). Note, since dimR(AT) = r , that the max-
imum number of such linear independent functions equals r .

The workings of the above Lemma can now be seen as
follows. Consider x̂ = A−y, with A− an arbitrary g-inverse
of A (i.e. AA−A = A). Then E(x̂) = A−Ax �= x , showing
that x̂ is not an unbiased estimator of x . The estimator FT x̂ ,
however, is an unbiased estimator of FTx , since F = ATL
for some L ∈ R

m×p, and therefore, E(FT x̂) = FTA−Ax =
LTAA−Ax = LTAx = FTx .

The above shows one way of computing unbiased esti-
mators for the rank-defect linear model (2): first compute x̂
and then FT x̂ , with F satisfying (4). The flexibility of this
approach lies in the fact that one only needs to compute x̂
once, from which one can then compute any estimable func-
tion one is interested in. Instead of this two-step approach,
however, it is also possible to use a more direct approach,
namely one in which one reparametrizes the linear model (2)
directly into the required estimable functions. To see this,
consider the reparametrization

x = V0α + Sx̃ (5)

in which V0 is a basis matrix of the null spaceN (A) and S ∈
R
n×r is a basis matrix having a range space complementary
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to that of V0, i.e. Rn = N (A) ⊕ R(S). Then matrix [V0, S]
is square and invertible, having the inverse

[V0, S]−1 = [E, F]T (6)

with E = S⊥(V T
0 S⊥)−1, F = V1(STV1)−1 and where the

matrices V1 ∈ R
n×r and S⊥ ∈ R

n×(n−r) are basis matrices
of N (A)⊥ and R(S)⊥, respectively, see (Teunissen 1985).
Substitution of (5) into (2) gives the model

E(y) = ASx̃ , AS ∈ R
m×r , rank (AS) = r (7)

which is of full rank and directly parametrized in x̃ . As (7)
is of full rank, it can be directly solved to obtain an unbiased
solution of x̃ . Note that with (3) the range space of F needs to
be orthogonal toN (A), while with (5), and thus (7), one only
needs to choose S such that its range space is complementary
to N (A).

Also note that the full-rank model (7) can be interpreted
as being obtained from adding the minimum constraints

S⊥T x = 0 (8)

to the rank-defect model (2). These constraints are referred
to as the S-basis. They contain, by setting the inestimable
part of (5) to a given arbitrary value (here α = 0), the
minimum information needed to eliminate the singularity
in (2). That is, the basis matrix S⊥ is chosen such that its
range is complementary to the space of estimable functions
R(AT) = N (A)⊥.

2.2 Estimability in a partitionedmodel

As we will be considering estimability of parameter subsets
in the following, we need to generalize Lemma 1a accord-
ingly. With A = [A1, A2] and x = [xT1 , xT2 ]T, model (2) can
be written in partitioned form as

E(y) = A1x1 + A2x2 (9)

Instead of considering the estimable functions of all param-
eters, we now restrict attention to those of x1 only. Then
Lemma 1a generalizes as follows.

Lemma 1b (Estimable functions) Let F1 ∈ R
n1×p. Then

x̃1 = FT
1 x1 (10)

is estimable under the partitioned model (9) iff

R(F1) ⊂ R(AT
1 B2) = N (BT

2 A1)
⊥ (11)

in which B2 is a basis matrix of R(A2)
⊥. ��

This result can be understood as follows. As, according to
Lemma 1a, F = ATL for some L ∈ R

m×p, it follows
with F = [FT

1 , 0]T and A = [A1, A2], that F1 = AT
1 L

and 0 = AT
2 L , from which the result follows. Thus if

we would compare unbiased estimation of FT
1 x1 by LTy

under model E(y) = A1x1 to that under the weaker model
E(y) = A1x1 + A2x2, then R(F1) ⊂ R(AT

1 ) is a necessary
and sufficient condition for estimability under the stronger
model, but only necessary under the weaker model. For it to
becomenecessary and sufficient under theweakermodel, one
needs, next to the condition F1 = AT

1 L , also that 0 = AT
2 L ,

i.e. that the linear functions of the data nullify the effect of
x2.

Finally note, since R(AT
1 B2) ⊂ R(AT

1 ), that although
under the weaker model there are in general fewer estimable
functions of x1, all these functions are linear combinations
of the estimable functions under the stronger model.

3 Ambiguity graph and incidencematrix

In the following, attention is focused on that part of theGNSS
observation equations that contains the undifferenced (UD)
integer ambiguities and receiver- and satellite phase-delays
(cf. 1),

asr = zsr + δ̄r − δ̄s, zsr ∈ Z, δ̄r , δ̄
s ∈ R, (12)

where since each receiver–satellite pair corresponds to one
real-valued ambiguity per frequency, we have omitted for the
sake of presentation the frequency subscript j . In this section,
we show that the design matrix of the ‘phase-delays’ can
be interpreted as being the incidence matrix of the network
ambiguity graph. This is helpful as it allows us to use results
from graph theory.

It will be clear that in a network generally not all the satel-
lites are tracked by each receiver. To visualize the interaction
between the network receivers and their tracked satellites,
one canmake use of a graph, see, e.g. (de Jonge 1998; Lannes
and Gratton 2009; Lannes and Teunissen 2011; Lannes and
Prieur 2013). An example of such ambiguity graph is shown
in Fig. 1. The vertices of the graph are the network receivers
(solid triangles) and the tracked satellites (solid squares). The
presence of an edge (grey lines) between vertices r and s indi-
cates whether satellite s is tracked by receiver r or not. Thus,
the edge r–s corresponds to the ambiguity asr . The ambi-
guity graph of Fig. 1 represents a GNSS network setup of
three receivers, in which the receiver r = 1 tracks the satel-
lites s = 1, 2, while the receiver r = 3 tracks the satellites
s = 2, 3. The receiver r = 2 however, tracks all the visible
satellites s = 1, 2, 3. Thus, the graph has seven edges and
six vertices (three receivers plus three satellites). As there is
no interaction between the satellites themselves nor between
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= 1s = 2s = 3s

= 1r = 2r = 3r

Fig. 1 An example of an ambiguity graph in which receivers (solid
triangles) and satellites (solid squares) represent the vertices. The pres-
ence of an edge (grey lines) between vertices r and s indicates whether
satellite s is tracked by receiver r or not

the receivers (i.e. there is no edge between the satellites nor
between the receivers), the ambiguity graph is a special case
of a ‘bipartite’ graph.

3.1 The ambiguity graph incidencematrix

Let a network of r receivers, trackingm satellites, have q net-
work ambiguities asr (per frequency). Then the corresponding
ambiguity graph has q edges and nv = m + n vertices. We
define the ambiguity vector as a = [asr ] containing all the
UD ambiguities asr . The vectorial form of (12) is then given
as

a = z + P̄ δ̄, z ∈ Z
q , δ̄ ∈ R

nv , nv := m + n (13)

where z contains the integer ambiguities zsr and δ̄ contains
the real-valued phase-delays δ̄r , δ̄s . The q ×nv matrix P̄ has
either 0 or±1 as its entries. For the ambiguity graph of Fig. 1,
(13) reads

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
a21
a12
a22
a32
a23
a33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
a

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
z21
z12
z22
z32
z23
z33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
z

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 0 −1 0 0
+1 0 0 0 −1 0
0 +1 0 −1 0 0
0 +1 0 0 −1 0
0 +1 0 0 0 −1
0 0 +1 0 −1 0
0 0 +1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P̄

⎡
⎢⎢⎢⎢⎢⎢⎣

δ̄1
δ̄2
δ̄3
δ̄1

δ̄2

δ̄3

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
δ̄

(14)

Every row of P̄ corresponds to an edge of the graph, whereas
every column of P̄ corresponds to a vertex. As shown in (14),
every row of P̄ contains exactly one entry equal to +1 and
another equal to−1. These nonzero entries (i.e.±1) indicate
whether their corresponding row is incident with the graph’s
vertices or not. For instance in (14), the fifth row of P̄ (cor-
responding to a32) has ±1 entries on its ‘second’ (r = 2) and

‘sixth’ (three receivers plus s = 3) columns, showing that
there exists an edge between the vertices r = 2 and s = 3. In
the context of graph theory, matrix P̄ is therefore referred to
as the incidence matrix of a graph, see, e.g. (Coxeter 1973;
Wilson 1996). As P̄ captures the complete incidence struc-
ture of a graph, it uniquely specifies its associated graph. In
the context of GNSS observation equations, the incidence
matrix P̄ is nothing else but the design matrix of the phase-
delays δ̄r and δ̄s . Thus, a network ambiguity graph can be
fully specified by the network’s phase-delay design matrix.

3.2 Reduced incidencematrix

Note that the columns of P̄ sum up to zero, showing that P̄
is ‘rank-deficient’. The size of its rank deficiency is driven
by the ‘connectivity’ of its associated graph (Coxeter 1973;
Wilson 1996). A graph is said to be connected, if every vertex
is linked to all other vertices at least through one ‘path’ (i.e.
a set of edges). The incidence matrix of a connected graph
is shown to have a rank deficiency of size 1 (see “Appendix
A”). From now on, we assume that the ambiguity graph is
connected, i.e. the rank of P̄ is nv −1. If the ambiguity graph
would not be connected, then it could be partitioned into
multiple connected subgraphs. This assumption is therefore
of no consequence for our analysis.

For a connected graph, a maximum number of indepen-
dent columns of P̄ simply follow by ‘excluding’ an arbitrary
column (see “Appendix A”). The resultant matrix, of size
q × (nv − 1), is referred to as the reduced incidence matrix
and is denoted by P . Thus, the phase-delay combinations
P̄ δ̄, given in (13), can be alternatively expressed by Pδ,
with δ being a linear function of the phase-delay vector δ̄.
For instance in the case of (14), we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 0 −1 0 0
+1 0 0 0 −1 0
0 +1 0 −1 0 0
0 +1 0 0 −1 0
0 +1 0 0 0 −1
0 0 +1 0 −1 0
0 0 +1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P̄

⎡
⎢⎢⎢⎢⎢⎢⎣

δ̄1
δ̄2
δ̄3
δ̄1

δ̄2

δ̄3

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
δ̄

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 −1 0

+1 0 −1 0 0
+1 0 0 −1 0
+1 0 0 0 −1
0 +1 0 −1 0
0 +1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎢⎢⎣

δ̄2 − δ̄1
δ̄3 − δ̄1
δ̄1 − δ̄1
δ̄2 − δ̄1
δ̄3 − δ̄1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
δ

(15)
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inwhich the reduced incidencematrix P is formed by remov-
ing the first column of P̄ . The identity P̄ δ̄ = Pδ, together
with (13), gives

a = z + P δ, with z ∈ Z
q , δ ∈ R

nv−1 (16)

where δ contains δr = δ̄r−δ̄1 (r = 2, . . . , n) and δs = δ̄s−δ̄1
(s = 1, . . . ,m).

4 Integer ambiguity estimability

4.1 Estimability

For the purpose of ambiguity resolution (Teunissen 1995b), it
would be ideal if the complete vector z ∈ Z

q of (16)would be
unbiased estimable. This is, however, not the case due to the
presence of the unknown phase-delays. According to Lemma
1b (cf. 11), a necessary condition for functions of the inte-
ger ambiguities, say DTz, to be estimable is that DTP = 0
must hold true. Finding an independent set of such estimable
ambiguities boils thus down to finding a basis matrix D of
the q̃-dimensional subspaceR(P)⊥, where q̃ = q − nv + 1.

With the space of estimable ambiguity functions given by
R(D) ⊂ R

q , any space complementary to it can be used
for choosing an ambiguity S-basis. Therefore, if C is a q ×
(nv − 1) basis matrix having a range space complementary
to that of D, i.e. Rq = R(C) ⊕ R(D), then CTz is a set of
inestimable functions that can be chosen as S-basis.

As the two basis matrices C and D together form a square
and invertible matrix, we can now reparametrize the integer
ambiguity vector z into its inestimable and estimable part by
making use of the inverse

[
CT

DT

]−1

=
[
P(CTP)−1, R(DTR)−1

]
(17)

in which q × q̃ matrix R is a basis matrix of R(C)⊥,
i.e. CTR = 0. With the help of this inversion, we can
decompose z into an inestimable and estimable part as
z = P

[
(CTP)−1CTz

] + R
[
(DTR)−1DTz

]
, which, when

substituted into (16), gives

a = Pδ + Iq z

= P δ̃ + Rz̃ (18)

with

[
δ̃

z̃

]
=

[
Iq (CTP)−1CT

0 (DTR)−1DT

][
δ

z

]
(19)

The above reparametrization has thus achieved that the rank-
defect matrix [P, Iq ] of (16) gets replaced by the full-rank

matrix [P, R], and the inestimable parameters δ and z, by
their estimable versions δ̃ and z̃, respectively. The estimable
phase-delays are hereby formed from lumping the ines-
timable part of z to the original phase-delay vector δ.

4.2 Integer estimability

Although the entries of z̃ in (18) are estimable ambiguity
functions, they are not necessarily integer. For the purpose of
integer ambiguity resolution however, they need to be integer.
This implies that important additional restrictions apply to
the basis matrix D̃ = D(RTD)−1 of z̃ = D̃Tz. Firstly, since
z̃ should be integer for every z ∈ Z

q , matrix D̃ should be
integer as well. A necessary condition for z̃ to be integer
estimable is thus that D̃ should not only be a basis matrix
of R(P)⊥, but it should be an integer matrix as well. This
condition is, however, not yet sufficient. To see this, we first
consider the ambiguity transformations that are implied by
(19).

Note that in the construction of estimable functions,
different choices for the range space of the basis matrix
C (i.e. different ambiguity S-bases, say C1 and C2, with
R(C1) �= R(C2)) lead to different sets of estimable ambi-
guity functions, say z̃ R1 = D̃T

1 z and z̃ R2 = D̃T
2 z, with

D̃T
1 = (DTR1)

−1DT and D̃T
2 = (DTR2)

−1DT. The trans-
formations between z̃ R1 and z̃ R2 , i.e. z̃ R2 = Z21 z̃ R1 and its
inverse z̃ R1 = Z12 z̃ R2 , are then given as

Z21 = Z−1
12 = D̃T

2 D̃1(D̃
T
1 D̃1)

−1

Z12 = Z−1
21 = D̃T

1 D̃2(D̃
T
2 D̃2)

−1 (20)

which is easily checked by recognizing that PR(P)⊥ =
D̃1(D̃T

1 D̃1)
−1 D̃T

1 is a projector that projects along the null
space of D̃T

2 , and thus, Z21 D̃T
1 = D̃T

2 PR(P)⊥ = D̃T
2 .

The result shows, although integerness of D̃1 and D̃2

guarantees that both z̃ R1 and z̃ R2 are integer whenever z
is, that this condition is not sufficient to guarantee that
the transformations (20) themselves are integer preserving,
i.e. they are admissible as ambiguity Z-transformations.
A Z-transformation is namely only admissible as ambigu-
ity transformation if both Z and its inverse are integer, or
equivalently, if Z is integer with determinant det(Z) = ±1
(Teunissen 1995a). Only then will integerness be preserved,
i.e. any integer z̃1 be mapped to an integer z̃2 and vice versa.

The reason for the lack of admissibility of (20) can also
be understood as follows. With D̃ being only an integer
basis matrix, it is not guaranteed that an integer solution of
z̃ = D̃Tz exists for every integer z̃ (think for instance of the
simple case: 1 = [2, 4][z1, z2]T). This sufficiency condition
is needed however, since without it one has no guarantee
that an integer-resolved estimable ambiguity would actually
correspond with an integer value of the undifferenced ambi-
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guity vector z. A necessary and sufficient condition for z̃ to
be integer estimable is thus that the transpose of the basis
matrix D̃ maps Zq onto Zq̃ (q̃ = q − nv + 1). The following
result provides the corresponding integer characterization of
estimable ambiguity functions.

Theorem (Integer estimability) Let the functions z̃ = D̃Tz
be estimable, i.e. D̃ is a basis matrix of a subspace of
R(P)⊥. Then z̃ is integer estimable iff a Z-transformation
(i.e. Z,Z−1 ∈ Z

q×q) exists such that D̃TZ = [0, Iq̃ ], with
q̃ being the dimension of the subspace of R(P)⊥. ��
For a proof, see “Appendix B”. Using the result of this
theorem, we can now verify that the transformations (20)
are indeed admissible if both z̃1 and z̃2 are constructed as
integer estimable ambiguity vectors. With D̃T

1Z1 = [0, Iq̃ ]
and D̃T

2Z2 = [0, Iq̃ ], it follows from (20) that Z21 =
D̃T
2Z1[0, Iq̃ ]T and Z12 = D̃T

1Z2[0, Iq̃ ]T, which indeed are
now both integer. The following example provides further
insights into the condition D̃TZ = [0, Iq̃ ] of the theorem.

Example 1 (Multi-frequency combinations) In view of the
recent multi-frequency modernized signals, several contri-
butions propose ‘combined’ carrier-phase observations to
reduce the impact of the ionosphere and/or to minimize the
variance of the resultant combinations, see, e.g. (Richert
and El-Sheimy 2007; Feng 2008; Cocard et al. 2008; Shu
et al. 2017; Duong et al. 2019). We now show that care
has to be exercised when forming multi-frequency carrier-
phase combinations. Using a geometry-free zero-baseline
setup (Teunissen 1997), 20,000 DD ambiguity samples of
the Galileo satellite pair E13–E26 have been collected on the
three frequencies E1 (z1), E5a (z2) and E5b (z3). The goal
is to integer-resolve their multi-frequency combined version
z̃ = [2, 4,−6][z1, z2, z3]T = 2z1 + 4z2 − 6z3, see (Feng
2008). As the DD ambiguities z j ( j = 1, 2, 3) are estimable
and integer, z̃ is estimable and integer as well. However, z̃ is
not integer estimable since

[2, 4,−6]︸ ︷︷ ︸
D̃T

⎡
⎣
1 −2 1
1 1 0
1 0 0

⎤
⎦

︸ ︷︷ ︸
Z

= [0, 0, 2] �= [0, 0, 1], (21)

thereby not satisfying the condition D̃TZ = [0, Iq̃ ]. This can
also be understood from the fact z̃ only takes ‘even’ numbers,
i.e. z̃ = 2(z1+2z2−3z3). Figure 2 shows a histogramof fixed
solutions for z̃ (top) compared to those for the corresponding
integer-estimable ambiguity ˜̃z = [1, 2,−3][z1, z2, z3]T =
z1 + 2z2 − 3z3 (bottom). Only 11.5% of the samples deliver
correct solution (green bar) for z̃, whereas 49.9% of the
samples lead to odd numbers and therefore non-admissible
solutions (red bars). By taking the integer-estimable ˜̃z how-
ever, the percentage of correctly fixed samples becomes
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Fig. 2 Histograms of 20,000 samples of the integer-resolved ambiguity
z̃ = 2z1 + 4z2 − 6z3 (top) compared to those of its integer-estimable
version ˜̃z = z1 + 2z2 − 3z3 (bottom). The samples are computed using
a geometry-free zero-baseline setup (Curtin CUT0-CUT2 receivers,
Trimble NetR9, 4 March 2019). The DD ambiguities z1, z2 and z3 cor-
respond to the Galileo satellite pair E13–E26 on the three frequencies
E1 (z1), E5a (z2) and E5b (z3)

almost double (22.7%), while all solutions are now admissi-
ble (as ˜̃z can take any integer number). �

Another important consequence of the theorem is that
it shows how R (cf. 18), and thereby C (cf. 17), needs to
be chosen so as to guarantee that z̃ is integer estimable.
Since (DTR)−1DT[P, R] = [0, Iq̃ ], it follows that the
integer estimability of z̃ = (DTR)−1DTz is automatically
guaranteed if R is chosen such that [P, R] becomes a Z-
transformation. In the next two sections, we show how this
works out for GNSS networks, starting with the all-in-view
case, followed by the general case.
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5 Finding integer-estimable GNSS
ambiguities: the all-in-view case

Finding representations for the required GNSS network
matrices C , D, P and R is made simpler if we may assume
the all-in-view case, i.e. when all n receivers of the network
track all the m satellites. The number of UD ambiguities zsr
(per frequency) is then equal to mn, and the network ambi-
guity graph attains its maximum number of edges q = mn.
This ‘all-in-view’ situation is of course not always realized
with large-scale networks (e.g. Fig. 4), meaning that in gen-
eral q < mn. But to gain insight, it helps to start with the
simpler case q = mn and thus assume that we are dealing
with a sufficiently small network having an ambiguity graph
that attains its maximum number of edges.

5.1 The reduced incidencematrix

If we define the network undifferenced (UD) ambiguity vec-
tor z ∈ R

mn for the all-in-view case as

z = [zT1 , . . . , zTn ]T, where zr = [z1r , . . . , zmr ]T (22)

for r = 1, . . . , n, the graph incidencematrix P̄ , i.e. the design
matrix of the phase-delays, is given as (Odijk et al. 2015)

P̄ = [In ⊗ em,−en ⊗ Im] ∈ R
mn×(m+n) (23)

where en denotes the n-vector of ones and ⊗ denotes the
Kronecker matrix product (Henderson et al. 1983). The first
n columns, i.e. In ⊗ em , form the design matrix of the
receiver phase-delays [δ̄1, . . . , δ̄n]T, whereas the remaining
m columns −en ⊗ Im form the design matrix of the satellite
phase-delays [δ̄1, . . . , δ̄m]T.

As the reduced incidence matrix P can be obtained by
removing the first column from P̄ , we partition the identity
matrix as In = [cn,Cn], in which the n-vector cn denotes the
first column and the n× (n−1)matrix Cn contains the other
(n − 1) columns of In . By removing the first column of P̄ in
(23), the reduced incidence matrix P follows as

P = [Cn ⊗ em,−en ⊗ Im] ∈ R
mn×(m+n−1) (24)

5.2 Estimable ambiguities

It is now not difficult to find a basis matrix of the mn −m −
n + 1 = (m − 1)(n − 1) dimensional space R(P)⊥. Let

Dn = [−en−1, In−1]T, Dm = [−em−1, Im−1]T (25)

Then clearly DT
n en = 0 and DT

mem = 0.Anmn×(m−1)(n−
1) basis matrix D, satisfying DTP = 0, follows therefore as

D = Dn ⊗ Dm (26)

As the (n − 1) × n matrix DT
n forms between-receiver

differences, while the (m−1)×mmatrix DT
m forms between-

satellite differences, the transpose of (26) is known as the
double-differencing operator (Khodabandeh and Teunissen
2017). With D being a basis matrix of R(P)⊥, it follows
from Lemma 1b that the entries of DTz form an independent
set of estimable functions of the undifferenced ambiguities.
We can therefore immediately conclude the following.

Corollary 1 (DD ambiguities) Functions of UD ambiguities
are estimable iff they are double-differenced (DD) ambigui-
ties or functions thereof.

This result shows that undifferenced (UD) and single-
differenced (SD) ambiguities are not estimable. This holds
true not only for network ambiguity resolution, but also for
single-receiver ambiguity resolution as, for instance, used
in PPP-RTK (Ge et al. 2008; Laurichesse et al. 2009b;
Odijk et al. 2015). PPP-RTK ambiguity resolution is thus
not an undifferenced or a zero-difference ambiguity resolu-
tion (Laurichesse et al. 2009a; Collins et al. 2010), but one
which is still of a double-differenced nature (see also Sect. 7).

As estimability depends on the underlying model, estima-
bility of parameters may change if assumptions of the
underlyingmodel change. The following gives such an exam-
ple concerning ambiguity estimability.

Example 2 (Frequency-differenced ambiguities) Consider
the ambiguity equations for asr , j ( j = 1, 2) of a single
receiver–satellite pair r–s,

[
asr ,1
asr ,2

]

︸ ︷︷ ︸
a

=
[
zsr ,1
zsr ,2

]

︸ ︷︷ ︸
z

+
[+1 0 −1 0

0 +1 0 −1

]

︸ ︷︷ ︸
P

⎡
⎢⎢⎢⎢⎣

δ̄r ,1

δ̄r ,2

δ̄s,1

δ̄s,2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
δ

(27)

If we now change our underlying assumptions and assume
that the phase-delays are not frequency dependent, but com-
mon for both frequencies j = 1, 2, i.e. δ̄r , j = δ̄r and
δ̄s, j = δ̄s , then the above Eq. (27) simplify to

[
asr ,1
asr ,2

]

︸ ︷︷ ︸
a

=
[
zsr ,1
zsr ,2

]

︸ ︷︷ ︸
z

+
[+1 −1

+1 −1

]

︸ ︷︷ ︸
P

[
δ̄r
δ̄s

]

︸ ︷︷ ︸
δ

(28)

In this case, the rows of P are copies of one another, and
the integer basis matrix (vector) D = [−1,+1]T fulfils
DTP = 0, thus showing that estimable ambiguities will now
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be of frequency-differenced form, zsr ,2 − zsr ,1, or functions
thereof. ��

5.3 Constructing theZ-transformation

To find a representation for R such that [P, R] is a Z-
transformation, note, since D of (26) is integer, that z̃ =
(DTR)−1DTz will also be integer if we choose R to be a
right-inverse of D, i.e. DTR = Iq̃ , q̃ = (n − 1)(m − 1).
Since the Dn and Dm of (25) satisfy DT

n Cn = In−1 and
DT
mCm = Im−1, the simplest such mn × q̃ matrix R is given

as

R = Cn ⊗ Cm (29)

As it can be verified that [P, R] is now indeed a Z-
transformation satisfying DT[P, R] = [0, Iq̃ ], it directly
follows from the theorem that D of (26) provides integer
estimability and not only estimability.

The following example illustrates the importance of both
[P, R] and [P, R]−1 being integer.

Example 3 ([P, R]−1 integer or not) Let the reduced inci-
dence matrix be given as

P =

⎡
⎢⎢⎣

0 −1 0
0 0 −1

+1 −1 0
+1 0 −1

⎤
⎥⎥⎦ (30)

and choose R as R = [0, 0, 0, 1]T. Then [P, R] is integer
having the integer inverse

⎡
⎢⎢⎣

0 −1 0 0
0 0 −1 0

+1 −1 0 0
+ 1 0 −1 +1

⎤
⎥⎥⎦

−1

=

⎡
⎢⎢⎣

−1 0 1 0
−1 0 0 0
0 −1 0 0

+1 −1 −1 +1

⎤
⎥⎥⎦

P R

C̃T

D̃T

(31)

In the last row of the inverse matrix, we recognize D̃ =
[1,−1,−1, 1]T as a DD basis matrix that indeed guarantees
integer estimability.

Now, let the reduced incidence matrix P be augmented
with another matrix, e.g. R = [0, 0, 0, 2]T. Then the corre-
sponding inverse reads

⎡
⎢⎢⎣

0 −1 0 0
0 0 −1 0

+1 −1 0 0
+ 1 0 −1 +2

⎤
⎥⎥⎦

−1

=

⎡
⎢⎢⎣

−1 0 1 0
−1 0 0 0
0 −1 0 0

+ 1
2 − 1

2 − 1
2 + 1

2

⎤
⎥⎥⎦

P R

C̃T

D̃T

(32)

Although the last row of the inverse matrix, i.e. D̃T =
[0.5,−0.5,−0.5, 0.5], is still of DD form, it now does not
guarantee integer estimability. ��

5.4 Choosing the ambiguityS-basis

To find the corresponding ambiguity S-basis of (29), recall
that its mn × (m + n − 1) basis matrix C satisfies CTR = 0
(cf. 17). Since cTn Cn = 0 and cTmCm = 0, both cn ⊗ Im and
In ⊗ cm have range spaces orthogonal to that of R. However,
they are not linearly independent, since they have cn ⊗ cm in
common. To avoid counting these twice, we eliminate one of
them and thus obtain

C = [cn ⊗ Im,Cn ⊗ cm] (33)

We can now determine how the integer-estimable ambiguity
vector z̃ ∈ Z

(m−1)(n−1) and estimable phase-delay vector δ̃ ∈
R
m+n−1 are related to the original undifferenced ambiguities

and phase-delays. With the above D (cf. 26), R (cf. 29) and
C (cf. 33), they read as

z̃ = (DTR)−1DTz = [Dn ⊗ Dm]Tz
δ̃ = δ + (CTP)−1CTz = δ + [Dn ⊗ cm,−cn ⊗ Im]Tz

which works out in components as

z̃ := z1s1r , δ̃ :=
{

δ̄r − δ̄1 + z11r , r = 2, . . . , n

δ̄s − δ̄1 − zs1 , s = 1, . . . ,m
(34)

in which use is made of the differencing notations (.)1s1r =
(.)1s − (.)1r , (.)1r = (.)r − (.)1 and (.)1s = (.)s − (.)1.

AsCTz constitutes the ambiguityS-basis, the choice (33),
that leads to the estimable functions (34), is given in compo-
nents as

CTz :=
{
zs1 , s = 1, . . . ,m

z1r , r = 2, . . . , n
(35)

This ambiguity S-basis is thus formed from the m + n − 1
edges that connect receiver r = 1with allm satellites and the
remaining n − 1 receivers with the first satellite s = 1. Such
set of edges is called a spanning tree of the ambiguity graph.
As we will see below, this approach of generating integer-
estimable ambiguities by choosing the edges of a spanning
tree as ambiguity S-basis holds true for the general case as
well.
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Fig. 3 All 15 spanning trees of the ambiguity graph (in red), given in Fig. 1, that represent the ‘pivot’ edges. In each case, only two ‘rover’ edges
(in blue) are left

6 Finding integer-estimable GNSS
ambiguities: the general case

6.1 Spanning trees

As spanning trees play a pivotal role in automatically gener-
ating integer-estimable ambiguities by means of their choice
of ambiguity S-basis, we first give their definition.

Definition (Spanning tree) A connected subgraph of a graph
is called a spanning tree if it includes all of the vertices of
the main graph, with minimum possible number of edges.

Spanning trees are not unique. Figure 3 shows all 15 spanning
trees of the ambiguity graph given in Fig. 1. In each case,
pivot edges (in red) form a spanning tree, leaving only two
rover edges (in blue).

With P being the reduced incidence matrix of the net-
work and D an integer basis matrix that guarantees integer
estimability, the total number of spanning trees of a network
ambiguity graph is given by (cf. 54 and 55 in “Appendices A
and B”)

#spanning trees = det(PTP) = det(DTD) (36)

That the number of spanning trees of a graph is finite shows
that ambiguity pivoting can be done in a ‘finite’ number of
ways. Depending on the number of receivers and tracked
satellites however, this finite number can be very large.

Example 4 (All-in-view case) One can substitute the ’all-in-
view’ basis matrix D = Dn ⊗Dm into the second expression
of (36) to compute the total number of spanning trees of this
particular graph. This yields

#spanning trees = det(DTD)

= det(DT
n Dn ⊗ DT

mDm)

= {det(DT
n Dn)}m−1 {det(DT

mDm)}n−1

= nm−1 mn−1 (37)

The secondequality follows from thematrix identity (A1A2⊗
B1B2) = (A1 ⊗ B1)(A2 ⊗ B2), whereas the third equal-
ity follows from the determinant identity det(A ⊗ B) =
{det(A)}l{det(B)}k for any A ∈ R

k×k and B ∈ R
l×l . The last

equality follows from det(DT
n Dn) = n (“Appendix B”). For

instance, the ambiguity graph of a network of 20 receivers
(n = 20), all commonly tracking 10 satellites (m = 10), has
209 × 1019 = 5.12 × 1030 different spanning trees.

Example 5 (General case) Figure 4 shows an ambiguity graph
of 24 permanent stations (n = 24) tracking 12 GPS satel-
lites (m = 12) over Australia. The number of edges, i.e. the
number of UD ambiguities (per frequency), is q = 187. To
compute the total number of spanning trees of the graph, one
can form matrix P by removing the first column of the net-
work’s phase-delay designmatrix P̄ (cf. 14). Givenmatrix P ,
we follow the first expression of (36) and compute det(PTP).
Accordingly, the total number of spanning trees that the graph
in Fig. 4 has is approximately 4.1579 × 1031.

Although the number of spanning trees can be very
high, for our purpose of establishing integer estimability
fortunately only one of them is needed. There exist sev-
eral efficient algorithms to form a spanning tree, see, e.g.
Kruskal’s and Prim’s algorithms (Kruskal 1956; Prim 1957;
de Jonge 1998; Cormen et al. 2009). The spanning tree,
shown in Fig. 4 (the red edges), has been formed using Prim’s
algorithm.

6.2 AmbiguityS-basis

Although the concept of integer estimability did not yet
exist, de Jonge (1998) was the first to find that by fixing
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Fig. 4 An example of an ambiguity graph. a A network of 24 GPS
permanent stations (solid triangles) over Australia; b the corresponding
ambiguity graph on 8 February 2015, GPS time 00:00:00. The vertex

set is composed of the receivers (solid triangles) and the tracked GPS
satellites (solid squares). The pivot edges, forming a spanning tree of
the graph, are shown in red, while the rover edges are shown in blue

the edges of an ambiguity spanning tree, integer combi-
nations of the network’s undifferenced ambiguities could
be computed, see also (Lannes and Prieur 2013). In the
context of integer estimability, this can be formulated as fol-
lows.

Lemma 2 (Ambiguity S-basis) Choosing the edges of a
spanning tree of an ambiguity graph as ambiguity S-basis
automatically produces integer-estimable ambiguities. ��

As no general proof was given in de Jonge (1998), we
give the proof here with the help of our integer estimability
theorem. First note, since a spanning tree is a subgraph, that
its reduced incidence matrix consists of rows of the reduced
incidence matrix of the graph. Furthermore, since a spanning
tree has a minimum number of edges, the reduced incidence
matrix of a spanning tree is square and invertible. We can
therefore always sort the edges of a connected ambiguity
graph such that the first nv−1 rows of its q×(nv−1) reduced
incidence matrix P correspond with the edges of a span-
ning tree, to give P = [PT

1 , PT
2 ]T, where P1 is the reduced

incidence matrix of the spanning tree. And since a spanning
tree’s reduced incidence matrix and its inverse are both inte-
ger (see “Appendix A.3”), removing C = [Inv−1, 0]T from
[P, Iq ] = [P, [C, R]] gives an integer matrix [P, R] that
has an integer inverse as well,

[P, R]−1 =
[

P−1
1 0

−P2P
−1
1 Iq−nv+1

]
(38)

This shows, as D̃ = [−P2P
−1
1 , Iq−nv+1]T satisfies the condi-

tions of the theorem, that by choosing the ambiguity S-basis

as C = [Inv−1, 0]T, one automatically produces a D̃-matrix
having the integer estimability properties. Thus more gener-
ally, this shows that by eliminating the columns of the unit
matrix Iq that correspond with the edges of the chosen span-
ning tree, the resulting q × q̃ matrix R extends the reduced
incidence matrix to a Z-transformation having the property
that D̃ of [P, R]−1 = [C̃, D̃]T satisfies the required property
of the theorem.

We now give a few examples to see this at work.

Example 6 (Spanning trees forming DD combinations)
According to (15), the ambiguity vector z and the reduced
incidence matrix P of the ambiguity graph in Fig. 1 read

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
z21
z12
z22
z32
z23
z33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 −1 0

+1 0 −1 0 0
+1 0 0 −1 0
+1 0 0 0 −1
0 +1 0 −1 0
0 +1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

The goal is to extend the 7 × 5 matrix P into a square and
invertible matrix, with integer inverse [P, R]−1 = [C̃, D̃]T.
Let us choose the ‘first’ spanning tree given in Fig. 3. Accord-
ingly, the pivot edges (in red) correspond to the ambiguities
z11 (1st edge), z

2
1 (2nd edge), z

2
2 (4th edge), z

3
2 (5th edge) and

z23 (6th edge). The corresponding 7 × 2 matrix R follows
then by eliminating the first, second, fourth, fifth and sixth
columns of the identity matrix I7. Inversion of [P, R] gives
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0
0 0 0 −1 0 0 0

+1 0 −1 0 0 1 0
+1 0 0 −1 0 0 0
+1 0 0 0 −1 0 0
0 +1 0 −1 0 0 0
0 +1 0 0 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 +1 0 0 0
0 −1 0 0 0 +1 0

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 0 +1 −1 0 0

−1 +1 +1 −1 0 0 0
0 0 0 +1 −1 −1 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P R

C̃T

D̃T

(40)

The corresponding integer-estimable ambiguities D̃Tz are
thus formed as follows

z̃ := D̃Tz =
[−z11 + z21 + z12 − z22

+z22 − z32 − z23 + z33

]

=
[−z1212

+z2323

]
(41)

in which use is made of the differencing notations (.)1r =
(.)r −(.)1 and (.)1s = (.)s −(.)1. As shown, both the integer-
estimable ambiguities −z1212 and z2323 are of the DD form.
These DD ambiguities correspond to the rover ambiguities
z12 (third edge) and z33 (seventh edge), i.e. the edges in blue.

Now let us, instead of the ‘first’ spanning tree, choose
the ‘tenth’ spanning tree in Fig. 3. Accordingly, the rover
ambiguities (edges in blue) become z11 (first edge) and z22
(fourth edge). The corresponding 7 × 2 matrix R follows
then by selecting the first and fourth columns of the identity
matrix I7. Inversion of [P, R] gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 1 0
0 0 0 −1 0 0 0

+1 0 −1 0 0 0 0
+1 0 0 −1 0 0 1
+1 0 0 0 −1 0 0
0 +1 0 −1 0 0 0
0 +1 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 +1 +1 −1
0 −1 0 0 0 +1 0
0 −1 −1 0 +1 +1 −1
0 −1 0 0 0 0 0
0 −1 0 0 0 +1 −1

+1 −1 −1 0 +1 +1 −1
0 0 0 +1 −1 −1 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P R

C̃T

D̃T

(42)

The corresponding integer-estimable ambiguities D̃Tz are
thus formed as follows

˜̃z := D̃Tz =
[

+z11 − z21 − z12 + z32 + z23 − z33
+z22 − z32 − z23 + z33

]

=
[

+z1212 − z2323
+z2323

]
(43)

While z2323 is aDDambiguity,+z1212−z2323 is an integer function
of the DD ambiguities +z1212 and z2323. ��

7 Relation to PPP-RTK

So far, our discussion was restricted to typifying integer
estimability for ambiguity resolution in a network of GNSS
receivers. PPP-RTK, however, is a precise point positioning

concept that allows users of a single receiver to apply ambi-
guity resolution as well, see, e.g. (Ge et al. 2008; Laurichesse
et al. 2009b; Collins et al. 2010; Teunissen et al. 2010; Odijk
et al. 2015). In this section, we will show how this can be
reconciled with Corollary 1. We show, by means of an appli-
cation of the theorem, that PPP-RTK ambiguity resolution
is to be interpreted as a special case of network ambiguity
resolution.

7.1 Network + single− receiver user

As before, a network of n receivers is tracking m satellites.
Let a user with a single receiver u track mu out of those m
satellites (s = 1, . . . ,m). Thus, mu ≤ m. Similar to (12),
we can write for the user ambiguities and phase-delays aiu =
ziu−δ̄i +δ̄u or aiu = ziu−(δ̄i −δ̄1)+(δ̄u−δ̄1), i ∈ {1, . . . ,m}.
Collecting them in anmu ×1 vector au = [aiu], we can write,
similar to (16), in vector–matrix form

au = zu + Pu δ + emu δu, zu ∈ Z
mu , δu ∈ R (44)

where δu = δ̄u−δ̄1.As δu is present in allmu user ambiguities
a j
u , the associated designmatrix is given as the vector of ones
emu . The coefficient matrix Pu links δ, given in (16), to the
user ambiguity vector au .

Note that the first (n − 1) entries of δ are the network
receiver phase-delays δr (r = 2, . . . , n) that are not present
in au (cf. 15). Thus, the first (n−1) columns of Pu are zeros.
Only mu columns out of the remaining m columns of Pu
are nonzeros. These mu nonzero columns form the identity
matrix Imu that correspond to themu satellites tracked by the
user receiver u. This shows that the mu × (nv − 1) matrix
Pu has mu independent columns, meaning that there is no
nonzero vector d that can fulfil dTPu = 0. In other words,
as no basis matrix D with the property DTPu = 0 can be
found, one must conclude with reference to Lemma 1b that
no estimable functions of the integer user ambiguities zu
exist. This proves the following.

Corollary 2 Unaided single-receiver integer ambiguity reso-
lution is not possible.

As unaided single-receiver ambiguity resolution is not pos-
sible, we now bring the network into play. Combining (16)
and (44) gives

[
a
au

]

︸ ︷︷ ︸
a+

=
[
z
zu

]

︸ ︷︷ ︸
z+

+
[
P 0
Pu emu

]

︸ ︷︷ ︸
P+

[
δ

δu

]

︸ ︷︷ ︸
δ+

(45)

This set of q + mu equations is the equivalent to (16), i.e. it
can again be seen as a set of network equations but now of a
network that includes the user receiver. The (q+mu)×(nv −
1 + 1) matrix P+ can thus be seen as the reduced incidence
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matrix of this extendednetwork. It is therefore thismatrix that
in combination with the theorem will determine whether or
not functions of the integer ambiguities are integer estimable.

7.2 Integer recovery of real-valued ambiguities

Writing (45) as

[
a
au

]
=

[
P Iq 0 0
Pu 0 emu Imu

]
⎡
⎢⎢⎣

δ

z
δu

zu

⎤
⎥⎥⎦ (46)

we note that the rank defect of the (q + mu) × (nv + mu)

matrix is now nv − 1 + 1 = m + (n + 1) − 1. Thus, the
addition of the user receiver increased the rank defect by 1,
which implies that the dimension of the S-basis needs to be
increased by 1 as well. A simple choice would be to take the
oneof the network (i.e. replace [P, Iq ]by [P, R]) and include
the user phase-delay δu in it (i.e. replace [emu , Imu ] by Imu ).
This would then indeed result in estimable parameters and
even in an integer matrix with integer inverse. However, this
would not result in integer-estimable ambiguities, since the
inclusion of the user phase-delay in the S-basis implies that
one is not taking functions of only the integer ambiguities.

The elimination of the additional rank defect thus needs to
be found in reducing the Imu -matrix of (46) to rank mu − 1.
The simplest such choice is to have one of the user integer
ambiguities, say the first z1u , become part of the extended
S-basis, thus replacing Imu by Cmu . The resulting full-rank
system, parametrized in estimable parameters, reads then

[
a
au

]
=

[
P R 0 0
Pu 0 emu Cmu

]

︸ ︷︷ ︸
Z

⎡
⎢⎢⎢⎣

δ̃

z̃
δ̃u

z̃u

⎤
⎥⎥⎥⎦ (47)

It is easily verified with the use of [emu ,Cmu ]−1 =
[cmu , Dmu ]T that also the integer coefficient matrixZ of (47)
has an integer inverse. The system (47) can therefore be seen
as the ‘network + user’ extension of (18).

If we now solve (47) for the estimable user phase-delay
δ̃u and integer-estimable user ambiguities z̃u , we obtain

[
δ̃u
z̃u

]
=

[
cTmu

DT
mu

]
[au − Pu δ̃] (48)

This result now clearly shows the integer-recovery role that
is played by the network-determined satellite phase-delays.
By adding the estimable satellite phase-delays of the user-
tracked satellites, −Pu δ̃ (note that the nonzero entries of Pu
are negative), to the real-valued user ambiguities au , one

obtains, after taking satellite differences through DT
mu

, the
integer-estimable user ambiguities z̃u .

7.3 Integer-estimable user ambiguities interpreted

We will now prove the following.

Corollary 3 (PPP-RTK) Single-receiver ambiguity resolu-
tion is a special case of network ambiguity resolution.

For the proof, we will express z̃u of (48) in the original undif-
ferenced integer ambiguities z and zu . Substitution of (44)
and δ̃ = δ + (CTP)−1CTz of (19) into (48) gives

z̃u = DT
mu

(zu − Pu(C
TP)−1CTz) (49)

This shows that the integer-estimable user ambiguities not
only depend on the user ambiguities zu , but by default also
on the network ambiguities z. That it is this combination
that makes z̃u integer estimable follows directly from the
theorem by recognizing that the combinations of (49), i.e.
D̃T = [−DT

mu
Pu(CTP)−1CT, DT

mu
], satisfy the required

condition D̃TZ = [0, 0, 0, Imu−1].
In (49), we recognize that the network contribution to

the integer-estimable user ambiguities is actually given by
the network’s ambiguity S-basis CTz. Would one then, for
instance, choose (35) as network S-basis, the components of
(49) would work out as z̃u := [z pi1u], with p the user-defined
reference satellite and i running through the remainingmu−1
user-tracked satellites. This shows that the integer ambiguity
resolution of the user ambiguity vector z̃u is thus always
one of double-differenced form (cf. Corollary 1). Hence,
whether or not z̃would have been resolved as integer, the sep-
arate PPP-RTK ambiguity resolution of the integer-estimable
single-receiver user ambiguities z̃u is actually one of partial
network ambiguity resolution.

8 Conclusions

As the undifferenced approach toGNSS requires the account-
ing for rank deficiencies, a proper understanding of the
concept of estimability is essential, since different sets of
estimable parameters exist, each with their own interpre-
tation. In all studies until now, the standard concept of
estimability was employed, which, as we have shown in this
contribution, is too limited when dealing with rank-defect
models that have parameters of which some are integer. Inte-
ger estimability is namely not guaranteed by merely asking
of the estimable functions that they are integer. We therefore
generalized the concept of estimability to integer estimabil-
ity and determined the necessary and sufficient conditions
that need to be satisfied for parameter functions to be integer
estimable.
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We showed that an independent set of ambiguity func-
tions are integer estimable if and only if they are integer,
nullify the incidence matrix and together with the S-basis
can be brought into the form of an admissible ambigu-
ity transformation. These findings were then applied and
worked out, first for ’all-in-view’ networks and then for
the general case. It was hereby proven that functions of
undifferenced ambiguities are estimable if and only if they
are in double-differenced form and that spanning trees of
the network ambiguity graph, when chosen as S-basis,
automatically produce integer-estimable ambiguity func-
tions.

We also applied the concept of integer estimability and
its rulings to PPP-RTK, thereby demonstrating that also
the integer-estimable PPP-RTK user ambiguities are of
double-differenced form and that PPP-RTK’s single-receiver
ambiguity resolution should be seen as a special case of net-
work ambiguity resolution.
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A Connected graphs and their incidence
structure

This appendix gives a brief review of the basic elements of
graph incidence matrices, see, e.g. (Coxeter 1973; Wilson
1996). It is intended to form the necessary background of the
material presented.

A.1 Spanning trees of a graph

Connected graphs An undirected graph can be represented
by the pair G = (V, E), where V = {1, . . . , nv} and
E ⊂ {(r , s) | r , s ∈ V} are the ‘vertex set’ and the ‘edge set’,
respectively. Each edge, as a link between two vertices r and
s of graph G, is denoted by the unordered pair (r , s) ∈ E . As
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Fig. 5 Examples of connected graphs (b, c, d, e, f) compared to a graph
that is not connected (a). Graph (a) is not connected because there is no
path between vertices 1 and 2. Graphs (b) and (c) are connected, but not
trees. They are not trees because there existmore than one path between
the vertices. For instance, there exist four paths between vertices 1 and
3 in graph (b): path 1-3, path 1-2-3, path 1-5-3 and path 1-2-4-3. All the
connected graphs (d), (e) and (f) are trees, since there is only one path
between every two vertices

the edge set E is not necessarily equal to {(r , s) | r , s ∈ V},
edges between any two vertices of G can be absent. If there
is no edge between two vertices r and s, these vertices could
still be linked to each other through a set of edges (i.e. a
path). The graph G is said to be connected if every vertex is
linked to all other vertices at least through one path. If any
two vertices of the connected graph G are connected exactly
through one path, then G is called a tree. Thus, a tree with
nv vertices contains nv − 1 edges. Figure 5 shows exam-
ples of connected graphs compared to the one which is not
connected.
Spanning subgraphs and trees. Graph T = (VT , ET ) is said
to be a subgraph of G = (V, E) if VT ⊂ V and ET ⊂ E .
Thus, the subgraph T contains no vertices or edges which
are not in G. The subgraph T is called a spanning subgraph
of G if it contains every vertex of G, i.e. if VT = V . If the
spanning subgraph T is a tree, then it is called a spanning
tree.

A.2 The incidencematrix of a graph

Oriented incidence matrices. Let the graph G, with vertices
j ( j = 1, . . . , nv), contain ne edges indexed with i (i =
1, . . . , ne). The (edge–vertex) incidence matrix of G is then
defined as P̄ = [pi j ], where

pi j =
⎧⎨
⎩

−1, if edge i originates at vertex j
+1, if edge i terminates at vertex j
0, if edge i is not incident with vertex j

(50)
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Thus, P̄ is an ne × nv matrix. Each row (column) corre-
sponds to an edge (a vertex). Every row of P̄ contains only
two nonzero entries; one entry is −1, and another is +1.
Whether an edge originates or terminates at an incident ver-
tex is conventional, that is, the orientation of the edges can
be chosen arbitrary. For instance, in Sect. 3, the orientation
has been chosen so that the edges originate at ‘satellites’ and
terminate at ‘receivers’.
Rank of incidencematricesThe incidencematrices have row-
sums equal to zero, i.e.

∑nv

j=1 pi j = 0 (i = 1, . . . , ne). Thus,

the vector of ones env nullifies P̄ , i.e. P̄env = 0. This implies
that

rank(P̄) ≤ nv − 1 for any graph G (51)

Assume that there is another nonzero vector x = [x1, . . . ,
xnv ]T which also nullifies P̄ . As every row of P̄ contains
exactly one entry equal to −1 and another equal to +1, we
have xk − x j = 0 for every edge ( j, k). As a result, if there
exists a path between two vertices r and s, then we have
xr = xs . Thus, for a connected graph we have xr = xs for
any two vertices r and s, showing that vector x is just a scaled
version of env , i.e. rank(P̄) = nv − 1. If the graph is not
connected, then the graph can be partitioned into multiple,
say κ , connected subgraphs. In that case, we have rank(P̄) =
nv − κ . Thus,

rank(P̄) = nv − 1 ⇐⇒ for any connected graph G
(52)

Reduced incidence matrices The reduced incidence matrix
P , of size ne × (nv − 1), is structured by eliminating an
arbitrary column of P̄ . The rank of P is equal to that of P̄ .
To see this, let S be an nv × (nv − 1) matrix that is formed
by eliminating an arbitrary column of the identity matrix Inv .
With P = P̄ S, we have

rank(P) = rank(P̄ S) = rank([P̄ S, 0])
= rank(P̄[S, env ]) = rank(P̄)

(53)

The third equality follows from the equality P̄env = 0, while
the fourth (last) equality follows from the non-singularity
of the square matrix [S, env ]. Thus, the reduced incidence
matrix of a connected graph is of full-column rank.

A.3 Kirchhoff’s matrix-tree theorem

Unimodularity of reduced incidence matrices The determi-
nant of any square submatrix of P is either 0 or±1. Matrices
with such a property are said to be totally unimodular. The
proof is as follows. Let Q be an arbitrary square subma-
trix of P . Matrix Q may have row-sums equal to zero, or it

may have a zero row. In both cases, det(Q) = 0. Otherwise,
Q has a row with only one nonzero entry (which must be
±1). Expanding the determinant of Q along that row gives
det(Q) = ±det(Q′), where Q′ is a lower-dimension square
submatrix of P . Likewise, det(Q′) = 0, or it has a row with
only one nonzero entry equal to ±1. By a repeated applica-
tion of the above determinant expansion, it follows that the
determinant of Q is either 0 or ±1.

The total number of spanning trees in a graph Let P be
the reduced incidence matrix of graph G with nv vertices.
Any square submatrix of P , of size (nv − 1) × (nv − 1), is
itself a reduced incidence matrix of a spanning subgraph of
G. The corresponding spanning subgraph, say T , has (nv−1)
edges. Thus, T is a spanning tree, if it is connected. In that
case, the subgraph T corresponds to a nonsingular submatrix
with a determinant equal to ±1 (cf. 52 and 53). Otherwise,
T is not connected, i.e. the corresponding submatrix has a
determinant equal to zero. These submatrices do therefore
enable one to compute the total number of spanning trees in
graph G. Let such submatrices be given by Qi (i ∈ C), where
the set C contains all (nv−1)-element subsets of {1, . . . , ne}.
The total number of spanning trees in graph G can then be
given by

#spanning trees =
∑
i∈C

(det(Qi ))
2

=
∑
i∈C

det(QiT) det(Qi )

= det(PTP) (54)

The second equality follows from the identity det(QiT) =
det(Qi ). The third (last) equality follows from a direct
application of the Cauchy–Binet determinant identity, see,
e.g. (Vein and Dale 1999). The result presented in (54) is
known as the matrix-tree theorem.

B Supplementary proofs

Proof of the Theorem (⇒) If D̃TZ = [0, Iq̃ ], withZ,Z−1 ∈
Z
q×q , then for any integer z̃ a corresponding integer solution

u = Z−1z ∈ Z
q of z̃ = (D̃TZ)u exists and thus also of z̃ =

D̃Tz. (⇐) Let D̃TZ = [0, H ] be the Hermite normal form of
D̃T. Then H−1 z̃ = [0, Iq̃ ]Z−1z, from which it follows that
an integer solution z exists for every integer z̃ only if H−1

is integer, which by virtue of the structure of the Hermite
normal form implies that H = Iq̃ . ��

Proof of (36) As det([P, R])=±1, we have 1= det([P, R]T
[P, R]) and therefore with an application of the determinant
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factorization rule (Koch 1999)

1 = det

([
PTP, PTR

RTP, RTR

])
= det(PTP) det(Q) (55)

where Q = RT[I − P(PTP)−1PT]R. Using the projector
identity D(DTD)−1DT = I − P(PTP)−1PT (Teunissen
1985) and the fact that DT[P, R] = [0, I ], the result fol-
lows. ��

Proof of the identitydet(DT
n Dn) = n in (37). From (25), it

follows that DT
n Dn = In−1 + en−1eTn−1. An application of

the determinant factorization rule (Koch 1999) gives

det(In−1 + en−1e
T
n−1) = det(1 + eTn−1en−1) = n (56)

as eTn−1en−1 = n − 1. ��

References

Arnold SF (1981) The theory of linearmodels andmultivariate analysis.
Wiley, Hoboken

Baarda W (1973) S-transformations and criterion matrices. Technical
report, NetherlandsGeodeticCommission, Publ. onGeodesy,New
Series, vol 5(1), Delft

Cocard M, Bourgon S, Kamali O, Collins P (2008) A systematic inves-
tigation of optimal carrier-phase combinations for modernized
triple-frequency GPS. J Geod 82(9):555–564

Collins P, Bisnath S, Lahaye F, Heroux P (2010) Undifferenced GPS
ambiguity resolution using the decoupled clock model and ambi-
guity datum fixing. Navigation 57(2):123–135

Cormen TH, Leiserson CE, Rivest LR, Stein C (2009) Introduction to
algorithms, 3rd edn. MIT press, Cambridge

Coxeter HSM (1973) Regular polytopes. Dover Publications, NewYork
de Jonge PJ (1998) A processing strategy for the application of the GPS

in networks. PhD thesis, Delft University of Technology, Publica-
tion on Geodesy, 46, Netherlands Geodetic Commission, Delft

DuongV,HarimaK,Choy S, LaurichesseD, Rizos C (2019)An optimal
linear combination model to accelerate PPP convergence using
multi-frequency multi-GNSS measurements. GPS Solut 23(2):49

Feng Y (2008) GNSS three carrier ambiguity resolution using
ionosphere-reduced virtual signals. J Geod 82(12):847–862

Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS
carrier-phase ambiguities in precise point positioning (PPP) with
daily observations. J Geod 82(7):389–399

Goad C (1985) Precise relative position determination using global
positioning system carrier phase measurements in a nondifference
mode. In: Proceedings of 1st international symposium on precies
positioning with GPS, pp 347–356

Henderson HV, Pukelsheim F, Searle SR (1983) On the history of the
Kronecker product. Linear Multilinear Algebra 14(2):113–120

Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS: global
navigation satellite systems: GPS, glonass, galileo, and more.
Springer, New York

Khodabandeh A, Teunissen PJG (2017) On the impact of GNSS ambi-
guity resolution: geometry, ionosphere, time and biases. J Geod.
https://doi.org/10.1007/s00190-017-1084-0

Koch KR (1999) Parameter estimation and hypothesis testing in linear
models. Springer, Berlin

Kruskal JB (1956) On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc Am Math Soc 7(1):48–50

Lannes A, Gratton S (2009) GNSS networks in algebraic graph theory.
J Glob Position Syst 8(1):53–75

Lannes A, Prieur JL (2013) Calibration of the clock-phase biases
of GNSS networks: the closure-ambiguity approach. J Geod
87(8):709–731

Lannes A, Teunissen PJG (2011) GNSS algebraic structures. J Geod
85(5):273–290

Laurichesse D, Mercier F, Berthias J (2009a) Zero-difference integer
ambiguity fixing on single frequency receivers. In: Proceedings of
ION ITM-2009, Anaheim, pp 26–28

Laurichesse D,Mercier F, Berthias J, Broca P, Cerri L, CNES F (2009b)
Integer ambiguity resolution on undifferenced GPS phase mea-
surements and its application to PPP and satellite precise orbit
determination. Navigation 56(2):135–149

Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, Hoboken
OdijkD, ZhangB,KhodabandehA,Odolinski R, Teunissen PJG (2015)

On the estimability of parameters in undifferenced, uncombined
GNSS network and PPP-RTK user models by means of S-system
theory. J Geod 90(1):15–44

Prim RC (1957) Shortest connection networks and some generaliza-
tions. Bell Syst Tech J 36(6):1389–1401

RaoCR (1973) Linear statistical inference and its applications, 2nd edn.
Wiley, Hoboken

Richert T, El-Sheimy N (2007) Optimal linear combinations of triple
frequency carrier phase data from future global navigation satellite
systems. GPS Solut 11(1):11–19

SchönemannE,BeckerM, Springer T (2011)Anewapproach forGNSS
analysis in a multi-GNSS and multi-signal environment. J Geod
Sci 1(3):204–214

Shu L, Wang W, Ding R, Wei H (2017) Performance analysis of opti-
mal combinations for triple-frequency BDS. Navig J Inst Navig
64(4):447–461

Teunissen PJG (1985) Generalized inverses, adjustment, the datum
problem and S-transformations. In: Grafarend EW, Sanso F (eds)
Optimization and design of geodetic networks. Springer, Berlin

Teunissen PJG (1995a) The invertible GPS ambiguity transformations.
Manuscripta Geodaetia 20:489–497

Teunissen PJG (1995b) The least-squares ambiguity decorrelation
adjustment: a method for fast GPS integer ambiguity estimation.
J Geod 70(1–2):65–82

Teunissen PJG (1997) A canonical theory for short GPS baselines. Part
I: the baseline precision. J Geod 71(6):320–336

Teunissen PJG, Khodabandeh A (2015) Review and principles of PPP-
RTK methods. J Geod 89(3):217–240

TeunissenPJG,KleusbergA (1998)GPS for geodesy, 2nd edn. Springer,
Berlin

Teunissen PJG, Montenbruck O (eds) (2017) Springer handbook of
global navigation satellite systems. Springer, Berlin

Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: results of CORS
network-based PPP with integer ambiguity resolution. J Aeronaut
Astronaut Aviat 42(4):223–229

Vein R, Dale P (1999) Determinants and their applications in mathe-
matical physics. Springer, New York

Wilson RJ (1996) Introduction to graph theory, 4th edn. Pearson Edu-
cation, India

Zhang B, Chen Y, Yuan Y (2018) PPP-RTK based on undifferenced
and uncombined observations: theoretical and practical aspects. J
Geod. https://doi.org/10.1007/s00190-018-1220-5

123

https://doi.org/10.1007/s00190-017-1084-0
https://doi.org/10.1007/s00190-018-1220-5


 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Khodabandeh, A; Teunissen, PJG

 

Title: 

Integer estimability in GNSS networks

 

Date: 

2019-09-01

 

Citation: 

Khodabandeh, A.  &  Teunissen, P. J. G. (2019). Integer estimability in GNSS networks.

Journal of Geodesy, 93 (9), pp.1805-1819. https://doi.org/10.1007/s00190-019-01282-6.

 

Persistent Link: 

http://hdl.handle.net/11343/230854

 

File Description:

Published version


	Integer estimability in GNSS networks
	Abstract
	1 Introduction
	2 Estimability under different model strength
	2.1 Estimable functions
	2.2 Estimability in a partitioned model

	3 Ambiguity graph and incidence matrix
	3.1 The ambiguity graph incidence matrix
	3.2 Reduced incidence matrix

	4 Integer ambiguity estimability
	4.1 Estimability
	4.2 Integer estimability


	5 Finding integer-estimable GNSS ambiguities: the all-in-view case
	5.1 The reduced incidence matrix
	5.2 Estimable ambiguities
	5.3 Constructing the mathcalZ-transformation
	5.4 Choosing the ambiguity mathcalS-basis

	6 Finding integer-estimable GNSS ambiguities: the general case
	6.1 Spanning trees
	6.2 Ambiguity mathcalS-basis

	7 Relation to PPP-RTK
	7.1 Network + single - receiver user
	7.2 Integer recovery of real-valued ambiguities
	7.3 Integer-estimable user ambiguities interpreted

	8 Conclusions
	Acknowledgements
	A Connected graphs and their incidence structure
	A.1 Spanning trees of a graph
	A.2 The incidence matrix of a graph
	A.3 Kirchhoff's matrix-tree theorem

	B Supplementary proofs
	References





