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Abstract 

Next-generation sequencing is increasingly used to diagnose patients with 

suspected genetic disease. Yet, even after exome or whole genome 

sequencing, many patients remain undiagnosed. In many cases a genetic 

diagnosis is not made because we either failed to detect the causal variant, or 

succeeded in detecting it, but failed to identify it as causative. There is a clear 

need to develop novel bioinformatics methods and sequencing strategies to 

address these shortcomings and to increase diagnostic rates. In this thesis I 

develop several strategies to address these issues. 

I propose a pooled-parent exome sequencing approach to prioritise de novo 

variants for genetic disease diagnosis. In this strategy, a set of probands have 

individual exome sequencing, while the DNA from all the parents of the 

probands are pooled, exome captured and sequenced together. The variants 

called in this pool are used to filter out inherited variants in the probands so 

the remaining list is enriched for de novo variants. 

Short Tandem Repeat (STR) expansions are a class of disease-causing variants 

that are frequently missed in short read sequencing data. Here I develop and 

validate STRetch, a new bioinformatics method to detect STR expansions 

using STR decoy chromosomes. I show that STRetch can be used to detect 

both known pathogenic STR expansions, and novel expansions at other 

annotated STR loci across the genome. I further use STRetch to explore 

variation across hundreds of individuals to inform our understanding of what 

is common variation and what is potentially pathogenic, to aid in prioritising 

STR variants in a gene-discovery setting. Some of the methods that I have 

developed and describe within this thesis have already been used to help 

patients receive a genetic diagnosis. 
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Chapter 1 Introduction 

Genetic disease is one of the leading causes of death in children [1]. Some 

genetic diseases have well-characterised causal DNA variants, allowing 

relatively quick and confident genetic diagnoses. Other disorders may have a 

poorly understood genetic basis, or symptoms consistent with variants in 

multiple genes, making them difficult to diagnose using single-gene tests. In 

the clinical setting, next generation DNA sequencing has become a key tool in 

the diagnosis of rare genetic disorders. It has become relatively routine to 

order panel or exome sequencing for patients with a suspected genetic 

disorder, and increasingly whole genome sequencing is being utilised, 

especially for cases that are not solved by first line-testing. Yet even with 

exome or whole genome sequencing, many cases remain unsolved. With 

diagnostic rates ranging from 31-58% [2,3], there are still many families who 

do not receive a definitive genetic diagnosis. Even for those patients who do 

receive a genetic diagnosis, the diagnostic odyssey can be long, frequently 

lasting months, and in many cases, years. 

For many unsolved cases of suspected genetic disease, we suspect that the 

causal variant has been sequenced, yet we lack either the ability to detect or 

interpret it. Most clinical sequencing pipelines only consider single nucleotide 

and short insertion/deletions variants. In contrast, large or repetitive DNA 

variants are difficult to accurately detect in sort read data, and so are not 

routinely genotyped. For example, Short Tandem Repeats (STRs) are not 

routinely genotyped in high-throughput sequencing. In fact, until quite 

recently, there were no bioinformatic methods available to detect STR 

expansions in short-read sequencing data. This is a critical limitation for the 

diagnosis of diseases that are known to be caused by either STR expansions or 

short variants. For example, spinocerebellar ataxia, and associated conditions 
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are known to be caused by expansions of STRs, SNPs and indels in a number 

of genes [4]. 

Even if the causal variant is correctly genotyped, it can be difficult to assign 

clinical significance to it. The sheer volume of data can be an impediment to 

finding the causal genetic variant. A given exome sequencing test can generate 

tens of thousands of variants, which must then be filtered to find those 

variants most likely to cause disease. Then for some disease variants it can be 

difficult to clearly link them to the specific disease. They may be in a gene that 

has not previously been linked to that disease, or a new variant in a gene 

already known to cause disease. 

There is a clear need to develop new bioinformatics methods and sequencing 

strategies to aid clinicians in making genetic diagnoses and to support the 

discovery of new disease variants. In this thesis I describe the development of 

sequencing strategies and bioinformatic methods to support the diagnosis of 

genetic disease. First, in Chapter 1 I will summarise the current state of clinical 

genomics, with an emphasis on bioinformatics methods and the detection of 

STRs. In Chapter 2, I describe a new pooled parent sequencing strategy to aid 

the diagnosis of individuals with likely de novo genetic disease. I describe the 

considerations with regard to sequencing method as well as bioinformatic 

analysis of the resulting data. In Chapter 3 I describe STRetch, a new 

bioinformatic method to detect STR expansions from short-read sequencing 

data. Finally, in Chapter 4 I apply STRetch to the analysis of a larger 

population, and describe how this population information can be used to 

prioritise potentially pathogenic STR expansions. 

1.1 The Human genome 

1.1.1 The human reference genome 

The human reference genome is central to modern genomics. It is the 

standard against which all individuals are compared and the coordinate system 
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for communicating sequences and variants. As such, the human reference 

genome is an incredibly rich resource for the study of human genetics and 

diversity. Our heavy reliance on the human reference genome also makes it a 

potential source of bias. Although the original human reference genome 

included sequences from several donors, it disproportionately represents the 

genome of just one male individual [5]. It primarily represents European 

ancestry, making it more difficult to study other populations [6]. Even within 

Europeans it has limited representation of alternate alleles present in the 

population, despite the inclusion of alternative haplotypes (e.g. HLA) in the 

most recent version hg38 [7]. Due to limitations in sequencing technology and 

genome assembly, the original reference genome concentrated on the 

euchromatic, less repetitive portions of the genome, with difficult regions 

such as centromeres included in only the most recent version [8]. It is known 

to under-represent repetitive regions such as STRs [9].  

1.1.2 Types of genetic variation 

Single Nucleotide Variants (SNVs) are single DNA base substitutions, for 

example C to T, where the total length of the DNA fragment does not 

change. These are often referred to as Single Nucleotide Polymorphisms 

(SNPs), although this name is not accurate for all single base changes because 

not all are polymorphic (generally defined as occurring at a frequency of 

greater than 0.01% in the population [10]). Insertion or deletion variants 

(indels) are the addition or loss of one or more consecutive DNA bases, for 

example ATG to AG. In contrast to SNVs, indels change the length of the 

DNA fragment. Because of their small size and relative simplicity SNVs and 

short indels are the most commonly characterised DNA change. 

Repetitive DNA sequences are often overlooked in sequencing studies 

because reads arising from them are difficult to uniquely assign to the 

genome. These sequences include short tandem repeats, minisatellites, larger 

duplications (e.g. of exons or whole genes), pseudogenes, transposable 
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elements (e.g. LINEs SINEs Alu), telomeres and centromeres. Short Tandem 

Repeats (STRs or microsatellites) are short 1-6 bp sequences repeated back to 

back. As a major focus of this thesis, the biology, clinical importance and 

genotyping of STRs is explored in greater detail in section 1.4. 

Many larger structural variants from copy number variants, large deletions, 

translocations and whole-chromosome aneuploidy have also proven difficult 

to identify from sequencing data, although, perhaps due to the increasing 

prevalence of whole genome sequencing data, the bioinformatics software in 

these areas is now moving into maturity [11]. 

1.1.3 Gene structure and regulation  

In eukaryotic protein-coding genes DNA is transcribed into unprocessed pre-

mRNA. The transcribed region is defined by the Transcription Start Site 

(TSS) and transcription terminator sequence. The gene sequence also includes 

some 5’ (upstream) and 3’ (downstream) regulatory sequences which include 

the gene promoter as well as enhancer and silencer sequences, which all 

contribute to the rate at which RNA is transcribed from that gene. After 

transcription pre-mRNA is then processed to remove introns (a process called 

splicing), add a 5’ cap and a poly-A tail. Specific sequence motifs define the 

splice donor (GU), acceptor (AG) and branch (A) sites as well as some more 

variable motifs that guide splicing [12]. The remaining sequences in the 

mRNA are called exons. The mRNA is then translated: each group of three 

nucleotides (a codon) codes for a single amino acid, although each amino can 

be coded for by multiple codons. Together these amino acids are the basic 

building blocks of proteins. A specific start codon (AUG) defines the first 

amino acid while any of three stop codons (UAG, UAA, UGA) will end 

translation. The regions that are ultimately translated are referred to as coding 

sequences. The regions of the mRNA upstream and downstream of the 

coding regions are referred to as the UnTranslated Regions (UTRs). 
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In addition to protein-coding genes, eukaryotic genomes contain many 

sequences that are transcribed into RNA but not translated into protein. 

These non-coding genes include essential sequences to produce ribosomal 

RNA and transfer RNA (key components in the translation process) as well as  

microRNAs and long non-coding RNAs which have regulatory roles [13]. 

Understanding the structure of a gene helps us to identify those DNA variants 

that are more likely impact the function of a gene and potentially lead to a 

disease phenotype. For example, a SNV in a coding region could cause a 

change in the codon causing a substitution to a different amino acid (a 

missense variant), or even obliterate a start or stop codon. Because of 

redundancy in the assignment of codons to amino acids, a synonymous 

variant may change the codon but still result in the same amino acid. An indel 

in a coding region that is not a multiple of three causes a frameshift, that is it 

changes the reading frame so that all downstream codons are changed. 

Changes to the key splicing sequences can cause an intron to be retained or 

spliced at a different position, making dramatic changes to the protein 

sequence. Changes to regulatory sequences may be more subtle. For example, 

they may reduce the affinity of the promoter to the translational machinery 

and so reduce the rate of gene expression. Ensembl publishes an order of 

variant consequence severity which categorises variants that cause splicing 

changes, premature stop codons and frameshifts as amongst the most 

deleterious, while synonymous and regulatory changes are considered less 

serious for protein function [14]. 

1.2 DNA sequencing technologies 
At the foundation of modern bioinformatics lies the explosion in DNA 

sequencing technology. The first major DNA sequencing method was the 

‘chain-termination’ or dideoxy technique, developed in 1977 by Frederick 

Sanger and colleagues and now referred to as “Sanger sequencing” [15]. In the 
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mid-2000’s the first high-throughput short read sequencing machines entered 

the market. These were dubbed next-generation or second-generation 

sequencing technologies (Sanger sequencing being the first generation). 

Sequencing became highly automated and parallelised, resulting in dramatic 

increases in sequencing output and reductions in the per base pair cost of 

sequencing over the following decade [16]. After heavy competition, Illumina 

emerged as the dominant provider of short read sequencing technologies [16]. 

However, in recent years we have experienced the third wave of DNA 

sequencing technology, with the development of single-molecule long-read 

technologies, now marketed by PacBio and Oxford Nanopore. There are a 

number of considerations when choosing a sequencing technology to use, in 

particular, read length and cost. I will describe Illumina, PacBio and Oxford 

Nanopore in more detail, as the technologies most relevant to this thesis. 

1.2.1 Short read sequencing 

As mentioned, short read sequencing is now dominated by the Illumina 

sequencing by synthesis (SBS) technology. Briefly, purified DNA is 

fragmented into smaller pieces. For single-end data, only one end of this 

fragment is sequenced, while for the (more common) paired-end sequencing 

strategy a short segment of each of the ends is sequenced. Two reads arising 

from the same DNA fragment are referred to as a read pair, or pair of reads. 

The size of the physical DNA fragments is often estimated by calculating the 

insert size, that is the distance between a pair of reads aligned to the reference 

genome. The read length of the data is the number of DNA base pairs (bp) 

that are sequenced (either at one or both ends of the fragment). Most modern 

Illumina sequencing data described in this thesis has read lengths of 150 bp 

and insert sizes of approximately 400-500 bp (although there is a large amount 

of variation within an experiment). 

To describe the sequencing process in more detail: adaptors are added to both 

ends of the fragment, including sequences that allow primer binding, 
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identification of samples and allow the fragment to bind to short nucleotide 

sequences attached to the flow cell. Depending on the library preparation 

type, these fragments may undergo enrichment and/or PCR prior to 

sequencing (see section 0). Once attached to the flow cell, each DNA 

fragment is amplified by bridge PCR to produce a cluster of identical 

fragments. These clusters are then sequenced using the SBS strategy. As each 

base is added by a DNA polymerase, the base emits a fluorescent signal, with 

a colour corresponding to the specific A, T, C or G base added.  

While the error rate of Illumina sequencing is generally low at ~0.1%, it 

suffers from higher error rates at specific loci such as homopolymer runs and 

regions of extreme GC [17–19]. Homopolymers are a sequence of identical 

DNA bases. Using SBS these identical bases all have the same fluorescent 

signal, so the machine can have difficulty determining how many identical 

bases were added at a time. Illumina sequencing is ultimately a PCR-based 

method: even when using PCR-free library preparations the actual sequencing 

involves a DNA polymerase and bridge-amplification. Therefore, it suffers 

from the known GC biases arising from PCR. That is regions of extreme GC 

content tend to be under-represented in the sequencing results, so that these 

regions tend to have lower coverage [18]. The use of PCR-free library 

preparations does help to mitigate both GC and homopolymer biases [20,21]. 

1.2.2 Long read sequencing 

Recent advances in sequencing technology have seen a third generation of 

sequencing technologies enter the market, with dramatically longer read 

lengths than those seen previously. The two main technologies are the Single-

molecule real-time sequencing (SMRT) by Pacific Biosciences (PacBio) and 

nanopore sequencing by Oxford Nanopore Technologies (ONT), which I will 

refer to as PacBio and Nanopore sequencing respectively. Both methods work 

by sequencing individual DNA molecules, in contrast to the amplification-

based methods used by Illumina and some other second-generation 
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technologies. PacBio has average read length of 10-15 kb, with reads greater 

than 80 kb reported, while ONT claims read lengths are limited by the length 

of the DNA fragment [22].  

Both long read methods also suffer from considerably higher error rates than 

Illumina. PacBio has a single-pass error rate of ∼13%, however shorter 

fragments up to ∼1-2 kb can be sequenced multiple times to generate a 

consensus read with much higher accuracy [23]. ONT reports an error rate of 

approximately 15% [24], falling to ~3% if both strands are sequenced [22].  

Despite their high error rates, the long-read lengths generated by third 

generation technologies make them ideal for detecting larger variants such as 

structural re-arrangements. In addition, these methods are particularly useful 

for resolving repetitive sequences such as STRs, gene duplications and 

distinguishing pseudogenes. The relative expense, lower throughput and high 

error rates of long read technologies have largely prevented their adoption by 

the clinical genomics community thus far, however there have been some 

forays into using long reads for targeted sequencing of difficult to resolve 

regions such as HLA and STR loci [25]. 

1.2.3 Sequencing strategies 

In concert with the explosion in DNA sequencing technology, the scientific 

community has developed a variety of strategies to make efficient use of 

sequencing. In particular, whole exome and other targeted sequencing 

strategies have had a huge impact on clinical genomics [26]. Rather than 

sequencing the entire human genome, hybridisation probes are designed to 

capture and enrich for DNA sequences of interest, which are then PCR-

amplified. This can result in dramatic cost-savings, by only sequencing the 

desired regions. For whole exome sequencing the probes are designed to 

target most known protein-coding regions of the genome, or in some cases 
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selected UTRs as well. Smaller target regions are also relatively common, for 

example cardiac gene panels. 

Another advance in the Illumina sequencing library protocol is the 

introduction of “PCR-free” library preparation. Where sufficient input DNA 

is available, sequencing can be performed without first amplifying the library. 

This reduces PCR induced biases such as GC bias and homopolymer errors 

[20]. 

1.3 Clinical genomics and genetic disease research 
The increasing use of high-throughput DNA sequencing technologies in the 

clinical setting has given rise to the field of clinical genomics. In many 

hospitals, patients with rare, likely genetic conditions are now routinely being 

offered testing with next-generation sequencing. This has dramatically 

expanded our ability to diagnose a wide range of single-gene disorders [26]. 

Disease gene panel sequencing and exome sequencing are the most common 

approaches, with whole genome sequencing still primarily being used only in 

cases where initial testing fails to make a genetic diagnosis. 

The needs of the clinical diagnostic community differ critically from genetic 

disease research in a number of ways. In the clinical setting time to diagnosis 

is crucial, with test results typically returned in the scale of weeks, or even days 

[27]. In contrast, researchers may spend years validating a novel disease gene. 

In the clinical setting, a variant will only be accepted as a genetic diagnosis if it 

meets strict criteria. For example the American College of Medical Genetics 

(ACMG) has published recommended standards and guidelines interpeting 

sequence variants, which describe the commonly used set of criteria [28]. 

More generally we can think of clinical genomics as a process of reaching a 

specific diagnosis for a patient by detecting one or more high-confidence 

variants in an established disease gene. In contrast, in the genetic disease 

research context, we are often looking for novel variants in genes that have 
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not previously been linked to that disease. There is a continuum between the 

clinical and research contexts. Patients who fail to receive a genetic diagnosis 

in the clinical context may be moved into a research context. Conversely, new 

methods, and evidence that specific variants and genes are responsible for 

disease, are constantly being developed in the research context and translated 

into clinical use. 

Much of the work in this thesis straddles the divide between research and 

clinical genomics. For example, the pooled parent exome sequencing 

approach described in Chapter 2 is designed to be quickly translated into 

clinical use, as it integrates well with the strategies already used in clinical 

practice. The STRetch algorithm described in Chapter 3 is able to detect 

known, high confidence, pathogenic STR expansions, and so could be 

integrated directly into clinical pipelines. However, it is also able to detect STR 

expansions at all STR loci across the genome, making it suitable for disease 

gene discovery in a research context. Gene discovery is also the emphasis of 

Chapter 4, as I consider how we can prioritise STR expansions that may be 

more likely to be pathogenic.  

1.3.1 Genetic disease 

This thesis focuses on the genomics of rare genetic disease. These diseases are 

typically cause by a single genetic variant in a single gene, which has a large 

impact on the phenotype of the affected individual. Many of these are 

inherited, termed Mendelian diseases. Well known examples include Cystic 

Fibrosis, Beta Thalassemia and Huntington’s disease. In contrast, complex 

genetic diseases can be caused by a larger number of genetic loci, each 

contributing a relatively small risk of disease, for example type II diabetes. 

1.3.1.1 Inheritance patterns 
Genetic diseases typically follow one of a small set of inheritance patterns. In 

the autosomal dominant inheritance pattern, only one copy of the disease 
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allele is required to cause disease, so families show a pattern of affected 

individuals having at least one affected parent, and the disease does not skip 

generations. For an autosomal recessive disease, two copies of the disease 

allele, one inherited from each parent, are required to cause disease. These can 

be the same variant, often found in consanguineous families, or two different 

variants in the same gene (such individuals are termed compound 

heterozygotes). In recessive inheritance an affected individual may have two 

unaffected parents who are carriers, as they are heterozygous for the causal 

variant. Both these cases are referred to as autosomal because the causal 

genetic variant is carried on one of the autosomes (chromosomes 1-22) not 

the sex chromosomes (X, Y) or in the mitochondrial genome. 

Sex-linked inheritance occurs when the disease variant is located on one of the 

sex or mitochondrial chromosomes, typically the X chromosome. X-linked 

dominant disease is passed from an affected parent to their daughter, but 

males can only inherit from their mother because they do not receive an X 

chromosome from their father. X-linked recessive disorders are more 

frequently seen in males because they have only one X chromosome, termed 

hemizygous. X-linked recessive disease is also possible in females, however 

they would have to have inherited from an affected father, while their mother 

may be a carrier. There are Y-linked diseases, however due to the relatively 

small size of the Y chromosome, there are few of these. Mitochondrial genetic 

disorders are generally inherited from mothers, as the egg contributes most of 

the mitochondria to the zygote. 

Finally, de novo genetic diseases are those caused by a novel genetic variant in 

the proband that is not inherited from the parents. These are often caused by 

DNA mutations in the sperm or egg, or in the early stages of embryotic 

development. Do novo diseases are often dominant, and can be autosomal or 

sex-linked. Although de novo variants are rare, they contribute disproportionally 

to the number of diagnosed cases, for example one study of monogenic 
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disease in infants found 36% of their diagnosed variants were de novo, 

compared to 13% dominant and 47% recessive [3]. Genetic mosaicism may 

complicate the detection of de novo variants. Mosaicism occurs when a 

mutation occurs during embryonic development, resulting in an individual 

with cell populations harbouring different genotypes at a given locus. An 

unaffected parent may be mosaic for a causal variant such that their gonads 

harbour the variant, while they blood does not. This could lead to the 

appearance that a variant is de novo, when it was in fact inherited. It is 

estimated that ~10% of apparent de novo variants may in fact be the result of 

post-zygotic mosaicism [29]. Mosaicism can also lead to phenotypic 

differences, depending on which tissues contain the disease variant. 

1.3.2 Making a genetic diagnosis 

Making a genetic diagnosis means finding one or more DNA variants with a 

high confidence of causing the condition. A genetic diagnosis is valuable for a 

number of reasons. It can inform treatment, for example several single-gene 

disorders can be treated with available medications [30]. In addition, a genetic 

diagnosis can critically inform prognosis. This may inform management, give 

patients and their families a clearer expectation of disease progression and in 

some cases prevent the application of unnecessary invasive treatments. Many 

families also report that having a clear disease or gene name can allow them to 

find other families with the same condition, and form support networks. 

Finally, understanding the genetic basis of the disease may allow the family to 

make informed decisions about conceiving future children. Genetic variants 

may be inherited, or arise de novo in the patient. Knowing the inheritance 

pattern allows clinicians to counsel families on the risk to other family 

members and future children, and may allow preimplantation or prenatal 

testing for the specific DNA variant. 

In children, genetic diagnostic rates from exome sequencing are typically in 

the range 31-39% [2]. These studies included many patients who were 
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sequenced only after low throughput testing failed to make a diagnosis, so 

tend to be enriched for difficult cases. When exome sequencing is used as a 

first line test in a prospective cohort, diagnostic rates of up to 57.5% have 

been reported (this was part of the Melbourne Genomics Health Alliance, a 

study for which I performed bioinformatic analysis) [3]. 

When trying to obtain a genetic diagnosis for a likely Mendelian disease there 

are two common approaches: singleton and trio sequencing. When using a 

singleton strategy, only the proband is sequenced, while in a trio strategy the 

parents of the proband are also sequenced. There is also a diversity of other 

family sequencing patterns, such as including siblings. The advantage of trio 

sequencing, or of sequencing any number of additional family members is that 

it allows a large number of potential disease variants to be filtered out based 

on inheritance patterns. For example, if a disease is thought to be de novo 

dominant then any variants found in the parents can be filtered out. If a 

disease appears to be recessive, then we can exclude variants that are 

homozygous in either parent. Most likely due to these powerful filtering 

strategies, a trio sequencing approach outperforms the singleton strategy, with 

diagnostic rates of 33% for trios and 22% for singletons [2]. However, the trio 

approach is generally more expensive, sequencing two additional samples, so 

overall the singleton approach may result in more genetic diagnoses for a 

given sequencing budget because more affected individuals can be sequenced. 

Note that one limitation of this argument is that diagnostic rates are heavily 

impacted by differences in the analysis methods used in these studies as well 

as the specific diseases that were assessed. Therefore, diagnostic rates should 

be interpreted with caution when comparing between studies. In addition, 

assigning a specific condition to any of the above categories can by further 

complicated by differences in phenotype between individuals with the same 

genotype. For example reduced penetrance occurs when only a proportion of 

individuals with a given genotype have the disease, while variable expressivity 
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refers to differences in symptoms that can occur between individuals with the 

same genotype. 

1.3.3 Analysis pipeline: from sequencing reads to disease variant 

In recent years bioinformatic pipelines for analysing clinical sequencing data 

have tended to converge on a core set of essential steps and tools. There have 

been a number of standard analysis pipelines developed for clinical genomics. 

I helped develop one such pipeline, Cpipe [31], which was developed for the 

Melbourne Genomics Health Alliance project, and has since been integrated 

into clinical practise here at the Victorian Clinical Genetics Services (VCGS) 

and at other clinical centres. 

Briefly, the key stages of most clinical genomics pipelines are as follows 

(Figure 1.1). A DNA sample from the patient is sequenced to produce raw 

sequencing reads (FASTQ files). These sequence reads are aligned to the 

reference genome to produce a BAM or CRAM file. The reads are then 

compared to the reference genome at each position to assess the evidence that 

the individual has a different DNA sequence (a variant) compared to the 

reference genome (creating a VCF file). This full list of variants that differ 

from the reference is processed by a series of steps including variant 

annotation, filtering and prioritisation. Lower quality variants may be 

removed, while information about the genomic context, predicted 

consequences and other characteristics of variants are used to filter or 

prioritise them, working towards a short list of candidate disease variants. At 

this stage, one or more likely pathogenic variants may be found, and a 

diagnosis made. However, the case may remain unsolved and/or move into a 

research gene discovery paradigm. Quality control (QC) metrics are generally 

collected and checked at all stages in this pipeline. I will describe the main 

pipeline stages in more detail, highlighting the key methods and 

considerations at each point. 
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Figure 1.1: Typical stages in a clinical genomics pipeline. 

 

1.3.3.1 Alignment 

DNA sequencing in the clinical context is most frequently performed with 

paired-end short read Illumina sequencing technology. This generally 

produces a pair of FASTQ files, containing the forward and reverse reads. 

These reads are aligned to the human reference genome. While there are many 

alignment algorithms, BWA-MEM [32] has emerged as the most frequently 

used algorithm in this context, as it is more sensitive to larger indels than 

other methods [33]. It generates a BAM file describing the position of each 

read on the reference genome and any differences between the read and the 

reference. 



 34 

1.3.3.2 Variant calling 
Variant calling of SNVs and short indels has converged on the Genome 

Analysis Toolkit HaplotypeCaller algorithm [34]. Most labs use this algorithm 

in the context of the GATK Best Practices recommendations for germline 

SNV and short indel variant calling, which includes a number of intermediate 

processing steps [35]. Likely duplicate reads are identified and flagged, and 

base quality scores are recalibrated. Variant calling may be performed on 

individual samples; however, the guide recommends performing joint calling, 

integrating variant information across individuals. The resulting variants are 

then filtered and refined using quality metrics. While the recommended joint 

calling can be used to weight the confidence of variant calls based on their 

frequency in a set of samples, this may be undesirable in a clinical context. In 

clinical diagnostic labs there is emphasis on the reproducibility of results, 

therefore using a method that draws information across samples may generate 

unwanted variability. 

1.3.3.3 Variant annotation, filtering and prioritisation 

One difficulty that arises when using exome or whole genome sequencing in a 

clinical setting is the sheer number of variants discovered by these 

technologies. For example, an average individual exome has more than 20,000 

variants. Typically 10,000-12,000 of these variants will be non-synonymous 

(changing the amino acid sequencing of a protein), 120 will be protein 

truncating and 54 of the variants will have been previously reported as 

pathogenic [36,37]. Therefore, it is critical to filter and prioritise this set of 

variants to produce a more manageable list. 

Variant annotation is an area where there is much more variability between 

different analysis pipelines and different diagnostic laboratories. Currently, the 

two main tools used to perform variant annotation are Annovar [38] and VEP 

[39]. These tools enable annotation of variants based on a large set of 

different criteria and integrate other annotation tools or metrics. One of the 
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main goals of variant annotation is to determine the genomic context of the 

variant. For each variant the tool reports if it overlaps a known transcript, or 

other genomic feature such as a promoter or splice site (many of these 

features and their implications are summarised in section 1.1.3). These tools 

then make a consequence prediction. For example, a variant that produces a 

stop codon in a protein coding transcript might be predicted to have a protein 

truncating consequence. These tools may also optionally add information 

from other consequence-prediction methods, for example SIFT [40] uses 

homology information to predict if an amino acid substitution will impact 

protein function, while PolyPhen [41] makes similar predictions but using 

physical characteristics. Condel [42] and CADD [43] scores integrate 

information from other scores to provide a consensus deleteriousness 

prediction. Previously reported pathogenic variants can also be annotated by 

drawing on databases such as ClinVar [44]. Databases such as Matchmaker 

Exchange [45] can be used to determine if a variant has been seen in an 

individual with a similar phenotype, even if that variant has not yet been 

clearly established as pathogenic. 

Variants are also commonly annotated with their population allele frequency. 

There are several databases of variant frequencies, such as Exome Variant 

Server [46], 1000 Genomes [6] and the Genome Aggregation Database 

(gnomAD, previously known as Exome Aggregation Consortium or ExAC) 

[37,47]. With the largest number of individuals, gnomAD is currently the most 

used. It also provides gene-level scores estimating tolerance to Loss of 

Function (LoF) variants, the pLI score, and more recently the LoF 

observed/expected ratio. Allele frequencies can be used to filter variants that 

are common in the population, and therefore are unlikely to cause severe 

early-onset disease. Typical variant frequency thresholds are 0.01 for a “rare” 

variants, and 0.0005 to be considered a “very rare” [31]. The threshold used 

may depend on the severity of symptoms and the pattern of inheritance. For 
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example, dominant diseases tend to be caused by rarer variants than recessive 

diseases. As allele frequencies can different drastically between populations, it 

is important to use a variant frequency database that is matched to the 

individual. For example gnomAD provides allele frequencies for the entire set 

as well as 7 specific sub-populations. 

Although many diagnostic laboratories and research groups use broadly 

similar analysis pipelines (especially with regard to alignment and variant 

calling), they often make different choices with regard to variant filtering and 

prioritisation that can have a large impact on which variants remain or are 

prioritised at the end of the pipeline. For example we have previously 

compared the use of clinically-determined gene lists with Exomiser 

[48], CADD and Condel scores to determine variant ranking, and found 

dramatic differences in the number of known causal disease variants that were 

ranked at the top of the list [49]. 

1.3.3.4 Variant curation and diagnosis 

In the final stage, the set of annotated variants is typically imported into a 

variant database with a graphical user interface to allow manual curation of 

the results. Common database choices are LOVD [50] and Seqr [51]. These 

databases may also link other sources of information about the variants, for 

example gene-level disease information from Online Mendelian Inheritance in 

Man (OMIM) [52]. They may also incorporate variant calls from family 

members to allow filtering based on an inheritance model. 

The process of variant curation typically involves applying the ACMG 

guidelines [28], or other laboratory-specific strategies, to determine if there is a 

sufficient evidence that a particular variant is pathogenic. This process will 

generally draw information from all the variant annotations that I have 

described. For example, considering if the variant is likely to impact protein 

function, if it is rare in the population and if it is in a gene that is consistent 
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with the patient’s phenotype. In many cases variant curation will also require 

searches of other databases and of the scientific literature. It is worth noting 

that the ACMG guidelines offer substantial scope for interpretation, which 

hinders automation and makes this stage a highly labour-intensive process. 

Variant curation can be lengthy process. Therefore, it is critical to use filtering 

to limit the number of variants that must be curated for each patient. In many 

cases variants will be ranked, and then curation will continue from the top of 

the list onwards until either a likely causal variant is found, or until a specified 

limit of variants have been checked. To have the best chance of making a 

genetic diagnosis it is critical to rank the best candidate variants first. 

Finally, in a clinical diagnostic setting, a clinical report will be produced. It 

describes any relevant variants, or reports that there were no confident 

disease-causing variants, or that there were variants of uncertain significance 

found. Clinicians then use this report as evidence towards making a genetic 

diagnosis. 

1.4 Short Tandem Repeats 
As mentioned previously, most genomic testing pipelines only genotype SNVs 

and short indels, so there are a range of genetic variants that go completely 

unobserved. Some of our failures to reach a genetic diagnosis stem from our 

inability to detect the causal variant in short read sequencing data. One type of 

genetic variant that is rarely tested is short tandem repeat expansions. For 

example, in Chapter 3 I describe a patient who underwent multiple rounds of 

genetic testing, culminating in whole genome sequencing. This patient did not 

receive a diagnosis until years later when we detected a known pathogenic 

STR expansion using STRetch. As STR expansions are a major focus of this 

thesis, this section summarises the STR literature. 

Short tandem repeats (STRs), also known as microsatellites, simple sequence 

repeats, or simple sequence length polymorphisms, are short DNA sequences 
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of one to six base pairs that are repeated consecutively [53]. In contrast, 

minisatellites (also known as variable number tandem repeats) contain longer 

– 10 to 60 base pair – repeat unit motifs [54]. Discussion of repeats with 

motifs of seven to nine base pairs is rare in the literature, and these are 

generally grouped under the general term “tandem repeats”. Tandem repeats 

(including STRs and minisatellites) show a large degree of variation between 

individuals, with mutation rates 10 to 100,000 times higher than average 

mutation rates in other parts of the genome such as SNPs [55].  

The terms STR and microsatellite are used interchangeably, with the choice 

often depending on the context. For example, in population studies the term 

microsatellite is often preferred, while in human context STR is more 

commonly used. I will use a range of terms to describe the qualities and 

components of a STR. Figure 1.2 summarises this nomenclature. The repeat 

units of a STR are its building blocks and have a characteristic motif (in this 

case AC). An STR locus consists of a number of repeat units which are 

arranged in tandem (head-to-tail). Repeat length refers to the number of 

repeat units in a given allele. Repeat length can vary between individual 

chromosomes at a given STR locus, so that an individual with a heterozygous 

STR genotype has two alleles with different numbers of repeat units and thus 

with different repeat lengths. An STR locus has upstream and downstream 

flanking sequences. Most STRs in the human genome are simple STRs. These 

contain a simple DNA sequence repeated in tandem. Compound STRs 

contain two or more adjacent simple STRs. In addition to simple and 

compound STRs, it is possible to find complex STRs, which are compound 
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STRs that are interrupted by short non-variable sequences [56]. 

 
Figure 1.2: STR structure and nomenclature using a dinucleotide AC motif as an 
example. 

Approximately 3% of the human genome consists of STRs [57]. Of these, 

5353 loci overlap with exons and 537 genes have at least one STR overlapping 

with their coding region (see section 4.2). Dinucleotide STRs are the most 

common [58], however STRs with tri-nucleotide (3bp) and hexa-nucleotide 

(6bp) repeat units are enriched within exonic regions, while other repeat unit 

sizes are predominately found in non-coding regions [57]. STR expansions 

and contractions which are a multiple of three would produce in-frame 

deletions, and thus are likely to have a lower impact on protein coding regions 

than STRs with repeat units that are not a multiple of three. 

1.4.1 STR mutation mechanism 

Tandem repeat loci are prone to frequent mutations and high polymorphism, 

with mutation rates 10 to 100,000 times higher than average mutation rates in 

other parts of the genome [55]. Tandem repeats have been reported to have 

mutation rates in the order of 10-3 to 10-7 mutations per cell division (reviwed 

in Gemayel et al., 2010). STR mutations rates vary substantially depending on 

the repeat unit length, the total repeat length and purity [59]. In general, 

shorter repeat units, longer repeat lengths and high repeat purity all increase 

mutation rates. 
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Most mutations in STR loci are the addition or deletion of one or more 

complete repeat units. SNPs, and indels involving partial repeat units are 

much less common [55]. There are two major models for natural tandem 

repeat variation are recombination and DNA polymerase slippage [55]. 

Recombination (Figure 1.3) is theorised to occur within a tandem repeat locus 

on a single chromosome (intra-repeat recombination), or between 

homologous loci on two chromosomes (inter-repeat recombination). In both 

cases this can result in the addition or subtraction of many repeat units in a 

single event. The other model is DNA Polymerase slippage. During DNA 

replication, the repeat units may mis-pair, causing the DNA Polymerase to 

“slip” and copy fewer or additional repeat units. DNA Polymerase slippage is 

also theorised to cause the “stutter” observed in PCR (see section 1.4.5). 

 

Figure 1.3: Two mechanisms for tandem repeat expansions and contractions 
theorised to occur within cells. 

a) Recombination within a single chromosome (intra-repeat recombination) or 
unequal crossing over between a pair of chromosomes (inter-repeat recombination) 
can result in the gain or loss of multiple repeat units. b) During DNA replication 
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There are currently two major models that
describe the mechanisms by which TRs expand
or contract: strand-slippage replication and re-
combination (Figure 2). Details of both mech-
anisms have been covered elsewhere (28, 98,
103, 118, 126). Briefly, strand-slippage replica-
tion, also known as slipped-strand mispairing,
or DNA slippage, occurs during replication
of the TR DNA when there is mispairing be-
tween the template and nascent DNA strands.
When the newly synthesized strand denatures
from the template strand during synthesis of
the TR sequence, it will occasionally pair with

another part of the repeat sequence. If the
template strand is looped out, then contraction
of the TR occurs. If the nascent strand loops
out, then an expansion will result. More elab-
orate models invoke DNA strand–breakage
repair (98, 135). Double-strand breaks are
generated during DNA replication, stalling
at repeats. These breaks can be repaired by
single-strand annealing to homologous TR
sequences on the same branch of the replica-
tion fork. This would result in loss of repeat
units. Single-strand annealing to homologous
TR sequences on the other branch of the
fork can also occur, and several TR units can
be added to the strand before it returns to
the broken replication fork. The importance
of DNA strand breakage in the mutation of
TR tracts is supported by studies demon-
strating involvement of the double-strand
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the two strands can mis-pair and result in the DNA polymerase adding or failing to 
add repeat units (replication slippage). Figure from [55]. 

1.4.2 STR variation impacts gene expression 

There is substantial evidence that STRs impact gene expression and 

contribute to variation in gene expression within and between species [55]. 

This has been shown experimentally; mutating STRs in the promoter region 

impacts reporter gene expression in human cells [60]. STRs are found within 

many coding and regulatory regions of genes. There is evidence of STRs in 

promoter regions modulating gene expression in bacteria, yeast and mammals 

[61]. It has been observed that the presence of STRs in promoter regions are 

often highly conserved in mammals, with higher conservation observed closer 

to the TSS, suggesting selection for the presence of STRs in human promoter 

regions [62]. 

Perhaps the most famous example of STRs influencing gene expression 

comes from the prairie vole (Microtus ochrogaster), a monogamous rodent 

species found in the grasslands of the central United States and Canada. Voles 

form ‘pair bonds’, where individuals preferentially affiliate and copulate with 

their partner as well as sharing a nest and rearing offspring together [63]. STR 

variation in the promoter region of the Avpr1a gene influences expression of 

that gene, which encodes arginine vasopressin receptor 1a. Longer STR alleles 

were associated with monogamous behaviours, specifically pup grooming 

behaviour in males [64]. STR variation in the corresponding human gene has 

been associated with differences in monogamous behaviour in men [65] as 

well as a range of other social phenotypes. STR variation has been show to 

influence AVPR1A gene expression levels in vitro [66] and in post mortem 

brains [67,68]. 

There are a number of mechanisms by which STRs are hypothesised to 

influence gene expression. STRs consisting of alternating pyrimidines and 

purines promote Z-DNA formation [55]. This unusual left-handed form of 
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DNA (normally right-handed) has been observed to act as a regulatory 

element for nearby genes [69]. Z-DNA is more likely to form near promoters 

because these regions more commonly experience negative torsional strain 

due to RNA polymerase helicase activity as well as chromatin remodelling. Z-

DNA can prevent nucleosome binding or can block the movement of RNA 

polymerase activity proteins [61]. In rats, it has been shown that the length of 

a (AC)n STR just upstream of the TSS is associated with changes in gene 

expression, due to Z-DNA formation [70]. 

Many transcription factor binding sites are STRs, therefore changing the 

length of these STRs can change the number of binding sites [55]. Other 

STRs fall between functional elements in promoters so that changes to their 

repeat length changes the spacing between these sites [71]. STRs can also 

influence promoter activity by altering the structure of chromatin [72]. 

In humans, variation at over 2,000 STR loci has been associated with changes 

in gene expression [73]. It is clear that through a variety of mechanisms, STRs 

modulate gene expression over many species and may be important in the 

regulation of a substantial number of genes. 

1.4.3 STRs in Human Disease 

Tandem repeats have been implicated in dozens of human diseases from 

neuromuscular and neurodegenerative diseases – such as Huntington’s 

disease, multiple forms of ataxia and fragile X syndrome – to cancer.  

1.4.3.1 Mendelian disease 
Tandem repeat expansions have been implicated in more than 30 Mendelian 

human diseases (a subset of these are summarised in Table 1.1). Many of these 

conditions affect the nervous system, for example Huntington’s disease, 

spinocerebellar ataxias, spinobulbar muscular atrophy, Friedreich ataxia, 

fragile X syndrome and many of the polyalanine disorders [74]. There are 

eleven STR loci for which expansions are known to cause spinocerebellar 
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ataxia and these diseases can also be caused by SNVs or indels at other loci. 

Most tandem repeat expansion disorders show dominant inheritance (Table 

1.1). STR expansions can cause disease through a variety of mechanisms, 

including polyglutamine aggregation, changes to methylation, RNA toxicity, 

and repeat associated non-ATG (RAN) translation [75]. 

Table 1.1: Summary of human inherited diseases caused by tandem repeat 
expansions. 

AD = autosomal dominant, AR = autosomal recessive, XD = X-linked dominant, 
XR = X-linked recessive, *intermediate = premutation/incomplete 
penetrance/uncertain pathogenicity. Sources: [52,75–77]  

disease gene repeat unit inheritance type normal intermediate* pathogenic 

CANVAS RFC1 AAGGG AR intronic 0* 
 

400-2000 

CCHS PHOX2B GCN AD coding 20 24 25-33 

DM1 DMPK CAG AD coding 5–34 35-49 50-2000 

DM2 ZNF9 CCTG AD intronic 11–26 27-74 75-11,000 

DRPLA ATN1 CAG AD coding 3–35 
 

49-93 

FRA12A DIP2B CGG AD 5'UTR 
   

FRAXE AFF2/FMR2 CGG XR 5'UTR 6-25 
 

200-2000 

FRDA FXN GAA AR intronic 5–33 34-65 66 to 1700 

FTDALS1 C9orf72 GGGGCC AD intronic 3–25 20-60 >60 

FXS/FXTAS/
POF1 

FMR1 CGG XD 5'UTR 5–44 45-200 200-2000 

HD HTT CAG AD coding 6–26 27-39 40–250 

HDL2 JPH3 CAG AD 3'UTR 6–28 2-39 41–58 

HFG HOXA13 GCN AD coding 12-18 
 

18-32 

OPMD PABPN1 CGN AD/AR coding 10 
 

11-17 

SBMA AR CAG XR coding 9–34 36-37 38–68 

SCA1 ATXN1 CAG AD coding 6–35 36-38 39–88 

SCA10 ATXN10 ATTCT AD intronic 10–32 280-850 800-4500 

SCA12 PPP2R2B CAG AD 5'UTR 4–32 
 

51–78 

SCA17 TBP CAG AD coding 25–40 41–48 49 to 66 

SCA2 ATXN2 CAG AD/AR coding 14–32 31-34 33–200 

SCA3/MJD ATXN3 CAG AD coding 12–44 45-59 60-87 

SCA31 BEAN TGGAA AD intronic 0* 
  

SCA36 NOP56 GGCCTG AD intronic 3 to 14 15-649 650-2500 

SCA6 CACNA1A CAG AD coding 4–18 19 20–33 

SCA7 ATXN7 CAG AD coding 4–19 28-36 37–460 

SCA8 ATXN8/ 
ATXN8OS 

CAG AD untranslated 
exon 

15–50 50-70 71-1300 
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Tandem repeat expansion diseases are characterised by a mode of inheritance 

called genetic anticipation. Many of these diseases show increased expressivity 

through generations, showing greater severity and earlier age of onset as the 

tandem repeat expands [76]. In some diseases, the penetrance (probability that 

a given individual is affected) also increases with number of repeat units and 

hence in later generations, and in some cases depending on the gender of the 

parent who transmitted the repeat expansion [78]. The number and position 

of imperfect repeat units may also influence penetrance. Together, these 

features produce genetic anticipation; the disease worsens through 

generations. 

For most STR disease loci allele sizes are characterised into normal, 

intermediate and pathogenic ranges (Table 1.1). Intermediate alleles generally 

do not cause disease, however in some cases they may cause an intermediate 

phenotype or convey reduced risk of a disease. For example, expansions at the 

FMR1 locus of 200 CGG repeat units cause fragile X syndrome (FXS) [77]. 

Alleles, between 55 and 200 repeat units at the same locus increase the risk of 

primary ovarian insufficiency (POI) in females and fragile X-associated 

tremor/ataxia syndrome (FXTAS) in both sexes, with males at greater risk. 

For many of these diseases, alleles in the intermediate range are termed 

“premutation” alleles because they become unstable when passed on, so that 

the children of an individual with a premutation allele are at risk of inheriting 

a pathogenic allele [79]. For several STR diseases, premutation alleles have 

been matched to founder haplotypes, suggesting a shared genetic origin rather 

than premutations occurring de novo in multiple unrelated individuals [80–83]. 

The most notable class of STR expansion diseases are the PolyQ disorders. 

These are caused by CAG repeat expansions in coding regions, resulting in a 

polyglutamine (Q) expansion in the protein product. These include 
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Huntington’s disease, Kennedy’s disease and several of the spinocerebellar 

ataxias [79]. 

Huntington’s disease (HD) is the most common of the polyQ disorders, and 

has been most extensively researched, with findings likely to be applicable to 

other polyQ disorders (especially those causing neurodegeneration). HD is 

caused by a CAG STR expansion in the coding region of the Huntingtin gene 

(HTT), which codes for the protein Huntingtin (Htt), eventually resulting in a 

range of later-onset cognitive, psychiatric and motor symptoms [79].  

Along with about 100 other human proteins, Htt has repetitive polyglutamine 

tract. When this polyQ tract exceeds a given length (approximately 35 

glutamines for most diseases), this can result in protein aggregation, leading to 

amyloid-like fibrils. This triggers the protein misfolding pathway, and can 

result in cellular toxicity and eventually neurodegeneration [84]. 

Polyalanine disorders are another class of diseases caused by GCN STR 

expansions in coding regions, resulting in a string of alanines in the protein 

product (listed in Table 1.1). Most of these disorders involve loss of function 

to transcription factors required during development [85]. The pathogenesis 

of polyalanine disorders is not yet well understood. 

A substantial number of tandem repeat expansion disorders are caused by 

STRs in non-coding regions, particularly promoters, 5’ and 3’ UTRs, and 

introns (Table 1.1). These include several of the spinocerebellar ataxias, the 

myotonic dystrophies and Fragile X and associated syndromes. The 

pathogenesis of many of these disorders has been identified as abnormal gene 

expression or changes in RNA structure or function [79]. Interestingly, of 

disease-causing repeat expansion disease mutations in non-coding regions, 

most are also triplet repeats; although it is difficult to determine if this reflects 

a biological process or simply confirmation bias. 
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1.4.3.2 Cancer: Microsatellite instability 
Microsatellite instability (MSI) is when the somatic mutation rate of many 

STRs across the genome increases due to a defect in the DNA mismatch 

repair system [86]. MSI is an indicator that the cancer has a mutator 

phenotype, and is more prone to mutations in multiple oncogenes and/or 

tumour suppressor genes [87]. 

These STR mutations can contribute to carcinogenesis through the 

subsequent inactivation of tumour-suppressor genes or changes to regulatory 

sequences in proto-oncogenes or other genes [88]. STRs can inactivate genes 

through frameshift mutations, activate genes by enhancing transcription factor 

binding within promoter regions, or any other of the myriad ways STRs can 

impact gene expression, as discussed in section 1.4.2. 

MSI has primarily been used as a prognostic marker, to identify cancers with 

mutator phenotypes, and thus guide diagnosis and treatment. The assignment 

of STR-stable vs. STR-instable cancer phenotypes is usually based on PCR 

electrophoresis of a set of STR loci in the Bethesda panel [89,90]. 

Several software tools have been developed to detect MSI from short-read 

sequencing data, for example MSIseq [91], MSIsensor [92] and mSINGS [93]. 

In general, these tools look for signatures of genome-wide STR instability in 

tumour compared to normal samples, rather than genotyping specific alleles. 

1.4.4 Genotyping STRs by length 

Traditionally, STR variation has been identified using gel electrophoresis [94]. 

Polymerase chain reaction (PCR) is performed using primers, which are 

complementary to unique sequences flanking the STR. An amplicon is the 

DNA product of a PCR reaction. It consists of many copies of the DNA 

between a pair of primers. Amplicons are separated on the basis of size by 

capillary gel electrophoresis to determine the sequence length, which reflects 

the number of repeat units. 
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There are a number of problems with genotyping STRs using PCR and 

electrophoresis. Each STR genotyping assay must be individually developed, 

optimised and validated before it can go into production. Although many of 

these protocols have been scaled to handle dozens of samples, it is still labour 

intensive and costly.  

Further, while PCR has been found to give relatively accurate length estimates 

for short alleles it can become inaccurate for or even completely miss longer 

alleles. STRs are particularly prone to allelic dropout in PCR reactions [95,96]. 

This is where one allele fails to be amplified and so the individual appears to 

be homozygous for the other allele. For example, GC rich repeats and 

secondary structure may hamper the amplification of STRs. The longer allele 

is more likely to experience dropout, because the shorter is preferentially 

amplified, and many polymerases may not be capable of spanning some of the 

larger alleles. However, either allele can be affected by dropout due to 

mutations in the primer binding sites. For this reason, many clinical tests for 

pathogenic STR expansions test for two normal length alleles as a screening 

method. 

Another disadvantage of PCR and electrophoresis genotyping is that it is only 

able to reveal the overall length of the STR. For example, a compound allele 

(TC)n(AC)m with 33 repeat units, may actually be any of five cryptic alleles 

ranging from (TC)6(AC)27 to (TC)10(AC)23. There are several examples of 

pathogenic STR loci that are compound STRs. For example, the Huntington’s 

disease locus and one of the Muscular Dystrophy loci (DM2) are both directly 

adjacent to at least STR locus with a different repeat unit. In both these cases, 

the adjacent STRs are not known to cause disease. 

Another issue arising during the PCR is that the polymerase has a tendency to 

‘slip’ on the STR during replication [97]. This is theorised to occur when the 

repetitive sequences mis-pair with neighbouring identical sequence (Figure 
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1.3b). DNA polymerase slippage has the potential to produce daughter 

fragments that are a number of repeat units longer or shorter than the original 

fragment. Over the course of a PCR, these artificial mutations can be 

replicated and further insertions and deletions may occur, amplifying the 

effect.  

The insertion and deletion mutations that occur during PCR manifest as a 

characteristic ‘stutter’ in the gel electrophoresis. The degree of stutter 

increases with repeat length (Figure 1.4) and more stutter bands are observed 

in STRs with shorter repeat units [97]. Stutter has proven a challenge to STR 

analysis algorithms. 

 

Figure 1.4: ‘Stutter’ profiles of CA STR amplicons. 

The number of CA repeat units varies from 5 to 14 (horizontal axis). The ‘0’ peak is 
the inferred original allele size. The ‘+’ and ‘-’ peaks represent additions and 
deletions of one CA repeat unit due to stuttering. Peak heights (vertical axis) 
indicate number of amplicons present. The electrophoresis migration distance of 
amplicons, which reflect repeat length, are indicated for each peak (adapted from 
Shinde et al., 2003). 

 

Because of the expense and difficulty of PCR assays for STRs, diagnostic 

laboratories only typically test a small number of loci. For example, even 

though expansions in more than 10 STR loci known to cause ataxia [98], our 
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collaborators at PathWest diagnostic lab usually only test a few of the most 

common loci. Any additional STR testing would require custom assay 

development, which can take days or weeks per locus (and which PathWest 

have kindly done for selected STR expansions predicted by STRetch in 

Chapter 3). With the increasing application of exome and whole genome 

sequencing to rare disease, there is a clear need to detect potentially 

pathogenic STR expansions in next-generation sequencing data. 

1.4.5 Sequencing STRs 

1.4.5.1 Sanger sequencing 
Sanger sequencing has also been used to determine genotypes in compound 

and complex STRs, where the length of the allele is not a sufficient measure 

of the genotype. Although the long reads in Sanger sequencing are useful for 

spanning long STR loci, in addition to its expense, this method also suffers 

from the issue of stutter. The final step in Sanger sequencing is capillary gel 

electrophoresis of the sequencing reaction. This involves measuring a large 

population of DNA fragments – each with different amounts of stutter – that 

cannot be easily disentangled. While stutter can make Sanger sequencing 

difficult to interpret, heterozygosity causes an even greater problem. Because 

the alleles are of different lengths, the repeat units closest to the end of the 

longer allele are overlaid with the flanking sequence of the shorter allele, 

making it difficult to confidently determine the lengths of either allele. 

1.4.5.2 Short read sequencing 

The use of next generation sequencing has the potential to overcome many of 

the problems with traditional STR genotyping assays. Sequencing enables the 

detection of compound and complex STRs and thus detection of the full 

range of variation at STR loci. In contrast to Sanger sequencing, next 

generation methods characterise each DNA fragment individually and so do 

not suffer as drastically from stutter or heterozygosity. However, because 
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many of these methods involve an initial PCR amplification step, it may still 

be necessary to include a model of stutter in any analysis algorithm. 

There are a number of considerations when choosing a sequencing technology 

to use to genotype STR polymorphisms, in particular, read length and cost. To 

accurately determine the length of STR alleles, most genotyping software tools 

require reads that fully sequence the locus from one end to the other. 

Pathogenic STR alleles typically range from 100-5,000 bp, with some reports 

of allele as large as 40,000 bp (Figure 1.5). Additionally, tools that look at 

STRs within reads require some flanking sequence to provide the specificity 

needed for sequence mapping. For even moderately sized STR expansion of 

around 100-200 bp read length of at least 200-300 base pairs is likely to be 

required. This immediately precludes many short-read technologies for longer 

STR loci, although they may be useful for genotyping shorter loci. Both Ion 

Torrent and Roche 454 offer sufficient read length, however Ion Torrent is 

considerably cheaper (and still being supported). Illumina MiSeq machines can 

now sequence beyond 300 base pairs, making them a cost-effective choice for 

genotyping longer loci. Yet the fact remains that the vast bulk of DNA 

sequencing data is produced with Illumina technology with read lengths of 

150 bp. While one might wish for longer reads, the reality is we need to 

develop algorithms for the data that exists. 
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Figure 1.5: Size ranges in base pairs of normal, intermediate and pathogenic alleles 
in STR expansion diseases. 

*intermediate refers to any premutation range, incomplete penetrance or in some 
cases uncertain pathogenicity. Sources: [52,77] 

 

Perhaps the most common targeting technique in the context of human 

genomics is the exome capture. Here, the hybridisation probes are designed 

against the coding regions of most genes, and so these are preferentially 

amplified. Many STRs known to cause human disease (discussed in 1.4.3.1) 

are located in exons and are therefore amendable to genotyping from exome 

sequencing data. The drawback of exome sequencing is that it will obviously 

miss the many STRs that occur outside the coding region, and these 

(particularly those in promoters, 5’ and 3’ UTRs and introns) are likely 
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candidates for new disease-causing variants. Another disadvantage of exome 

sequencing as compared with whole genome sequencing, is that the coverage 

can be quite uneven, and sequencing artefacts more common. Compared with 

exome sequencing, whole genome sequencing provides better coverage of 

target genes, and more even coverage overall, as well as more equal coverage 

of both alleles at heterozygous sites [99]. 

1.4.5.3 Long read sequencing 

Single-molecule long read sequencers PacBio and Oxford Nanopore offer 

excellent read lengths, and have the advantage of not requiring a PCR 

amplification step. Although, for targeted sequencing a PCR step may still be 

necessary, as it is difficult to isolate a sequence of interest without selective 

amplification. However, both these sequencing technologies are more 

expensive per base sequenced, and have substantially higher error rates than 

short read sequencers. Although there has been a proof of principle with 

whole genome analysis performed using PacBio data [100], these tools are 

unlikely to be regularly applied to STR sequencing at a whole genome scale in 

the near future. It is, however, likely that these sequencers will be used for 

targeted sequencing of a smaller number of loci, for example there has been 

success genotyping the CGG-STR in the human fragile X gene using PacBio 

sequencing [101]. Both PacBio and ONT have also been used to confirm 

STRs genotypes found by other methods [102–104]. 

1.4.6 Algorithms for genotyping STRs in high-throughput sequencing 

data 

A number of software tools already exist to detect simple STR 

polymorphisms in next generation sequencing data. The most well-known are 

summarised in Table 1.2. Most software for STR genotyping falls into one of 

the following categories: 

• Software that runs on short read, paired end Illumina data to detect: 



 53 

o STRs that are shorter than the read length 
o STRs that are longer than the read length 

• Software that runs on long reads to detect STRs that are shorter than 
the read length 

There are also several domain-specific STR software tools especially in 
forensics, e.g. STRait Razor [105,106], MyFLq [107]. The most well-known 
general-purpose STR genotypers are summarised in Table 1.2. 
 
Table 1.2: Summary of selected STR genotyping methods 

Purpose 
Sequencin

g data 
Software name Notes 

Referenc

e 

STRs shorter 

than the read 

length 

Illumina 

short reads 

LobSTR 
Includes an STR aligner, or can use 

mapped BAMs 
[108] 

RepeatSeq  [109] 

Genotan  [110] 

STR-FM Pipeline via Galaxy toolshed [111] 

HipSTR Phases STRs with SNPs/indels [112] 

STRs longer than 

the read length 

Illumina 

short reads 

STRViper 

Requires tight insert size distributes, 

and therefore specialised sequencing 

prep. 

[113] 

GangSTR  [103] 

ExpansionHunte

r 

Limited to specified loci (disease loci 

supplied) 
[114] 

STRetch 
Uses a custom reference genome 

with STR decoy chromosomes 
[104] 

TREDPARSE 
Limited to specified loci (disease loci 

supplied) 
[96] 

exSTRa Does not estimate allele length [115] 

STRs shorter 

than the read 

length 

PacBio long 

reads 
PacmonsTR  [100] 
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1.4.6.1 Short read STR genotypers 
There are two main strategies for genotyping STRs using short read 

technology (such as Illumina). The first is to genotype STRs that are shorter 

than the read length. The major STR genotypers in this category include 

LobSTR, RepeatSeq, HipSTR, Genotan, and STR-FM (Table 1.2). I also 

developed an algorithm for genotyping standard and compound STRs with 

interruption SNVs within reads as part of my Master’s project, however the 

code was not released as a fully developed tool [116]. Finally, STR variants can 

also be detected by many small variant callers, as these variants can be 

described as sort indels. For example GATK HaplotypeCaller [34] detects 

these variants quite well. 

The key limitation of all these tools is that they cannot genotype STR alleles 

greater than the read length, and most pathogenic STR expansions have allele 

sizes greater than the typical read lengths of 150bp (Figure 1.5). When using 

these tools, to be informative a read must completely span the STR and 

contain some unique flanking sequence at both ends (e.g. a minimum of 8 bp 

at each end is required for LobSTR) to enable the read to be mapped uniquely 

and to detect the ends of the STR. Variation in an STR can be detected by 

looking for indels in the reads relative to the reference. 

Since existing tools to genotype STRs within the read length cannot detect 

most pathogenic STR expansions, in recent years a number of tools have been 

released that use alternate strategies to detect large STR expansions from 

short reads (Table 1.2). The first such method, STRViper, detects a shift in 

the insert size between pairs of reads. In general, this strategy will only detect 

larger indels relative to the reference, however its key advantage is that it may 

be able detect longer STR expansions, which are more likely to be pathogenic. 

However, upon testing this method, it failed to detect confirmed large STR 

expansions. From correspondence with the author we confirmed that 

STRViper requires a tight insert size distribution, which is not typically found 
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in modern sequencing data without specialised library preparation. It would 

also fail to detect many pathogenic expansions that are greater than in the 

insert size. 

GangSTR, ExpansionHunter and TREDPARSE share relatively similar 

genotyping strategies. They each integrate information from multiple 

informative reads, including those containing partial STR sequences, shifts in 

insert size (as above) and reads where one in the pair is contained in the STR, 

while the other maps to a unique flanking sequence. One limitation of all 

these tools is that they rely on informative reads correctly aligning to the 

reference genome. However, we know that reads arising from large STR 

expansions often align to the incorrect STR locus (see Chapter 3 for more 

details). Although some of these tools estimate the likely off-target mapping 

positions of these reads, this is reference genome-specific, or manually 

entered. A limitation of ExpansionHunter and TREDPARSE is that they are 

not genome-wide. They require a set of user-specified STR loci, with a set of 

about 30 known pathogenic loci provided. 

Another tool, exSTRa, uses reads containing partial STR sequences. While this 

has been shown to detect many known pathogenic expansions, it does not 

estimate their allele size. Therefore, secondary testing would be required to 

determine if the allele is in the pathogenic range. 

Finally, our method STRetch uses STR decoy chromosomes to deal with the 

issue of reads from expanded STRs mis-aligning to the reference genome. It 

considers the number of read pairs where one in the pair aligns to the decoy 

chromosome, and the other aligns to the STR flanking sequence. This method 

is described in detail in Chapter 3. 

To date there have been no independent reviews of short-read STR 

genotyping methods. As each tool was published, they often compared to 

select previous tools. While a small number of general reviews and 
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comparisons of STR genotyping tools have been published, they have all been 

written by one of the authors of the tools [117,118].  

1.4.6.2 Long read STR genotypers 
In general, these genotypers are similar conceptually to short read genotypers, 

which genotype STRs that are shorter than the read length. In general, these 

reads will span even the longest STRs. However, these technologies have 

higher error rates and tend to be sequenced at much lower coverage, so these 

genotypers have strategies to account for such errors. The only genotyper I 

am aware of in this category is PacmonsTR [100]. 

1.5 Aims of this thesis 
As I have described in this chapter, there are two main ways in which a patient 

fails to receive a genetic diagnosis. Either the true causal genetic variant is 

genotyped, but its significance is not understood (for example the variant is 

not highly ranked, or cannot be interpreted), or the causal variant is not 

detected at all. In this thesis I make contributions to both these issues: 

1. I address the problem of prioritising a large number of variants in two 

ways: pooled-parent exome sequencing allows filtering out variants 

seen in the parents, and the STR variation work helps to prioritise STR 

expansions that are more likely to be pathogenic.  

2. I also address the issue of large STR expansions not being genotyped, 

by developing STRetch, a method to detect large STR expansions from 

short read data.  

In addition to these general aims, I will summarise the specific aims of each 

thesis chapter. 

In Chapter 2 I propose a new sequencing strategy for prioritising de novo 

variants using pooled parent exome sequencing. I use simulation to consider 

several different possible strategies to perform pooled parent sequencing. In 
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particular, I consider the questions of how many parents to pool and how 

deeply to sequence to optimise the number of variants recalled and the cost. I 

also consider which variant caller is best suited to pooled parent sequencing 

data. I then show the effectiveness of the pooled parent strategy at filtering 

inherited variants in a real analysis. This chapter has been published a preprint 

on bioRxiv [119]. 

In Chapter 3 I develop a new method, STRetch, to detect pathogenic STR 

expansions in whole genome sequencing data. I validate this method on 

individuals with known STR disease loci, and also confirm predicted 

expansions at other STR loci that are not known to be pathogenic. I also 

assess the rate of STR expansions in known pathogenic loci in a set of almost 

100 samples. The STRetch code and reference data are made freely available 

to the research and clinical communities. This chapter is in the form of a 

publication from 2018 [104]. 

In Chapter 4 I extend the work from Chapter 3 to explore the frequency of 

STR expansions called by STRetch in more than 300 individuals. I first 

consider the attributes of more than 300,000 STRs that are annotated in the 

human reference genome, then consider the evidence for expansions at all 

these loci. To enhance our ability to interpret and rank these variants I 

consider the value of genomic context and constraint to prioritise STRs in a 

locus-discovery setting. I also look at counts of reads aligned to the STR 

decoy chromosomes to detect STR repeat units that are observed more 

frequently in the samples than we would expect based on the reference 

genome. I then assess the frequency of expansions in known pathogenic STR 

loci and comment on the choice of controls samples when running STRetch 

in research and clinical contexts. 

Finally, in Chapter 5, I will draw together the concepts and findings of this 

thesis and consider them in their broader scientific context. 
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Chapter 2 Pooled-Parent Exome Sequencing to 

Prioritise de Novo Variants in Genetic Disease 

This chapter is adapted from the following preprint [119], and has also been 

submitted for publication: 

Dashnow, Harriet, Katrina M. Bell, Zornitza Stark, Tiong Y. Tan, Susan M. 

White, and Alicia Oshlack. 2019. “Pooled-Parent Exome Sequencing to 

Prioritise de Novo Variants in Genetic Disease.” BioRxiv. 

doi:10.1101/601740. 

Supplementary materials can be found in Appendix A. 
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2.1 Abstract 
In the clinical setting, exome sequencing has become standard-of-care in 

diagnosing rare genetic disorders, however many patients remain unsolved. 

Trio sequencing has been demonstrated to produce a higher diagnostic yield 

than singleton (proband-only) sequencing. Parental sequencing is especially 

useful when a disease is suspected to be caused by a de novo variant in the 

proband, because parental data provide a strong filter for the majority of 

variants that are shared by the proband and their parents. However, the 

additional cost of sequencing the parents makes the trio strategy 

uneconomical for many clinical situations. With two thirds of the sequencing 

budget being spent on parents, these are funds that could be used to sequence 

more probands. For this reason, many clinics are reluctant to sequence 

parents. 

Here we propose a pooled-parent strategy for exome sequencing of 

individuals with likely de novo disease. In this strategy, DNA from all the 

parents of a cohort of unrelated probands is pooled together into a single 

exome capture and sequencing run. Variants called in the proband can then be 

filtered if they are also found in the parent pool, resulting in a shorter list of 

prioritised variants. To evaluate the pooled-parent strategy we performed a 

series of simulations by combining reads from individual exomes to imitate 

sample pooling. We assessed the recall and false positive rate and investigated 

the trade-off between pool size and recall rate. We compared the performance 

of GATK HaplotypeCaller individual and joint calling, and FreeBayes to 

genotype pooled samples. Finally, we applied a pooled-parent strategy to a set 

of real unsolved cases and showed that the parent pool is a powerful filter that 

is complementary to other commonly used variant filters such as population 

variant frequencies. 
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2.2 Background 
De novo Mendelian diseases are single-gene disorders where the causal variant 

is found in the proband, but not in the somatic tissues of either of their 

parents. Such conditions are usually dominant, as the probability of two 

mutations affecting the same gene is low. De novo variants have been identified 

as the cause of monogenic disorders such as congenital heart disease 

[120,121], deafness, metabolic disease and a range of syndromic disorders, 

reviewed in [122]. De novo variants are rare, occurring at a rate of ~1.1×10-8 

per position, or approximately 70 new mutations in each diploid human 

genome [123]. Yet, in a meta-analysis of diagnostic next-generation 

sequencing in children, de novo variants accounted for the majority of genetic 

diagnoses in non-consanguineous families [2]. It has also been shown that de 

novo variants are a major cause of neurodevelopmental disorders in non-

consanguineous populations [124–127]. In addition, de novo mutations are also 

recognised as contributing to a number of complex conditions such as 

intellectual disability, autism-spectrum disorders and schizophrenia [128]. 

Finding the causal genetic variant of a disease can provide diagnosis, 

prognosis and guide treatment or management [129], yet conditions caused by 

de novo variants can be difficult to diagnose because there is no family history 

of that condition. 

Exome next-generation sequencing (NGS) has become a key tool to discover 

disease-causing variants. There are two common strategies to finding a genetic 

diagnosis with exome sequencing: singleton and trio sequencing. In the 

singleton strategy only the proband is sequenced, while for trio analysis both 

the proband and their parents are sequenced. The trio approach is particularly 

powerful in the context of de novo mutations (e.g. [124]) where variants 

observed in the parents can be used as a filter to prioritise those variants in 

the proband that are likely to be de novo. While the trio approach significantly 

outperforms the singleton approach in terms of diagnostic rate [2], the trio 
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approach is substantially more costly, as it requires library preparation and 

sequencing of three individuals rather than one. The advantage of the 

singleton strategy is that while diagnostic rates may be lower, three times as 

many affected individuals can be sequenced for the same cost, allowing for 

increased capacity and so more cases overall to be solved. For example, if we 

sequence 100 exomes and assume a 22% diagnostic rate for singletons and 

33% for trios [2], we would expect to solve 22 of 100 cases vs 11 of 33 trios. 

In addition to the cost of exome capture and sequencing, we must consider 

the cost of variant curation. Rather than a specific fee for service, variant 

curation is usually a limited resource; that is the analyst may only have time to 

consider a limited number of variants per patient before they must declare 

that case unsolved and move on to the next patient. Therefore, when 

diagnosing patients from exome sequencing, a key consideration is the 

number of variants that need to be assessed in each individual. An average 

individual exome has 10,000-12,000 non-synonymous variants [36], 120 

protein truncating variants, and ~54 variants previously reported as 

pathogenic (although not necessarily relevant to the given phenotype) [37]. 

This is clearly too many variants for curators or clinicians to assess, so some 

prioritisation and filtering strategies are necessary. A common strategy is to 

filter or prioritise variants by their population frequency based on the 

assumption that highly penetrant pathogenic variants will be rare or absent in 

unaffected individuals. Frequencies in datasets such as Exome Variant Server 

[46], 1000 Genomes [6] and the Genome Aggregation Database (gnomAD, 

previously known as Exome Aggregation Consortium or ExAC) [37,47] are 

commonly used. For example a frequency of 0.01 might be considered rare, 

and a frequency of 0.0005 to be very rare [31]. More detailed variant 

assessment would then consider known pathogenic variants (e.g. from 

ClinVar), variant consequence prediction (e.g. VEP [39] or Condel [42]), 

evolutionary conservation and clinically-informed gene lists [49]. Even with all 
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of these filtering and prioritisation tools, typically hundreds of variants still 

remain to be curated and the role of inheritance information is vital in 

reducing this list. One reason that the diagnostic rate for trios is often higher 

is that inheritance information can be used to filter out large numbers of 

variants. Studies that perform trio or other family sequencing can use an 

inheritance model to select variants that fit with the expected pattern (e.g. de 

novo, dominant, recessive, sex-linked). Yet as we have described, trio 

sequencing carries a high cost for a modest increase in diagnostic rate. 

Here we propose and evaluate a compromise between the singleton and trio 

strategies: pooled-parent exome sequencing. In this strategy, probands are still 

sequenced individually. For a given batch of unrelated probands, we pool all 

their parental DNA, then perform exome capture and sequencing on the pool. 

Variants called from this pool can then be used as a powerful filter for 

prioritising de novo variants in the probands. Because the exome capture is a 

substantial portion of the cost (currently ~60%), this strategy provides a 

dramatic cost saving over a standard trio, while still allowing the majority of 

parent alleles to be filtered out when analysing the probands. 

Pooled sequencing strategies have been used successfully for assessing 

population allele frequencies for genome-wide association studies and other 

applications, reviewed in [130]. More recently pooling has been used in for 

rare variants in Mendelian disease. For example a recent study used pools of 

12 probands to identify de novo causes of neurodevelopmental disorders and so 

were able to detect relevant likely-pathogenic variants in 28% of cases at a 

greatly reduced cost [131]. 

In this study we assess the novel strategy of pooled-parent exome sequencing 

as a method to filter variants from proband exome sequencing. We assume 

that we are looking for rare de novo variants in the probands and therefore the 

causative variants will not be found in any of the parents. Thus, we can take 



 63 

the list of variants called in the probands and filter out any variants observed 

in any of the parents. We first performed a series of simulations to assess the 

feasibility of using pooled parents, and to explore the effect of factors such as 

the number of parents in the pool and sequencing depth. In addition, we 

compare the performance of two common variant callers on pooled data: 

GATK HaplotypeCaller [34] and FreeBayes [132]. Finally, we present exome 

sequencing analysis of four probands with suspected de novo causal variants, 

and a pool of their eight parents. We assess the utility of using the pooled 

parents as a filter to prioritise de novo variants, and compare this strategy to 

commonly used variant filters, in particular population allele frequency. We 

show that the pooled-parent filter is a powerful and complementary filter to 

other strategies. 

2.3 Results 

2.3.1 Simulation set up 

In order to test the utility of pooled parents for prioritising de novo variants we 

performed a series of simulations. We selected a set of 111 parents from 

Simons Simplex Collection that had undergone individual exome sequencing 

[133]. This particular subset of samples was chosen to be matched for DNA 

sequencer, read length and exome capture kit sequencing depth (see 

Methods). Only samples with at least 64X median depth over the capture 

region were retained in order to both remove low quality samples and to limit 

the range of depths such that if the two samples with the most extreme 

depths were combined then their reads would appear in a 40:60 ratio. Any 

other pair of samples combined would have depth ratios between 40:60 and 

50:50. This places the simulation within the range of sample ratios likely to be 

seen with errors in DNA concentration and volume quantification when 

pooling. The final set consisted of 111 samples, 52 females and 59 males, with 

median depths ranging from 64X to 97X (median 78X). 
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We randomly sampled reads from these individuals in various combinations 

to simulate pooling, then calculated recall rates by comparing variants called 

on the original exomes to those called on the simulated pools. Full details of 

our simulation strategies can be found in Methods. Briefly: we simulated pools 

of two, four, six, eight and ten individuals, generated by extracting reads from 

a random subset of the 111 exomes. We simulated two different strategies for 

sequencing depth; constant depth and additive depth. In the constant depth 

simulations, the overall amount of sequencing per pool was kept constant at 

twice the average depth of the source BAMs. For example, to generate a pool 

of four 75X samples, half the reads would be drawn from each individual to 

produce a pool of 150X depth. Since the total depth remains constant, the 

number of reads sampled from each individual decreases as the number of 

individuals in the pool increases. For additive depth the total sequencing 

depth was proportional to the number of samples, so each sample was 

sequenced to the same depth no matter the pool size, with the total 

sequencing depth increasing for larger pools. For example, if a pool contained 

four individuals each with 75X depth, all the reads from all four individuals 

would be added together to create a 300X pooled sample. 

2.3.2 Choice of variant caller and sequencing depth 

When selecting a variant caller for pooled sequencing data, previous 

comparisons have primarily considered sensitivity and false positive rate 

[134,135]. For the purposes of a pooled-parent study design we contend that 

the most important feature of a variant caller is the recall, that is, the number 

of variants called in the individual that are also detected in the pool. In this 

application, recall is the most important metric because it affects the number 

of variants that are able to be filtered from the probands. In contrast to 

pooling for the detection of pathogenic variants in the pooled samples, here 

false positive calls are less important. However, we also assess false positives: 

those variants called in the pool that are not called in any of the individuals. 
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False positives are only problematic in the very unlikely event that they 

happen to coincide with the causal variant in the proband. So, while previous 

papers choose their variant caller based on sensitivity, specificity and false 

positives, we aim to optimise the recall (sensitivity). 

A key issue with calling variants in pooled samples is that most variant callers 

assume the reads come from a single diploid individual. They expect to 

observe approximately 0%, 50% or 100% of reads supporting a given allele. 

In our pooled samples we expect many variants to differ dramatically from 

these ratios. In addition, more than two variants can be present at a single 

locus. Therefore, using a variant caller that supports setting ploidy can be 

advantageous in pooled samples. Both FreeBayes [132] and GATK 

UnifiedGenotyper [136,137]  have been proposed as good variant callers for 

pooled sequencing data [131,134,135]. Both provide the ability to set ploidy 

when calling variants, allowing more than two alleles to be called at each 

locus, and explicitly modelling the lower read counts expected to support rare 

alleles in pooled data. However UnifiedGenotyper has since been deprecated 

in favour of GATK HaplotypeCaller [138]. More recently GATK 

HaplotypeCaller has introduced the option to set ploidy, with values up to 21 

possible before reaching performance limitations [139]. Since this change is 

relatively recent, we are not aware of any published assessment of 

HaplotypeCaller on pooled data. In addition, HaplotypeCaller is currently the 

preferred genotyper for unpooled genomes/exomes and variation references 

such as gnomAD [37,47]. One advantage of using HaplotypeCaller for calling 

variants in the pool is that it is already the standard analysis tool for individual 

exomes, and by using the same variant caller for both the proband and the 

parent pool we reduce the chance of technical artefacts. 

The GATK Best Practices now recommends individual calling of samples 

using HaplotypeCaller followed by joint calling with GenotypeGVCFs [35]. 

Although it is possible to set ploidy in conjunction with joint variant calling, 
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this is well beyond the intended use for this tool. As such we experienced 

errors when using joint calling in conjunction with ploidy of 16 and 20 (i.e. 

our simulated pools of eight and ten). We therefore performed two different 

analyses with HaplotypeCaller: 1) diploid joint calling on each pool and the 

individuals that made up that pool and 2) individual variant calling with ploidy 

set as appropriate for the pool size, with the individuals genotyped separately 

in diploid mode (see Methods). In addition, we compared the performance of 

these calling modes with FreeBayes. 

We compared variants called from the pool to all variants called on the 

original exomes and calculated recall and false positive rates. For all analysis 

scenarios the recall across all variants for a pool of two was greater than 94% 

(Appendix Table 6.1). Looking across all variants, the overall trend was for 

recall to diminish as the pool size increased (Figure 2.1A). HaplotypeCaller 

had greater recall than FreeBayes for all simulated pool sizes. This difference 

was small for pools of two individuals, becoming dramatic in the larger pools. 

Overall individual calling with HaplotypeCaller performed slightly better than 

joint calling, especially for larger pools. 



 67 

 

Figure 2.1: Simulated pools of two, four, six, eight and ten individuals. 

Each point is a simulation (three replicates) with a different randomly selected set 
of individuals from a possible 111 individuals. Recall % is the percentage of variants 
called in all individuals that make up the pool that are also called in the pool. False 
positive % is the percentage of variants called in the pool that are not called in any 
of the individuals that make up that pool. A) Recall for all variants B) Recall for 
variants with an allele present in one copy in one of the individuals C) Total 
variants called in the pool (for constant depth simulation). HaplotypeCaller 
individual and joint calling produced similar numbers of variants so are difficult to 
distinguish at this scale. D) False positive rate for all variants. Mean values for plots 
A, B, C and D can be found in Appendix Table 6.1, Table 6.2, Table 6.3 and Table 
6.4 respectively. 

When using parents to filter for potential de novo variants, the most 

important and difficult class of variants to recall in the pool are those that are 

rare and only one allele is likely to be present in the pool. We therefore 

considered the recall rate for these so-called singleton variants. All calling 
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methods had lower recall for singleton variants (Figure 2.1B). This is expected 

as these variants will generally have fewer reads supporting them and lower 

allelic depth. Surprisingly, for HaplotypeCaller, individual calling performed 

dramatically better than joint calling on these variants. Joint calling showed a 

pronounced loss of recall with increasing pools size, especially for six or more 

individuals in a pool. Joint calling draws evidence across samples, thus 

increasing support for variants found in multiple samples and decreasing 

support for those variants only found in one sample. This may explain why 

joint calling performs poorly for singleton variants. It should be noted that 

FreeBayes reported approximately five to nine times as many variants as 

HaplotypeCaller, which may contribute to the lower recall rate (Figure 2.1C, 

Appendix Table 6.3). 

For individual calling, HaplotypeCaller saw a steady increase in false positives 

with pool size (Figure 2.1D). For joint calling the overall false positive rate is 

less than 1% and, although it increases slightly with pool size, this increase is 

insignificant (Appendix Table 6.4). So, while individual calling with 

HaplotypeCaller provides superior recall, joint calling better controls the false 

positive rate. FreeBayes showed a decrease in false positive rate with 

increasing pool size which is likely why it was previously recommended for 

variant calling in pooled samples in previous studies. 

We further performed an additive depth simulation where all reads from each 

individual are combined in the pool. In general, increasing the depth increased 

recall rate and decreased false positive rate. The only exception to this is for 

singleton joint HaplotypeCaller variants in pools eight and ten. The increase in 

recall with additive depth was most dramatic for HaplotypeCaller individual 

calling of singleton variants, where in the largest pool the recall rate increase 

from 63.9% to 80.5% (Figure 2.1B, Appendix Table 6.2). This indicates that 

increasing the sequencing depth may be useful in pooled samples. Many of the 

additive depth pools could not be called using FreeBayes due to massive 
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memory requirements on such large depth samples, so FreeBayes is not 

included for this simulation. 

In summary, HaplotypeCaller individual calling was found to have superior 

performance in terms of recall rate, especially of singleton variants. In 

addition, it is more commonly used in clinical variant calling, making this 

approach more compatible with existing clinical pipelines and reducing the 

risk of technical bias by using multiple variant callers. Based on our 

simulations, we expect a pooled parent strategy to provide a useful, cheaper 

alternative to trio sequencing for de novo cases. For example, by simply pooling 

the two parents we get 98% of variants recalled with a low false discovery 

rate, even with ten in pool we calculated an average recall of 94% (Appendix 

Table 6.1). We found that increasing the sequencing depth can also increase 

the recall rate. 

2.3.3 Calling variants from real pools 

We performed a real pooled-parent sequencing experiment. We had 

previously exome sequenced four individual probands likely to have de novo 

disease that were still unsolved after the initial variant analysis. We then 

performed exome sequencing of a pool of all eight of their parents. For the 

probands, exome capture was performed with the Nextera v1.2 Rapid Exome 

Capture Kit, and all the libraries were sequenced to ~100x depth over the 

target region. The parent pool was captured using the Agilent SureSelect QXT 

Clinical Research Exome kit and sequenced to a median on-target depth of 

119x (or ~15x per parent). While the probands and parents were sequenced 

using different exome captures, the SureSelect Clinical exome is much larger 

than Nextera, and it mostly covers the same regions so should be able to 

recover most positions called in the probands. Based on the results of our 

simulation study we performed variant calling using GATK HaplotypeCaller 

on each of the samples individually. The probands were genotyped with 

default (diploid) ploidy and the pool with ploidy set to 16. We then used the 



 70 

parent pool variant calls to filter out variants in the probands. We additionally 

performed variant annotation with VEP and added gnomAD frequencies (see 

Methods). 

We calculated recall on this real data set as the percentage of variants found in 

all probands that were also called in the pool. Our calculated recall rate for all 

variants was 81.3%. This is a little lower than what we expected based on our 

simulations (Appendix Figure 6.1). The recall rate for variants with one allele 

found in one proband was 72.6%. This is consistent with the singleton rate 

observed in simulations (69.4%), however it should be noted that for the real 

pooled experiment we would expect each proband to have half the genetic 

material from each parent. Therefore, a variant found once in the probands 

could occur more than once in the parent pool if the variant also appeared in 

the untransmitted allele. Hence if a variant is found once across all the 

probands, it could plausibly have an allele frequency of anywhere from 1/16 

to 9/16 in the parent pool and so is not directly comparable with the 

simulations.  

We next used gnomAD to prioritise rare variants by filtering out variants with 

allele frequency over 0.0005. Of the remaining variants the recall in the pooled 

sample was 50.8%. This shows while both strategies filter many of the same 

variants, the parent pool provides substantial filtering beyond gnomAD. 

We further assessed the power of using variants called in the parent pool as a 

strategy for filtering variants in the probands. Here the goal is the minimise 

the number of variants that need to be curated for each individual by 

removing those that are unlikely to cause de novo disease. We compare using 

the parent pool as a filter to some of the standard approaches, namely filtering 

low quality variants and common variants. Figure 2.2 summarises our variant 

filtering approach and shows the number of variants remaining after each 

filter is applied. We defined low quality variant calls as those with QD 
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(QUAL/DP) < 2 [140]. Since our probands have different phenotypes, we 

expect each to be caused by a different de novo variant. So, we filtered out 

variants observed more than twice across the probands, as unlikely to be 

causal. We also filtered out common variants to retain only very rare variants 

i.e. those observed at a frequency of greater than 0.0005 in gnomAD. We 

compared this to filtering out variants called in the parent pool. We found that 

filtering with the parent pool alone resulted in fewer variants than using the 

gnomAD frequencies alone. Importantly however, we found that the pooled 

parent filter was a complementary filter to other strategies and reduced the 

number of variants to less than 45% of the gnomAD only filter (Figure 2.2A). 

In particular we note that while gnomAD is useful to filter out variants 

observed frequently in the general population (specifically those populations 

included in gnomAD), the pool was able to filter out variants observed in the 

“private population” made up by these families. This may be particularly 

important when considering patients from populations that are not well 

represented in gnomAD. Most of our probands identified as European 

(Appendix Table 6.6), populations which are generally well represented in 

gnomAD. The gnomAD filter was slightly less effective for the Pacific 

Islander proband (Proband 3). 95.3% of all raw variants could be filtered 

using gnomAD for this individual, compared with 96.1-96.4% for the three 

European probands. 
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Figure 2.2: Overview of variants called in the real pooled parents experiment. 

A) Schematic of variant filtering in each proband. Proband IDs are indicated above 
each inverted triangle. The first figure is the raw number of variants called in each 
proband. We then filter out low quality variants (QD >= 2) and variants observed 2 
or more times across the set of probands, in each case showing the remaining 
number of variants. At this point variants are filtered with either gnomAD allele 
frequency or the pooled parent variants, and then the intersection of these two 
filters is shown as a Venn diagram. B) VEP worst consequence annotations for the 
variants remaining after filtering by quality, frequency in the probands and 
gnomAD allele frequency. Variants that can be further filtered using the parent pool 
are indicated as “in_pool”. C) Magnification of lower frequency consequence 
categories indicated by the dotted rectangles in B. 

We also performed annotation with Variant Effect Predictor (VEP) to aid 

interpretation of potential disease variants. Figure 2.2B and Figure 2.2C show 

the worst consequences annotated by VEP for each variant for only those 

variants that passed the quality and gnomAD frequency filters. The pooled 
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parent filter dramatically reduces the number of potentially deleterious 

variants that variant curators might need to consider. For example, in all of 

the probands the parent pool was able to filter out more than half of the 

missense variants, while in several probands it removed all start lost and splice 

site donor or acceptor variants. 

The pooled parent strategy enabled us to filter out the majority of variants 

from the probands. Importantly it was complementary, removing a different 

set of variants to those filtered based on population allele frequency. It 

removed a number of potentially pathogenic variants, reducing the variant 

curation load. 

2.4 Discussion 
The pooled-parent exome sequencing strategy we propose here is a powerful 

and cost-effective way to prioritise de novo variants in the search for causal 

disease variants. Pooling DNA from parents is dramatically cheaper than full 

trio exome sequencing. While our simulations indicate that increasing pool 

size does reduce recall rates, the pooling strategy still allowed filtering of 94-

98% of variants (for pool sizes of ten and two respectively). The reduced cost 

of this strategy allows funds to be reallocated to sequencing of more 

probands. We assessed variant calling strategies for pooled sequencing, and 

found that while the GATK HaplotypeCaller joint calling strategy provided 

the best recall rate overall, HaplotypeCaller individual calling had higher recall 

for the critical singleton variants. We also found that increasing the 

sequencing depth for pools was able to increase the recall rate, particularly for 

singleton variants. Generally increasing the sequencing depth is cheaper than 

performing additional exome captures. In a real analysis of four probands 

with undiagnosed likely de novo disease we were able to use a pooled-parent 

strategy to filter over 81% of variants. This strategy was complementary to 

population allele frequency filtering using gnomAD and resulted in reducing 
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the final list of variants to less than 54% compared to just using gnomAD. 

Unfortunately, the variants responsible for causing disease in these probands 

remain unknown.  

One reason that the pooled-parent filtering strategy may perform particularly 

well when compared to population filtering, is that the parent pool is in 

essence an exquisitely matched population to the probands. The parents are 

the precise populations from which these probands arose and therefore is an 

excellent strategy for underrepresented populations. In contrast, gnomAD 

populations are weighted towards specific populations, particularly individuals 

of European ancestry [141]. If gnomAD is not a good representation of the 

population from which the proband arose, then the pooled-parent strategy 

may perform particularly well in comparison to population filtering. The 

gnomAD filter was less effective in the Pacific Islander proband compared to 

the European probands, while the pooled parent filter was more effective for 

this individual, supporting this hypothesis. 

We have seen the cost of DNA sequencing decrease over time, while the cost 

of exome capture has remained relatively high, both in reagents and because it 

is a labour-intensive task. So, for exome sequencing the pooled-parent strategy 

is actually becoming increasingly cost-effective over time. However, as the 

cost of sequencing drops still further, clinicians may increasingly move to 

whole genome sequencing instead. For whole genome sequencing, the per-

sample preparation is a relatively small proportion of the overall cost, so the 

economics of pooled-parent sequencing are not as compelling. Therefore, we 

expect the pooled-parent strategy to be most useful for exome and other 

targeted sequencing strategies such as smaller gene panels.  

One limitation of this study is the simulations are performed on randomly 

selected individuals rather than trios. This does not truly reflect the pooling of 

parents, but rather a comparison of individual samples with those same 
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samples pooled together. However, having the individuals and the pools 

contain the same samples is a key advantage because the true allele frequencies 

of variants are known and this design allows false positives to be called. This 

was particularly useful when assessing the impact of increasing ploidy on the 

quality of variant calls and in evaluating different variant calling strategies. 

2.5 Conclusions 
Pooled-parent sequencing is a powerful strategy to filter out inherited variants 

to allow the analysis to focus on possible de novo variants. It is dramatically 

cheaper than full trio sequencing, allowing additional budget to sequence 

more probands. Importantly, our analysis shows the pooled parent variant 

filter is complementary to other standard approaches, in particular, filtering 

out different variants to using gnomAD population frequencies. 

2.6 Methods 
All code used for the simulations and analysis of these data sets can be found 

at https://github.com/Oshlack/pooled-parents-paper. 

2.6.1 Simulating pools 

To simulate pooled exome sequencing experiments of various sizes, we 

combined reads from a set of separately sequenced individuals. We selected 

parents from the Simons Simplex Collection [133]. These samples were 

chosen as the largest subset of this collection that were relatively technically 

homogeneous individuals within the publicly available sequencing data from 

this project. Specifically, this set is matched for DNA sequencer (Illumina 

GAIIx), read configuration (74 bp paired end reads) and exome capture kit 

(Nimblegen EZ Exome V2.0). We also removed samples with less than 64x 

median depth over the capture region in order to both remove low quality 

samples and to limit the range of sample depths such that 

min.depth/(min.depth+max.depth) = 0.4. I.e. if any two samples were 

combined then their reads would appear in a ratio between 40:60 and 50:50. 
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The final set used for simulation consisted of 111 samples, 52 females and 59 

males, with median depths ranging from 64 to 97 (median 78). SRA run IDs 

are listed in Appendix Table 6.7. Re-use of public data was approved under 

HREC/49895/RCHM-2019. 

Pipelines were written in Bpipe [142]. Raw FASTQ reads were downloaded 

for each of these samples, then aligned to gatk.ucsc.hg19.fasta with BWA 

MEM version 0.7.17 [143] and indexed with Samtools version 1.8 [144] 

(script: genotype_individuals.groovy). 

In the constant depth simulation strategy, pools of two, four, six, eight and 

ten were simulated by selecting individuals at random from the 111 above, 

then randomly sampling a proportion of reads from the raw (not deduped) 

BAM files using samtools view -s (scripts: pooled_sim_bpipe.groovy and 

pooled_sim_joint.groovy). The proportions of reads were chosen such that 

the resulting pool would have twice the average depth of the source BAMs. 

The sampled bam files are merged with MergeSamFiles (Picard Tools version 

2.18.11 [145]) , then the read group and sample information from the original 

samples are removed using Picard AddOrReplaceReadGroups so that – for 

downstream processes - the BAM will appear to have originated from a single 

sample. These BAM files were deduplicated using Picard MarkDuplicates. 

In the additive depth simulation strategy, pools were simulated so that the 

total sequencing depth for the pool is proportional to the number of samples. 

This was achieved by simply combining all reads for the samples in each pool. 

The simulation steps (scripts: pooled_depth_sim_bpipe.groovy and 

pooled_depth_joint.groovy) were the same as for the first simulation with the 

exception that instead of sampling reads from the individual BAMs, all 

randomly selected BAMs where merged together. 

For both the constant and additive simulations we performed three replicates 

of each pool size using different random seeds and therefore different input 
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samples, resulting in a total of 30 bam files. The code for generating all these 

simulations can be found at https://github.com/Oshlack/pooled-parents-

paper. 

2.6.2 Variant calling and analysis 

All variant calling was performed against hg19 and after deduplication with 

Picard Tools as above. For individual variant calling with GATK 

HaplotypeCaller version 4.0.10.1 [34], all individual samples were genotyped 

with default diploid ploidy, while for the pools, ploidy was set to two times 

the number of samples in the pool. Version 138 of dbSNP was used for all 

HaplotypeCaller commands. For joint calling, variants were called with 

GATK HaplotypeCaller -ERC GVCF to generate GVCFs, with default 

ploidy. Each pool GVCF was combined with the GVCFs of all the individual 

samples used to create that pool using GATK CombineGVCFs. Joint calling 

on the pool and its constituent samples was performed with GATK 

GenotypeGVCFs, to produce a final multi-sample VCF with genotype calls 

for loci that were called as variant in the pool or any of its individuals. 

FreeBayes version 1.2.0 [132] variant calling was performed on the individuals 

and pools from the constant simulation strategy only, as the high depth 

samples from the additive simulation caused excessive memory consumption. 

Individual calling was performed with default settings (script: 

freebayes.groovy), while for pooled variant calling (script: 

freebayes_pool.groovy) we set the relevant ploidy and ran in pooled-discrete 

mode with use-best-n-alleles = 4. FreeBayes reports all potential variants, 

including many of questionable quality, so in both the individuals and the pool 

we implemented the recommended QUAL > 20 filter [146] using the vcffilter 

script included with FreeBayes. 

To assess recall and false positive rates we compared variants called in each 

pool to the all variants called on the individuals that made up that pool. For 

HaplotypeCaller individual calling and FreeBayes we matched up specific 
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variants across VCF files by creating a unique string representing the position 

and reference/alternate alleles. To do this we created a variant identifier: 

CHROM_POS_REF_ALT (or ALT1/ALT2 etc if multi-allelic and use this to 

uniquely match variants across VCF files (filter_individualVCF.py). For the 

joint calling the pool and individuals were already represented at the same 

locus in a single VCF file, so we compared a variant across samples in the 

same VCF (filter_multiVCF.py). The recall rate is then calculated per pool as 

the number of alleles recalled in the pool divided by the total number of non-

reference variants called in all individuals that made up that pool. If an allele 

was called in the pool but not in any of the individuals, we consider it to be a 

false positive. False positives rate is then the number of false positives called 

in the pool divided by the total number of non-reference alleles called in that 

pool. VCF parsing was accomplished using Python 3.6.8 and PyVCF version 

0.6.8 [147] and further analysis and plots were generated using dplyr and 

ggplot2 in R version 3.5.0. Manipulation of exome capture target bed files was 

performed with Bedtools v2.27.1 [148]. 

2.6.3 Samples and sequencing 

Four unsolved probands were selected from the Melbourne Genomics Health 

Alliance Childhood Syndromes project [3] as being good candidates for 

dominant de novo disease based on clinical assessment. This project was 

approved under Human Research Ethics Committee approval 13/MH/326. 

Parents provided written informed consent after genetic counselling regarding 

the testing. As part of the demonstration project these patients received 

exome sequencing alongside standard of care. DNA was extracted from 

peripheral blood, and exome sequenced used Nextera v1.2 Rapid Exome 

Capture Kit on a HiSeq 2500 at the Australian Genome Research Facility to 

100X to a median on-target depth of 100x. We additionally sequenced a pool 

of all eight of these probands’ parents using the Agilent SureSelect QXT 

Clinical Research Exome capture kit, and 151 bp paired end reads on an 
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Illumina HiSeq4000 to a total median on-target depth of 119x, or on average 

~15x per parent. Parent DNA samples were quantified and pooled in 

approximately equimolar concentrations before exome capture. 

2.6.4 Analysis of real pools 

The probands and pool were analysed using a similar strategy to the 

simulations above (scripts: genotype_individuals.groovy and 

pooled_joint_analysis.groovy). Reads were aligned to gatk.ucsc.hg19.fasta with 

BWA MEM, indexed and deduplicated. Variant calling was performed with 

GATK HaplotypeCaller. Each sample was genotyped individually: the 

probands with default ploidy, and the pool with ploidy = 16. Proband variants 

were annotated with allele frequencies from gnomAD version r2.0.2 [37,47] 

using vcfanno version 0.2.9 [149]. VEP was also used to annotate the most 

severe consequence for each variant. 

As for the simulations, we calculated recall as the number of alleles called in 

any proband that were also called in the pool over all genomic regions (script: 

filter_individualVCF.py). Multiallelic variants were split to allow individual 

annotation with gnomAD allele frequencies and VEP consequences. We 

performed a series of filtering steps. We performed light filtering for variant 

quality, by filtering out variants with QD < 2 (QD = QUAL/DP), as 

recommended by the GATK documentation [140]. We also removed variants 

observed in more than one proband, as they have different diseases so these 

shared variants are unlikely to be causal. We removed variants with an allele 

frequency of more than 0.0005 in gnomAD. Finally, we filtered out any 

variants called in the parent pool. Before examining any individual variants in 

detail, we excluded a set of genes known to cause high penetrance early onset 

disease to avoid secondary findings in line with Melbourne Genomics ethics 

requirements (Appendix Table 6.8). 
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Chapter 3 STRetch: detecting and discovering 

pathogenic short tandem repeat expansions 

This chapter contains the publication [150]: 

Dashnow, H. et al. STRetch: detecting and discovering pathogenic short 

tandem repeat expansions. Genome Biol. 19, 121 (2018). 

Supplementary materials can be found in Appendix B. 
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pathogenic short tandem repeat
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Abstract

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian
diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are
unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to
scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR
expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci.
STRetch is open source software, available from github.com/Oshlack/STRetch.

Background
Short tandem repeats (STRs), also known as microsa-
tellites, are a set of short (1–6 bp) DNA sequences
repeated consecutively. Approximately 3% of the
human genome consists of STRs [1]. These loci are
prone to frequent mutations and high polymorphism,
with mutation rates 10–100,000 times higher than
average rates throughout the genome [2]. Dozens of
neurological and developmental disorders have been
attributed to STR expansions [3]. STRs have also been
associated with a range of functions such as DNA
replication and repair, chromatin organization, and
regulation of gene expression [2, 4, 5].
STR expansions have been identified as the causal

DNA mutation in almost 30 Mendelian human diseases
[6]. Many of these conditions affect the nervous system,
including Huntington’s disease, spinocerebellar ataxias,
spinal-bulbar muscular atrophy, Friedreich’s ataxia,
fragile X syndrome, and polyalanine disorders [7]. Most
tandem repeat expansion disorders show dominant
inheritance, with disease mechanisms varying from ex-
pansion of a peptide repeat and subsequent disruption

of protein function or stability, to aberrant regulation of
gene expression [8].
STR expansion diseases typically show genetic antici-

pation, characterized by greater severity and earlier age
of onset as the tandem repeat expands through the gen-
erations [9]. In many STR diseases, the probability that a
given individual is affected increases with the repeat
length. In some cases severity also depends on the gen-
der of the parent who transmitted the repeat expansion
[10]. The number and position of imperfect repeat units
also influences the stability of the allele through genera-
tions [9]. Together, these features can be used to identify
patients with a disease of unknown genetic basis that
might be caused by an STR expansion.
Historically, STRs have been genotyped using poly-

merase chain reaction (PCR) and gel electrophoresis. In
such cases, PCR is performed using primers comple-
mentary to unique sequences flanking the STR. The
PCR product is then run on a capillary electrophoresis
gel to determine its size. Although this method has been
scaled to handle dozens of samples, it is still labor-inten-
sive and costly. Each new STR locus to be genotyped re-
quires the design and testing of a new set of PCR
primers, along with control samples.
A number of diseases are known to be caused by any

one of multiple variants, including STR expansions,
single nucleotide variants (SNVs), or short indels. For
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example, there are > 10 STR loci in as many genes that
are known to cause ataxia [11], as well as SNVs and
indels in dozens of genes [12]. For such diseases, this
can mean hundreds of dollars spent per STR locus, plus
additional costs for SNV and short indel testing. For
such conditions, there is a clear need for a single gen-
omic test that can detect all relevant disease variants in-
cluding SNVs, indels, and STRs.
The ability to genotype STRs directly from next-gener-

ation sequencing (NGS) data has the potential to reduce
both the time and cost to reaching diagnosis and to dis-
cover new causal STR loci. It is becoming increasingly
common to sequence the genomes or exomes of patients
with undiagnosed genetic disorders. Currently, the ana-
lysis of these data is focused on SNVs and short indels,
and while NGS has identified hundreds of new
disease-causing genes, to our knowledge no new patho-
genic STR expansions have been discovered. STRs are
generally only investigated in an ad-hoc manner at
known loci if they are a common cause of the clinical
phenotype. The ability to screen for STR expansions in
NGS data gives the potential to perform disease variant
discovery in those patients for which no known patho-
genic variants are found.
The vast majority of current STR genotyping tools

for short-read sequencing data (most notably LobSTR
[13], HipSTR [14], and RepeatSeq [15]) are designed to
look at normal population variation by looking for in-
sertions and deletions within reads that completely
span the STR. These tools are limited to genotyping
alleles that are less than the read length and require
sufficient unique flanking sequence to allow them to be
mapped correctly. However, for most STR loci causing
Mendelian disease in humans, pathogenic alleles typic-
ally exceed 100 bp, with pathogenic alleles at some loci
in the range of 1000–10,000 bp [16], far exceeding the
size cut-off for detection using these algorithms.
One STR genotyper, STRViper [17], which is also de-

signed to detect population variation, has the potential
to detect alleles exceeding the read length by looking for
shifts in the distribution of insert size from paired reads.
This method requires that the insert size distribution
has a relatively low standard deviation (SD) and is lim-
ited to repeats smaller than the insert size with enough
flanking sequence to map both pairs to the reference
genome. The mean insert size can be as low as 300–
400 bp, meaning that for many large pathogenic expan-
sions, there may be very few or no spanning read-pairs.
Such methods would therefore have limited utility for
the detection of allele sizes expected for pathogenic ex-
pansions. Another tool, ExpansionHunter [18], uses
read-pair information and recovery of mis-mapped reads
to estimate the length of STRs. For known pathogenic
sites, ExpansionHunter can be used to determine if the

length of the STR is in the pathogenic range. This tool
was originally developed for the FTDALS1 repeat and
only works on a specific set of pre-defined loci and is
therefore not a genome-wide method. Similarly, exSTRa
[19] detects expansions in a set of 21 pre-defined loci
and requires a set of matched control samples in order
to define the statistical probability of an expansion. In
contrast to ExpansionHunter, the exSTRa method does
not attempt to estimate allele lengths.
While long-read sequencing technologies can poten-

tially sequence through larger repeat loci [20], they are
currently far too expensive for clinical use. High error
rates and low throughput also make these technologies
less suitable for genotyping SNVs and short indels and
are thus a poor alternative to short-read sequencing in a
clinical setting. Clearly, there is still a great need to be
able to detect STR expansions from short read data.
Here we present STRetch, a new method to detect rare

expansions at every STR locus in the genome and estimate
their approximate size directly from short-read sequencing.
We show that STRetch can detect pathogenic STR expan-
sions in short-read PCR-free whole-genome sequencing
(WGS) data and can detect expansions at STR loci not
known to be pathogenic. We also demonstrate the applica-
tion of STRetch to solve cases of patients with undiagnosed
disease, in which STR expansions are a likely cause.
STRetch is open source software, available from

github.com/Oshlack/STRetch.

Results
The STRetch method
The STRetch method has been designed to identify ex-
panded STRs from short-read sequencing data and give
approximate sizes for these alleles. Briefly, the idea be-
hind STRetch is to first construct a set of additional se-
quences comprising all possible STR repeat units in the
range of 1–6 bp. These are then added to the reference
genome as “STR decoy chromosomes.” By mapping to
this modified genome, STRetch identifies reads that
originated from large STR expansions, containing mostly
STR sequence, that now preferentially map to the STR
decoys. These reads are then allocated back to the gen-
omic STR locus using read-pair information and the
locus is assessed for an expansion using a statistical test
based on coverage of the STR. A summary of the
STRetch method is presented in Fig. 1, with further spe-
cifics detailed below.

STR decoy chromosomes: generating an STR-aware
reference genome
A key feature of STRetch is the generation of STR decoy
chromosomes to produce a custom STR-aware reference
genome. Most aligners have difficulty accurately map-
ping reads containing long STRs. For example, although

Dashnow et al. Genome Biology  (2018) 19:121 Page 2 of 13
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the BWA-MEM algorithm has superior performance for
mapping reads containing STRs [21], reads containing
long STRs sometimes map to other STR loci with the
same repeat unit or completely fail to map [18]. The
systematic mis-mapping of STR reads is unsurprising
considering that BWA-MEM is optimized to find the
longest exact match [22]. For a read made up primarily
of STR sequence, the best match is likely to be the lon-
gest STR locus in the reference genome with the same
repeat unit.
STRetch takes the issue of systematically mis-mapped

or unmapped STR reads and uses this as a way to iden-
tify reads that contain long STR sequence. To achieve
this, we introduce the concept of STR decoy chromo-
somes. These are sequences that consist of 2000 bp of
pure STR repeat units that can be added to any refer-
ence genome as additional chromosomes. STR decoy
chromosomes for all possible STR repeat units in the
range of 1–6 bp are generated and filtered for redun-
dancy, resulting in 501 new chromosomes that are
added to the reference genome (STRetch provides hg19
with STR decoys, see “Methods”). While reads with
STR lengths similar to the allele length in the reference

genome will map to their original locus, reads contain-
ing large STR expansions will preferentially align to the
STR decoy chromosomes. These reads are then further
examined for evidence of a pathogenic expansion.

Mapping to STR decoys to identify reads containing STRs
Once the new STR decoy reference genome is created,
the first step maps reads against the new reference gen-
ome using BWA-MEM. If the data have already been
mapped, STRetch can optionally extract and re-map a
subset of reads likely to contain STRs. Extracted reads
are those that aligned to known STR loci (defined using
Tandem Repeats Finder (TRF) [23]), as well as any
unmapped reads (see “Methods”). Any reads mapping to
the STR decoy chromosomes are inferred to have origi-
nated from an STR. Typically ~ 0.01% of reads map to
the STR decoy chromosomes in a PCR-free whole
genome.

Determining the origin of STR reads
Next, the reads that map to the STR decoys are assigned
to genomic STR positions. STRetch uses the mapping
position of the read at the other end of the DNA frag-
ment (the mate read) to infer from which STR locus
each read originates. Known STR loci are obtained from
a TRF annotation of the reference genome. For a given
read, if the mate maps within 500 bp of a known STR
locus with the same repeat unit, then the read is
assigned to that locus (or the closest matching locus if
multiple loci are present). Only 0.93% of STR loci are
within 500 bp of another STR locus with the same
repeat unit (Additional file 1: Figure S1). This distance
accounts for the fragment length of the majority of reads
(Additional file 1: Figure S2).
After all possible reads are assigned, there may be a

difference between the number of reads mapping to a
given STR decoy chromosome and the number of reads
assigned to all STR loci with that same repeat unit.
Unassigned STR reads can occur for a variety of reasons;
for example, if their mate also maps to the STR decoy
chromosome, if their mate is unmapped, or if their mate
does not map in close proximity to a known locus. The
number of unassigned reads will increase in samples
with very large STR expansions because more read-pairs
will originate purely from the STR. This may result in
STRetch underestimating the size of very large alleles;
however, such loci will still be reported as significant as
they are still assigned substantially more reads compared
with control samples.

Detecting outlier STR loci
STRetch next uses a statistical test to identify loci where
an individual has an unusually large STR. Specifically,
STRetch compares the number of STR decoy reads

Fig. 1 Summary of the STRetch pipeline. The STR decoy reference
genome is provided to the user for mapping each of their test
samples. The pipeline will allocate reads to STR loci and perform
statistical testing. The resulting report consists of a table with
annotation and test results for each locus in each test sample

Dashnow et al. Genome Biology  (2018) 19:121 Page 3 of 13
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assigned to each locus for a test sample with STR reads
from a set of control samples. At each locus the read
counts are normalized by dividing by the average cover-
age of the sample. The set of control samples provide a
median and variance of counts for each locus. A statisti-
cally robust z-score (“outlier score”) is then used to test
if the log-normalized number of reads in the test sample
is an outlier compared to controls (see “Methods”). The
final result is a multiple-testing-adjusted p value describ-
ing the significance of an expansion at each locus
relative to control samples. Every locus for which reads
have been assigned is given a p value.
A variety of control samples can be used in the statis-

tical testing. First, STRetch can be run on a set of con-
trols and the median and variance of the coverage
parameters for each locus estimated. These control
parameters are then used in testing for significant ex-
pansions in disease samples. This approach is ideal for
researchers who have access to large sets of sequenced
controls. Second, a set of samples that are all being
tested can be used as controls for each other in a similar
way to the above. The assumption here is that only a
small proportion of samples (< 50%) will have the same
expanded locus (we refer to this approach as internal
controls). Third, STRetch supplies median and variance
parameters estimated from a reference set of PCR-free
whole genomes (see “STRetch reveals STR expansions in
97 whole genomes”). This third approach is useful for
researchers who only have a limited number of samples
to test. The advantage of the first and second options is
that the sequencing is usually run at the same center
with the same library preparation protocols. However,
the datasets may be smaller and therefore provide less
robust statistical measures. In most cases, option three
(using the supplied parameters from PCR-free whole ge-
nomes) is the easiest and most accurate when using rela-
tively small datasets (see Table 1).

Estimating the size of STR alleles
When scanning the genome for sites of significant
expansions, the statistical test is the most important
screen. However, for known disease loci the literature
has focused on the length of the variant that is associ-
ated with pathogenicity. Therefore, STRetch also makes
estimates of allele length. STRetch works on the as-
sumption that, for a given locus, the number of reads
containing the STR repeat unit is proportional to the
length of the repeat in the genome being sequenced.
This is because increasing the length of the STR allele
increases the likelihood that reads from that locus will
be sampled. Hence, STRetch estimates the size of any
detected expansion using the normalized read counts al-
located to that STR locus. Using simulation, we indeed
found that the allocated read counts are linearly related

to the length. Specifically, we simulated reads from 100
individuals with the genotype 16×CAG/N×CAG at the
SCA8 locus, where N was randomly selected in the
range of 0–500 (see “Methods”). Our simulated data ex-
hibit a linear relationship between allele size and the
number of reads mapping to the STR decoy chromo-
some (Additional file 1: Figure S3). We use the slope
and offsets from these simulated expansions in estimat-
ing the allele size from the normalized coverage at a
locus.

Output files
On completion, STRetch generates a tab-delimited out-
put file for each sample that contains all STR loci for
which STR decoy reads were detected. Further informa-
tion includes p values for statistical significance of an
expansion, details of the STR locus (position, repeat
unit, size in reference), robust outlier z-score, locus read
count, and the allele length estimate. By default, this file
is sorted such that the most significant expansions are
ranked at the top.

STRetch is able to recover true pathogenic expansions
In order to test STRetch, we generated PCR-free WGS
on ten individuals: nine with known pathogenic STR
expansions and one unaffected family member. Samples
were sequenced to a mean coverage of 41.74× (range
38.35–49.57×), then processed using the Broad GATK
pipeline (mapped to hg38 with BWA-MEM, then proc-
essed using the GATK best practices).
For analysis with STRetch, we first extracted reads

overlapping all known STR loci annotated by TRF (see
“Methods”) and then processed these reads through the
STRetch pipeline, using the hg19 reference genome. The
STRetch statistics were calculated twice; first using only
these ten samples as controls for each other (“internal
control”) and then using the 97 WGS samples described
below as controls (“reference control”). We also ran
LobSTR/HipSTR to estimate the size of the short allele
in each case. On average, STRetch reported 18 signifi-
cant STR expansions per sample (range 4–33).
For six of the ten samples we had information about

the disease and the estimated allele size by PCR. For
the other four samples (Samples 7, 8, 9, and 10), we
were initially completely blinded to all patient informa-
tion, including phenotype. Disease and allele size esti-
mates were only revealed to us after we had correctly
identified the causal STR expansion in each case. Table
1 summarizes the results of this analysis, while Fig. 2
and Additional file 1: Table S1 show allele size
estimates for these samples using STRetch, LobSTR,
HipSTR, and ExpansionHunter.
For the six samples with known information, STRetch

correctly identified three true-positive expansions.

Dashnow et al. Genome Biology  (2018) 19:121 Page 4 of 13
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Furthermore, STRetch correctly failed to detect an
expansion in a pathogenic locus in the true negative
(Sample 2). STRetch failed to identify the causal
locus in two cases (Samples 4 and 6). For Sample 4,
the PCR allele length is only 26 bp larger than the
reference, making the entire allele 66 bp, which is
well within the read length of 150 bp. STRetch only
detects STR expansions that are sufficiently large so
that the repeat maps to the STR decoys instead of
the reference locus. Indeed, for Sample 4, we see
three reads mapped to the genomic locus with a
27-bp insertion and no reads from this locus map-
ping to the STR decoy. This allele can be detected
by tools that look for indels within the read, and in-
deed both LobSTR and HipSTR are able to correctly
call this expansion (Additional file 1: Table S1). Sam-
ple 6 was found to have lower coverage over the
STR region compared with other samples. However,
some evidence of the repeat was observed, such as
reads ending in the STR with more repeat units than
the reference. As such, this expansion may be de-
tected in future iterations of the software.
For the blinded samples (Samples 7, 8, and 9), we were

able to correctly determine the causal STR locus simply
by ranking variants by their p values and then looking
for any known pathogenic STR loci with a significant p
value (Table 1).
For Sample 10, we were initially unable to identify a

significant expansion in a known pathogenic gene. After
the variant was revealed to be a large GAA expansion at
the FRDA locus, we investigated further and discovered
that although the reference genome has 6×GAA at this
position, the STR is missing from the TRF genome

annotation. TRF failed to annotate this STR due to its
relatively small size. After manually adding this locus to
the genome annotation and rerunning the analysis on
the ten samples in Table 1, STRetch was able to cor-
rectly detect a significant expansion at this locus. Note
that this locus was not annotated in the control samples
so only an “internal control” analysis was done.
Most of the true positives that were detected had sig-

nificant expansions when using both the 97 reference
controls and the ten internal controls. However, there
were two samples (Samples 3 and 7) that were only
significant when using the much larger set of reference
controls. Therefore, for this size dataset, the use of refer-
ence controls generally provides more power.
We compared the PCR-sized expansion in these ten

samples with the STRetch length estimates and found that
STRetch has about a ~ 20% standard error. We also found
that for very long alleles, STRetch substantially underesti-
mates the allele size. One likely explanation is that the
current implementation of STRetch is limited by the insert
size of the sequencing data. Some alleles will be so large
(e.g. DM1 in Sample 9 is > 450 bp) that there will be
read-pairs where both are completely contained within the
STR. In such cases, both pairs will map to the STR decoy
and will not be assigned to an STR locus, leading to under-
estimation of the read length (Additional file 1: Figure S4).
In comparison, ExpansionHunter more closely estimated
alleles in most cases, with a tendency to overestimate allele
sizes (Additional file 1: Table S1). As expected, both
LobSTR and HipSTR dramatically underestimated large
alleles or did not make a call in many cases.
STRViper was also run on the true-positive samples

and reported no significant expansions across all STR

Fig. 2 Relationship between allele sizes estimated by PCR and those called by STRetch, ExpansionHunter, HipSTR, and LobSTR for the true-positive
samples. The raw data are available in Additional file 1: Table S1
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loci annotated with TRF. This is likely due to the large
SD of insert size for these samples (130–150 bp), which
is typical for the current standard Illumina protocol.
STRViper requires smaller insert sizes of approximately
30 bp or less.
We next assessed the sensitivity, specificity, and false dis-

covery rate (FDR) of STRetch on these samples. We con-
sidered STRetch calls in 18 samples for which we had
DNA available in our lab (the ten test samples described
above and eight samples from the 97 controls described
below) on a set of 22 pathogenic loci (Additional file 1:
Table S2). This gave a test set of 396 loci. We assumed that
any significant STRetch calls (p < 0.05 after multiple testing
correction), beyond the true positive loci described above,
are false positives and the two loci that STRetch failed to
detect above are false negatives. Any loci where STRetch
does not make a significant call are assumed to be true
negatives. Of these true negatives, 64 were confirmed by
PCR from standard diagnostic testing. Using these assump-
tions, our measured sensitivity was 0.778, specificity was
0.974, and the FDR was 0.025. We also ran ExpansionHun-
ter on these samples and found that three of the STRetch
calls we had assumed to be false positives were also sup-
ported as expanded by ExpansionHunter, although not in
the pathogenic range. Three of these (the HD expansion
and the two SCA3 expansions) were also confirmed as
expanded in the non-pathogenic range by diagnostic PCR.
Using these updated values, sensitivity was 0.833, specifi-
city was 0.974, and FDR was 0.018. Six of our ten
false-positive calls were in the FTDALS locus and another
two in the SCA3 locus (although these were expanded, just
not pathogenic). This indicates that some loci may be
harder to correctly identify than others. Indeed, the
FTDALS1 locus is known to be difficult to analyze due to
homology with other loci [18]. Overall, STRetch achieves
FDRs well below our nominal value of 0.05.

STRetch reveals STR expansions in 97 whole genomes
We performed PCR-free WGS on a set of 97 individuals,
most of whom were being investigated for the cause of
their Mendelian disease or were immediate family mem-
bers of such patients. Many of these cases have inherited
neuromuscular disorders. Approximately half of these
cases have been previously solved, with the causal vari-
ant identified as a SNV or indel. The remaining cases
are still unsolved. The set also includes four individuals
with ataxia. In addition to patient samples and relatives,
there are seven unaffected samples including NA12878.
Given its enrichment for individuals with Mendelian dis-
ease, this control set may contain pathogenic STR
expansions. However, we did not expect a large propor-
tion of samples to have the same STR expansion so our
assumptions for the statistical tests were highly unlikely
to be violated.

All samples had previously been mapped with BWA-
MEM against hg19. We used STRetch to extract reads
from all annotated STR loci, as well as unmapped reads,
and re-mapped these against the hg19 STR decoy gen-
ome (see “Methods”). We then proceeded with the rest
of the STRetch pipeline. The median and SD were
recorded for each locus across all individuals for use as a
control set for subsequent analyses. This analysis showed
that homopolymer loci are the most variable between
individuals, showing dramatically higher SDs, followed
by STRs with 5, 6, 3, 4, and then 2 bp repeat units
7(Additional file 1: Figure S5).
To assess the frequency of expansions at known

pathogenetic STR loci, we filtered the STRetch results to
those significant expansions intersecting with a set of 22
known pathogenic STR loci (Additional file 1: Table S3).
We observed 29 significant STR expansions in seven
pathogenic loci (summarized in Table 2). Although these
are significantly expanded compared to the rest of the
control set, their pathogenicity is uncertain as the allele
size estimates are only approximate and are often well
below the defined pathogenic range.
Nonetheless, a number of the STR expansions are po-

tential candidates for follow-up if the sequenced individ-
uals have a relevant phenotype. STRetch detected a large
SCA8 expansion in two individuals; one of whom is an
ataxia patient (see below). We also detected a DM2 ex-
pansion in another individual. All three variants were
highly significantly expanded compared to the other
control samples (p = 4.2e-24, 8.2e-23 and 1.5e-10, re-
spectively) and each was ranked as the most significant
for that individual. We have referred these variants back
to the originating laboratories to determine whether the
variants fit the phenotype and can be validated.
STRetch also identified STR expansions in a number

of other pathogenic loci in these samples; however, many
of these are unlikely to be sufficiently large to cause dis-
ease. Two SBMA expansions were on the limit of detec-
tion and significance (ranked 109 and 476, p = 0.001 and
0.04, respectively). We detected SCA36 and FXTAS ex-
pansions, which likely reflect sub-clinical variation at

Table 2 Summary of significant expansions in STR disease loci
in 97 WGS samples
Disease Gene Number of individuals

SCA8 ATXN8/ATXN8OS 2

DM2 ZNF9 1

SBMA AR 2

SCA36 NOP56 1

FXTAS FMR1 1

SCA3/MJD ATXN3 11

FTDALS1 C9orf72 11
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these loci, with size estimates of 13.5×AGGCCC and
34.6×CCG, respectively. We detected a surprising num-
ber of SCA3/MJD_ATXN3 expansions: 11 samples with
estimated allele sizes in the range of 30.5–74.3×AGC. As
≥ 60×AGC is considered pathogenic, with ≥ 52× likely
showing incomplete penetrance, many of these may be
asymptomatic. However, we have observed STRetch to
underestimate allele sizes at this locus so these variants
could be larger than predicted. We also detected 11
FTDALS1 expansions in the range of 20.9–32.9×CCCC
GG, all within the unaffected size range for this locus.
Generally affected individuals have > 60 repeats. Also,
smaller allele sizes are associated with later age of onset,
with symptoms appearing as late as 80 years. Conse-
quently, these results may indicate variation within the
normal range, individuals with pre-mutations, individ-
uals who have not yet shown symptoms, or false posi-
tives. ExpansionHunter confirmed all the SCA8, DM2,
and FXTAS expansions, as well as one SBMA, one
SCA3, and three of the FTDALS1 expansions. It failed
to genotype the SCA36 locus.
These likely non-pathogenic variants at known patho-

genic loci highlight the ability of STRetch to explore
population variation and to better determine the true
non-pathogenic range of these known pathogenic loci.

Genetic diagnosis and validation of an ataxia patient
As noted above, four ataxia patients were included in
our 97 WGS cohort. These patients had previously
been tested with for most known ataxia STR expan-
sions, including SCA1, SCA2, SCA3, SCA6, SCA12,
SCA17, SCA38, and DRPLA (see Controls 1–4 in Add-
itional file 1: Table S2). The whole genome data had
also been examined for causative SNVs and indels in
candidate ataxia genes using the GATK Best Practices
recommendations [24] and copy number variations
using BreakDancer [25] and Genome STRiP [26] with-
out success in diagnosis.
In one of these patients (Control 1), STRetch identi-

fied the highly significant expansion of SCA8 (noted
above), a known but rare disease locus in ATXN8 with
an outlier z-score of 11.11 (p = 3.55e-24) and an esti-
mated allele size of 54.4×.
As a result, this SCA8 expansion was validated using a

PCR assay, which confirmed a pathogenic CAG expan-
sion with an allele size of 97×. In addition, an affected
sibling, not sequenced using WGS, was tested for an ex-
pansion at the same locus and was similarly determined
to have a pathogenic allele of ~ 96×. The likely patho-
genic range for this STR is 80–250 repeat units, with un-
certain pathogenicity in the range of 50–70 repeat units.
However, this locus shows incomplete penetrance, with
cases of unaffected individuals observed at all allele sizes
[27]. It is noteworthy that STRetch directly estimates the

size of the STR, while PCR assays at this locus also in-
clude the size of the adjacent non-pathogenic but highly
polymorphic CTA repeat. As such, this estimate from
STRetch should be interpreted as 65× when comparing
to the PCR result.
We also ran LobSTR and HipSTR on the WGS data of

this patient. At the expanded pathogenic locus, LobSTR
called a homozygous 6xTGC insertion, while HipSTR
called a homozygous indel from deletion of one TAC
repeat unit upstream of SCA8 and an insertion of seven
TGC repeat units, for a net total six repeat unit inser-
tion. Both tools report a reference allele size of + 15×, so
the total allele size is 21× in both cases. PCR analysis of
the proband and sibling indicated that both expansions
were heterozygous with a short allele size of ~ 29×.
However, these sizes may not be directly comparable
due to potential variation in the definition of the refer-
ence locus size.

STRetch can detect expansions at novel loci
To our knowledge, STRetch is the only method currently
available that can use short-read sequencing to screen the
entire genome for rare STR expansions. In order to dem-
onstrate that STRetch can indeed detect expansions at loci
not previously associated with disease, we performed
validation using orthogonal technologies: PCR and Sanger
sequencing and PacBio long-read sequencing.
First, we used PCR to estimate the size of an STR that

STRetch called highly significant in Sample 5. The locus is
a 5-base AAACT repeat in an intron of the MTHFD2
gene (chr2:74430970–74,431,055). This was the most sig-
nificantly expanded locus in this sample with a p value of
4.81E-21 and a predicted size of 37 repeat units. We de-
signed a PCR assay to genotype the size of the allele in this
sample as well as five samples that were not predicted to
contain this expansion by STRetch (Samples 1, 2, 6, 8, and
9 from above, Additional file 1: Figure S6). A standard
control sample of unknown genotype (CEPH individual
1347–02) was also tested. Sanger sequencing yielded an
allele size of > 59 repeat units in Sample 5 (the sequencing
quality dropped off beyond this size), significantly larger
than the alleles from the control samples (p = 2.71E-03,
Additional file 1: Figure S7), as predicted by STRetch. By
sizing the PCR product on a gel, we estimate the larger al-
lele in this sample to be 62 repeat units. We configured
ExpansionHunter to estimate the size of this locus result-
ing in a genotype of 47/64, much larger than the length of
17.2 repeats in the genome. While this STR is unlikely to
be pathogenic, this result highlights the potential to use
STRetch to screen for novel expansions that may be
related to disease.
To further demonstrate the utility of STRetch to iden-

tify novel loci as expanded (relative to controls), we
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compared our analysis of short-read data with a previ-
ously published genome analysis which utilized long-
read PacBio data [28]. Specifically, we ran STRetch on
Illumina short-read data from an artificial diploid sam-
ple created by combining the two haploid genomes,
CH1 and CH13 (two replicates), and called signifi-
cantly expanded loci compared with our 97 reference
controls. We then compared all significant STRetch
hits with variants called from long-read PacBio
sequencing of the two haploid samples. Of the 18 sig-
nificant STRetch calls (over two replicates) we were
able to confirm 14 from the PacBio data as expanded
(Additional file 1: Table S4). Of the four non-validated
calls, two were in the non-standard chromosome
chrUn_gl000220, which was not present in the PacBio
variant data. The remaining two were both homopoly-
mer A STRs. Homopolymers were excluded from the
PacBio variant call set, preventing validation of these
loci. While none of the loci represent likely pathogenic
expansions, this analysis demonstrates that truly sig-
nificant expanded variants can be found in novel loci
using STRetch with a low FDR.

Discussion
STRetch is currently the only genome-wide method to
scan for STR expansions using short-read WGS data.
We have demonstrated the ability of STRetch to detect
known pathogenic STR expansions in short-read
PCR-free WGS data. STRetch correctly detected the
pathogenic expansion in most of our ten test samples;
seven true positives and one true negative were cor-
rectly identified; two expansions were missed. The size
of one of the missed expansions was below the detec-
tion threshold for STRetch. The method performed
well on these samples, with a sensitivity of 0.778, speci-
ficity of 0.974, and a FDR of 0.025. We applied STRetch
to 97 PCR-free WGS samples to detect both potentially
pathogenic STR expansions and expansions of moder-
ate length in STR disease loci, where the allele size is
likely below the threshold for disease. Importantly, this
set of analyzed genomes can act as a control set and
statistical parameters for the STR loci are provided to
use in testing for expansions with STRetch. Within this
cohort, STRetch revealed a previously undetected
pathogenic STR expansion in SCA8 that was validated
by PCR in the proband and an affected sibling.
As expected, we found that STR genotypers such as

LobSTR and HipSTR, which are designed to genotype
short STR variation, were unable to detect large pathogenic
variants in WGS data. These tools instead called a homozy-
gous genotype, corresponding to the size of the
non-expanded allele, called a heterozygote with slight vari-
ation in the small allele, or failed to make a call. Using these
tools in conjunction with STRetch allows the estimation of

the short allele in cases where STRetch has detected an ex-
pansion, allowing us to obtain a more complete picture of
the genotype from short-read sequencing data.
ExpansionHunter performed relatively well when esti-

mating allele sizes, although tended to overestimate,
where STRetch tended to underestimate. However, a key
limitation of ExpansionHunter is that it does not use a
statistical basis for detecting significantly expanded loci
and is not currently configured to estimate lengths
across the genome; each locus of interest must be
defined in a separate configuration file. Therefore, this
cannot be used as a genome-wide scan for novel loci.
The main limitation of STRetch is its tendency to

underestimate the allele size of STR expansions, espe-
cially for variants larger than the insert size. However,
this limitation is mostly relevant for known pathogenic
loci where there is already an established relationship
between the length of the allele and disease characteris-
tics. In genome-wide scans for rare expansions, we be-
lieve it is more important to use a statistical test that
indicates the probability that an expansion exceeds the
normal population variation. Estimating allele length by
itself does not provide this information. Another limita-
tion of STRetch is that it has not been tested on PCR+
or targeted sequencing data.
We have demonstrated the potential application of

STRetch to discover a novel significant expansion at an
intronic STR locus in MTHFD2 and validated it by PCR
and Sanger sequencing. In addition, further expansions
detected by STRetch were also shown to be expanded
using long-read sequencing data.

Conclusions
Here we have introduced STRetch, a method to test for
rare STR expansions from WGS data. We have shown
that STRetch can detect pathogenic STR expansions
relevant to Mendelian disease with a low FDR. Al-
though the emphasis has been on STRs known to cause
Mendelian disease, a key advantage of STRetch over
other methods is its genome-wide approach. STRetch
performs statistical tests for expansions at every STR
locus annotated in the reference genome and so has the
potential to be used not only for diagnostics, but also
in research to discover new disease-associated STR ex-
pansions. We hope the application of STRetch to WGS
of patient cohorts will enable new discoveries of
disease-causing STR expansions.

Methods
The STRetch pipeline
The STRetch pipeline is implemented using the
Bpipe [29] pipeline framework (v0.9.9.3). This allows
for a pipeline combining standard bioinformatics
tools with novel scripts and is compatible with many
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high-performance computing environments, allowing
large-scale parallelization over multiple samples (see
Additional file 1: Supplementary Methods).
To summarize the pipeline and components:
Reads are mapped to the reference genome with STR

decoy chromosomes using BWA-MEM [22] (v0.7.12)
and SAMtools [30] (v1.3.1). STRetch then counts the
number of reads mapping to each STR decoy chromo-
some using bedtools [31] (v2.26.0). Reads mapping to
the STR decoy chromosomes are allocated to an STR
locus using paired information (Python v3.5.2 script:
identify_locus.py). Median coverage over the whole gen-
ome or exome target region is calculated using goleft
covmed [32] (v0.1.8), which is later used to normalize
the counts. STRetch then predicts the size of the expan-
sion using the number of reads allocated to the locus
(Python script: estimateSTR.py).
The STRetch pipeline is freely available under an MIT

license from github.com/Oshlack/STRetch.

Generating STR decoy chromosomes
To produce STR decoy chromosomes, STRetch generates a
set of all possible STR repeat units in the range of 1–6 bp.
These are then grouped by those repeat units that are
equivalent as a circular permutation of each other or the
reverse complement. For each group, the first repeat unit
lexicographically was taken to represent that group, for
example, CAG=AGC=GCA=CTG=TGC=GCT; the
group is represented by AGC. STRetch filters out repeat
units that could be represented by multiples of a shorter
repeat unit. For example, ATAT would be filtered out as it
is already represented by AT. This resulted in 501 unique
repeat units. STRetch then uses an “STR decoy chromo-
some” for each repeat unit, which consists of the repeat
unit repeated in tandem for 2000 bp (script: decoy_STR.py).
This length was chosen to well exceed the insert size, but is
configurable. The additional chromosomes can be added to
any reference genome (hg19 with STR decoy chromosomes
was used for all analyses).

Extracting likely STR read-pairs from aligned BAMs
In the case where reads have already been mapped to a
reference genome, STRetch provides the option of
extracting likely STR read-pairs from the BAM file for
analysis, rather than remapping all reads in the sample.
In this case, STRetch defines a region where STR

reads are likely to align by taking the TRF [23] anno-
tation of the reference genome and expanding the re-
gion to include 800 bp of flanking sequence on each
side. Reads aligned to this region, and all unmapped
reads, are extracted using SAMtools view. These are
sorted to place together read-pairs using SAMtools
collate and then are extracted in fastq format using
bedtools bamtofastq. Unpaired reads are discarded.

Aligning and allocating reads to STR loci
STRetch uses BWA-MEM to align reads to the custom
reference genome. Any read mapping to the STR decoy
chromosomes is presumed to have originated from an
STR locus.
To determine from which STR locus the reads origi-

nated, the mates of the reads mapping to a given STR
decoy chromosome are collected. If the mate maps
within 500 bp of a known STR locus with the same re-
peat unit, it is assigned to that locus. If multiple loci fall
in this range, the read is assigned to the closest locus.
This distance was chosen because the mean insert size
of our WGS data was 372–415 bp (Additional file 1:
Figure S2), so we expect the mate to map within 500 bp
or less of the STR locus. We found that increasing this
value did not increase the number of reads allocated to
true-positive loci. Another consideration when setting
this parameter is the potential to misallocate reads from
neighboring STR loci. To combat this, reads are only al-
located to a locus with a matching repeat unit. Although
rare, there are instances of two STR loci with the same
repeat unit occurring close together. In hg19, 0.93% of
STR loci are within 500 bp of another STR locus with
the same repeat unit, 1.34% within 1000 bp, and 2.04%
within 2000 bp (see Additional file 1: Figure S1). We
used 500 bp as the smallest value of this parameter that
allows detection of all relevant reads while minimizing
inclusion of inappropriate reads. This value can be con-
figured in the pipeline if required.
To correct for library size (total number of aligned

reads), the counts for each STR locus are normalized
against the median coverage for that sample. Counts are
normalized to a median coverage of 100×: log2(100×(raw
counts + 1)/median sample coverage)). Log2 normalized
counts are used in subsequent statistical analyses.

Detecting outliers
To detect individuals with unusually large STRs,
STRetch calculates an “outlier score” for each individ-
ual at each locus. The outlier score is a z-score calcu-
lated using robust estimates, with a positive score
indicating the STR is larger than the median. Robust
estimates are used to reduce the impact of potential
expansions present in control samples, which can be
particularly important when comparing within a small
cohort of samples.
A robust z-score and p value is calculated for each

locus, l, using the log-normalized counts. First, the
median and variance across all samples for locus, l, is
estimated using Huber’s M-estimator [33, 34]. This cal-
culation can be performed over all samples in a batch or
a set of control samples (estimates from the set of 97
PCR-free whole genomes are provided with STRetch).
We test the null hypothesis that the log counts, yil, at
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locus l for sample i is equal to the median log counts at
locus l for the control samples. The alternative hypoth-
esis is that the median log counts for locus l are greater
for sample i compared to the control samples. Hence for
each sample i and locus l we obtain a robust z-score

zil ¼
yil−M
σM

;

where M is the median and σM is the square root of the
M-estimator of the variance. One-sided p values are then
obtained from the standard normal distribution and ad-
justed for multiple testing across the loci using the
Benjamini–Hochberg method [35]. A locus is called sig-
nificant if the adjusted p value is < 0.05.

Estimating allele sizes
We reasoned that the size of an expanded allele would
be proportional to the number of reads containing STR
sequence and hence the number of reads allocated to
the STR locus. In order to estimate allele sizes we per-
formed simulations of a single locus at a range of allele
sizes. Specifically, reads were simulated from the SCA8
locus in ATXN8. One allele was held constant at
16xAGC and then we simulated repeat lengths in the
other allele in the range of 0–500 repeat units (selected
at random from a uniform distribution). Alternate ver-
sions of the hg19 reference genome with these alleles
were produced using GATK v3.6 FastaAlternateReferen-
ceMaker. Reads were simulated from 10,000 bp either
side of the SCA8 locus using ART MountRainier-
2016-06-05 [36]. Reads were 150-bp paired-end, with
nsert sizes sampled from a normal distribution (mean
500 bp, SD 50 bp) and 30× coverage (proportional
coverage sampled from each haplotype). The Illumina
error profile was used. Simulation code is available at
github.com/hdashnow/STR-pipelines.
A plot of the number of reads mapping to the AGC

decoy chromosome against the number of AGC repeat
units inserted into the ATXN8 locus shows a clear linear
relationship between these two variables (Additional file 1:
Figure S3).
We can use this information from the simulated data

to provide a point estimate of the allele size of any new
sample we analyze with STRetch in the following man-
ner. We fit a linear regression between the number of
reads mapping to the STR decoy and the size of the al-
lele from the simulated data (both log2 transformed), in
order to obtain estimates of the intercept and slope pa-
rameters, β0 and β,

y ¼ β0 þ βxþ ε; ε∼N 0; σ2
! "

:

Here y is log2(coverage) and x is log2(allele size). Given
a new data point from a real sample, the log2(coverage)

for an STR locus of interest, the point estimate of the al-
lele size is thus

log2 allêlesize
# $

¼ log2 coverageð Þ−β̂0
β̂

:

where allele size is the number of base pairs inserted
relative to the reference and coverage is the normalized
number of reads allocated to the locus.

Reference data
Reference genome: ucsc.hg19.fasta, with STR decoy
chromosomes added as described above.
STR positions in genome annotated bed file: hg19.sim-

pleRepeat.txt.gz. Source: http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/database/.
Known STR loci are obtained by performing a TRF [23]

annotation of the reference genome. Pre-computed anno-
tations of many genomes are available from the UCSC
Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables)
[37]. TRF annotations are converted to bed files annotated
with two additional columns: the repeat unit/motif and
the number of repeat units in the reference.

Running other STR genotypers
To estimate the size of the shorter allele, LobSTR and
HipSTR were run on BAM files containing the locus of
interest and 1000 bp of flanking sequence on either side.
We used LobSTR version 4.0.6 with default settings and
the LobSTR reference genome and annotation
hg19_v3.0.2. HipSTR version 0.4 was used --min-reads 2
and otherwise default settings, with the provided hg19
reference genome and annotation. In some cases, the
tools make a different call as to the reference allele in
hg19. To make variant calls comparable to STRetch
calls, we converted genotypes to numbers of repeat units
inserted relative to the reference defined by that tool,
then applied that to the reference allele given by
STRetch. For example, if the STRetch reference allele is
20 repeat units, while in HipSTR it is 10 repeat units, a
HipSTR genotype of 10/15 would be reported as 20/25.
All imperfect repeat units or other variation were ig-
nored and only the total size of alleles taken.
ExpansionHunter version 2.5.5 was run using the 17

provided STR loci specifications, as well as manually de-
fined loci for STRs in ATXN8, MTHFD2, NOP56, and
ZNF9 (see Additional file 1: Supplementary Methods).
The “original” version of STRViper was downloaded
from http://bioinf.scmb.uq.edu.au/STRViper and run
using default settings.

Validation of novel STR expansions
To validate the novel STR expansion in an intron of
MTHFD2 (as predicted by STRetch), PCR was conducted

Dashnow et al. Genome Biology  (2018) 19:121 Page 11 of 13
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using GoTaq G2 colorless master mix (Promega, USA)
with 0.5-μM primers (see Additional file 1: Table S5) and
10 ng of template DNA per reaction. Cycling was as fol-
lows: 95 °C for 2 min, 40 cycles of 95 °C for 15 s, 68 °C for
15 s, and 72 °C for 30 s, and a final extension for 5 min at
72 °C. Samples were analyzed on a 2% agarose gel stained
with ethidium bromide (0.5 μg/mL). Product sizes and
STR length were estimated relative to a 100-bp DNA lad-
der by generating a standard curve (NEB, USA). For
sequencing, individual alleles were separated by band-stab
PCR [38] (Additional file 1: Table S5), purified using a
QIAquick PCR purification kit (QIAGEN, USA), and
sequenced using the Sanger method. The samples tested
were Samples 1, 2, 5, 6, 8, and 9 from the true-positive
samples described above and one standard control sample
1347–02 (CEPH).
To validate STRetch results with long-read data, STRetch

was run on Illumina short-read data from an artificial
diploid sample created by combining the two haploid
genomes, CH1 and CH13. The two replicates were
obtained from SRA: https://www.ncbi.nlm.nih.gov/sra,
accession numbers ERX1413365 and ERX1413368 [39].
We compared the STRetch results to publicly available
PacBio variants for these same samples [28]. The
authors generated these variants using their SMRT-SV
software [27] against the hg38 reference genome. Long
structural variants (SVs) > 50 bp were obtained from
dbVar; https://www.ncbi.nlm.nih.gov/dbvar accession
number nstd137 [40] and short SVs from http://eichler
lab.github.io/pacbio_variant_caller/ [41]. A STRetch call
was considered validated if the PacBio data contained a
substantial expansion relative to the reference genome
at the same position with the same repeat unit.

Additional file

Additional file 1: Supplementary tables, figures and methods
STRetch_additional_file_1. (PDF 1095 kb)
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Chapter 4 Frequency and variability of STR 

expansions 
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4.1 Introduction 
Population allele frequency databases such as ExAC/gnomAD [37,47], 1000 

Genomes [6] and the Exome Variant Server [46] are powerful ways to filter 

out common single nucleotide variants (SNVs) and short indels in the context 

of Mendelian disease genomics, and have become ingrained in both research 

and clinical practice. These databases work on the assumption that if a variant 

is found frequently in healthy individuals it is unlikely to cause a severe 

Mendelian disease, because such variants would be selected against. This data 

can also be used to prioritise genes that have lower than expected rates of 

variation. For example, pLI and observed/expected ratio scores, reported in 

ExAC and gnomAD respectively, can be used to identify genes with an 

unexpectedly low number of loss of function variants compared to that 

expected by chance [37,47,151]. Variant frequencies and gene scores can be 

used to prioritise variants in clinical and research populations, as evidence that 

a given variant may be disease-causing. There has been one study to date, 

considering small allele variation at STR loci across the genome [152]. This 

study used LobSTR to call STR alleles within the read length on a set of 300 

individuals. They found evidence for constraint of STRs in coding regions, 

especially genes known to cause autosomal dominant developmental 

disorders, genes with pLI ≥ 0.9 (loss of function intolerant genes), and highly 

expressed brain genes. Another study assayed 31 known tandem repeat 

disease loci across 12,632 individuals and identified 192 individuals with 

pathogenic-sized STR expansions [96]. While these studies have begun to 

reveal population variation at STR loci, there has not yet been any reported 

large study of expansions greater that the read length at all annotated STR loci 

across the genome. Therefore, when faced with genome-wide STR expansion 

results for a patient without an expansion at a known pathogenic locus, we 

have little evidence to rank the hundreds or thousands of expansions found 
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across a genome for further investigation. There is a clear need for data-driven 

strategies to prioritise potentially pathogenic STR loci. 

Our goal was to create “gnomAD for STR expansions”, by running our 

method STRetch on whole genome sequencing data from thousands of 

individuals to estimate the rate of STR expansions across the genome. 

However, obtaining access to the thousands of samples and vast 

computational resources required for such an analysis proved beyond the 

scope of this thesis. In particular, much of the data we attempted to access 

was siloed within specific institutions or groups, or was clinical data with 

limited approval for reuse or publication. Therefore, we ran STRetch on the 

largest set of PCR-free whole genome we were able to access: 362 samples 

sequenced by the MacArthur lab. This is similar in sample size to the previous 

publication reporting natural STR variation for STR lengths smaller than the 

read length [152]. In this chapter we describe the analysis of this data, working 

towards understanding the rates of STR expansions at a population scale. We 

detected STR expansions greater than the read length. While the previous 

analysis considered a similar set of STR loci, they detected only alleles within 

the read length, therefore there is little to no overlap of the alleles detected 

between the previous study and those investigated in this chapter [152]. 

Although this analysis was inspired by ExAC and gnomAD, the analysis of 

STRs differs from these projects. ExAC/gnomAD considers SNV and short 

indel variants. These variants have well established variant-calling tools (in 

particular, GATK HaplotypeCaller for ExAC/gnomAD) that have been 

tested and validated using various types of orthogonal data [153]. 

Unfortunately obtaining validation data for STR loci is particularly difficult: 

amplifying STRs by PCR is problematic and the accuracy of resulting allele 

calls is questionable due to known biases such as stutter, limitations on the 

total fragment size that can be amplified causing allelic drop-out, and 

preferential amplification of the shorter allele [95,96]. This makes it difficult to 



 97 

assess the quality of validation of any expansion found by short read 

sequencing. Validation with long-read sequencing is a viable alternative, 

however there is evidence for disparities in STR allele size estimates between 

long read sequencing technologies [103]. 

Another key way in which STRs differ from SNVs and indels is that SNVs 

and indels are generally limited to a small number of alleles. The majority of 

SNVs exist in one of two states with a much smaller number of muti-allelic 

variants found in population studies [37]. In contrast, STR loci typically have 

many alleles, each a different number of repeat units. While SNVs are 

considered in terms of presence/absence, we often think of STRs as having 

presence (variant from the reference) and magnitude (allele size). Previous 

STR validations (ours included) tend to consider both these attributes. The 

known difficulties in obtaining an accurate STR allele size estimate often 

necessitate a more nuanced approach to validation than that used for 

SNVs/indels. 

The field of STR expansion detection from short-read sequencing data is 

relatively immature in terms of analysis software. To date there are only five 

tools (including STRetch) that are able to detect large STR expansions in short 

read data, with most of these published in the past two years. Each tool has 

different strengths and limitations, discussed in the Introduction and in 

Chapter 3. For STRetch, an important limitation for this analysis is limited 

dynamic range. STRetch is only sensitive to moderate to large STR 

expansions, specifically those that are larger than the reference allele. While 

STRetch can detect very large expansions, it tends to underestimate the size of 

alleles great than the insert size of the sequencing data. STRetch is also limited 

to detecting expansions at specified STR loci. 

STRetch works by competitively mapping reads to the reference genome as 

well as a set of 501 STR decoy chromosomes which represent all possible 
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combinations of 1-6bp repeat units. STR loci in the reference genome are 

relatively small (numbers) so that reads arising from an expansion will tend to 

preferentially map to the decoy chromosomes. STRetch then looks for pairs 

of reads where one read aligns to one of the STR decoy chromosomes while 

the other aligns to the reference genome near a known STR locus with the 

same repeat unit. However, if the sample’s allele is a similar size to the 

reference allele, then both of the reads are more likely to map to the reference 

genome and so not be counted by STRetch. Therefore, STRetch is more likely 

to detect STR expansions that are larger than the reference allele. Additionally, 

although STRetch is able to identify very large expansions, the allele size 

estimate is approximately bounded by the insert size of the sequencing data. 

This is because as the sample’s allele increases beyond the insert size, there 

will be a number of reads where both in the pair are completely made up of 

STR repeat units. These reads will both map to the STR decoy chromosomes 

and so generally cannot be uniquely attributed to a specific STR locus.  

Finally, STRetch is also limited to detecting expansions at specified STR loci, 

by default all those that are annotated in the reference genome. Although the 

use of STR-decoy chromosomes allows us to observe reads that do not 

correspond to known loci, these are currently not allocated to a specific 

genomic context. 

In this chapter we first explore the distribution of STRs annotated in the 

human genome and comment on how the annotation of these loci might be 

used to prioritise STRs in a locus-discovery setting. We apply STRetch to the 

analysis of 362 PCR-free whole genomes including a subset of 125 unrelated 

individuals with no known Mendelian disease (described as “unaffected”). By 

counting reads assigned to the STR decoy chromosomes in these individuals 

we can identify inconsistencies between STRs annotated in the reference 

genome and evidence of STR expansions in these samples. We explore the 

patterns and frequency of STR expansions in this group of individuals, 
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including those in known pathogenic STR loci, and use this to inform the way 

in which we prioritise variants as potentially pathogenic. In addition to 

exploring population variation of STR expansions, this chapter extends the 

ideas and analyses in the STRetch paper [104] (Chapter 3), and looks at the 

evidence for and against false positives in STRetch results. We also consider 

the choice of control samples when running STRetch and how this impacts 

the number of significant STRetch results, and comment on control choice in 

research and clinical settings. 

4.2 STR loci in the human reference genome 
We first assessed the distribution of all STR loci in the human reference 

genome. To define the set of all STRs in the human hg19 reference genome, 

we used the Tandem Repeats Finder annotation downloaded from UCSC and 

limited it to loci with 1-6bp repeat units. The resulting set of STRs consisted 

of 308,585 loci, 304,717 of which were on the “canonical chromosomes” 

(chromosomes 1-22, X and Y). All other STRs were excluded from further 

analysis as those on non-canonical chromosomes (e.g. alternate haplotypes 

and contigs that are not assigned to a specific position) are not included in our 

other annotation data. The STRs were distributed amongst the chromosomes 

roughly as would be expected based on the relative sizes of the chromosomes 

(Figure 4.1A). We found that 2bp repeat units were most frequent, followed 

by 1 and 4 bp, 5, then 3 and 6 bp repeat units (Figure 4.1B), and the most 

common individual repeat unit was A/T homopolymers, which collectively 

made up 22.71% of STRs in the genome. There are 501 possible permutations 

of repeat units in the range 1-6bp (see Chapter 3 for more details), however 

only 382 different repeat units are annotated in the human genome. 
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Figure 4.1: STR loci counts from the Tandem Repeats Finder annotation of hg19. 

A) Number of STR loci annotated on each canonical chromosome, coloured by 
repeat unit length. B) Total number of STR loci in the genome with each repeat 
unit length. 

4.2.1 Annotating STR loci 

STR loci were annotated with the genomic feature that they overlap using 

STRetch annotateSTR.py. Genomic features were defined by Gencode 

Release 19 (GRCh37.p13) Comprehensive gene annotation GFF3 obtained 

from https://www.gencodegenes.org/human/release_19.html, which 

includes 57,781 gene names. Introns were added using genometools version 

1.5.10 [154]. If a single STR overlapped multiple genomic features then only 

one was annotated with the first feature in order of precedence: CDS, exon, 

intron, and gene. Non-CDS exons are predominately made up of 5’ and 3’ 

UTRs, while the ‘gene’ feature was a misc./not otherwise specified category 

with few features, and was removed from most subsequent plots. An STR was 

categorised as intergenic if it did not overlap with any gene features. For STRs 

that overlapped a gene, we indicated if that gene was present in OMIM. STRs 

were also annotated with their distance to the closest transcription start site 

(negative for upstream, positive for downstream, 0 for overlapping). We 

annotated 23 known pathogenic STR loci, as described in Chapter 3 (see also 

Appendix B Table S3). 

The vast majority of STRs were in introns or intergenic regions. Only 623 

(0.20 
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%) STRs overlapped coding regions, with another 4730 (1.55%) overlapping 

other exons. A further 112161 (36.81%) STRs overlapped with an OMIM 

gene. The majority of these were intronic, however 527 STRs overlapped an 

OMIM CDS and 2967 overlapped an OMIM exon. For context, Gencode 19 

annotates 1.15% of the genome as coding sequence, and 3.94% as any exons 

including CDS (Appendix Table 6.9). About half of STRs were in introns, 

consistent with introns making up almost half the hg19 reference genome. 

Three and six bp repeat units were enriched in coding regions and to some 

extent exons (Figure 4.2). 

 

Figure 4.2: Percentage of the STR loci in each repeat unit category that overlap a 
given genomic feature. 

We found 20,140 (34.86%) genes with at least one STR overlapping any of 

their features (including non-coding exons and introns), 537 (0.93%) genes 

with at least one STR overlapping one of their coding regions, and 3975 

(6.88%) genes with at least one STR overlapping a non-coding exon. Of the 

OMIM genes, 11297 had at least one STR overlapping any of their features, 

and 450 had at least one STR overlapping one of their coding regions. Finally, 

8624 (14.93%) genes had an STR within 3000 bp upstream of their 

transcription start site (TSS), which therefore may be involved in promoter 

function. Of these, 7195 (12.45%) STRs lay within 2000 bp, and 4929 (8.53%) 

within 1000 bp of the TSS. 
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4.3 Counting reads assigned to the STR decoy chromosomes 
We ran STRetch on 362 PCR-free whole genomes, comprised of individuals 

being investigated for the cause of their Mendelian disease, or immediate 

family members of such patients, including: 

● A set of 219 individuals sequenced as part of the Rare Genomes 

Project (RGP, Centre for Mendelian Genomics 

https://cmg.broadinstitute.org/), including 84 affected individuals as 

well as many of their parents and some unaffected siblings. 

● The 143 “other” samples, predominantly Mendelian disease cases 

sequenced by the MacArthur group, as well as some family members. 

These included the majority of the 97 genomes from the STRetch 

paper, who were used as the control set for the original publication. 

 

STRetch v0.3.3 was run with default settings on Google Cloud infrastructure 

and using hg19. Since the version described in paper in Chapter 3, STRetch 

was updated to use Bazam to extract reads aligning to STR loci for re-

mapping to the STR decoy chromosomes. With the addition of Bazam, 

STRetch runtime was reduced by approximately 60% with no loss of 

sensitivity (validated in the Bazam paper [155]). 

STRetch works by first aligning reads to a reference genome with additional 

STR decoy chromosomes. These 501 chromosomes represent all possible 

combinations of 1-6bp repeat units. Next STRetch looks for pairs of reads 

where one read is aligned to an STR decoy chromosome and the other is 

aligned to the reference genome. It then attempts to assign this count to the 

closest annotated STR locus with a repeat unit that matches the STR decoy 

chromosome. However, a read can’t be assigned if there isn’t a matching STR 

locus annotated nearby. We therefore counted the number of reads aligned to 

each of the decoy chromosomes, which allows measurement of the frequency 
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of STR repeat units in the samples even if they are not annotated in the 

reference genome. This is important as a large number of reads aligned to an 

STR decoy chromosome could indicate either a large number of moderately 

expanded STR loci, or a smaller number of hugely expanded STRs. Where a 

read pair can be used to anchor these to the reference genome, we can 

potentially use this to detect unannotated or de novo STR expansions. 

However, if both reads in a pair align the STR decoy chromosomes unique 

allocation is generally not possible (unless there is only one STR expansion 

with that repeat unit). 

When all samples were considered together, we found the largest number of 

reads aligned to the C/G homopolymer STR decoy chromosome (72.7% of 

STR reads), followed by the homopolymer A/T decoy (16.9% of STR reads, 

Table 4.1). This was surprising and contrasted with our expectation based on 

STR annotations of the reference genome, where A/T homopolymers made 

up 22.71% of STRs, while C/G homopolymers which made up only 0.01% of 

STR loci. The high frequency of A/T homopolymers has been proposed to 

reflect an evolutionary history of re-integrations of poly-A tails into the 

genome [156]. The third most frequently aligned decoy chromosome was 

AACCCT (4.86% of STR reads). This is the telomere repeat unit [157], which 

is rare in the reference genome (170 loci, 0.06% of STRs) so we expect to see 

this frequently on the STR decoys. These results were generally consistent 

when the 59 most highly variable samples were removed: C/G homopolymers 

still represented the most common STR read (~79% of STR reads across all 

samples), the telomere sequence moved up to 2nd most common (~7% share 

of STR reads), and A/T homopolymers dropped to the 3rd most common 

with ~4% of STR reads (Appendix Table 6.10). 
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Table 4.1: The top ten STR decoy chromosomes ranked by the number of reads 
aligned to them across all 362 samples. 

Repeat 
unit 

Mean decoy 
counts per 
sample 

Mean decoy counts 
/ sequencing depth 

Percent of decoy 
reads 

C 137927 4043 72.7 

A 32061 954 16.9 

AACCCT 9212 265 4.86 

AATGG 2704 78.3 1.43 

ACTCC 1822 52.6 0.961 

ACC 587 16.9 0.309 

ACACT 520 15.1 0.274 

AT 463 13.5 0.244 

AGGG 318 9.18 0.168 

AG 297 8.58 0.157 

 

The mismatch between the number of annotated STRs and the number of 

STR decoy reads may indicate loci missing from the reference genome and/or 

de novo STR expansions. It has been shown that the human reference genome 

is still incomplete, especially highly repetitive heterochromatic and extreme 

GC regions, due to limitations in sequencing and genome assembly. 

Furthermore, the human reference genome underestimates the lengths of 

many STR loci and may not represent the most common allele for many other 

loci [158]. It is therefore possible that these excess STR decoy reads arise from 
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common sequences that are not represented in the reference genome. 

Alternatively, they may also be caused by some technical artefact of the 

sequencing process or contamination. 

We used the counts of reads assigned to each STR decoy chromosome to 

generate an MDS plot of all samples. When coloured by project, we saw 

evidence of batch effects in the data; samples from the RGP clustered closely 

with each other, and with some other samples, while many of the samples 

from other projects appeared more dispersed (Figure 4.3A). These batch 

effects were not explained by median sequencing depth which was diverse 

across projects (Appendix Figure 6.2). 

To explore batch effects further, we divided samples into high and low 

variability based on “highvar” samples having greater than 10,000 STR loci 

with any reads assigned (this will be explored further in the following section). 

We saw clear separation of high and low variability samples on the MDS plot 

(Figure 4.3B). Inspection of STR repeat units by rank of variance across all 

samples (the same metric used to rank genes in the limma plotMDS function 

when gene selection is set to "common") showed that homopolymers 

contributed the most variation, followed by the telomere sequence (Figure 

4.3C). The top ten repeat units used in the MDS closely matches those seen 

have the most reads aligned to decoy chromosomes (Table 4.1), as would be 

expected for Poisson count data. We removed the 59 highly variable samples, 

repeated the MDS plot, and found substantially lower separation between the 

RGP and other project samples (Figure 4.3D). We removed all homopolymers 

and performed MDS on all 362 samples (Figure 4.3E). The second dimension 

was dominated by a single sample, however plotting the first and third 

dimensions showed relatively minor separation of the RGP and other project 

samples (6F). This indicates that much of the variation initially noted in the 

highly variable samples was present in the homopolymers. This further 
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pointed towards a technical bias in the data, as homopolymers are known to 

be particularly difficult to amplify and sequence accurately [20]. 
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Figure 4.3: MDS plots of STR decoy counts. 

A) MDS of STR decoy counts from all samples, coloured by project. B) MDS of 
STR decoy counts from all samples, coloured by variability category. C) Top 10 
most variable decoy chromosomes. D) MDS of STR decoy counts from the 303 
lower variability samples, coloured by project. E) MDS of STR decoy counts from 
all samples with homopolymer STR decoys removed. F) Dimension 1 and 3 of MDS 
in plot E. 

4.4 Frequency and patterns of STR expansion 
We examined the STRetch outputs on all samples by looking at the number of 

STR decoy reads assigned to each genomic STR locus and the p values 

calculated from comparison of normalised read counts with controls. More 

specifically, STRetch works by looking for pairs of reads with one aligned to 

an STR decoy chromosome and the other aligned near an annotated STR 

locus with the same repeat unit as the decoy chromosome. A single read pair 

assigned to an STR locus contributes one count to that locus. Detecting a 

number of counts at a single STR locus in one individual suggests that an STR 

expansion may have occurred. STRetch then normalises these counts by 

median sequencing coverage across the genome and takes the log10 to 

calculate the “locuscoverage_log”. These values are then compared against a 

set of control samples to determine if that individual has significantly more 

reads compared to controls. 

Most STRs show no evidence of a large expansion. In our sample of 362 

individuals, 88,285 (28.97%) loci had at least one STR decoy read assigned in 

any individual. Most loci were only detected in one or a small number of 

individuals, and similarly most loci were significant in one or a small number 

of individuals (Figure 4.4). Further, 76,911 (25.17%) loci had at least one 

individual with a significant expansion at p < 0.05 and 73,729 (24.20%) loci 

had at least one individual with a significant expansion at p < 0.01 (using FDR 

adjusted p-values as described in Chapter 3). 
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Figure 4.4: STRetch results per locus across all samples. 
A) Number of samples that have STR loci with any reads from the decoy 
chromosomes assigned B) Number of samples with significant STR loci at p < 0.01. 

Looking per individual, samples had a mean of 1588 loci with any STR decoy 

reads assigned to them (range 830-51,038). A mean of 5655.4 loci (range 23-

49,428, median 129.5) per sample were significant at p < 0.05, while a mean of 

4024.88 loci (range 14-48,217, median 92.5) per sample were significant at p < 

0.01. 

There were a small number of individuals with a very large number of 

expanded STRs (Figure 4.5A). There was no relationship between the number 

of significant STR loci per sample and sequencing depth a (Appendix Figure 

6.2). STR calls were distributed disproportionately among samples, with 59 of 

the STRetch controls samples having unusually high numbers of STR 

expansions (Figure 4.5B). These were all sequenced as part of the same 

relatively old batch, so we suspect that the unusually high numbers of STR 

expansions were due to differences in sample preparation and sequencing 

relative to our newer samples. 
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Figure 4.5: STRetch results per sample. 

A) Number of significant STR loci per sample at p < 0.01. B) Number of STR loci 
with any reads assigned vs. median sequencing depth across the genome for each 
sample. 

Removing highly variable samples from the analysis substantially reduced the 

number of variant calls. We removed samples with more than 10,000 STR loci 

with any reads assigned. In the remaining 303 samples, 56,962 loci (18.69%) 

had any decoy reads assigned in at least one individual, 13493 loci (4.43%) had 

at least one individual with a significant expansion at p < 0.05 and 9515 loci 

(3.12%) had at least one individual with a significant expansion at p < 0.01. 

We observed a mean of 1653 loci with at least one read assigned per sample 

(range 830 - 4967) with a mean of 213.4 loci (35-2155) per sample significant 

at p < 0.05 and 153 loci (24-1106) per sample significant at p < 0.01. There 

still remained a small number of samples with larger numbers of loci with any 

counts and larger numbers of significant STR loci, but this pattern is not as 

dramatic as in the full data set (Figure 4.6). 
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Figure 4.6: STRetch results per locus across the 303 less variables samples. 

A) Number of STR loci with any reads assigned B) Number of significant STR loci 
at p < 0.01. 

4.5 STR constraint and prioritising potentially pathogenic 

expansions 
As we have seen, when running STRetch on a single individual we will 

typically find hundreds of significant STR expansions. If the individual does 

not have a result in one of the known pathogenic STRs (or in one that does 

not match the phenotype) we must prioritise investigation of the remaining 

list of STRs. To some extent we can look at attributes of known pathogenic 

loci to inform prioritisation of new loci to investigate as potential pathogenic 

variants. However, the number of well-studied pathogenic STRs is limited and 

the list is likely highly enriched for certain attributes due to ascertainment bias. 

As shown in Table 1.1 in the Introduction, the majority of pathogenic STRs 

are coding and have 3 bp repeat units (mostly CAG). This could indicate 

either that the CAG repeat unit is more likely to be pathogenic, or that is has 

been focused on for historical reasons. The CAG Huntington disease locus 

was one of the first discovered and has one of the best understood STR 

disease mechanisms, which has likely led to researchers focusing on other 

CAG loci, especially in coding regions. Thus, while known attributes can assist 

identification of pathogenic loci, they may also limit the search for novel loci.  
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We therefore explored a data-driven approach to prioritising STR loci for 

further consideration. 

We first considered the variability of STR loci across our full set of 

individuals. Our assumption was that variants that are highly variable are 

probably not pathogenic (even if they are significant), because we wouldn't 

expect that lack of constraint from a pathogenic locus. To investigate this, we 

calculated Huber’s robust estimates of median and variation of the log 

sequencing-depth-normalised counts of reads assigned to each STR locus 

across all individuals. We observed a strong relationship between the median 

and variance, especially at lower values (Figure 4.7A-D), a pattern is typical of 

count data. STRetch has a limited dynamic range, therefore, many of the loci 

with zero reads may have smaller alleles that are below our detection 

threshold. Most of the loci with significant expansions also have low counts, 

as would be expected if expansions were rare in the population (Figure 4.7A). 

Most CDS and exonic STRs fall in the lower count and lower variance 

portions, suggesting that there may be selective pressure against large 

expansions at these loci (Figure 4.7B). Those known pathogenic STR loci for 

which we observed counts in these samples show even less variation (Figure 

4.7C). 
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Figure 4.7: Huber’s estimates of median and variance across all samples for each 
STR locus. 

A) Coloured by number of samples with significant calls a p < 0.01. B) STR loci 
overlapping CDS and non-coding exons are coloured, with all other loci in grey. C) 
Known pathogenic STR loci are coloured with all other loci in grey. D) STR loci 
sharing a repeat unit with the top ten most variable or top ten highest mean loci are 
coloured, with all other loci in grey. 

As discussed earlier, we found homopolymers (A, C) and telomeric repeat 

units (AACCCT) to be the most frequent and variable in terms of the number 

of reads aligned to the STR decoy chromosomes. When looking at individual 

STR loci, only the homopolymer A’s appear amongst the most variable loci, 

while homopolymer Cs and telomeric repeats have some of the highest 

medians (Figure 4.7D).  The top ten most variable loci had repeat units 
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ACTCC, AAAAG, AGCAT, AAAAG, A, AAACC, AGGGGC and AATAG. 

The repeat units of the top ten loci in terms of assigned counts were: C, 

AATGG, and AACCCT. These high coverage loci are particularly long in the 

reference genome. All are over 100 bp and some are 1,000-5,000 bp. Together 

these high variance or high coverage repeat units account for almost 80% of 

loci we observe any variation in, but only 25% of all loci annotated in the 

genome. 

We found evidence for reduced variation across individuals in STRs that 

overlap coding regions. To further investigate this variation in coding and 

non-coding regions, we first divided the STR loci into ten groups based on 

variance estimates. We then calculated the expected number of loci 

overlapping each feature based on STR loci distributed proportional to the 

size of the group, and compared this to the observed values. We found that 

the lower variance deciles were enriched for STR loci that overlapped CDS, 

and conversely, that the higher variance deciles were markedly depleted for 

CDS loci (Figure 4.8A). Non-coding exonic STRs showed a much more 

subtle enrichment at lower deciles, while intronic and intergenic STRs showed 

approximately expected numbers of loci at all variant deciles. Due to the small 

number of STRs in coding regions we only expected 18 loci in each decile, 

and observed zero to four in the higher variance deciles. We combined the 

CDS and exon categories to boost numbers (Figure 4.8B). We still found a 

trend for enrichment in the lower variation deciles for the CDS/exon 

category, however it was more subtle. We calculated observed and expected 

numbers of STR loci in each group for the remaining loci for which no STR 

reads were observed in any samples (Table 4.2) and found more STRs 

overlapping coding regions than expected for these loci. Overall, we saw a 

tantalising trend towards reduced variation of STR loci in coding and possibly 

also non-coding exons. However, because of the small numbers involved we 

cannot make a clear conclusion. 
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Figure 4.8: The Huber’s variance of the log normalised STR locus counts were 
divided into ten approximately even deciles (x-axis: decile of variance). 

For each decile we calculate the observed number of STR loci overlapping a given 
feature type and divide this by the expected number of loci in that category, 
assuming the number of loci overlapping a given feature is in proportion to the 
number of loci in that decile (y-axis: obs/exp loci in this category). An obs/exp 
value greater than one indicates enrichment, while less than one suggests 
depletion. A) All features apart from “gene”. B) CDS and exon features combined. 

 

Table 4.2: STR loci with no STR decoy reads assigned in any sample.  

We calculate the observed number of STR loci overlapping a given feature type and 
divide this by the expected number of loci in that category, assuming the number of 
loci overlapping a given feature is in proportion to the number of loci in that 
category.  

Feature Observed Expected 

CDS 547 442 

Exon  3367 3355 

Intergenic 106068 102604 

Intron  106419 109999 

 

Combined, our results provide some evidence for constraint in STRs 

overlapping coding regions. Together with our finding of reduced variance at 
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known pathogenic STR loci, this indicates that these annotations may provide 

a useful way of prioritising STR loci for further consideration. To further 

examine the relationship between STR variation and their position relative to 

genomic features, future studies would likely need to increase the sample size 

as well as the dynamic range. As noted earlier in the chapter, each individual 

tends to have variation at different STR loci, so increasing the number of 

samples may help to increase the number of loci in which we observe 

variation. We also expect that there is a large amount of STR variation that is 

below the range of allele sizes that STRetch can to detect. Further 

development of STRetch or use of a combination of tools may therefore 

increase the dynamic range of such an analysis. 

4.5.1 STR expansions in set of unaffected individuals 

Thus far our analysis has considered the full set of individuals available to us. 

However, many of these samples have likely Mendelian disease. We therefore 

selected a subset of 125 samples (67 female, 58 male) that were unaffected and 

unlikely to be related to each other. These samples consisted of all the parents 

from the RGP who were listed as “unaffected” and for whom we have 

metadata (relationships/affected status/disease/HPO terms). We ran 

STRetch on these samples using the same 125 samples as controls for each 

other.  

We observed similar patterns of variability in the pathogenic loci in the 

unaffected samples to that seen in the full data set (Figure 4.9A). Even 

amongst pathogenic STR loci we found diversity in variance estimates. In 

particular, we found a larger degree of variability in the FTDALS1_C9orf72 

and FXTAS_FMR1 loci (Figure 4.9B) than other pathogenic loci, even those 

in non-coding regions. 
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Figure 4.9: Huber’s estimates of median and variance across the unaffected 
samples for each STR locus. 
Known pathogenic STR loci are coloured with all other loci in grey. A) All loci. B) 
Zooming in on the low median, low variance loci. 
 

FTDALS1 is an intronic STR, generally reported to have a pathogenic range 

of 60-2000 GGGGCC repeat units, however some studies have reported 

pathogenic alleles as small as 30 repeat units while others have reported 

unaffected individuals with alleles in the pathogenic range [159]. 

Understanding of FTDALS1 allele sizes is further complicated by an age at 

disease onset ranging from 30 to 70 years, which means it can be difficult to 

distinguish affected and unaffected individuals as a current lack of symptoms 

doesn’t preclude onset later in life.  

FMR1 is a non-coding UTR STR locus associated with three different 

conditions at different allele sizes and in different sexes: fragile X syndrome 

(FXS), fragile X-associated tremor/ataxia syndrome (FXTAS), and FMR1-

related primary ovarian insufficiency (POI, also known as premature ovarian 

failure-1, POF1) [52,160]. FXS is caused by > 200 CGG repeat units (typically 

thousands). Allele sizes between 55 and 200 repeat units (classed as a 

premutation) convey increased risk for FXTAS, with higher penetrance in 

males and increased risk with age. Females with the premutation also have an 

approximately 20% risk of POI. Like FTDALS1, analysis of FXTAS is 
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complicated by reduced penetrance and late-onset, making it difficult to 

demarcate affected and unaffected individuals. 

Across all 125 individuals we observed 50 significant (p adj. < 0.01) calls in 

eight known pathogenic STR loci (Table 4.3). Comparing the number of 

significant calls at p < 0.01 vs 0.05 and looking at the distribution of p values 

across samples highlighted the impact of using a specific cut-off (Figure 

4.10A). Looking at the distribution of p values or using a ranking approach 

may be appropriate here. Although these individuals were listed as unaffected, 

they had affected children. We therefore inspected the phenotypes for these 

families, and found that none of the significant STR expansions matched the 

phenotypes. For all but two of these significant pathogenic loci, the allele sizes 

estimated by STRetch were below the pathogenic range (Figure 4.10B-C). The 

two pathogenic-sized alleles were in the SBMA and SCA8 loci.  
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Table 4.3: Number of significant STRetch calls within known pathogenic STR loci 
across all 125 unaffected samples at p < 0.05 and p < 0.01. 

Pathogenic STR locus N signif. at 
p<0.05 

N signif. at 
p<0.01 

DM2_ZNF9 1 1 

FRAXE_AFF2 8 7 

FTDALS1_C9orf72 22 20 

FXTAS_FMR1 15 15 

HD_HTT 1 1 

SBMA_AR 1 1 

SCA3/MJD_ATXN3 5 4 

SCA8_ATXN8/ATXN8
OS 

1 1 

 

The SBMA finding may be a true positive. SBMA is an X-linked condition 

with typical age of onset between 30 and 50 years [161]. The individual with 

the potentially pathogenic expansion is female, and heterozygous females 

generally have no or sub-clinical symptoms of SBMA. STRetch did not detect 

the SBMA expansion in any of her other family members.  

It is unclear if the SCA8 finding is a true positive. Although alleles for the 

SCA8 locus greater than 80 CAG repeat units are considered highly penetrant, 

alleles ranging from 71 to more than 1300 repeats have been found in both 

affected and unaffected individuals. This is further complicated by an age of 

onset of up to 73 years [162]. So, although this individual is currently listed as 

unaffected, they may show symptoms in the future, or may never show 
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symptoms even if this expansion is true. This highlights the difficulty in 

distinguishing false positives from true STR expansions in the sub-pathogenic 

range for a late onset or low penetrance disease, as well as the potential for 

discovering secondary findings for late-onset disease when testing STRs. 
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Figure 4.10: STRetch results for all pathogenic loci with results in the 125 unaffected 
samples. 

Note that 23 pathogenic loci were tested, but most had no reads assigned and 
therefore were not reported. The HD_HTT CCG locus is not classed as pathogenic 
but it abuts the pathogenic AGC locus and may be a moderator. A) P values for 
each sample at the pathogenic loci coloured by reported gender. The labels of loci 
on the X chromosome are coloured in red. B) STRetch size estimates of the total 
number of repeat units, coloured by significance at p < 0.01. Pathogenic allele sizes 
are indicated by grey bars (many are outside the plotted range). 
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We found twenty unaffected individuals with significant expansions in 

FTDALS1_C9orf72, a locus that we have previously reported as a likely false 

positive [104]. It is noteworthy however that we have previously reported and 

PCR-confirmed significant non-pathogenic expansions in the SCA3 and HD 

loci. That is, the loci were expanded relative to other samples, but the allele 

was below the pathogenic range, suggesting that STRetch is actually working 

as expected. We were also able to confirm one of the FTDALS1_C9orf72, 

expansions but not the rest (see   
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STRetch paper supplementary materials in Appendix B). We also note that the 

pathogenic loci in which we observe the most expansions also have the 

highest median counts, indicating that these are larger loci overall. This gives 

us more power to detect expansions in these loci. 

Three of the pathogenic loci we observed in this set of samples were on the X 

chromosome. While males and females had approximately equal rates of 

significant expansions in these loci (Figure 4.10A), they have different 

coverage of the X and Y chromosomes. We therefore suggest that future 

implementations of STRetch could use matched-sex samples as controls for 

STR loci on the sex chromosomes. 

4.6 The impact of sample choice in STRetch control sets 
STRetch uses a cohort of control samples to calculate its p values. For each 

locus it compares the test sample against this set of controls, asking if the 

sample has significantly more reads assigned to this locus than the controls. 

The choice of controls may therefore have a large impact on the results. To 

investigate the impact of the control choice on STRetch results we ran 

STRetch on the full dataset of 362 samples (using the same samples as 

controls), and then on 3 different sample subsets: 125 unaffected parents 

from the RGP set (“unaffected”), the 59 most highly variable samples 

(“highvar”), and the remaining 303 less variable samples (“lowvar”). There is 

no overlap between the “highvar” and “lowvar” group, and all “unaffected” 

are also in “lowvar”. In each case we used the samples in that set as controls 

(the default behaviour of STRetch) and also emitted the per locus summary 

statistics for each set so that they could be used as controls for other samples.  

For each sample subset we counted the number of loci in each sample with 

significant expansions at p < 0.01 (Figure 4.11A). Looking at all samples we 

found a number of outliers with many more significant calls per sample, 

corresponding to the previously identified “highvar” samples. Running these 
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highly variable samples separately resulted in a smaller of significant calls per 

sample, as the control set was smaller and more variable. The “lowvar” set 

had a slightly larger number of significant calls per sample, and the unaffected 

set had even more. Looking at this data in another way, for each locus we 

counted the number of samples with significant expansions at p < 0.01, and 

displayed it as a percentage to allow comparison across sample subsets of 

varying sizes (Figure 4.11B). This showed that most loci were only significant 

in one or a very small number of samples, with a long tail of small numbers of 

loci that are significant in multiple individuals. However, for the highvar 

samples we found an unexpected peak in this distribution, with a large 

number of loci significant in many samples. This is also seen in all samples to 

a lesser extent as the same samples are included. 

A      B 

 
Figure 4.11: Comparing the number of significant (p < 0.01) STR loci across the 
entire set of samples and three different subsets: the previously identified “highvar” 
samples with more than 10,000 STR loci with any reads, the “lowvar” samples with 
less than 10,000 STR loci with any reads and the “unaffected” samples. 

In each case p values are calculated using all samples in the same set as controls. 
A) Number of significant STR loci per sample. B) Percent of samples with a given 
number of significant STR loci. Note that there are also a large number of loci that 
are significant in none of the samples (0 on the x axis). These are not shown. 

 

To further investigate the impact of control choice we ran STRetch on the 

same set of 59 highly variable samples using the four different control sets. 

STRetch called an order of magnitude fewer significant STRs per sample 

using the “highvar” control set compared with the other three sets of controls 
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(Figure 4.12A). Even though the “all” control contained all the highvar 

samples, the use of a robust variance estimate dampened the impact of these 

samples (which made up a relatively small proportion of the “all” set), 

resulting in high numbers of significant calls. Looking at the number of loci 

with significant calls across multiple samples we found that for the “all”, 

“lowvar” and “unaffected” controls some loci were significant in 100% of 

samples, and many more are significant in more than 50% of samples, while 

the “highvar” control set controls this number much better (Figure 4.12B). 

Since it’s very unlikely that these highvar samples are enriched for true STR 

expansions this “hump” in the distribution likely represented false positives, 

however it’s useful to note that the use of similarly variable controls to the 

samples helped to control the number of these likely spurious significant calls. 
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Figure 4.12: Comparing the number of significant STR loci (p < 0.01) called in the 
“highvar”, highly variable samples with more than 10,000 STR loci, using four 
different control sets: “all” samples, “highvar”, “lowvar” (less than 10,000 STR loci 
with any reads) and the “unaffected” samples. 

A) Number of significant STR loci per sample. B) Percentage of samples with a 
given number of significant STR loci. Loci that are significant in none of the 
samples are not shown. 

 

We considered the number of significant expansions called at known 

pathogenic loci using the four different control sets. The choice of control 

makes a dramatic difference in the number of significant expansions called in 

pathogenic loci, with the total number across all the highvar samples ranging 
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from 16 in with the highvar controls to 50 with the unaffected controls (Table 

4.4). In addition to considering a specific p value threshold, we also 

investigated the magnitude of the p values for these calls (Figure 4.13). For 

the SCA8 locus two samples received a significant p value while all others fell 

well below the threshold, and there was clear separation between the 

significant and non-significant p values. One of these calls was a confirmed 

SCA8 case described in the STRetch paper (Chapter 3). In contrast for the 

FTDALS1 and FXTAS loci there was minimal separation in the p values 

between samples, giving us less confidence in the clinical significance of these 

calls. So that even when using a control set that is not well matched for 

variability, we can use plots like these to help distinguish possible false 

positives. 
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Table 4.4: Number of the 59 highly variable samples with significant expansions (p 
< 0.01) for each pathogenic STRs using each of the controls sets. Loci with no 
significant results are excluded. 

 Control set 

Locus all highvar lowvar unaffected 

DM1_DMPK 0 0 0 1 

DM2_ZNF9 1 0 1 1 

FRAXE_AFF2 1 1 1 2 

FTDALS1_C9orf72 10 6 10 16 

FXTAS_FMR1 2 0 2 16 

HD_HTT AGC 1 0 2 2 

HD_HTT CCG 0 0 1 1 

SBMA_AR 1 1 1 1 

SCA17_TBP 1 0 1 1 

SCA1_ATXN1 1 0 1 1 

SCA3/MJD_ATXN3 6 6 6 6 

SCA8_ATXN8/ATXN8
OS 

2 2 2 2 
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Figure 4.13: STRetch p values for all pathogenic loci with results in the 59 highly 
variable samples using each of the controls sets. 

We also ran STRetch on the 125 unaffected parents’ samples using the four 

different control sets. The largest number of variants called per sample was 

found when the control set was exactly matched to the samples, with the least 

variants called when using the “highvar” sample set (Figure 4.14A). The 

number of significant calls per sample was generally an order of magnitude 

lower for unaffected samples compared with the highvar samples. In contrast 

to the highvar samples, the percentage of samples sharing a significant locus 

was generally under 50% in the unaffected samples across all control sets and 

the choice of control didn’t vary this number as dramatically (Figure 4.14B). 
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Figure 4.14: Comparing the number of significant STR loci (p < 0.01) called in the 
unaffected samples, using four different control sets: “all” samples, “highvar”, 
“lowvar” and the “unaffected” samples. 

A) Number of significant STR loci per sample. B) Percentage of samples with a 
given number of significant STR loci. Loci that are significant in none of the 
samples are not shown. 

As we previously described, the unaffected samples had a number of 

significant expansions in known pathogenic loci (Table 4.5). The largest 

number of significant calls in pathogenic loci (50 across the unaffected 

samples) was found using the unaffected controls, while only 15 are found 

using the highvar controls. The significant calls were again concentrated on 

the FTDALS1 and FXTAS loci, with FRAXE and SCA3 also making a 

substantial contribution. Looking at the magnitude of p values, we found very 

clear separation for the DM2 and SCA8 loci regardless of controls, and the 

same pattern to a lesser extent in the FRAXE, SBMA, and potentially SCA3 

loci (Figure 4.15). While the FTDALS1 p values were closely clustered when 

using the “all”, “highvar” and “lowvar” controls, some separation became 

apparent using the “unaffected” controls. As before, most of these alleles 

were estimated to be below the pathogenic threshold (Figure 4.10B) and those 

that were in the pathogenic range didn’t fit the symptoms described for these 

families: SBMA is X linked so this female is not expected to be affected, and 

SCA8 can be quite late onset and there is some question as to the penetrance 

of these alleles, so this individual may not yet (or ever) display symptoms. 

Note that although p values vary when using different controls, STRetch allele 
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size estimates are only based on the counts in the sample, and so do not vary 

when changing controls. 

Table 4.5: Number of unaffected samples with significant expansions (p<0.01) for 
each pathogenic STRs using each of the controls sets. 

 Control set 

Locus all highvar lowvar unaffecte

d 

DM2_ZNF9 1 1 1 1 

FRAXE_AFF2 3 3 3 7 

FTDALS1_C9orf72 11 6 16 20 

FXTAS_FMR1 1 0 1 15 

HD_HTT AGC 0 0 0 1 

SBMA_AR 1 1 1 1 

SCA3/MJD_ATXN3 3 3 4 4 

SCA8_ATXN8/ATXN8

OS 

1 1 1 1 
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Figure 4.15: STRetch p values for all pathogenic loci with results in the 125 
unaffected samples using each of the controls sets. 

Together these findings show the importance of control set choice for 

STRetch. We found that a control set matched in terms of variability better 

controlled the number of significant calls in highly variable samples. However, 

when the test samples had little variability using a matched set may exacerbate 

potential false positives. Despite these findings, in both cases the smallest p 

values were quite distinct from other calls, so the choice of control set is 

unlikely to greatly diminish STRetch’s ability to detect large pathogenic 

expansions. Much of the behaviour of STRetch in relation to controls stems 

from STRetch’s use of robust estimates of variance; Huber’s robust estimate 

of variance tends to be much lower than a standard non-robust estimate for 

most loci (Appendix Figure 6.3). This is a choice that allows some false 

positives to ensure we call as many true positives as possible. Using these 
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robust estimates becomes particularly important when few controls are 

available or when many samples in a control set are affected. As we have 

previously shown (Chapter 3), STRetch is able to detect a true pathogenic 

expansion with as few as ten control samples, including multiple affected. The 

choice of control set may also depend on context. In a clinical setting while it 

is no doubt useful to reduce the false positive rate, sensitivity to true disease 

alleles is paramount. Therefore, using a less variable control set may be 

appropriate. In contrast, in the context of novel pathogenic locus discovery it 

may be more useful to reduce false positive rate, and therefore appropriate to 

use a more variable control set or one that closely matches the variability of 

the test data. In either case, examination of the distribution of p values (such 

as the visualisation in Figure 4.15) proved useful in distinguishing outlier loci 

from those that are significant in a larger number of individuals, and the 

magnitude of the p value for the confirmed pathogenic locus was robust to 

the choice of controls. 

4.7 Discussion 
Known pathogenic STR loci are predominantly found in coding regions, 

although many are found in introns and several are in UTRs (see Table 1.1 in 

the Introduction). Our survey of STRs annotated in the reference genome 

indicated a number of potentially promising loci to survey for disease 

association. For example, we found 623 STR loci overlapping CDS, 4730 over 

non-coding exons, and 8624 within 3000 bp upstream a TSS. We also found 

approximately half the annotated STRs in introns, consistent with almost 50% 

of the genome being annotated as intronic when considering all Gencode 

transcripts. The finding that RAN translation of STRs as a disease mechanism 

further widens the pool of potentially pathogenic STRs [75]. Together this 

makes STRs a potentially rich and largely untapped source of variation to 

consider for novel pathogenic loci. 
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We applied STRetch to the analysis of 362 PCR-free whole genomes. We 

found that many reads aligning to the STR decoys didn’t correspond to any 

annotated STR locus. This may indicate STRs missing from the reference 

genome. The most obvious example of this was the huge number of STR 

decoy reads arising from the telomeres repeat unit, with telomeres known to 

be poorly represented in the hg19 reference genome. 

A major challenge for both clinical and research genomics is to distinguish 

between common and rare (and therefore potentially interesting) variants. 

Population variation projects, in particular ExAC/gnomAD have become key 

to making such distinctions for SNVs and short indels. Therefore, we 

considered how to prioritise loci as more likely to be pathogenic using the 

data that we had. One way was to consider STR loci that show reduced 

variation in our samples, potential evidence of evolutionary constraint. We 

found that coding STRs showed more limited variability, as well as STRs in 

non-coding exons to a lesser extent. This is consistent with previous findings 

of constraint for short alleles in coding STRs [152]. This may make these loci 

a richer source of potentially pathogenic STRs. We also found reduced 

variability in known pathogenic STR loci, suggesting constraint of these loci. 

The same previous study found that many pathogenic loci were not under 

heavy constraint, however they only considered alleles less than the read 

length. This highlights the need to consider the full spectrum of allele sizes. 

Results from the limited number of samples in this study combined with the 

small number of STR loci in these categories showed tantalising trends, but no 

clear conclusions. Future work would ideally use thousands of unaffected 

individuals to draw out these ideas and get more accurate population 

variability estimates for loci. 

One goal of this study was to determine the frequency of STR expansions in 

the population, and thus what are normal or at least common allele sizes. 

Across all samples, individuals typically had around 100 significant STR 
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expansions, with around one of these in pathogenic loci. Our subset of 125 

unaffected and unrelated individuals had significant expansions in pathogenic 

loci in many samples, however most were below the pathogenic allele size 

threshold. Despite this, we were initially surprised to see large but sub-clinical 

expansions at pathogenic loci, as we would expect strong selection against 

such variation. An obvious possibility is that these are false positives, however 

in Chapter 3 we showed that we were able to validate several non-pathogenic 

expansions by PCR or long-read sequencing, suggesting that these results are 

also unlikely to be false positives. There is of course the potential for sample 

swaps, mislabelling or contamination, however an interesting possibility is that 

these loci truly are expanded but are for some reason not pathogenic. We 

know that many STR expansion diseases are relatively late-onset, with some 

individuals only showing symptoms at age 70 or more, making it very difficult 

to distinguish affected from unaffected individuals. There have also been 

reports of reduced penetrance, with individuals harbouring pathogenic-length 

alleles not going on to develop the disease. There may be other protective 

factors at play (genetic or otherwise) or the disease phenotype may be more 

variable than we thought. We observed 2/125 (1.6%) samples with significant 

STR expansions in the pathogenic range. This is consistent with the previous 

study which found 192/12632 (1.5%) of individuals to harbour a pathogenic-

length allele [96]. 

Although short-read sequencing has limitations in detecting large STR 

expansions, current laboratory tests also have substantial limitations. The 

standard approach is to use PCR, however STRs are particularly difficult 

sequences to PCR effectively. They require a specific test to be developed for 

each STR locus, making the validation of novel loci a particularly expensive 

endeavour. They also suffer from limitations in the length of alleles that can 

be amplified, with many tests setting an estimated lower-bound on the allele 

size or only amplifying the non-pathogenic allele and thus inferring the 
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presence of a pathogenic one. This may be used as a screening test prior to 

using a more expensive assay such as a Southern. 

The choice of control samples for STRetch can have a dramatic impact on the 

number of significant results. In general, more highly variable controls 

reduced the number of significant loci, while less variable controls increased 

it. Choosing a control set is therefore an important consideration and likely 

dependent on the context. For a clinical test a more sensitive test may be 

desirable, and a lab may wish to use the same set of controls for all samples 

for consistency. This may come with higher false positive rate. In contrast, in 

a research gene/variant discovery setting in may be more appropriate to use 

whatever controls best match the given samples to reduce the number of loci 

that need to be validated. 

This study is limited by the limited dynamic range of STRetch. Many known 

pathogenic expansions are at our upper limit of ability to distinguish between 

moderate and very large expansions because the allele size is near to or greater 

than the sequencing insert size. STRetch is also limited to detecting alleles that 

are greater than the allele in the reference genome. A future strategy might be 

to combine a large STR-caller like STRetch with a caller designed to detect 

alleles within the read length such as LobSTR. Or to further develop STRetch 

to detect such smaller variants. 



 136 

Chapter 5 Conclusion 

In Chapter 1 I described the proliferation of exome and whole genome 

sequencing to both diagnose genetic disorders in the clinical setting, and to 

perform disease gene discovery in the research setting. With diagnostic rates 

in the range of 31-39% reported by many studies, we must question why we 

fail to diagnose some patients, and how we can increase diagnostic rates [2]. 

So why might we fail to make a genetic diagnosis? First, it’s possible that the 

condition does not have a genetic basis, i.e., a phenocopy. Second, we may not 

have sequenced the causal variant (e.g. an intergenic variant when doing 

exome sequencing). Third, we sequenced the variant but the bioinformatic 

analysis failed to call the variant (e.g. STRs). Finally, we may have genotyped 

the variant, but filtered it out, or failed to prioritise it as causative. This can 

happen when we lack understanding of the impact of a specific variant. 

In this thesis I address the issue of increasing genetic diagnostic rates from 

multiple perspectives. First, in Chapter 2, I describe a sequencing and analysis 

strategy to prioritise de novo variants, and thus reduce the number of variants 

that need to be curated. In Chapter 3 I describe a method that I have 

developed to detect potentially pathogenic STR expansions from short-read 

data, which are currently not routinely tested for in exome or genome 

sequencing. Finally, in Chapter 4, I explore data-driven methods to prioritise 

STR expansions when doing gene-discovery. In the following section I will 

describe in detail the scientific contributions I made in each chapter. 

Scientific contributions 

In Chapter 2 I developed and tested a powerful new sequencing strategy for 

prioritising de novo variants using pooled-parent exome sequencing. This 

method provides a trade-off between singleton and trio sequencing. Several 
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probands with suspected de novo disease are sequenced as individual exomes, 

then a pool of the DNA from all their parents is sequenced together in a 

single exome capture. This allows us to filter out variants seen in the parent 

pool as being inherited and so reduce the number of proband variants that 

need to be considered. 

Using simulations, I showed that pooling together up to ten samples still 

allowed recall of 94-98% of variants, and that recall rate was increased by 

sequencing more deeply. I found that the GATK HaplotypeCaller individual 

variant calling strategy provided the best recall for singleton variants (those 

that only occur once in the pool). In an analysis of a real pooled-parent 

sequencing experiment I showed that over 81% of variants in the probands 

could be filtered using the pool and that the parent filter was complementary 

to a population frequency variant filter using gnomAD. 

The pooled-parents exome strategy addresses a critical tension between the 

diagnostic value of sequencing parents and the need to sequence as many 

patients as possible within a given budget. It provides a way to reduce the 

number of variants that need to be curated for a given patient while keeping 

costs to only slightly more than that of a single exome. 

The largest portion of this thesis focused on Short Tandem Repeat (STR) 

expansions. In Chapter 3 I introduced STRetch, a new method that I 

developed to detect large STR expansions from short-read Illumina 

sequencing data, which has been published in Genome Biology [104]. 

STRetch takes a completely novel approach to detecting reads arising from 

STR expansions. It creates “STR decoy chromosomes”, one for each of all 

possible STR repeat units, and adds them to the reference genome. Reads 

arising from expanded STR alleles preferentially map to these decoy 

chromosomes. STRetch then assigns these to annotated STR loci using a 

uniquely mapping read-pair. STRetch then uses counts of these reads for each 
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locus to both estimate the allele size and to compare across individuals to find 

significantly expanded STR loci in this sample relative to others. 

I described the validation of STRetch on a set of individuals with known STR 

disease loci. STRetch showed a sensitivity of 0.778, specificity of 0.974, and a 

false discovery rate of 0.025 on known STR disease loci. I then showed that 

STRetch could detect expansions at STR loci that have not been associated 

with disease. STRetch’s predictions were confirmed using long-read 

sequencing, as well as PCR. I further ran STRetch on a set of 97 individuals to 

assess the frequency of expansions at known pathogenic loci. Although 

STRetch was originally developed for whole genome sequencing data, it has 

been since been shown to be competitively sensitive on exome sequencing 

data, compared to other tools [115]. 

I described how STRetch was able to identify a pathogenic SCA8 allele in a 

previously undiagnosed patient. This was confirmed with PCR and led to a 

formal genetic diagnosis for this individual and their affected sibling, after a 

diagnostic odyssey lasting many years. This patient had already undergone 

extensive genetic testing for individual genes and loci (including PCR tests for 

other STR loci), finally culminating in whole genome sequencing and analysis 

for SNVs and indels by the MacArthur lab. This shows the value of detecting 

STR expansions from short-read sequencing data, as it enables simultaneous 

testing for STRs alongside SNVs, indels and other variants. As a disease 

known to be caused by expansions in more than 10 STR loci as well as 

numerous short variants in other genes, ataxia is a classic example of a disease 

where whole genome sequencing with multiple methods of analysis may result 

in a faster and potentially cheaper diagnosis than traditional diagnostic 

methods. 

The STRetch code and reference data have been made freely available to the 

research and clinical communities at https://github.com/Oshlack/STRetch. 
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It can be difficult to estimate the impact of bioinformatics software until 

many years later, as research projects can take years to publish, or may not cite 

the method. However, I have already had several personal communications 

from researchers describing how STRetch has been useful. 

In particular, STRetch has already been used in the discovery of a novel 

pathogenic STR locus. Researchers at the University of Washington used 

STRetch to detect a pathogenic GGC expansion in exon 1 of the XYLT1 

gene, and found this variant to cause changes to methylation, resulting in 

Baratela-Scott Syndrome [163]. This pathogenic STR locus is de novo; the STR 

sequence is not found in the reference genome, only in the individuals. Even 

though STRetch relies on the reference genome to determine the positions of 

STR loci, the authors were able to use it to detect and visualise reads arising 

from this expansion using the STRetch decoy chromosomes. Once found, 

this locus could be added to reference annotation, and STRetch could 

generate calls for the novel locus. This highlights the potential of the STR 

decoy chromosome method to detect reads from STR expansions that are not 

in the reference genome. This concept is elaborated upon in Chapter 4. 

STRetch has also aided in the discovery of another de novo pathogenic STR 

expansion that causes cerebellar ataxia with neuropathy and bilateral vestibular 

areflexia syndrome (CANVAS). The novel RFC1 gene pathogenic STR locus 

actually arises from the replacement of an AAAAG STR locus in the genome 

with a AAGGG expansion carried on an Alu element in the affected 

individuals [164]. In this case, rather than detecting the de novo STR locus, after 

discovery the locus was added to the reference and STRetch was used to 

detect the locus in a collection of samples and controls to confirm its 

cosegregation with disease. 

Both the Baratela-Scott Syndrome and CANVAS stories demonstrate that the 

search for pathogenic STR loci should not be limited to STR loci in the 
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reference genome. We have seen that STRetch’s STR decoy chromosomes 

can be used to identify reads that arose from de novo STR expansions. Future 

work on STRetch is planned to extend the algorithm to detect de novo STR 

expansions. The informative reads are already captured by the current 

method; however, development would be required to assign reads from novel 

expansions to a specific genomic location. 

In Chapter 4 I took the STRetch method and many of the ideas developed in 

Chapter 3, and extended them to a more extensive analysis of STR expansions 

in a larger set of more than 300 samples. I first described the distribution of 

all STRs annotated in the human genome. I then used the counts of reads 

aligning to the STR decoy chromosomes to detect repeat units that are 

observed more frequently in the samples than we would expect based on the 

reference genome. For example, as expected, the telomeric repeat unit was 

prevalent in the samples, even though the reads were not allocated to specific 

loci, because they are under-represented in the reference genome. More 

surprisingly however, I found an excess of C/G homopolymers in these 

samples, even though these loci are rare in the reference genome. This may 

point to a systematic under-representation of these sequences in the reference 

genome, possibly due to their difficulty in sequencing due to high GC content. 

I used STRetch to explore the frequency of STR expansions in a set of 362 

exomes, predominantly from families with suspected genetic disease, including 

a subset of 125 unaffected and unrelated individuals. On average, individuals 

had around 100 significant STR expansions. Many samples had a significant 

expansion in a known pathogenic STR, however the majority of these were 

below the pathogenic range. I further used this data to explore the value of 

genomic context and constraint (low variance) as a strategy to prioritise 

potentially pathogenic STRs in a gene-discovery setting. Finally, I commented 

on the impact of control choice when running STRetch in research and 

clinical contexts. A major contribution of Chapter 4, is the idea that known 
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pathogenic STR loci tend to be less variable, and so constraint at other STR 

loci may be evidence to support pathogenicity of an expansion at that loci. 

Discussion 

This thesis highlights the central role of bioinformatics, and in particular 

bioinformatics methods development, in our efforts to increase genetic 

diagnostic rates in clinical settings, and to discover new disease genes. From 

read alignment and variant calling, through to variant prioritisation, 

bioinformatics has been critical in enabling the very foundations of modern 

clinical genomics. Many of the bioinformatics tools used in diagnostic 

laboratories today are still under active development, with new algorithms 

constantly transitioning from the bioinformatics research community into the 

clinic. There is still huge scope for the development of new bioinformatics 

methods. For example, I have described the rush to develop algorithms to 

effectively detect STR expansions, and the many gaps that still need to be 

filled in this area, especially with respect to the detection of de novo STRs. 

More broadly, short next-generation sequencing reads have proven a 

challenge to the detection of repetitive variants such as transposable elements, 

pseudogenes, centromeres, and longer tandem repeats. While short reads limit 

our ability to detect some variants, they also provide the opportunity for 

ingenious bioinformatics solutions to making inferences from this incomplete 

data. Some of the strategies described in this thesis to detect STR expansions 

could be applied more broadly. For example, transposable element decoy 

sequences could be used to detect reads arising from novel insertion sites and 

then paired read information could locate the insertion site.  

Many researchers look to new technologies, such as long-read sequencing, as 

the answer to our current inability to detect large or complex variants, such as 

STR expansions or structural rearrangements. Although these technologies are 
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currently cost-prohibitive, they certainly provide a valuable view of variation. 

However, we must remember that these methods come with their own issues 

and biases. As bioinformaticians, it is our role to critically analyse these biases 

and to develop algorithms to extract and distinguish biologically meaningful 

information from noise. 

In many diagnostic laboratories, variants found by next-generation sequencing 

are being validated by secondary methods, such as PCR. As we move towards 

large-scale uptake of genomics in the diagnostic setting, this labour-intensive 

validation is becoming untenable. We need to move towards high-throughput 

sequencing as the primary test. For this to be possible we need to be rigorous 

in the quality of our bioinformatics software as it moves from research to the 

clinical arena. We need to be mindful of testing our software just as 

thoroughly as we would test a new diagnostic PCR assay. We need to be 

informed about the way we do genomics at scale, especially the suitability of 

controls and population references, and the unintended biases we introduce 

when we make these decisions. As I described in Chapter 1, even the human 

reference genome, the very foundation of many of our bioinformatics 

methods, has known limitations. We must be vigilant in constantly reassessing 

the quality of our data and of our assumptions as we increasingly rely on 

genomics to make medical decisions. 

As genomic sequencing moves from the cutting-edge of research into every-

day vernacular and experience, and as the number of individuals sequenced 

world-wide increases exponentially, we march towards a society where 

children may be sequenced at birth. As researchers we feel the keen 

responsibility to contribute the best science and the best software that we are 

capable of. Bioinformatics is the unsung hero of the genomics revolution. 
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Chapter 6 Appendices 

Appendix A Pooled-parent supplementary materials 
This appendix contains supplementary materials for Chapter 2 Pooled-Parent 

Exome Sequencing to Prioritise de Novo Variants in Genetic Disease. 

 

 
Figure 6.1: Recall for all constant depth simulations from Figure 1, with * to 
indicate recall for all variants in the real pools (percentage of variants found in all 
probands that were also detected in the pool).  
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Table 6.1: Mean recall rate (over three replicates) for all variants as a percentage in 
simulated pools of two, four, six, eight and ten individuals. 

Recall % is the percentage of variants called in all individuals that make up the pool 
that are also called in the pool. 

  Number of samples in pool 

sim_type variantcaller 2 4 6 8 10 

constant depth 

gatk individual 
97.8 96.1 94.1 94.5 93.9 

gatk joint 
98 94.2 90.4 89.4 87.7 

freebayes highqual 
94.5 72.6 65.2 62 61.6 

additive depth 

gatk individual 
97.8 96.7 95.3 95.7 95.6 

gatk joint 
98 95.3 91.7 90.3 88.8 

 

Table 6.2: Mean recall rate (over three replicates) for singleton variants as a 
percentage in simulated pools of two, four, six, eight and ten individuals. 

Recall % is the percentage of variants called in all individuals that make up the pool 
that are also called in the pool. 

  Number of samples in pool 

sim_type variantcaller 2 4 6 8 10 

constant depth 

gatk individual 95 86.2 71.5 69.4 63.9 

gatk joint 94.5 73.6 39.9 19.1 8.7 

freebayes highqual 89.4 57.9 38.2 27.2 18.8 

additive depth 

gatk individual 95 90.5 80 81.4 80.5 

gatk joint 94.5 79 46.1 18.8 6.7 
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Table 6.3: Mean variants called per pool (over three replicates) in simulated pools of 
two, four, six, eight and ten individuals. 

  Number of samples in pool 

sim_type variantcaller 2 4 6 8 10 

constant depth 

gatk individual 
54699 74020 90934 102604 124668 

gatk joint 
52627 68560 78770 85135 93724 

freebayes highqual 
310388 498533 655845 790594 825890 

additive depth 

gatk individual 
54699 74040 88815 96747 111552 

gatk joint 
52627 68553 78762 85128 93708 

 

 

Table 6.4: Mean false positive rate (over three replicates) as a percentage in 
simulated pools of two, four, six, eight and ten individuals. 

False positive % is the percentage of variants called in the pool that are not called in 
any of the individuals that make up that pool. 

  Number of samples in pool 

sim_type variantcaller 2 4 6 8 10 

constant depth 

gatk individual 3.25 6.08 9.68 13.9 21.6 

gatk joint 0.0735 0.0545 0.0385 0.0349 0.0299 

freebayes highqual 14.8 11 8.14 6.53 5.33 

additive depth 

gatk individual 3.25 6.1 7.54 8.64 12.5 

gatk joint 0.0735 0.0643 0.066 0.0606 0.0598 
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Table 6.5: Mean variants called per individual (diploid) sample used in the 
simulations for each variant caller. 

Variantcaller 

gatk 
individual 

gatk joint freebayes 
highqual 

38934 39113 165067 

 

Table 6.6: Ethnicity of probands, as identified by the patient’s family. 

Proband Ethnicity 

Proband 1 European (Greek) 

Proband 2 Caucasian (Anglo) 

Proband 3 Pacific Islander 

Proband 4 European (Greek) 
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Table 6.7: SRA run IDs for the 111 exome samples used in pooling simulations. 

All samples are parents from the Simons Simplex Collection. 

SRR1272235 SRR1301418 SRR1301506 SRR1301624 SRR1301797 SRR1301865 

SRR1272236 SRR1301419 SRR1301517 SRR1301627 SRR1301801 SRR1301872 

SRR1272246 SRR1301422 SRR1301530 SRR1301631 SRR1301802 SRR1301873 

SRR1272259 SRR1301423 SRR1301533 SRR1301632 SRR1301805 SRR1301876 

SRR1272260 SRR1301430 SRR1301541 SRR1301653 SRR1301806 SRR1301877 

SRR1272263 SRR1301431 SRR1301542 SRR1301654 SRR1301810 SRR1301887 

SRR1272293 SRR1301438 SRR1301545 SRR1301665 SRR1301821 SRR1301888 

SRR1272294 SRR1301439 SRR1301546 SRR1301698 SRR1301825 SRR1301894 

SRR1301242 SRR1301457 SRR1301555 SRR1301699 SRR1301833 SRR1301898 

SRR1301243 SRR1301458 SRR1301556 SRR1301718 SRR1301834 SRR1301899 

SRR1301266 SRR1301461 SRR1301559 SRR1301726 SRR1301841 SRR1301902 

SRR1301267 SRR1301462 SRR1301560 SRR1301737 SRR1301842 SRR1301903 

SRR1301299 SRR1301468 SRR1301567 SRR1301749 SRR1301849 SRR1301918 

SRR1301338 SRR1301469 SRR1301568 SRR1301763 SRR1301850 SRR1301919 

SRR1301339 SRR1301487 SRR1301615 SRR1301764 SRR1301856 SRR1515931 

SRR1301374 SRR1301488 SRR1301616 SRR1301771 SRR1301857 SRR1515932 

SRR1301375 SRR1301491 SRR1301619 SRR1301772 SRR1301860 
 

SRR1301403 SRR1301492 SRR1301620 SRR1301775 SRR1301861 
 

SRR1301404 SRR1301505 SRR1301623 SRR1301776 SRR1301864  
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Table 6.8: List of disease genes excluded from the real pooled parents analysis. 

PSEN2 ALS2 C9orf72 SPG20 FA2H VAPB 

PARK7 CHMP2B VCP ATP7B MAPT PANK2 

TARDBP UCHL1 SETX ANG GRN PRNP 

GBA SNCA VPS13A PSEN1 NPC1  

ATP13A2 SNCAIP OPTN NPC2 APOE  

PINK1 PARK2 TH SPG11 FTL  

HTRA2 FIG4 LRRK2 FUS NOTCH3  

UBQLN2 XK PLA2G6 SOD1 APP  
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Appendix B STRetch paper supplementary materials 
This appendix contains supplementary materials for Chapter 3 STRetch: 

detecting and discovering pathogenic short tandem repeat expansions. 
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Table S3: Pathogenic STR loci, positions in hg19. Also available as the bed file hg19.STR_disease_loci.bed 

on Figshare along with the other reference data at https://figshare.com/s/1a39be9282c90c4860cd. FRDA is 

not annotated as an STR in the reference genome and so was excluded from most analyses. 

Chromosome Start End Disease Gene 

chr3 63898361 63898392 SCA7 ATXN7 

chr3 128891419 128891502 DM2 ZNF9 

chr4 3076604 3076695 HD HTT 

chr4 41747993 41748039 CCHS PHOX2B 

chr5 146258291 146258322 SCA12 PPP2R2B 

chr6 16327865 16327955 SCA1 ATXN1 

chr6 170870995 170871105 SCA17 TBP 

chr9 27573482 27573544 FTDALS1 C9orf72 

chr9 71652203 71652205 FRDA FXN 

chr12 7045880 7045938 DRPLA ATN1 

chr12 50898785 50898805 FRA12A DIP2B 

chr12 112036754 112036823 SCA2 ATXN2 

chr13 70713484 70713561 SCA8 ATXN8/ATX
N8OS 

chr14 23790681 23790701 OPMD PAPBN1 

chr14 92537355 92537397 SCA3/MJD ATXN3 

chr16 87637889 87637935 HDL2 JPH3 

chr19 13318673 13318712 SCA6 CACNA1A 

chr19 46273462 46273524 DM1 DMPK 

chr20 2633379 2633421 SCA36 NOP56 

chr22 46191235 46191304 SCA10 ATXN10 

chrX 66765159 66765261 SBMA AR 

chrX 146993555 146993629 FXTAS FMR1 

chrX 147582125 147582273 FRAXE AFF2 
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Table S5: Primers used for amplification and sequencing of the AAACT repeat in an intron of the 

MTHFD2 gene (chr2:74430970-74431055). 

 Primer name Sequence (5'-3') Position 

(chr2, hg19) 

Length %GC Tm 

(°C) 

PCR MTHFD2 STR 

JC1 - FWD 

TGGTGGGTGCCTGTATTC

TCAG  

+/ 74430660 22 54.5 58.1 

 MTHFD2 STR 

JC2 - REV 

TGCTTGAGGTCAGGAGT

TCCAG 

–/ 74431258 22 54.5 58 

Sequencing MTHFD2 STR 

JC1 seq - FWD 

AAGAGGAGATTACTTCA

TTGGTC 

+/ 74430873 23 39.1 51.8 

 MTHFD2 STR 

JC2 seq - REV 

CATGGCAAAACCCCGTC

TCTG 

–/ 74431223 21 57.1 58.1 
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Fig. S1: The distribution of distances between STR loci with the same repeat unit in hg19. 0.93% of STR 

loci are within 500 bp of another STR locus with the same repeat unit (loci to the left of the solid vertical 

line at 500 bp). Colours indicate the 501 different STR repeat units. 
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Fig. S2: Insert sizes of the ten true positive samples. The mean insert size ranged from 372 to 415 bp 

(standard deviation range: 130-150 bp). 

 

 

Fig. S3: The plot shows the simulated data (black points) with the upper (red) and lower (blue) bounds for 

the linear fit indicated. A plot of the number of reads mapping to the AGC decoy chromosome against the 

number of AGC repeat units inserted into the ATXN8 locus shows a clear linear relationship between these 

two variables.  
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Fig. S4: The number of STR reads assigned to a locus does not increase beyond the insert size in simulated 

data, so STRetch will tend to underestimate alleles greater than the insert size. 

 

 

Fig. S5: Robust standard deviation of STR reads assigned to each locus across 97 WGS samples. 

Homopolymer (1 bp repeat unit) loci are the most variable between individuals. 
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Fig. S6: PCR amplification of the AAACT repeat in an intron of the MTHFD2 gene (chr2:74430970-

74431055). Sample 5 is predicted by STRetch to have a significant expansion while Samples 1, 2, 6 and 8 are 

not. Sample 1347-02 (CEPH control DNA) has an unknown genotype at this locus. 2% agarose gel, see 

primer sequences in Supplementary Methods. 
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Fig. S7: Repeat sizes determined from Sanger sequencing of the AAACT repeat in an intron of the 

MTHFD2 gene (chr2:74430970-74431055). Sample 5 is predicted by STRetch to have a significant expansion 

while Samples 1, 2, 6 and 8 are not. The 1347-02 control DNA sample has an unknown genotype at this 

locus. See primer sequences in Supplementary Methods. 
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Supplementary Methods 

Runtime 

In single-threaded mode STRetch takes approximately 3 hours, 50 minutes (of which 

3 hours, 40 minutes is re-alignment) to perform analysis of a 40X PCR-free whole 

genome using an aligned cram file as input. This can be reduced to approximately 1 

hour, 50 minutes by running STRetch with 12X concurrency. Samples can be run in 

parallel. STRetch is built on Bpipe, which interfaces with most common compute 

cluster environments. 

ExpansionHunter custom repeat specifications (hg38): 

{ 
    "RepeatId": "ATXN8",  
    "RepeatUnit": "CTG",  
    "CommonUnit": "true", 
    "TargetRegion": "chr13:70139384-70139428" 
} 
{ 
    "RepeatId": "MTHFD2",  
    "RepeatUnit": "TAGTT",  
    "CommonUnit": "true", 
    "TargetRegion": "chr2:74203844-74203928" 
} 
{ 
    "RepeatId": "NOP56",  
    "RepeatUnit": "GGGCCT",  
    "CommonUnit": "true", 
    "TargetRegion": "chr20:2652733-2652775" 
} 
{ 
    "CommonUnit": "true", 
    "RepeatId": "ZNF9", 
    "RepeatUnit": "CAGG", 
    "TargetRegion": "chr3:129172577-129172656" 
} 
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Appendix C STR variation supplementary materials 
This appendix contains supplementary materials for Chapter 4 Frequency and 

variability of STR expansions. 

 

Table 6.9: The proportion of the hg19 genome covered by various genomic features 
based on the Gencode v19 annotation. 

Only canonical chromosomes are considered (chr 1-22, X, Y). Note that these 
values don't sum to 100% because some features overlap (e.g. different transcripts).  

genomic 

feature 

% of the genome 

CDS 1.15 

exon (inc. CDS) 3.94 

intron 48.50 

intergenic 49.38 
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Table 6.10: The top ten STR decoy chromosomes ranked by the number of reads 
aligned to them across all the 303 least variable samples. 

Repeat 
unit 

Mean decoy 
counts per 
sample 

Mean decoy counts 
/ sequencing depth 

Percent of decoy 
reads 

C 92912 2662 79.4 

AACCCT 8604 245 7.36 

A 4948 141 4.23 

AATGG 2706 77.9 2.31 

ACTCC 1802 51.6 1.54 

ACC 628 18 0.537 

AT 553 16.2 0.473 

ACACT 519 14.9 0.444 

AGGG 341 9.8 0.291 

AG 293 8.4 0.251 
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Table 6.11: Summary of normal, intermediate and pathogenic allele size ranges for 
known pathogenic loci for which expansions were identified in the unaffected 
samples. 

*intermediate = premutation/incomplete penetrance/uncertain pathogenicity 

disease gene repeat unit inheritance type normal intermediate
* 

pathogenic 

DM1 DMPK CAG AD coding 5–34 35-49 50-2000 

DM2 ZNF9 CCTG AD intronic 11–26 27-74 75-11,000 

FRAXE AFF2/FMR2 CGG XR 5'UTR 6-25  200-2000 

FTDALS1 C9orf72 GGGGCC AD intronic 3–25 20-60 >60 

FXS/FXTAS/PO
F1 

FMR1 CGG XD 5'UTR 5–44 45-200 200-2000 

HD HTT CAG AD coding 6–26 27-39 40–250 

SBMA AR CAG XR coding 9–34 36-37 38–68 

SCA1 ATXN1 CAG AD coding 6–35 36-38 39–88 

SCA3/MJD ATXN3 CAG AD coding 12–44 45-59 60-87 

SCA36 NOP56 GGCCTG AD intronic 3 to 14 15-649 650-2500 

SCA8 ATXN8/ 
ATXN8OS 

CAG AD untranslated 
exon 

15–50 50-70 71-1300 
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Figure 6.2: Number of significant STR loci at p < 0.01 called by STRetch vs. 
median sequencing depth across the genome for each sample shows not increased 
rate of significant calls in more deeply sequenced samples. 

 

Figure 6.3: Variance vs. Huber’s robust variance estimate of log normalised 
locuscounts for all samples. 
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