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A B S T R A C T

Due to widespread drug resistance in parasitic nematodes, there is a need to develop new anthelmintics. Given
the cost and time involved in developing a new drug, the repurposing of known chemicals can be a promising,
alternative approach. In this context, we tested a library (n= 600) of natural product-inspired pesticide ana-
logues against exsheathed third stage-larvae (xL3s) of Haemonchus contortus (barber's pole worm) using a whole-
organism, phenotypic screening technique that measures the inhibition of motility and development in treated
larvae. In the primary screen, we identified 32 active analogues derived from chemical scaffolds of arylpyrrole or
fipronil. The seven most promising compounds, selected based on their anthelmintic activity and/or limited
cytotoxicity, are arylpyrroles that reduced the motility of fourth-stage larvae (L4s) with significant potency (IC50

values ranged from 0.04 ± 0.01 μM to 4.25 ± 0.82 μM, and selectivity indices ranged from 10.6 to 412.5).
Since the parent structures of the active compounds are uncouplers of oxidative phosphorylation, we tested the
effect of selected analogues on oxygen consumption in xL3s using the Seahorse XF24 flux analyser. Larvae
treated with the test compounds showed a significant increase in oxygen consumption compared with the un-
treated control, demonstrating their uncoupling activity. Overall, the results of the present study have identified
natural product-derived molecules that are worth considering for chemical optimisation as anthelmintic drug
leads.

1. Introduction

The control of gastrointestinal nematodes of livestock has relied
largely on the use of a limited number of anti-parasitic drugs (Besier
et al., 2016; Harder, 2016). However, drug resistance is now very
widespread (Kaplan and Vidyashankar, 2012; Kotze and Prichard,
2016) and no vaccines are available for the vast majority of these
worms, such that the development of new drugs is crucial to ensure
effective and sustained nematode control into the future. Although the
development of the compound monepantel (Kaminsky et al., 2008;
Prichard and Geary, 2008) provided hope for the design of new classes
of nematocides, there has been relatively little success in discovering

new drugs using conventional and high throughput screening ap-
proaches (Geary et al., 2015).

Given the massive cost and time required to develop and commer-
cialise a new anthelmintic (Geary et al., 2015), the repurposing of
known drugs or bioactive chemicals (Corsello et al., 2017) offers a
pragmatic and sound option. The repurposing of chemicals with known
safety profiles and modes of action has the potential to proceed to
clinical trials more rapidly than newly discovered chemotypes (Oprea
and Mestres, 2012; Andrews et al., 2014; Panic et al., 2014; Corsello
et al., 2017).

Recently, in partnership with philanthropic, academic and industry
partners, we screened compound libraries of bioactive compounds for
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inhibitory activity against Haemonchus contortus (barber's pole worm),
in an attempt to repurpose synthetic and natural compounds against
parasitic nematodes (Preston et al., 2016, 2017; Herath et al., 2017).
For instance, we have shown that pesticides such as tolfenpyrad
(Preston et al., 2016) and other pyrazole-5-carboxamides (e.g., a-15 and
a-17; Jiao et al., 2017) have potent inhibitory activity on the motility
and/or development of exsheathed third-stage (xL3s) and/or fourth-
stage (L4s) larvae of H. contortus in vitro and that these chemicals are
relatively selective for the parasite compared with a mammalian cell
line (see Preston et al., 2016; Jiao et al., 2017). Using medicinal che-
mical methods, the potency and selectivity of some of these chemotypes
have been significantly increased (unpublished findings). Taken to-
gether, this information indicates that there is merit in taking a re-
purposing route, provided that medicinal chemistry follows the
screening effort, in order to optimise potency and safety in vitro and in
vivo, pharmacokinetics and efficacy.

Here, we extend previous studies (Preston et al., 2016; Jiao et al.,
2017) to screen a library of compounds (n=600) obtained from the
Research Institute of Elemento-Organic Chemistry, Nankai University,
China. This library contains novel analogues of various pesticides, in-
cluding antofine (Gao et al., 2012), arylpyrroles (Kuhn, 1997), di-
flubenzuron (Post and Vincent, 1973; Cohen and Casida, 1980), etox-
azole (Nauen and Smagghe, 2006), fipronil (Cheng et al., 2009) and
spirodiclofen (Van Pottelberge et al., 2009). Most of these analogues
had been tested previously at Nankai University, and exhibited in-
secticidal and/or acaricidal properties (Li et al., 2012; Liu et al., 2014;
Ma et al., 2014), suggesting that these compounds might act on other
ecdysozoans, including nematodes of veterinary importance. Therefore,
we screened the library against larval stages of H. contortus - one of the
most important parasitic nematodes of livestock animals (Gasser and
von Samson-Himmelstjerna, 2016). We employed a semi-automated
phenotypic screening technique (Preston et al., 2015) to identify active
('hit') compounds and to assess their potency against larval stages of H.
contortus, followed by an evaluation of the cytotoxicity of these hits on a
mammary epithelial cell line in vitro, with the aim of identifying can-
didate compounds.

2. Materials and methods

2.1. Parasite production and maintenance

Haemonchus contortus (Haecon-5 strain) was maintained in experi-
mental sheep as described previously (Schwarz et al., 2013; Preston
et al., 2015), in accord with institutional animal ethics guidelines
(permit no. 1413429; The University of Melbourne, Australia). Third-
stage larvae (L3s) were cultured and exsheathed using established
methods (Preston et al., 2015). In brief, L3s were exsheathed by in-
cubation in 0.15% v/v sodium hypochlorite (NaClO) for 20min at 37 °C
and then washed five times in sterile, physiological saline (pH 7.0,
37 °C). The exsheathed L3s (xL3s) were then suspended in Luria Bertani
(LB) medium supplemented with 100 IU/ml of penicillin, 100mg/ml of
streptomycin and 2.5 mg/ml of amphotericin (Fungizone, antibiotic-
antimycotic; cat. no. 15240-062; Gibco, USA) (Preston et al., 2015). The
supplemented LB was designated as LB*. L4s were produced by in-
cubating xL3s in LB* at 10% v/v CO2 and 38 °C for 7 days (Preston
et al., 2015).

2.2. Screening for anthelmintic activity

The library of chemicals from the Research Institute of Elemento-
Organic Chemistry, Nankai University, China, contained pure chemicals

derived from natural (120) and synthetic (480) products with known
activities against arthropods (flies and/or mites) (Supplementary file
1). All 600 compounds were individually screened (in triplicate) in 96-
well plates using a previously described protocol (Preston et al., 2015;
cf. Fig. 1). In brief, the chemicals were each dissolved in 100% DMSO to
prepare 20 mM stocks, diluted into 40 μM in 50 μl of LB* (containing
1% DMSO) and arrayed in triplicate in flat-bottom 96-well microplates
(cat. no. 3635; Corning 3650, Life Sciences, USA). The xL3s (∼300 in
50 μl per well) were added to wells and exposed to a final compound
concentration of 20 μM (with 0.5% DMSO). The two commercially
available drugs monepantel (Zolvix, Novartis Animal Health, Switzer-
land) and moxidectin (Cydectin, Virbac, France) were included as po-
sitive controls, and LB* + 0.5% DMSO as the negative control (six
wells). Plates were placed in an incubator for 72 h (10% v/v CO2;
38 °C). For data acquisition, plates were agitated for 20min using an
orbital shaker (126 rotations per min) (model KOM5, Ratek, Australia),
and a 5 s video was recorded from each well. Digital recordings were
processed using a customised script in Image J (imageJ. nih.gov/ij/),
and changes in light intensity transformed into a motility index (Mi;
Preston et al., 2015). The raw data were normalised with respect to
positive and negative controls, in order to remove plate-to-plate var-
iation, and the percentage of motility reduction was calculated for each
well using the program Prism (v.7.02 GraphPad Software). A compound
was recorded as being active if it reduced xL3 motility by≥ 70% and/
or induced phenotypic alterations in comparison with the untreated
wild-type control worms (at 72 h).

2.3. Dose-response curves for active compounds (xL3 motility, L4 motility
and L4 development)

All active compounds were tested as a two-fold dilution series (18
points; starting at 100 μM) to assess a reduction in xL3 motility and an
inhibition of L4 development (Preston et al., 2015, Fig. 1). To measure
motility, video recordings of individual wells were taken at 24 h, 48 h
and 72 h. To assess development, plates were incubated further under
the same conditions for four more days; worms in each well were then
fixed with 50 μl of 1% iodine and the development to L4 determined by
examining 30 worms from each well under a microscope at 20x mag-
nification. L4s were differentiated from xL3s based on the presence of
well-developed mouth and pharynx.

The half-maximum inhibitory concentration (IC50) of each com-
pound was determined by transforming the compound concentrations
to log10, and fitting the data using a variable slope four-parameter
equation (v.7.02 GraphPad Software) (cf. Preston et al., 2015). IC50

values were obtained from results from two independent biological
assays with three technical replicates for each compound. Compounds
were ranked based on the level of xL3 motility reduction, L4 develop-
ment inhibition and minimal cytotoxicity. A subset of compounds was
tested for their ability to inhibit L4 motility, again using a two-fold
dilution series and in two biological assays with three technical re-
plicates.

2.4. Cytotoxicity assay

The cytotoxicity of individual compounds was tested as described
previously (Kumarasingha et al., 2016; Fig. 1) at the Victorian Centre
for Functional Genomics in Cancer, Melbourne, Australia, with minor
modifications. In brief, normal breast epithelial (MCF10A) cells were
cultured in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12
(DMEM/F12; Thermofisher, USA) containing 5% v/v horse serum (Life
Technologies, Australia), 100 ng/ml of cholera toxin (Sigma, Australia),
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20 ng/ml of human epidermal growth factor (Life Technologies, Aus-
tralia), 0.5 mg/ml hydrocortisone (Sigma, Australia) and 10mg/ml of
insulin (human; Novo Nordisk Pharmaceuticals Pty Ltd, Denmark) in
black-walled, flat bottom 384-well plates (Corning, USA) at a density of
700 cells per well in 40 μl. The cells were incubated at 37 °C and 5% v/v
CO2 for 24 h. The growth medium was then aspirated, and the cells
were treated with individual compounds (in quadruplicate) or with
control compounds, including negative controls in every run, and then
incubated for 48 h. Compounds were tested as a 5-point series (50 μM,
25 μM, 12.5 μM, 6.25 μM and 3.125 μM) to obtain dose-response curves
using an automated liquid handling robot (SciClone ALH3000 Lab
Automation Liquid Handler, Caliper Lifesciences, USA), using four re-
plicates for each compound. Doxorubicin (highest concentration of
10 μM) and monepantel (Zolvix, Novartis Animal Health, Switzerland;
highest concentration of 50 μM) were used as positive (active) control
compounds to assess cell toxicity or activity; medium without com-
pound was used as the negative control. Following incubation, the cells
in individual wells were fixed, stained with 4′,6-diamidino-2-pheny-
lindole (DAPI; 1:1000) and imaged at a fixed exposure time of 0.12 sec
using a high content imager (Cellomics CellInsight Personal Cell Im-
ager, ThermoFisher Scientific, USA) which captured∼ 90% of the well.
Stained nuclei of the viable cells were counted using the Target Acti-
vation BioApplication within Cellomics Scan software (v.6.5.0, Thermo
Scientific, USA). The cell density was normalised to the negative con-
trol, and IC50 values were determined using the same method as de-
scribed in section 2.3. The selectivity index (SI) was calculated by di-
viding IC50 for MCF10A cells by IC50 for H. contortus (see Preston et al.,
2015).

2.5. Larval oxygen consumption assay

Selected compounds with activity on H. contortus were tested for
their effects on mitochondrial respiration of xL3s by measuring changes
in oxygen consumption using the Seahorse XF24 flux analyser
(Seahorse Biosciences, USA) essentially as described previously (McGee
et al., 2011). In brief, 5000 xL3s in 500 μl of XF medium (Seahorse

Biosciences, USA) supplemented with 4.5 g/l of glucose, 0.5mM of
sodium pyruvate and 2mM of glutamine (Sigma-Adlrich, USA) were
dispensed into XF24 cell culture microplates (Seahorse Biosciences,
USA). The compounds dissolved in XF base medium (final concentra-
tion of 100 μM in 1% DMSO) were then loaded individually into the
injection ports and automatically dispensed into the wells after re-
cording six initial measurements of respiration at 6min intervals. The
oxygen consumption was measured (protocol: 2 min - mix, 2 min -
pause and 4min - measure) for 120min more at 6min intervals (cf.
McGee et al., 2011). The XF medium plus 1% DMSO (500 μl) was dis-
pensed into four wells as the negative control, and four wells containing
100 μM monepantel and carbonyl cyanide-4-(trifluoromethoxy)phe-
nylhydrazone (FCCP) were included as positive controls. FCCP is known
as a mitochondrial uncoupler - such uncouplers are chemicals that in-
hibit the coupling between the electron transport chain and phos-
phorylation reaction, thus reducing ATP synthesis without affecting the
electron transport chain and enhancing oxygen consumption through
increased production of NADH (Terada, 1990). In these experiments,
four technical and three biological replicates were performed. The data
acquired were normalised to the basal oxygen consumption, and the
graphs of oxygen consumption rates (OCR) were produced using v.7.02
GraphPad Software. The total oxygen consumption following each
compound treatment was measured by calculating the ‘area under the
curve’ (AUC) in these graphs. The statistical significance between
treatments was calculated using the nonparametric (Kruskal-Wallis)
one-way ANOVA and a Dunnett's multiple comparison test in the same
GraphPad software.

3. Results

The primary screen of the library (Fig. 1) identified 21 compounds
that reduced the motility of H. contortus xL3s by≥ 70% and induced a
non-wildtype (“circular”) phenotype as well as 11 compounds that in-
duced a ‘circular’ phenotype but did not reduce the xL3 motility
by≥ 70% (Supplementary file 1). All of these 32 compounds were
categorised as ‘hits’ (Fig. 1); 30 of them were pyrrole analogues (the

Fig. 1. Workflow used in the current study. We
screened 600 chemicals against third-stage larvae (xL3s)
of H. contortus and identified 32 active compounds (hits),
which were then tested in dose response assays for the
inhibition of xL3 motility and L4 development as well as
toxicity to a normal breast epithelial cell line (MCF10A);
seven compounds (Zpx019, Zpx020, Zpx022, Zpx024,
Zpx027, Zpx028 and Zpx040) were selected for sub-
sequent testing for their ability to inhibit L4 motility
(panel A). Representative images of xL3s and L4s treated
with active compound showing the phenotypic altera-
tions by comparison with untreated (negative) and
monepantel and moxidectin (positive) controls; white
scale bar= 100 μm; 20-times magnification (panel B).
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Mqq and Zpx series) and two were fipronil analogues (Zqq series)
(Supplementary file 1).

In the dose response assays (cf. Fig. 1), 13 of the 32 hits induced a
dose-dependent inhibition of xL3 motility, with an IC50 of ≤50 μMat
24 h (Supplementary file 2). The IC50 values of these 13 compounds
ranged from 8.63 ± 0.90 μM to 48.13 ± 2.71 μM (Supplementary file
2). Compound Zpx028, a pyrrole analogue, had the highest potency at
24 h, with an IC50 of 8.63 ± 0.90 μM. Compound Zpx027 had the
second highest potency at inhibiting xL3 motility at 24 h
(IC50= 9.79 ± 2.54 μM), and was most potent at inhibiting xL3 mo-
tility at 72 h (IC50= 1.22 ± 0.09 μM) (Table 1; Supplementary file 2).

All 32 hits, except Zpx021 and Zpx90, elicited a dose-dependent
inhibition of L4 development; six compounds achieved an IC50 of
≤2 μM (Supplementary file 2). The two compounds, Zpx028 and
Zpx027, with the highest potency at inhibiting xL3 motility, were also
the most potent inhibitors of L4 development (Fig. 2; Table 1) - the IC50

values (0.57 ± 0.04 μM for Zpx028; 1.18 ± 0.10 μM for Zpx027) are
comparable to those of the commercial anthelmintic monepantel in vitro
(IC50= 0.43 ± 0.01 μM) (Fig. 2; Table 1).

All 32 hits were tested for toxicity to MCF10A breast epithelial cells
in vitro. The IC50 values obtained ranged from 2.16 μM to 50 μM, and
selectivity indices (at 24 h) varied from 0.04 to 1.91 for xL3 motility,
and from 0.26 to 28.95 for L4 development (at 7 days; Supplementary
file 3). Eight compounds, Zpx028, Zpx030, Zpx023, Zpx026, Zpx024,
Zpx040, Zpx090 (pyrrole analogues) and Zqq1341 (fipronil analogue),
exhibited moderate toxicity (IC50 of 16.50–44.98 μM; Supplementary
file 2). Four pyrrole analogues, Zpx019, Zpx020, Zpx021 and Zpx022,
had limited toxicity to the cells, with IC50 values of ≥50 μM (Table 2;
Supplementary file 2).

On the basis of the dose-dependent inhibition of xL3 motility (at
24 h) and L4 development (7 days) and/or the degree of cytotoxicity in
vitro (Supplementary file 2), seven compounds (Zpx019, Zpx020,

Table 1
The effects of seven active analogues on xL3 and L4 motility (24 h, 48 h and 72 h) and L4 development (7 days) of Haemonchus contortus in vitro. A comparison of half
of the maximum inhibitory concentration (IC50) values of compounds with those of monepantel or moxidectin, expressed as mean IC50 ± standard error of mean or a
range.

Compound control xL3 motility
(IC50 in μM) a

L4 motility
(IC50 in μM)

L4 development
(IC50 in μM)

24 h 48 h 72 h 24 h 48 h 72 h 7 days

Zpx019 nd 11.81 ± 0.19 7.40 ± 1.22 13.45 ± 3.66 3.13 to 6.25 3.7 b 4.28 ± 0.38
Zpx020 nd nd 3.86 ± 0.28 3.47 ± 2.36 3.22 ± 1.64 2.28 ± 0.67 7.24 ± 0.97
Zpx022 nd 10.62 ± 4.07 9.14 ± 3.32 17.68 ± 0.11 4.3 b 4.25 ± 0.82 13.98 ± 0.98
Zpx024 25.26 ± 8.50 9.17 ± 2.60 3.2 b 2.45 ± 1.22 1.07 ± 0.15 1.30 ± 0.15 1.99 ± 0.02
Zpx027 9.79 ± 2.54 3.10 ± 0.01 1.22 ± 0.09 0.31 ± 0.29 0.14 ± 0.12 0.09 ± 0.04 1.18 ± 0.13
Zpx028 8.63 ± 0.90 2.9 b 1.25 ± 0.36 0.16 ± 0.13 0.10 ± 0.03 0.04 ± 0.01 0.57 ± 0.04
Zpx040 nd 3.1 b 1.68 ± 0.66 12.92 ± 4.00 2.6 b 3.36 ± 0.86 1.58 ± 0.09
Monepantel 2.12 ± 0.55 0.76 ± 0.32 0.59 ± 0.01 6.52 ± 2.18 0.7 b 0.1 b 0.43 ± 0.01
Moxidectin 0.50 ± 0.42 0.19 ± 0.04 0.08 ± 0.02 0.92 ± 0.90 0.002 ± 0.04 0.003 ± 0.01 not applicable

a IC50 values that could not be accurately determined using the log (inhibitor) vs. response-variable slope four parameters model are indicated as not determined (nd).
b Estimated from the graphs in Fig. 2.

Table 2
Toxicity assessment of seven arylpyrrole analogues on MCF10A cells. A comparison of half of the maximum inhibitory concentration (IC50) values of compounds with
monepantel and doxorubicin; expressed as mean IC50 ± standard error of mean, and selectivity indices (SI) of the compounds on motility (xL3 and L4) and
development (L4) of Haemonchus contortus at different time points compared with monepantel.

Compound Control IC50 (in μM) for MCF10A cells Selectivity index (SI) for H. contortus

xL3 motility c L4 motility L4 development

24 h 48 h 72 h 24 h 48 h 72 h 7 days

Zpx019 >50 nd >4.5 > 6.8 > 3.7 >8.0 > 13.6 > 11.7
Zpx020 >50 nd nd >12.9 > 14.4 >15.7 > 21.9 > 7.0
Zpx022 >50 nd >4.7 > 5.5 > 2.8 >11.7 > 11.7 > 3.6
Zpx024 26.11 ± 3.92 1.0 2.9 8.1 10.7 24.4 20.1 13.1
Zpx027 6.36 ± 3.29 0.7 2.1 5.2 20.5 45.6 70.9 5.4
Zpx028 16.50 ± 2.58 1.9 5.7 13.2 103.1 165 412.5 28.9
Zpx040 35.7 b n/d 11.5 21.3 2.8 13.9 10.6 22.6
Monepantel 32.8 b 15.5 43.3 55.7 5.0 47.4 328.4 76.4
Doxorubicin a 2.17 ± 0.02 na na na na na na na

a Not applicable (na).
b Estimated from the graphs of percentage MCF10A cell density vs. log (concentration).
c If IC50 could not be established, SI was not determined (nd).
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Zpx022, Zpx027, Zpx024, Zpx028 and Zpx040; all pyrrole analogues)
were assessed for their ability to inhibit the motility of L4s (Fig. 1). All
of these seven compounds exhibited a dose-dependent inhibition of L4
motility at 24 h, with IC50 values ranging from 17.68 ± 0.11 μM to
0.16 ± 0.13 μM (Fig. 2; Table 1). Interestingly, compounds Zpx019,
Zpx20, Zpx022 and Zpx040, which did not inhibit xL3 motility in a
dose-dependent manner at 24 h, did inhibit L4 motility at the same time
point (Fig. 2; Table 2). The two most potent inhibitors of both xL3
motility and L4 development also exhibited the highest potency
(IC50= 0.16 ± 0.13 μM for Zpx028 and IC50= 0.31 ± 0.29 μM for
Zpx027) and selectivity (SI= 20.5 for Zpx027 and SI= 103.1 for
Zpx028) for inhibiting L4 motility at 24 h (Fig. 2; Tables 1 and 2).

As pyrroles act as insecticides via respiratory uncoupling (Black

et al., 1994; Liu et al., 2014), we assessed compounds Zpx027 and
Zpx028 for their effects on respiration in H. contortus. In response to
each of these compounds, the oxygen consumption rate (OCR) of the
xL3 stage increased (Fig. 3). Neither the negative (no-compound) nor
the positive (monepantel) control showed a significant difference from
the basal OCR in xL3s throughout the experimental period (Fig. 3). The
OCR patterns for compounds Zpx028 and Zpx027 were similar to that
of FCCP, a standard mitochondrial uncoupler (Fig. 3), and there was a
significant difference (P<0.001 for Zpx028 and P<0.01 for Zpx027)
in total oxygen consumption (cf. Fig. 3) between larvae treated with
each test compound and the untreated and monepantel-treated controls
(Fig. 3).

Fig. 2. Dose response curves for seven compounds (Zpx019, Zpx020, Zpx022, Zpx024, Zpx027, Zpx028 and Zpx040) with activity against larval stages of
Haemonchus contortus in vitro. Inhibition of motility of exsheathed third-stage larvae (xL3s) (panel A) and fourth-stage larvae (L4s) (panel B) following incubation
with each compound (two-fold dilution series with 18 points; starting at 100 μM) for 24 h, 48 h and 72 h, and the inhibition of development of L4s following
incubation with the same compounds for 7 days (panel C). Monepantel and moxidectin, tested at matched concentrations, were included as reference controls.
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4. Discussion

The screening of a series of pesticide analogues identified 32 com-
pounds with activity against H. contortus xL3s. Seven compounds were
chosen for further evaluation based on their potency against H. con-
tortus larvae (motility and development) and mostly limited toxicity on
a human cell line (MCF10A). Selected compounds (n=7) were found
to be rapid inhibitors of L4 motility, and the two most potent ones in all
worm assays (Zpx027 and Zpx028) were shown to increase oxygen
consumption in xL3s. This increase mirrored the behaviour of a re-
cognised mitochondrial uncoupler, FCCP (cf. Fig. 3), inferring that
heightened respiration rates stemmed from an increased electron flow
through the mitochondrial electron transport chain, rather than from a
non-specific removal of dissolved oxygen. Therefore, the compounds
tested seem to have a mode of action that is the same or similar to that
of the arylpyrrole parent structure representing 30 of the 32 compounds
identified in the primary screen, with the other two being derivatives of
fipronil (cf. Supplementary file 1).

The founding member of insecticidal and acaricidal arylpyrroles
was a natural product, dioxapyrrolomycin, first identified as a meta-
bolite from Streptomyces fumanus (see Carter et al., 1987). The structure
of dioxapyrrolomycin was modified to yield the commercial product
chlorfenapyr (Addor et al., 1992), a compound that is effective against a
range of parasitic arthropods of plants, including the southern army-
worm (Persectania ewingii), tobacco budworm (Heliothis virescens-Fab-
ricius), western potato leafhopper (Empoasca abrupta) and red spider
mite (Tetranychus urticae) (Kuhn, 1997). Chlorfenapyr is a pro-drug that
is metabolically converted to the active compound (CL303268) by N-
dealkylation inside the pathogen (Black et al., 1994). The biological
effects of CL303268 and dioxapyrrolomycin seem to be based on their
activity as uncouplers of oxidative phosphorylation (Black et al., 1994),
and it is reasonable to propose that this is also the mode of anthelmintic
action of the present arylpyrrole hit compounds, given the uncoupling
activity exhibited by the two members tested (i.e. Zpx027 and Zpx028).
Once again, natural product-inspired s have proven to be suitable
starting points to identify potential anti-infective leads.

The reason for the rapid and dose-dependent activity of arylpyrrole
analogues Zpx019, Zpx020, Zxp022 and Zpx040 against L4s, with no
apparent activity against xL3s at 24 h, is not yet clear. However, we
propose that it relates to differences in oral drug uptake between the
two larval stages of H. contortus. Uptake in L4s may be greater than in
xL3s due to a well-developed pharynx in this stage. At this point, it

cannot be excluded that this difference might be due to variation in
target function and/or in drug metabolism between the two develop-
ment stages; however, given the high structural similarities among the
four test compounds, this latter explanation is considered less likely, as
they are expected to share the same target/mode of action and de-
gradation pathways.

The two fipronil derivatives (Zqq-1726 and Zqq-1341) received
limited experimental priority, because of their relatively low potency
on H. contortus and higher cytotoxicities relative to the selected ar-
ylpyrrole analogues. Nonetheless, their structure-activity relationship
could be explored in future work. The parent compound of these
structures is a broad spectrum, highly selective synthetic phenypyrazole
insecticide that exerts its biological activity by blocking GABA-gated
chloride channels (Zhao et al., 2003) and glutamate-gated chloride
(GluCl) channels (Gant et al., 1998; Zhao et al., 2004), so we presume
that this will also be the mode of action for the analogues studied here,
although we have not yet collected the evidence to support this pro-
posal.

In conclusion, some of the analogues with favourable activity and
toxicity profiles identified in this study warrant critical evaluation as
anthelmintic candidates. Medicinal chemical optimisation, supported
by iterative structure-activity relationship, in vitro and in vivo toxicity
and pharmacokinetic assessments, should allow the potential of lead
candidates to be established. Overall, the findings of the present study
encourage the screening of natural product-derived libraries for com-
pounds with anthelmintic activity.
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Fig. 3. The effect of selected compounds on oxygen consumption of exsheathed third-stage larvae (xL3s) of Haemonchus contortus in vitro. The oxygen
consumption rates (OCRs) of exsheathed third-stage larvae (xL3s) before and following exposure to compound Zpx027 or Zpx028 as well as the controls XF medium
only, monepantel and carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (panel A). The graphs show total oxygen consumption, calculated from the
area under the curve (AUC) and expressed as mean AUC ± standard error of mean (SEM). Asterisks indicate the values that are significantly different from one
another (**P < 0.01, ***P < 0.001) (panel B).
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