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Calcium signaling plays a pivotal role in cardiomyocytes, coupling electrical excitation

to mechanical contraction of the heart. Determining locations of active calcium release

sites, and how their recruitment changes in response to stimuli and in disease states

is therefore of central interest in cardiac physiology. Current algorithms for detecting

release sites from live cell imaging data are however not easily validated against a known

“ground truth,” which makes interpretation of the output of such algorithms, in particular

the degree of confidence in site detection, a challenging task. Computational models

are capable of integrating findings from multiple sources into a consistent, predictive

framework. In cellular physiology, such models have the potential to reveal structure and

function beyond the temporal and spatial resolution limitations of individual experimental

measurements. Here, we create a spatially detailed computational model of calcium

release in an eight sarcomere section of a ventricular cardiomyocyte, using electron

tomography reconstruction of cardiac ultrastructure and confocal imaging of protein

localization. This provides a high-resolution model of calcium diffusion from intracellular

stores, which can be used as a platform to simulate confocal fluorescence imaging in

the context of known ground truth structures from the higher resolution model. We use

this capability to evaluate the performance of a recently proposed method for detecting

the functional response of calcium release sites in live cells. Model permutations reveal

how calcium release site density and mitochondria acting as diffusion barriers impact

the detection performance of the algorithm. We demonstrate that site density has the
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greatest impact on detection precision and recall, in particular affecting the effective

detectable depth of sites in confocal data. Our findings provide guidance on how such

detection algorithms may best be applied to experimental data and give insights into

limitations when using two-dimensional microscopy images to analyse three-dimensional

cellular structures.

Keywords: cardiomyocyte, calcium signaling, excitation-contraction coupling, cellular cardiac physiology,

ryanodine receptor, live cell imaging, computational model, validation

1. INTRODUCTION

Each heartbeat is induced by an efflux of calcium (Ca2+) from
the sarcoplasmic reticulum (SR) into the cytosol. This release
of Ca2+ through clusters of ryanodine receptors (RyRs) raises
the bulk cytosolic Ca2+ concentration from 0.1 µM to ≈1 µM
within 30 ms and results in exposure of cross-bridge binding
sites on the actin filaments, facilitating cellular contraction
(Bers, 2002; Gilbert et al., 2019). Confocal (Soeller and Cannell,
2002) and super-resolution (Hou et al., 2015) microscopy
imaging of immuno-labeled cardiac tissue preparations have
previously revealed the spatial organization of RyR clusters but
measurements from fixed tissues are limited in their ability to
provide insights into function.

Functional imaging of Ca2+ release in cardiomyocytes
is possible using fluorescence-labeled confocal microscopy.
Unfortunately, these images suffer from low signal-to-noise
ratio and their two-dimensional nature collapses the dynamic
three-dimensional system. Recently, Tian et al. (2017) proposed
an adaption of the CLEAN family of methods from radio
astronomy signal analysis (Högbom, 1974) to detect Ca2+

release sites in live cardiomyocytes. This approach detects
RyR clusters as point sources and iteratively deconvolves them
from the signal with point spread functions to determine
cluster locations in confocal fluorescence images. Using
this algorithm (CaCLEAN), the authors demonstrated the
possibility of detecting the time-dependent functional response
of RyR clusters in live cell preparations using widely available
experimental methods.

However, questions remain regarding the suitability and

performance of this proposed approach. Foremost is the inability

to define ground truth locations of active RyR clusters to compare

against those detected when applying themethod to experimental

data. Further complicating detection is that, compared to the

near-vacuum between astronomical objects, the diffusive volume

between clusters of RyRs in cardiomyocytes is heterogeneous,

consisting primarily of myofibrils and mitochondria. This issue

is relevant to the local distribution of diffusing Ca2+: while

homologs of cell membrane Ca2+ transport channels exist on
mitochondria and exhibit a modest buffering effect, Ca2+ flux
between the cytosol and intra-mitochondrial space is negligible
compared to other cytosolic Ca2+ pathways under normal
physiological conditions (Williams et al., 2013). Given this
potential barrier-like effect of mitochondria to diffusing Ca2+,
we hypothesized that Ca2+ reflecting against mitochondria could
result in additional false positive detection events. Finally, the

spatial distribution of Ca2+ sources diffusing into the image
impacts detection performance. High densities of release sites
saturate the two-dimensional imaging space more readily and
at shorter distances from the acquisition plane in comparison
to lower site densities. Typical experimental preparations of
cardiomyocytes are imaged in a longitudinal orientation that
captures clusters spaced across sarcomeres (≈ 2µm apart)
and within z-disk populations, where nearest-neighbor cluster
distances in rat ventricular cardiomyocytes are≈0.66µm (Soeller
et al., 2007).

To address these issues, we develop a spatially detailed
computational model of an eight sarcomere section of a
cardiomyocyte by extruding an electron tomography image.
Within this three dimensional domain, we simulate reaction-
diffusion of Ca2+ emanating from RyR clusters. Our model
captures these mechanics during the rising phase of the Ca2+

transient- the first 30 ms following the membrane depolarization
before contraction begins- upon which CaCLEAN detection
operates (Tian et al., 2017). This model builds on previous
work (Rajagopal et al., 2015), which introduced the approach
of computationally fusing organelle structure from electron
tomography imaging (see Figure 1A) with distributions of RyR
clusters from statistical analysis of immuno-labeled confocal
microscopy protein localization data (see Figure 1B). The
present model extends this approach to elucidate the complex
environment of Ca2+ signals emitted from release sites at the
z-disks and merging at the m-lines that is responsible for
coordinated cellular contraction.

The results of this model are subsequently used to simulate
confocal fluorescence images. These images are then analyzed
with CaCLEAN to assess RyR cluster detection performance
in the context of known ground truth locations to quantify
true positives (hits), false negatives (misses), and false positives
(algorithmic artifacts). Our findings indicate that the presence of
mitochondria only has a marginal negative impact on detection
at a typical experimental imaging resolution. We quantify
the impact of inter-cluster spacing on detection performance,
as well as how far from the imaging plane clusters are most
accurately detected. We estimate the recall and precision of
the algorithm as between 69–82%, depending on the density of
cluster locations and their distance from the imaging plane. Our
analysis therefore serves as a reference for future applications
or extensions of CaCLEAN and similar release-site detection
algorithms, providing quantitative analysis of performance
using a physics-based modeling framework with known
ground truths.

Frontiers in Physiology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 1263

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ladd et al. Computational Assessment of Cardiomyocyte ECC Site Detection

FIGURE 1 | Finite element model of Ca2+ reaction-diffusion in an eight sarcomere section of a cardiomyocyte. (A) From an electron tomography imaging stack,

myofibril and mitochondria regions were segmented from a slice at the depth of a z-disk. (C) This geometry was extruded 16 µm (in the direction shown as z here) to

create a three-dimensional eight-sarcomere model. Mitochondrial regions shown in yellow; red volume indicates the myofibrillar and cytosolic region. (B) Statistical

analysis of immuno-labeled microscopy data (RyR clusters shown in green) was used to determine inter-cluster spacing distributions. (D) RyR cluster locations in the

(Continued)
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FIGURE 1 | model were defined at mitochondrial and myofibrillar border regions based on statistical spacing distributions. (E) A reaction-diffusion finite element model

simulates the release of Ca2+ from the RyR clusters during the rising phase (first 30 ms) of the Ca2+ transient. Volume rendering of the fluorescence-bound Ca2+

(FCa) field shown at t = 15 ms.

2. RESULTS

2.1. Simulating Microscopy Data Allows for
Assessment of Detection Performance
With Known Ground Truth Values
A spatially detailed finite element (FE) computational model of
an eight sarcomere section of a cardiomyocyte was constructed
to evaluate RyR cluster detection. The algorithms used to
generate the model (Rajagopal et al., 2015) provided unique
RyR cluster distributions at each z-disk (see Figure 1D). The
influence of mitochondria acting as diffusion barriers and the
spatial arrangement of RyR clusters on the performance of
CaCLEAN were studied using these models. This resulted in four
model permutations:

1. CASE 1 (high cluster density, no mitochondria): A case
with high cluster density (N = 984, 123 clusters per z-disk)
based on statistical analysis of nearest neighbor distributions
of clusters from immuno-labeled confocal microscopy data
(Figure 1B). The cell volume was treated as a homogeneously
diffusive continuum.

2. CASE 2 (high cluster density, with mitochondria):
Mitochondrial regions (Figure 1C) were segmented from the
modeled cell volume, creating boundaries acting as obstacles
to diffusion. RyR cluster distributions were defined as in
case 1.

3. CASE 3 (low cluster density, no mitochondria): A case with
a relatively low cluster density (N = 408 or 51 per z-disk)
and an additional constraint of a minimum spacing of 1 µm
spacing between cluster centers. The cell volume was treated
as a homogeneously diffusive continuum.

4. CASE 4 (low cluster density, with mitochondria):
Mitochondrial obstacles were included as in case 2; RyR
cluster distributions were defined as in case 3.

In the three-dimensional FEmodel, the fluorescence-bound Ca2+

(FCa) field was calculated based on the time-dependent reaction-
diffusion emanating from the surrounding cluster sources (see
Figure 1E). The FCa field was next interpolated onto a regular
grid (see Figure 2A) and temporally downsampled to 5 ms
intervals. The FCa field was then convolved in three dimensions
with a point spread function (PSF, Figure 2B) to simulate optical
blurring and light noise (SNR = 100) was added. This dataset
was then resampled at 215 nm pixel resolution in two dimensions
at 22 equidistant slices as indicated in Figure 2C to obtain
simulated images that mimic fast 2D confocal images obtained
in typical experiments.

The resulting time-dependent, simulated confocal
fluorescence microscopy images at each slice (Figure 3A) were
then analyzed with CaCLEAN to produce maps (Figure 3B),
which were then segmented into individual clusters (Figure 3C).
To measure algorithm performance we conducted statistical

classification (Figure 3D) using the modeled locations as the
actual class (ground truths) and the detected locations as the
predicted class to identify true positives (TP), false negatives
(FN), and false positives (FP). TP (ground truth) represented the
modeled clusters in a given admissible window (see below and
Figure 4). TP (detected) represented those TP (ground truth)
correctly detected by CaCLEAN. FN identified the TP (ground
truth) “missed” by CaCLEAN TP (detected). FP represented the
cluster locations detected by CaCLEAN that were not consistent
with TP (ground truth) locations.

2.2. Cluster Distance From the Imaging
Plane Reveals the Trade-Off Between
Recall and Precision
For each simulated imaging plane, modeled RyR clusters were
considered TP (ground truth) if their centers were within
a distance threshold from the imaging plane we referred to
as the “admissible window” (see Figure 4). As illustrated in
Figure 4A, the number of TP (ground truth, magenta) increased
linearly with the admissible window as the window incorporated
more of the modeled cluster locations. The number of TP
(detected, green) events approached a limit as the collapsed two-
dimensional imaging space became saturated with available TP
(ground truth) locations and the signal diffusing from far-field
clusters did not reach the image space.

Clusters located very near the z-depth1 of the imaging plane
were the most likely to affect the signal and be detected by the
algorithm, as indicated by the consistently low FN (blue) at low
admissible window. However, with a very narrow admissible
window, FP (red) were prevalent since clusters located just
outside of this arbitrary tolerance still diffused into the imaged
space and were detected by CaCLEAN. Conversely, with a
widening definition of the admissible window, FP dropped and
FN increased due to the asymptotic behavior of TP (detected).

We quantified algorithmic performance using well-
established measures to capture the impact of false positives and
false negatives on performance: recall, precision, and f1-score
(Nisbet et al., 2018; Berrar, 2019). These metrics were evaluated
for the four model permutations using classifiers as a function of
the admissible window (see Figure 5, Figure S2, Table 1). Recall,
as the ratio of TP (detected) to TP (ground truth), provided
fractional measure of correctly identified clusters. Precision, as
the ratio of the number of TP (detected) to all detected sites (TP
and FP), provided the fraction of detected clusters that were not
FP. F1-score represented the harmonic mean of precision and
recall values. Higher values indicated better performance in all
three measures.

1Where the two-dimensional simulated image plane represented x-y axes.
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FIGURE 2 | Simulation of confocal fluorescence microscopy images from FE model results. (A) FE FCa field data (see Figure 1E) interpolated onto a regular grid with

53.75 nm resolution in each coordinate direction. Three-dimensional convolution of the interpolated FCa data with a (B) point spread function (PSF) produces blurring

typical of confocal fluorescence microscopy data. (C) Blurred data resampled at a pixel resolution of 215 nm within the 22 simulated two-dimensional imaging planes

in the volume. (A,C) are shown at a single time point, t = 15 ms.

2.3. Inter-cluster Spacing Has a Greater
Impact on CaCLEAN Performance Than
Mitochondrial Diffusion Barriers
Whereas there may be applications where optimizing for
recall or precision may be more appropriate, we used the
f1-score as a single general measure, equally weighting the
influence of misses and false positives in interpretation of
performance. Peak values of the f1-score in the cases including
mitochondria barriers ranged between 0.69 at an admissible
window of 620 nm in the high cluster density case and
0.82 at an admissible window of 290 nm in the low cluster

density case (see Figure 5 and values reported in Table 1).

Notably, the maximum f1-score values corresponded closely

with the precision-recall break-even point (the intersection of

the recall and precision curves), as seen in Figure 5 or by

comparing values reported in Table 1 vs. Table 2. This point

identifies where the number of false positives is nearest to the

number of false negatives (Christen and Goiser, 2007), thus

also predicting approximately the correct number of clusters

overall. Curve fits for mean precision and recall values are
also provided in the Supplementary Material (see Figure S3

and Tables S1, S2).
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FIGURE 3 | Example of CaCLEAN detection and classification against modeled locations. (A) Simulated confocal fluorescence microscopy image at t = 15 ms for the

densely packed cluster case (N = 123 per z-disk) with mitochondria. This represents one slice from the middle of the stack shown in Figure 2C. Modeled RyR cluster

center locations within 280 nm of the imaging plane shown in magenta (also in B,C). (B) CaCLEAN map of the fluorescence signal. (C) Segmented clusters detected

by CaCLEAN. (D) Statistical classification of detected cluster locations vs. actual (ground truth) modeled locations. Modeled release sites are represented by filled dots

and detected sites are open circles. A correct detection is therefore represented by a green dot surrounded by a blue circle, while false positives (detection errors) are

red circles and false negatives (missed modeled locations) are red dots.

The effect of mitochondria acting as barriers to diffusion
had a slight consistently negative impact on the evaluated
performance when compared against cases where these
regions were modeled as diffusing homogeneously with
the cytosol. This effect was most evident in the precision-
recall curves in Figure 6, where “with mitochondria” model
permutations show only slightly lower performance in both
axes than the “no mitochondria” alternatives. This was also
visible in the peak f1-score and precision-recall break-even
values reported in Tables 1, 2 and by close visual inspection
of Figure S2. One point of difference also observable in
Figure S2 is that precision appeared to asymptotically
approach 1 in all cases except the densely-packed clusters with
mitochondria case (case 2), where additional false positive events
resulted in a slight drop of the maximum far-field precision
to 0.95.

Finally, we evaluated the fraction of clusters detected by
CaCLEAN as a function of z-distance from the focal imaging
plane to identify how detection of individual clusters decayed
with increasing distance from the imaging plane (see Figure 7).
This analysis again highlighted the effect of inter-cluster spacing:
when using CaCLEAN to detect sites in models with a high
density of release sites the effective z-response of detection falls
much more steeply than when a low density of true release sites
was simulated.

3. DISCUSSION

We developed a computational model of the complex
environment of Ca2+ diffusing into the intracellular space
of a cardiomyocyte. Processing the reaction-diffusion model
results to simulate confocal fluorescence microscopy data
allowed for quantitative assessment of the performance of
detection of Ca2+ release sites against known ground truth values
in the context of realistic cellular physics. Statistical classification
identified true positives, false positives, and false negatives2;
enabling analysis in terms of recall (sensitivity, hit rate, or true
positive rate), precision (positive predictive value), and f1-score
(the harmonic mean of precision and recall).

3.1. Release Site Detection Performance Is
Dependent on Distance From the Image
Plane
A key variable in the performance analysis was the definition of
which modeled clusters were considered ground truths in the
statistical classification at each imaging plane. We introduced the
“admissible window” variable for admitting clusters as ground
truth values based on the through-imaging-plane distance

2True negatives were not considered in this application, as they would represent

the set of all remaining locations that were neither modeled nor detected.
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FIGURE 4 | Illustration of the admissible window parameter. The admissible window defines the distance tolerance from the simulated imaging plane for RyR cluster

centers to be considered ground true positives. (A) Statistical classifier CaCLEAN results as a function of the admissible window for low cluster density, no

mitochondrial barriers (case 3). Twenty two images were simulated with equidistant spacing through the model volume. Solid lines represent mean values and shaded

regions indicate one standard deviation of values. Figure S1 shows similar results across the four model permutations. In (B–D) an example image slice is shown,

with clusters considered TP (ground truth) for admissible windows of (B) 300 nm, (C) 640 nm, and (D) 1,000 nm in magenta. An oblique view is shown above, along

with FCa model results at t = 15 ms. Below, an axial view perpendicular to the imaging plane is shown (looking through the modeled volume, with clusters outside the

admissible window shown in white). The admissible window is indicated in pink shading.

of cluster centers, as illustrated in Figure 4. Parameterizing
algorithmic performance in terms of the admissible window
provided a more complete picture of which clusters were being
detected and highlighted the inherent trade-off between precision
and recall.

The admissible window is also of practical interest to those
seeking to use CaCLEAN (or another detection algorithm) on
their experimental data. This parameter can be used as an
indicator of the maximum relevant depth of clusters detected by
the algorithm in the image. As evident in Figure 5, interpretation
of release site distance from the imaging plane is strongly
dependent on a user’s performance requirements and the density
of clusters in the sample. A user seeking to determine maximum
relevant depth should first determine whether they are more
willing to sacrifice precision or recall, deciding whether misses
or false positives are of greater concern in their application. In
applications where these factors are of equal importance, f1-
score values give a performance measure combining recall and
precision. In this case peak f1-score values closely correspond

with the precision-recall break-even point, where the number of
false positives is equal to the number of false negatives (thus still
detecting approximately the correct number of clusters).

For example, if a user is confident that clusters in a sample
are likely at least 1 µm apart and is satisfied with 80% precision
and recall, the maximal relevant depth for clusters diffusing into
the image would be ≈620 nm based on Figure 5A and Table 1.
From the recall curve, the same user may also be interested to
find the algorithm will likely correctly identify 90% of all clusters
within 350 nm of the imaging plane. The recall curves in Figure 5
therefore also communicate how the detection performance for
an active cluster population drops as further away clusters are
considered detectable.

Analysis of performance in terms of the admissible window
provides a basis for assessing “cumulative recall,” i.e., the
detection of all clusters within a given tolerance of the focal
plane. We also evaluate “differential recall” in Figure 7, i.e., the
detection fraction of clusters at distance z from the imaging plane.
This communicates how the detection fraction of individual
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FIGURE 5 | Recall and precision of CaCLEAN applied to simulated

microscopy data. Recall, precision and f1-score evaluated based on

classification results. Shaded regions indicate one standard deviation of recall

and precision values. The f1-score shown is evaluated based on the mean

values for precision and recall (solid red and blue lines). In both cases shown,

regions representing mitochondria act as barriers to diffusion. (A) A minimum

spacing of 1 µm is enforced between modeled clusters of RyRs. (B) Cluster

spacing is determined by statistical analysis of RyR cluster distributions from

immuno-labeled super-resolution microscopy data.

clusters drops with distance from the focal plane and emphasizes
the importance of cluster density: detection falls much more
steeply in the high density cases. In other words, depending on
how many sites are active the z-response of detection changes.
In experiments, this means that in cases where all sites release,
e.g., after stimulation with a β-adrenergic agonist, the detected
sites are on average from regions closer to the focus than
when recording in conditions of partial block where fewer sites
are available.

3.1.1. The Optical PSF Does Not Determine Detection

Depth
The shape of the point spread function (PSF, see Figure 2B)
weights the interpolation and blurring of the three-dimensional

TABLE 1 | Ca2+ release site detection performance results at maximum f1-score

in each model.

Model F1-Score Recall Precision Admissible

window (nm)

Low RyR density,

no mitochondria

0.83 0.83 ± 0.06 0.83 ± 0.08 630

Low RyR density,

with mitochondria

0.82 0.82 ± 0.06 0.82 ± 0.07 620

High RyR density,

no mitochondria

0.70 0.67 ± 0.08 0.74 ± 0.10 290

High RyR density,

with mitochondria

0.69 0.68 ± 0.07 0.70 ± 0.09 290

data into a two-dimensional image at each time step. Choice
of PSF can impact the fidelity of the data interpolation into
the image and, subsequently, detection performed on the
interpolated data. However, it should be noted that the optical
depth of the PSF does not directly influence how far from the
image clusters may be located or detected. Site detection operates
on the fluorescence signal emitted by Ca2+ released from RyR
clusters, rather than directly capturing these sites in the optical
depth of the microscope. Figure S4 shows the recall, precision,
and f1-score values using PSFs with half and double the full
width at half maximum (FWHM) dimensions of the baseline PSF
settings. The tighter half-FWHM PSF case produces less blurring
and slightly improves recall, while the broader double-FWHM
PSF case produces more blurring to reduce FP events (likely due
to mitochondria) and slightly improves precision.

3.2. Detection Performance Is Inversely
Related to Release Site Density
In addition to distance from the imaging plane, further factors
complicate whether the signal from a given cluster will reach
the imaging plane and whether it is detectable in both our
model and actual experimental data. Individual cluster firing
time and strength variability biases detection of early and
stronger events. Some false positives are produced as algorithmic
artifacts. Proximity to other clusters can cause signals to merge
or cover each-other- especially with increased cluster density.
For instance, two separate clusters the same z-distance above
and below the imaging plane but at the same x-y location
in the imaging plane can only register as a single site in the
imaged space. This identifies an inherent drawback resulting
from using two-dimensional images as a basis for describing a
three-dimensional system.

3.2.1. Determining Physiologically Representative

Cluster Distributions
RyR cluster distribution spacing varies across species, with
nearest-neighbor spacings reported as 0.66± 0.06 µm in rat and
0.78 ± 0.07 µm in human (Soeller et al., 2007). Clusters located
in the periphery of mouse myocytes are more irregularly spaced
than those located in the cell interior (Hiess et al., 2018). These
distributions also alter during development, with RyR clusters
in rabbits changing from majority peripheral clusters with ≈0.7
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FIGURE 6 | Precision-recall curve for CaCLEAN in four models. Recall and precision mean values from results shown in Figure 5 plotted as a precision-recall curve.

Higher values indicate better performance in each axis. Dashed line indicates the precision-recall break-even point, where recall = precision.

µm spacing in neonates to majority interior clusters with≈2 µm
regular spacings between z-disks (Dan et al., 2007). In addition to
spatial locations of RyR protein clusters, another consideration
is functional response of clusters- an area where CaCLEAN
shows unique promise. Tian et al. (2017) used the algorithm to
explore how firing reliability decreases with increased stimulation
frequency and increases under beta-adrenergic stimulation.

We investigated the impact of cluster spacing on detection
performance by analysing two cluster distribution types. In the
“high cluster density” cases, cluster locations at each z-disk
were defined based on statistical analysis of cluster distributions
from immuno-labeled confocal images and applied to admissible
locations bordering mitochondria and myofibrils segmented
from electron tomography data (Rajagopal et al., 2015). This
simulated scenarios where all RyR clusters identifiable by
immuno-labeling3 fired during the 30 ms period modeled. This
was considered a reasonable upper bound on cluster distribution
density since it is unlikely that all clusters would fire for a
single excitation cycle under normal physiological conditions.
Tian et al. (2017) used CaCLEAN to estimate cluster re-fire
rates of ≈ 62.8% in mouse atrial myocytes, with only ≈10%
of clusters always firing. However, the authors also showed
that β-adrenergic stimulation can increase recruitment of firing
clusters, reporting increases in detected cluster density of ≈30%
in rat ventricular myocytes4. In our “low cluster density”
cases, distributions of clusters were similarly generated based

3Immuno-labeled confocal data populations may still slightly underestimate

cluster density owing to diffraction-limited resolution.
4See Figure 3Cb in Tian et al. (2017).

on plausible locations of RyR clusters but with an additional
constraint of a minimum spacing of 1 µm between all clusters
within a given z-disk. The number of clusters in this case was also
reduced to comply with this constraint, with the total number of
clusters 41% of those of the high density case. This was chosen as
representative of a lower bound on cluster recruitment (as might
occur with high pacing frequency and a negative amplitude-
frequency relationship) but also revealed the impact of a 1 µm
minimum cluster spacing requirement on detection, as suggested
by Tian et al. (2017).

3.2.2. Practical Implications
Our results suggest that CaCLEAN correctly detects the majority
of Ca2+ release sites, with approximately one miss and one
false positive out of every four or five sites (depending on site
density). In our analysis, site spacing had a significant impact
on both detection performance and the admissible window
size associated with optimal performance. At the peak f1-score
for cases including mitochondria acting as diffusion barriers,
detection recall and precision were both 0.82 at 610 nm in
the low cluster density case vs. 0.68 and 0.70 at 290 nm in
the high cluster density case. In contrast, for the high cluster
density results evaluated at the low cluster density peak f1-score
admissible window of 610 nm, recall≈0.43 thus indicating more
false negative misses than true positive detection hits.

For useful detection performance, it is therefore important to
consider the likely density of the events being detected in order
to determine how far from the imaging plane such events are
likely located. Those interested in using CaCLEAN to reconstruct
three-dimensional maps of clusters should also be aware of how
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TABLE 2 | Ca2+ release site detection performance results at the precision-recall

break-even point, where Precision ≈ Recall and the number of false positives ≈

the number of false negatives.

Model F1-Score Recall Precision Admissible

window (nm)

Low RyR density,

no mitochondria

0.83 0.83 ± 0.06 0.83 ± 0.08 630

Low RyR density,

with mitochondria

0.82 0.82 ± 0.06 0.82 ± 0.07 620

High RyR density,

no mitochondria

0.69 0.69 ± 0.08 0.69 ± 0.12 270

High RyR density,

with mitochondria

0.69 0.69 ± 0.08 0.68 ± 0.09 280

far from the imaging plane detected clusters are likely to be
when choosing a slicing depth for reconstruction. In this case,
the choice of slicing depth should be approximately twice the
optimumperformance admissible window. For example, in a case
with high cluster density where precision and recall are equally
important, a spacing of 580 nm would be recommended based
on the values reported in Table 1.

3.2.3. Confocal Fluorescence Imaging Resolution

Limits the Impact of Subcellular Structures on

Release Site Detection
The presence of heterogeneous diffusion (in the form of
mitochondrial obstacles) in the investigated models was found to
have a marginal but consistent negative impact on both recall and
precision in CaCLEAN. While mitochondrial diffusion barriers
introduced some additional false positive events, localized
increases from Ca2+ reflecting against these obstacles did not
significantly impair overall detection performance. Resolution
limits may actually help to mitigate this factor, as such
local increases in [Ca2+] at mitochondria-cytosol boundaries
may be offset by lower values within the mitochondrial
regions during interpolation into images. We hypothesize that
structural heterogeneity due to the presence of subcellular
structures (e.g., mitochondria, nucleus, transverse tubules, z-
disks, etc.) is therefore unlikely to have a major impact
on detection of point sources using CaCLEAN or related
algorithms under imaging resolution conditions similar to those
simulated here. Subsequent models similarly focused on Ca2+

release site detection performance might therefore benefit from
significantly simplifying the computational domain by avoiding
distinguishing mitochondrial regions.

3.3. Dependence of Findings on Modeling
Assumptions
We evaluated the performance of a published algorithm for
extracting calcium release site distributions from live confocal
images using ground truth calcium release data that was
generated using a spatially detailed model of a rat left ventricular
cardiomyocyte. Several simplifying assumptions were made to
create and analyse the model with this application in mind.
Here we discuss these assumptions and also highlight ways in

which the model could be extended and applied beyond the
current study.

3.3.1. Cellular Anatomy and Physiology
The modeled eight sarcomere domain was created by extruding
a two-dimensional image from an electron tomography image
stack. It therefore does not capture subtle structural variations
along the longitudinal direction and assumes such changes are
minimal over the relatively short (8 sarcomere, 16 µm) section
modeled. Furthermore, sarcomere length in our model was fixed
to 2µm and we did not examine the effect of sarcomere length on
detection results, as may occur in disease states (e.g., sarcomere
lengths have been reported to shorten from 1.84 to 1.79 µm
in a mouse model of lipotoxic diabetic cardiomyopathy (Flagg
et al., 2009). However, we do not expect this change to affect our
conclusions regarding RyR cluster detectability. In such cases, we
still expect the key parameter affecting cluster detectability to be
the RyR cluster density within a z-disk.

Our model simulated the rising phase (first 30 ms) of the
calcium transient that the detection algorithm (CaCLEAN) is
designed to operate over (Tian et al., 2017). RyR cluster behavior
in the rising phase of the Ca2+ transient is known to be
regulated by several signaling pathways which may be further
complicated in disease and altered physiological states. While
outside the scope of the current work, future model extensions
might explore the impact of such pathways in the rising phase.
For example, prolonged β-adrenergic stimulation can activate
Ca2+/calmodulin–dependent kinase II (Maier and Bers, 2007;
Camors and Valdivia, 2014) and nitric oxide signaling (Irie et al.,
2015) to modulate RyR activity (Dries et al., 2016, 2018).

We chose to use a fixed Ca2+ release approach for the
present study, since our goal was the evaluation of release site
detection in simulated images rather than recapitulating inter-
cluster feedback dynamics. This approach allowed greater control
over the number of simulated releasing clusters in the model
permutations investigated. Cases with mitochondrial diffusion
barriers reduced the cytosolic volume by removing these regions,
resulting in higher [Ca2+] throughout the cytosol. High cluster
density permutations also increased global cytosolic [Ca2+].
These cases would therefore result in additional cluster activation
from a CICR model compared to the low cluster density and
homogeneously diffusing cases. We therefore found a fixed Ca2+

release model more appropriate for the control of this study
given our focus. However, we acknowledge these mechanisms
are important considerations for more general models seeking to
explore inter-cluster Ca2+ signaling.

3.3.2. Additional Ca2+ Transport Channels and

Behavior
Ca2+ release in our model focused on sparks produced by
active clusters of RyRs, the primary propagator of Ca2+ signals
in healthy cardiomyocytes (Cheng et al., 1993). Active RyR
clusters were implicitly considered to be triggered by L-type
Ca2+ channels in the model. However, other channels involved
in Ca2+ cycling that are more active in pathological states or
during the decay phase could still have subtle influences on the
Ca2+ signal and, therefore, potentially on release site detection.
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FIGURE 7 | “Differential recall”: axial dependence of detection of true positive sites. Each curve shows the fraction of detected sites as a function of the distance z

from the nominal focal plane. Differential recall at distance z is the fraction of all detected to modeled sites within 5 nm of that z depth i.e., within a 10 nm band

centered about the distance z above and below the focal plane. A value of 1 is equivalent to the detection of all sites at a given z-depth. The various curves are

calculated for different models, having a high or low density of sites and either using homogeneous diffusion (“no mito”) or obstacles to diffusion wherever

mitochondria are (“with mito”). Data points shown are the result of applying a smoothing filter (see Figure S5 for the low density, no mito case shown in light brown).

Solid lines indicate single-term Gaussian fits to the filtered data.

In particular, we did not define separate active populations
of inositol triphosphate receptors (IP3Rs) as it is their Ca2+

release “puffs” are difficult to discern from RyR sparks based on
signal shape and is further complicated by cross-talk (Harzheim
et al., 2009; Wullschleger et al., 2017). During β-adrenoceptor
activation, two-pore channels (TPCs) may also sensitize or
induce spontaneous release of Ca2+ via the RyR (Capel et al.,
2015). Ca2+ entry via the reverse mode of the sodium-calcium
exchanger (NCX) has also been reported during the rising
phase of the Ca2+ transient (Bers, 2002). It is possible that
cytosolic Ca2+ increases due to IP3R dependent puffs or reverse
mode NCX may contribute to additional false positive detection
events in addition to RyR sensitization. However, there remains
uncertainty regarding the spatial organization and quantifiable
contribution of these low amplitude events (Harzheim et al.,
2009; Horn et al., 2013; Eisner et al., 2017).

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) re-
uptakes Ca2+ from the cytosol into intracellular stores and
has been shown to colocalize with RyRs at z-disks (Drago
et al., 1998; Eisner et al., 2017; Hadipour-Lakmehsari et al.,
2019). SERCA (or effluxing NCX) located near a releasing
RyR cluster might alter Ca2+ diffusion into the imaging plane
by reducing signal amplitude or symmetry (depending on the
orientation of these channels in relation to the imaging plane).
While we have previously reported that SERCA flux is most
prominent after the Ca2+ transient peak (Rajagopal et al., 2015),
SERCA activity is non-zero during the Ca2+ upstroke and has
been shown to modulate release (Maxwell and Blatter, 2017).
This could hypothetically impact detection using CaCLEAN,

which assumes symmetric point sources when deconvolving the
fluorescence signal.

3.3.3. Relevance to Other Cell Types
Our model was based on experimental data from healthy male
adult Wistar rat ventricular myocytes. We hypothesize our
findings may extend to other cell types where RyRs are equally
well organized (e.g., Purkinje, Hirose et al., 2008 and atrial,
Bootman et al., 2006 cells). Users primarily interested in how
Ca2+ release site detectability changes across species, under
disease conditions, or at different stages of development may
wish to consider repeating our approach under these conditions.
While our model focused on a rising phase Ca2+ transient of 30
ms, experimental application of CaCLEAN (and its evaluation
with our modeling approach) should still be applicable to cases
with longer or shorter pre-contractile periods within confocal
temporal imaging resolution. Based on our findings here, we
hypothesize that detection performance will still be dependent
on release site distance from the imaging plane and inter-
site spacing.

3.4. In silico Models Can Reveal Variables
Unobtainable in vitro or in vivo
The results presented in this work (particularly Figures 5–
7, Table 1) are provided as a reference tool for users
interested in experimentally detecting Ca2+ release sites from
live cardiomyocytes using CaCLEAN. These findings and the
approach developed here to quantify detection performance
may also extend more broadly to other algorithms seeking
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to accurately detect three-dimensional distributions of point
sources from two-dimensional images. Users interested in Ca2+

release site detection with substantially different experimental
configurations (e.g., spatial and temporal imaging resolution,
optical PSF, or expected noise) can modify the provided Python
script(s) (see Data Availability below) with parameters to their
specifications to tune detection performance assessment for
their application.

The computational model results include the Ca2+ and
fluorescence-bound Ca2+ data discussed here, along with
solved fields for unbound fluorophore, calmodulin, Ca2+-bound
calmodulin, ATP, Ca2+-bound ATP, and troponin C. These
results may be useful to others interested in a high-resolution
representation of the mechanics of these fields during the
rising phase of the Ca2+ signal transient in a rat ventricular
cardiomyocyte. The capability to simulate imaging data from
the model results also means it could serve as a testing
and validation platform for other analysis tools operating on
confocal fluorescence imaging of Ca2+ release in cardiomyocytes
that would benefit from using the high resolution continuum
model as reference. For instance, this could be used to further
improve CaCLEAN or other approaches seeking to identify RyR
clusters by serving as a training set for improved detection
or segmentation. The code and supporting datasets for the
model, confocal data simulator, and detection performance
analysis are therefore freely available for subsequent research
(see Data Availability below). Finally, this study highlights
how computational methods may be used to combine diverse
experimental data into a consistent physical framework to
establish ground truth values that may not otherwise be
experimentally available.

4. MATERIALS AND METHODS

4.1. Finite Element Model of
Reaction-Diffusion in an Eight Sarcomere
Section of a Cardiomyocyte
The reaction-diffusion finite element (FE) model here builds on a
previous FE model of a half-sarcomere (Rajagopal et al., 2015).
From electron tomography (ET) images of healthy male adult
Wistar rat ventricular myocytes, a three-dimensional axial region
with a thickness of approximately 0.875 µm was segmented.
This region represented approximately half of a single sarcomere,
with the z-disk a plane through the center of the thickness of
the domain. The region was approximately 11 µm in diameter,
varying with the segmented surface.

From this half-sarcomere image stack, the central slice
representing the level of the z-disk was extracted and regions
representing myofibrils and mitochondria were manually
segmented. This two-dimensional slice was then extruded 16 µm
to create a three dimensional volume.

Two configurations were considered to assess the impact of
mitochondria: one in which the interior of themodeled domain is
a homogeneousmaterial continuum and one in which the regions
representing mitochondria were subtracted from the myofibrillar
and cytoplasmic domain. The latter case was based on the

assumption that the calcium buffering activity of mitochondria
is negligible.

4.1.1. Definition of RyR Cluster Distributions
Ryanodine receptor (RyR) locations were defined
algorithmically, using a spatial statistics method based on nearest
neighbor distances of experimentally-derived RyR locations
(Rajagopal et al., 2015). These distributions were determined
from confocal images of left ventricular cardiomyocytes of
a healthy adult male Wistar rat using multiple passes of a
band-pass filter detector, following the technique described
by Soeller and Cannell (2002). A non-parametric approach
fitted nearest-neighborhood distributions within admissible
locations for clusters to the distributions acquired from the
confocal imaging-based protein localization data. The admissible
locations of RyR clusters were regions tracing the borders of
myofibrils, mitochondria, and the sarcolemma (i.e., RyR clusters
were not placed inside organelles). Each z-disk in this model
contains unique cluster location distributions.

To evaluate the influence of spacing on the RyR cluster
detection performance of CaCLEAN, two sets of constraints on
the RyR distributions were considered: (1) RyR clusters were
assigned with locations based directly on statistical analysis of
experimental data and with the total number of RyR clusters N
= 123 per z-disk (984 total); (2) a minimal distance constraint
of 1 µm between RyR cluster centers was enforced and the total
number of clusters was reduced toN = 51 per z-disk (408 total) to
allow for this constraint. Eight unique cluster distributions were
generated for each case and were spaced 2 µm apart along the
extruded axis model volume to represent z-disk RyR populations.
Linear tetrahedral meshes were constructed on these domains,
consisting of: (1) 1,436,943 nodes, 8,222,684 elements in the
high cluster density case; and (2) 1,318,942 nodes, 7,504,655
elements in the low cluster density case. These meshes included
increased refinement in the regions containing and surrounding
the modeled RyR locations.

Spherical regions 100 nm in radius were defined around nodes
nearest to the determined location for each RyR cluster. Nodes
lying within this sphere were prescribed density amplitudes
exponentially decreasing as a function of the square of their
radial position from the central node. RyR cluster release
times were sampled from an exponential distribution with a
characteristic decay constant of 6.7 ms, following the findings of
Wang et al. (2001).

4.1.2. Modeling RyR Cluster Ca2+ Release
In our previous model (Rajagopal et al., 2015) two approaches
for simulating the release of Ca2+ through clusters of RyRs
were considered: (1) by specifying release amplitudes and firing
times using amathematical equation composed of an exponential
rise and decay; and (2) by enabling clusters of RyRs to operate
via CICR sensitivity using a deterministic approximation of
stochastic properties of clusters of RyRs. While the CICR model
enabled the representation of inter-cluster feedback triggering,
these cases were rare and did not significantly impact the overall
spatiotemporal profile of cytosolic calcium. This is because the
simulations represented the scenario that Ca2+ through voltage-
gated L-type calcium release channels on the t-tubules triggered
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the calcium release through each RyR cluster. Therefore, local
[Ca2+] in the model was more dependent on placement of
possible release sites than the representation of the CICR
mechanism. Indeed, we show in our previous study that the
spatiotemporal pattern of rise in cytosolic Ca2+ due to CICR
induced by L-type Ca2+ is very similar to that generated by the
phenomenological model of RyR cluster Ca2+ release. Based on
this, we used the phenomenological fixed release approach in the
present model.

We used an effective diffusion coefficient for diffusion of Ca2+

released in the cytosol. This diffusion is coupled with reaction
terms that mediate Ca2+ binding and unbinding to buffers within
the cytosol. Further details on the reaction-diffusion equations
for the buffers modeled and the ordinary differential equation
model describing release of Ca2+ from RyR clusters have been
previously reported (Rajagopal et al., 2015). We set stable initial
conditions for the buffers examined as previously reported
(Rajagopal et al., 2015) rather than establishing stability over
several cycles. The RyR clusters modeled as active during the
simulations were considered fully recovered prior to excitation.
In our deterministic model, all buffers, calcium and buffer-
bound calcium concentrations are set to represent chemical
equilibrium at rest until Ca2+ is released from the RyR cluster
sources. The initial conditions and parameters used have also
been previously reported (Rajagopal et al., 2015) and were based
on previously published values (Izu et al., 2006; Picht Eckard
et al., 2011). Numerical solution of the resulting system of partial
differential equations was accomplished using the OpenCMISS-
Iron library (Bradley et al., 2011). The ordinary differential
equations describing the release of Ca2+ from RyR source clusters
were defined using CellML (Garny et al., 2008) and coupled to the
FE model as source terms (Nickerson et al., 2015).

4.2. Simulation of Confocal Fluorescence
Signals From FE Model Results
To simulate confocal fluorescence results, the irregularly
distributed node-based fluorescence-bound Ca2+ field from the
FE model was first interpolated onto a regular grid at a resolution
of 53.75 nm in each direction. The data were temporally
sampled at 5 ms intervals over the simulated time period
of 30 ms, producing simulated imaging data for 7 timesteps.
Nodal positions within mitochondria in the “with mitochondria”
permutations were ascribed the initial and background value FCa
= 2.08. Discrete natural neighbor (Sibson) interpolation (Park
et al., 2006) was chosen on the basis that it can be used to
generate regularly-spaced three-dimensional data, scales well for
large datasets, and does not require additional parameterization.
The implementation used was version 1.7 of the naturalneighbor
python package, available from the Python Package Index under
the MIT license.

A point spread function (PSF) was generated as a normalized
function of a multivariate Gaussian distribution applied in three
dimensions (see Figure 2B). These distributions had a full width
at half maximum (FWHM) of 410 nm in x and y and 1,800
nm in z (where the z-axis represents the through-imaging-plane
direction, shown as “y” in Figure 2B). These values were based

on reported estimates of the dimensions of a PSF from a Visitech
confocal microscope (Plumb et al., 2015). The resolution of the
PSF image was chosen to be the same as the interpolated model
data (53.75 nm in each direction).

The interpolatedmodel imaging data was then convolved with
the PSF in three dimensions using the SciPy convolve algorithm
from the signal processing module. The resulting grid was then
downsampled to a pixel resolution of 215 nm, following the
resolution of the original CaCLEAN paper (Tian et al., 2017).
Light noise (SNR = 100) was also added to the image data.
Representative slices were sampled along the y-axis of the FE
model, producing 22 two-dimensional simulated microscopy
images for each of the four reported model permutations.

4.3. Application of CaCLEAN to Simulated
Fluorescence Data
The CaCLEAN algorithmwas obtained from the author’s GitHub
repository: https://github.com/qhtian/CaCLEAN. The Matlab-
based scripts were run using Matlab version R2017b. The
function CICRcleanSimp was used to generate the CaCLEAN
release map and the function CRUProps was used to segment the
release map into individual calcium release units (CRUs).

4.4. Classifying and Quantifying Ca2+

Release Site Detection Performance
A statistical classification approach was used to assess the
performance of RyR cluster detection. Modeled cluster centers
within the admissible window were considered the actual/ground
truth class: TP (ground truth). Detection results were considered
the predicted class. Detected RyR cluster sites were defined
as determined by the CaCLEAN CRUProps function, which
segments cluster regions using Matlab’s built-in watershed
algorithm and identifies centroids of segmented regions.

For each modeled cluster location, a TP (detected)
classification was assigned if a TP (ground truth) cluster
center lied within an available segmented CaCLEAN cluster
region (or within a 1 pixel tolerance). When more than one TP
(ground truth) fell within a CaCLEAN-detected cluster region,
the detected cluster with the nearest centroid to the TP (ground
truth) location was marked TP (detected). After classification
as TP (detected), the associated CaCLEAN-detected site would
be removed from the list of available matches. After iterating
through the TP (ground truth) clusters, remaining TP (ground
truth) unmatched with detected clusters were classified as false
negatives (FN). Remaining CaCLEAN-detected sites unmatched
with TP (ground truth) were classified as false positives (FP).
Note that in this case

TP (ground truth) = TP (detected)+ FN. (1)

Three statistical binary classification performance measures were
considered: recall, precision and f1-score (Nisbet et al., 2018;
Berrar, 2019). Recall (also known as sensitivity, hit rate, or true
positive rate) was defined such that

Recall =
TP (detected)

TP (ground truth)
. (2)

Frontiers in Physiology | www.frontiersin.org 13 October 2019 | Volume 10 | Article 1263

https://github.com/qhtian/CaCLEAN
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ladd et al. Computational Assessment of Cardiomyocyte ECC Site Detection

Recall therefore gives the fraction of actual modeled clusters
within an admissible window that were correctly detected by
CaCLEAN. Precision (also known as positive predictive value)
was defined such that

Precision =
TP (detected)

TP (detected)+ FP (detected)
. (3)

Precision therefore identifies the fraction of the detected clusters
within an admissible window that were correct (not false
positives). Another useful parameter indicating the combined
effect of both precision and recall is the f1-score (also known as f-
measure or f-score), which measures the harmonic mean of these
two variables i.e.,

F1-Score =
2

1
Recall

+
1

Precision

. (4)

This provides a single combined performance metric that
equally weights the impact of false positive and false negative
events. In all three performance metrics, higher values indicate
better performance.

The above definition of recall may be considered “cumulative
recall” in our application, identifying the detection fraction of
all clusters within a given admissible window. To determine
the detection fraction of clusters at a given z distance from
the simulated imaging plane, we also defined an alternative
“differential recall” such that

Differential Recall =
d
(

TP (detected)
)

d
(

TP (ground truth)
) . (5)

This measured the fraction of modeled clusters detected by
CaCLEAN in 10 nm spaced bands above and below the imaging
plane. Only bands with at least one TP (ground truth) were
considered. Mean values for this detection fraction were acquired
over the 22 simulated imaging planes. A Savitzky-Golay filter
(polynomial order 3, frame length 21) was then applied to smooth
the results as shown in Figure S5. Single-term Gaussian fits were
also applied to identify trends in the resulting curves, as shown
in Figure 7.

DATA AVAILABILITY STATEMENT

The code used to solve the FEmodel is available in the repository:
https://github.com/uomsystemsbiology/CardiacCalcium_
FiniteElement. The code used to simulate the microscopy

images and evaluate detection is available in the repository:
https://github.com/uomsystemsbiology/CardiacCalcium_
TestCaCLEAN. Supporting datasets may also be downloaded
from the project collection hosted on figshare: https://doi.org/10.
26188/5cd1286834075.

AUTHOR CONTRIBUTIONS

DL developed, analyzed, and curated the computational model.
DL, CS, and VR contributed to the initial conceptualization
of this study. CS, EC, and VR supervised the project. EC
and VR directed administration of the project and funding
acquisition. DL, AT, HR, CS, EC, and VR contributed to the
development of the methodology and preparation of original and
final drafts.

FUNDING

This research was supported in part by the Australian
Government through the Australian Research Council’s
Discovery Projects funding scheme (project DP170101358),
and in part by the Australian Research Council Centre of
Excellence in Convergent Bio-Nano Science and Technology
(project number CE140100036). CS acknowledges financial
support by the Engineering and Physical Sciences Research
Council of the United Kingdom (Grant EP/N008235/1) and
Biotechnology and Biological Sciences Research Council
Grants BB/P026508/1 and BB/R022127/1. HR wishes to
acknowledge financial support from the Research Foundation
Flanders (FWO) (Project Grant G08861N and Odysseus
programme Grant 90663).

ACKNOWLEDGMENTS

Thismanuscript has been released as a pre-print at BioRxiv (Ladd
et al., 2019). DL would like to acknowledge helpful feedback from
colleagues at the Systems Biology Lab during the development of
this work- notably from Hilary Hunt, Michael Pan, Shouryadipta
Ghosh, and Peter Cudmore.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2019.01263/full#supplementary-material

REFERENCES

Berrar, D. (2019). “Performancemeasures for binary classification,” in Encyclopedia

of Bioinformatics and Computational Biology, eds S. Ranganathan, M.

Gribskov, K. Nakai, and C. Schönbach (Oxford: Academic Press), 546–560.

doi: 10.1016/B978-0-12-809633-8.20351-8

Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature 415, 198–205.

doi: 10.1038/415198a

Bootman, M. D., Higazi, D. R., Coombes, S., and Roderick, H. L. (2006).

Calcium signalling during excitation-contraction coupling inmammalian atrial

myocytes. J. Cell Sci. 119, 3915–3925. doi: 10.1242/jcs.03223

Bradley, C., Bowery, A., Britten, R., Budelmann, V., Camara, O.,

Christie, R., et al. (2011). OpenCMISS: a multi-physics & multi-

scale computational infrastructure for the VPH/Physiome project.

Prog. Biophys. Mol. Biol. 107, 32–47. doi: 10.1016/j.pbiomolbio.2011.

06.015

Camors, E., and Valdivia, H. H. (2014). CaMKII regulation of cardiac ryanodine

receptors and inositol triphosphate receptors. Front. Pharmacol. 5:101.

doi: 10.3389/fphar.2014.00101

Capel, R. A., Bolton, E. L., Lin, W. K., Aston, D., Wang, Y., Liu, W., et al.

(2015). Two-pore channels (TPC2s) and nicotinic acid adenine dinucleotide

phosphate (NAADP) at lysosomal-sarcoplasmic reticular junctions contribute

Frontiers in Physiology | www.frontiersin.org 14 October 2019 | Volume 10 | Article 1263

https://github.com/uomsystemsbiology/CardiacCalcium_FiniteElement
https://github.com/uomsystemsbiology/CardiacCalcium_FiniteElement
https://github.com/uomsystemsbiology/CardiacCalcium_TestCaCLEAN
https://github.com/uomsystemsbiology/CardiacCalcium_TestCaCLEAN
https://doi.org/10.26188/5cd1286834075
https://doi.org/10.26188/5cd1286834075
https://www.frontiersin.org/articles/10.3389/fphys.2019.01263/full#supplementary-material
https://doi.org/10.1016/B978-0-12-809633-8.20351-8
https://doi.org/10.1038/415198a
https://doi.org/10.1242/jcs.03223
https://doi.org/10.1016/j.pbiomolbio.2011.06.015
https://doi.org/10.3389/fphar.2014.00101
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ladd et al. Computational Assessment of Cardiomyocyte ECC Site Detection

to acute and chronic β-adrenoceptor signaling in the heart. J. Biol. Chem. 290,

30087–30098. doi: 10.1074/jbc.M115.684076

Cheng, H., Lederer, W. J., and Cannell, M. B. (1993). Calcium sparks: elementary

events underlying excitation-contraction coupling in heart muscle. Science 262,

740–744. doi: 10.1126/science.8235594

Christen, P., and Goiser, K. (2007). “Quality and complexity measures for data

linkage and deduplication,” in Quality Measures in Data Mining, Vol. 43, eds

J. Kacprzyk, F. J. Guillet, and H. J. Hamilton (Berlin; Heidelberg: Springer),

127–151.

Dan, P., Lin, E., Huang, J., Biln, P., and Tibbits, G. F. (2007). Three-dimensional

distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during

development. Biophys. J. 93, 2504–2518. doi: 10.1529/biophysj.107.104943

Drago, G. A., Colyer, J., and Lederer, W. J. (1998). Immunofluorescence

localization of SERCA2a and the phosphorylated forms of phospholamban in

intact rat cardiac ventricular myocytes a. Ann. N. Y. Acad. Sci. 853, 273–279.

doi: 10.1111/j.1749-6632.1998.tb08278.x

Dries, E., Santiago, D. J., Gilbert, G., Lenaerts, I., Vandenberk, B., Nagaraju, C. K.,

et al. (2018). Hyperactive ryanodine receptors in human heart failure and

ischaemic cardiomyopathy reside outside of couplons. Cardiovasc. Res. 114,

1512–1524. doi: 10.1093/cvr/cvy088

Dries, E., Santiago, D. J., Johnson, D. M., Gilbert, G., Holemans, P., Korte,

S. M., et al. (2016). Calcium/calmodulin-dependent kinase II and nitric oxide

synthase 1-dependent modulation of ryanodine receptors during β-adrenergic

stimulation is restricted to the dyadic cleft. J. Physiol. 594, 5923–5939.

doi: 10.1113/JP271965

Eisner, D. A., Caldwell, J. L., Kistamás, K., and Trafford, A. W. (2017). Calcium

and excitation-contraction coupling in the heart. Circul. Res. 121, 181–195.

doi: 10.1161/CIRCRESAHA.117.310230

Flagg, T. P., Cazorla, O., Remedi, M. S., Haim, T. E., Tones, M. A., Bahinski, A.,

et al. (2009). Ca2+-independent alterations in diastolic sarcomere length and

relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy.

Circul. Res. 104, 95–103. doi: 10.1161/CIRCRESAHA.108.186809

Garny, A., Nickerson, D. P., Cooper, J., Santos, R. W. D., Miller, A. K., McKeever,

S., et al. (2008). CellML and associated tools and techniques. Philos. Trans. R.

Soc. A Math. Phys. Eng. Sci. 366, 3017–3043. doi: 10.1098/rsta.2008.0094

Gilbert, G., Demydenko, K., Dries, E., Puertas, R. D., Jin, X., Sipido, K., et al. (2019).

Calcium signaling in cardiomyocyte function. Cold Spring Harb. Perspect. Biol.

doi: 10.1101/cshperspect.a035428. [Epub ahead of print].

Hadipour-Lakmehsari, S., Driouchi, A., Lee, S.-H., Kuzmanov, U., Callaghan,

N. I., Heximer, S. P., et al. (2019). Nanoscale reorganization of sarcoplasmic

reticulum in pressure-overload cardiac hypertrophy visualized by dSTORM.

Sci. Rep. 9:7867. doi: 10.1038/s41598-019-44331-y

Harzheim, D., Movassagh, M., Foo, R. S.-Y., Ritter, O., Tashfeen, A., Conway,

S. J., et al. (2009). Increased InsP3rs in the junctional sarcoplasmic reticulum

augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy.

Proc. Natl. Acad. Sci. U.S.A. 106, 11406–11411. doi: 10.1073/pnas.0905485106

Hiess, F., Detampel, P., Nolla-Colomer, C., Vallmitjana, A., Ganguly, A., Amrein,

M., et al. (2018). Dynamic and irregular distribution of RyR2 clusters

in the periphery of live ventricular myocytes. Biophys. J. 114, 343–354.

doi: 10.1016/j.bpj.2017.11.026

Hirose, M., Stuyvers, B., Dun, W., ter Keurs, H., and Boyden, P. A. (2008).

Wide long lasting perinuclear Ca2+ release events generated by an interaction

between ryanodine and IP3 receptors in canine Purkinje cells. J. Mol. Cell.

Cardiol. 45, 176–184. doi: 10.1016/j.yjmcc.2008.05.008

Högbom, J. A. (1974). Aperture synthesis with a non-regular distribution of

interferometer baselines. Astron. Astrophys. Suppl. Ser. 15:417.

Horn, T., Ullrich, N. D., and Egger, M. (2013). ‘Eventless’ InsP3-dependent

SR-Ca2+ release affecting atrial Ca2+ sparks. J. Physiol. 591, 2103–2111.

doi: 10.1113/jphysiol.2012.247288

Hou, Y., Jayasinghe, I., Crossman, D. J., Baddeley, D., and Soeller, C.

(2015). Nanoscale analysis of ryanodine receptor clusters in dyadic

couplings of rat cardiac myocytes. J. Mol. Cell. Cardiol. 80, 45–55.

doi: 10.1016/j.yjmcc.2014.12.013

Irie, T., Sips, P. Y., Kai, S., Kida, K., Ikeda, K., Hirai, S., et al. (2015). S-Nitrosylation

of calcium-handling proteins in cardiac adrenergic signaling and hypertrophy.

Circul. Res. 117, 793–803. doi: 10.1161/CIRCRESAHA.115.307157

Izu, L. T., Means, S. A., Shadid, J. N., Chen-Izu, Y., and Balke,

C. W. (2006). Interplay of ryanodine receptor distribution and

calcium dynamics. Biophys. J. 91, 95–112. doi: 10.1529/biophysj.105.

077214

Ladd, D., Tilunaite, A., Soeller, C., Roderick, H. L., Crampin, E., and Rajagopal, V.

(2019). Detecting ryr clusters with caclean: influence of spatial distribution and

structural heterogeneity. bioRxiv [Preprint]. doi: 10.1101/549683

Maier, L. S., and Bers, D. M. (2007). Role of Ca2+/calmodulin-dependent protein

kinase (CaMK) in excitation—contraction coupling in the heart. Cardiovasc.

Res. 73, 631–640. doi: 10.1016/j.cardiores.2006.11.005

Maxwell, J. T., and Blatter, L. A. (2017). A novel mechanism of tandem activation

of ryanodine receptors by cytosolic and SR luminal Ca 2+ during excitation-

contraction coupling in atrial myocytes: intra-SR Ca 2+ -dependent facilitation

of Ca 2+ release in atrial ECC. J. Physiol. 595, 3835–3845. doi: 10.1113/JP273611

Nickerson, D. P., Ladd, D., Hussan, J. R., Safaei, S., Suresh, V., Hunter, P. J., et al.

(2015). Using CellML with OpenCMISS to simulate multi-scale physiology.

Comput. Physiol. Med. 2:79. doi: 10.3389/fbioe.2014.00079

Nisbet, R., Miner, G., and Yale, K. (2018). “Model evaluation and enhancement,” in

Handbook of Statistical Analysis and Data Mining Applications, eds R. Nisbet,

G. Miner, and K. Yale (London: Elsevier), 215–233.

Park, S. W., Linsen, L., Kreylos, O., Owens, J. D., and Hamann, B. (2006). Discrete

sibson interpolation. IEEE Trans. Visualizat. Comput. Graph. 12, 243–253.

doi: 10.1109/TVCG.2006.27

Picht, E., Zima, A. V., Shannon, T. R., Duncan, A. M., Blatter, L. A.,

and Bers, D. M. (2011). Dynamic calcium movement inside cardiac

sarcoplasmic reticulum during release. Circul. Res. 108, 847–856.

doi: 10.1161/CIRCRESAHA.111.240234

Plumb, K., Elaz, S., Pelletier, V., and Kilfoil, M. L. (2015). Automated three-

dimensional single cell phenotyping of spindle dynamics, cell shape, and

volume. arXiv[Preprint].arXiv:1504.00714.

Rajagopal, V., Bass, G., Walker, C. G., Crossman, D. J., Petzer, A.,

Hickey, A., et al. (2015). Examination of the effects of heterogeneous

organization of RyR clusters, myofibrils and mitochondria on Ca2+

release patterns in cardiomyocytes. PLoS Comput. Biol. 11:e1004417.

doi: 10.1371/journal.pcbi.1004417

Soeller, C., and Cannell, M. B. (2002). Estimation of the sarcoplasmic reticulum

Ca2+ release fluxUnderlying Ca2+ sparks. Biophys. J. 82, 2396–2414.

doi: 10.1016/S0006-3495(02)75584-7

Soeller, C., Crossman, D., Gilbert, R., and Cannell, M. B. (2007). Analysis of

ryanodine receptor clusters in rat and human cardiac myocytes. Proc. Natl.

Acad. Sci. U.S.A. 104, 14958–14963. doi: 10.1073/pnas.0703016104

Tian, Q., Kaestner, L., Schröder, L., Guo, J., and Lipp, P. (2017). An adaptation

of astronomical image processing enables characterization and functional 3d

mapping of individual sites of excitation-contraction coupling in rat cardiac

muscle. eLife 6:e30425. doi: 10.7554/eLife.30425

Wang, S.-Q., Song, L.-S., Lakatta, E. G., and Cheng, H. (2001). Ca2+ signalling

between single L-type Ca2+ channels and ryanodine receptors in heart cells.

Nature 410, 592–596. doi: 10.1038/35069083

Williams, G. S. B., Boyman, L., Chikando, A. C., Khairallah, R. J., and Lederer,

W. J. (2013). Mitochondrial calcium uptake. Proc. Natl. Acad. Sci. U.S.A. 110,

10479–10486. doi: 10.1073/pnas.1300410110

Wullschleger, M., Blanch, J., and Egger, M. (2017). Functional local crosstalk

of inositol 1,4,5-trisphosphate receptor- and ryanodine receptor-dependent

Ca2+ release in atrial cardiomyocytes. Cardiovasc. Res. 113, 542–552.

doi: 10.1093/cvr/cvx020

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The reviewer MAC declared a past collaboration with one of the authors CS.
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