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Alpha-macroglobulins are ancient proteins that include monomeric, dimeric, and tetrameric family members. In humans, and
many other mammals, the predominant alpha-macroglobulin is alpha-2-macroglobulin (α2M), a tetrameric protein that is
constitutively abundant in biological fluids (e.g., blood plasma, cerebral spinal fluid, synovial fluid, ocular fluid, and
interstitial fluid). α2M is best known for its remarkable ability to inhibit a broad spectrum of proteases, but the full gamut of its
activities affects diverse biological processes. For example, α2M can stabilise and facilitate the clearance of the Alzheimer’s
disease-associated amyloid beta (Aβ) peptide. Additionally, α2M can influence the signalling of cytokines and growth factors
including neurotrophins. The results of several studies support the idea that the functions of α2M are uniquely regulated by
hypochlorite, an oxidant that is generated during inflammation, which induces the native α2M tetramer to dissociate into
dimers. This review will discuss the evidence for hypochlorite-induced regulation of α2M and the possible implications of this in
neuroinflammation and neurodegeneration.

1. Structure and Function

α2M is a secreted protein that is present at 1.5–2mgmL−1

and 1.0–3.6μgmL−1 in human blood plasma and cerebral
spinal fluid, respectively [1, 2]. The cage-like structure of
α2M (720 kDa) is formed by the assembly of four 180 kDa
subunits into two disulfide-linked dimers, which noncova-
lently associate to complete the tetrameric quaternary struc-
ture of the protein [3]. A bait region that contains a large
number of protease cleavage sites is responsible for the
incredibly diverse range of proteases that interact with α2M
[4]. Cleavage of the α2M bait region, which is in close physi-
cal proximity to a reactive thioester bond, results in covalent
trapping of proteases within a steric cage [5]. This process
involves a substantial conformational change that generates
a compact tetrameric form [6] and reveals the binding site
for the low-density lipoprotein receptor-related protein-1
(LRP1) [7, 8] (Figure 1(a)). For the purpose of this review,
the compact tetrameric protease-bound form of α2M is

referred to as transformed α2M. Transformed α2M (cova-
lently bound to up to two protease molecules) is rapidly
cleared from the circulation via LRP1-facilitated endocytosis
(Figure 1(a)). As such, α2M can efficiently inhibit a myriad
of extracellular processes that are dependent on proteolysis.

Consistent with having an ancient origin in innate immu-
nity, α2M is a promiscuous protein that noncovalently binds
to a diverse range of nonprotease ligands including cytokines
[9, 10], growth factors [9–14], apolipoproteins [15], and mis-
folded proteins [16–20]. Many noncovalent ligands of α2M
including the Alzheimer’s disease-associated Aβ peptide
[21], neurotrophins [14], and tumour necrosis factor-alpha
(TNF-α) preferentially bind to transformed α2M which is
generated following the reaction of native α2M with a prote-
ase or with small nucleophilic compounds that also target the
α2M thioester bond [6]. In these cases, it is proposed that
transformed α2M acts to limit the activities of noncovalently
bound ligands by facilitating their disposal via LRP1 [10, 22]
(Figure 1(a)). On the other hand, α2M can control signalling
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pathways via alternative mechanisms. For example, the bind-
ing of α2M to phosphorylated insulin-like growth factor
binding protein-1 abrogates its inhibitory effects on insulin-
like growth factor-1 (IGF-1); therefore, in some scenarios,
α2M can potentiate growth factor signalling [13]. Another
example whereby α2M is reported to potentiate growth factor
signalling involves the pronerve growth factor (pro-NGF),
which induces the expression of TNF-α via stimulating the
neurotrophin receptor p75 [11]. Although α2M potentiates
pro-NGF signalling in vitro, α2M is reported to inhibit the
activity of mature NGF by binding either to NGF or to Trk
receptors [12, 23, 24].

The accumulation of misfolded proteins is inherently
deleterious to living organisms and underlies the pathology
of many human diseases including Alzheimer’s disease,

Parkinson’s disease, and motor neuron disease. α2M is
one of a small number of secreted proteins that are known
to possess holdase-type chaperone activity, which is the
ability to stabilise misfolded proteins and prevent their
aberrant aggregation [16–20, 25]. The chaperone function
of α2M has been demonstrated in vitro using a broad
range of misfolded clients including denatured globular
proteins and aggregation prone, intrinsically disordered sub-
strates (e.g., Aβ peptide and Parkinson’s disease-associated
alpha-synuclein). Furthermore, it has been shown that
α2M preferentially binds several plasma proteins in situ fol-
lowing experimentally-induced shear stress which causes
plasma protein aggregation [18, 19]. The likely fate for
complexes formed between native α2M and misfolded
proteins is clearance via LRP1 following interaction with a

Functions of hypochlorite-modified dimeric �훼2MFunctions of tetrameric �훼2M
(i) Regulation of growth factors and cytokines

(ii) Protease trapping
(iii) Stabilisation of misfolded proteins
(iv) Clearance of protease-transformed tetrameric �훼2M via LRP1 

(i) Differential regulation of growth factors and cytokines

Protease trapping

LRP1-mediated clearance of transformed �훼2M

Cytokine and growth factor binding

Misfolded protein stabilisation

LRP1-mediated clearance of dimeric �훼2M

Loss of protease trapping

Altered cytokine and growth factor binding

Enhanced binding to misfolded proteins

Hypochlorite

Intracellular

Extracellular

Cell signalling
Receptor-mediated endocytosis and lysosomal degradation

�훼2M
transformation

(a) (b)

(iv) Clearance of hypochlorite-modified �훼2M dimers via LRP1
(iii) Strongly enhanced binding of misfolded proteins
(ii) Loss of protease trapping

Figure 1: Schematic diagram showing the function consequences of hypochlorite-induced modification of α2M. (a) Native α2M, a tetramer
(shown in green), is constitutively present in biological fluids and covalently binds to a broad range of proteases. Binding to proteases results
in a conformational change that exposes the binding site on α2M for LRP1, which is responsible for the clearance of the protease-transformed
α2M complex (shown in dark blue). α2M also binds to a large number of noncovalent ligands including cytokines and misfolded proteins. In
many cases, noncovalent binding of ligands occurs preferentially to the protease-transformed conformation (not shown). In the instance that
native α2M binds noncovalently to a nonprotease substrate, protease interaction is required to enable clearance of the complex via LRP1.
(b) Reaction with hypochlorite induces the dissociation of the native α2M tetramer into dimers. This process abolishes the protease-trapping
activity of α2M; however, the binding to some cytokines (i.e., TNF-α, IL-2, and IL-6) and misfolded proteins is enhanced. On the other hand,
the binding of α2M to other noncovalent ligands (i.e., β-NGF, PDGF-BB, TGF-β1, and TGF-β2) is reduced. The dissociation of the
native α2M tetramer into dimers reveals the binding site on α2M for LRP1. Therefore, α2M dimers can facilitate the clearance of
substrates in a protease-independent manner. N.B.: Inflammatory processes potentially elevate levels of protease-transformed α2M and
hypochlorite-modified α2M dimers, concomitantly.
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protease [16, 22, 25–27] (Figure 1(a)). However, protease-
transformed α2M can also inhibit Aβ aggregation via
degrading the peptide because trapped proteases remain
active following covalent binding to α2M [18, 19]. The neu-
roprotective activity of α2M against the toxicity induced by
misfolded proteins has been demonstrated using several
in vitro models [17, 25, 27, 28] and has also been demon-
strated in rats directly injected with toxic Aβ oligomers
[29]. Taken together, the results of these studies support
the conclusion that the functions of α2M are broadly
important to extracellular proteostasis.

2. α2M and Neurodegenerative Diseases

Interest in the role of α2M in Alzheimer’s disease spans
several decades. In part, this stems from early reports that
polymorphisms in α2M are associated with increased risk of
Alzheimer’s disease in some populations [30–36]. However,
opposing results have also been presented [37, 38], and more
recent genome-wide association studies have not found any
association [39]. It has recently been reported that serum
α2M is elevated in men with preclinical Alzheimer’s disease,
which potentially represents a general response to neuronal
injury [40]. The significance of elevated levels of α2M is hard
to determine, because aside from influencing Aβ aggregation
and clearance, there are many other relevant biological
processes that α2M potentially influences. For example, apo-
lipoprotein E (ApoE) is an endogenous ligand of α2M in
blood plasma, and the binding of α2M to the ε4 isoform
(the strongest known genetic risk factor for Alzheimer’s dis-
ease) is much less compared to the binding of α2M to the ε2
and ε3 ApoE isoforms [15]. The functional importance of
this interaction has yet to be solved.

There is strong evidence that native α2M can inhibit the
aggregation and toxicity of Aβ peptide (the major constituent
of extracellular plaques in Alzheimer’s disease). Furthermore,
the widely documented ability of α2M to facilitate the clear-
ance of the Aβ peptide is central to its neuroprotective action
[17, 25, 27–29]. α2M is found colocalised with the Aβ peptide
in the brain in Alzheimer’s disease [41, 42], which supports
the idea that the LRP1-mediated clearance of α2M-Aβ com-
plexes is impaired or overwhelmed. Similar to α2M, there
are conflicting reports regarding an association between
polymorphisms in LRP1 and the risk of Alzheimer’s disease
(reviewed in [43]). Given that the accumulation of the Aβ
peptide in the brain in Alzheimer’s disease appears to be
the result of a defect in clearance, rather than elevated pro-
duction of the peptide [44], it is important to understand
the contribution of α2M to the clearance of the Aβ peptide
in greater detail.

Roles for α2M in preventing or promoting neurodegener-
ation independent of Alzheimer’s disease are less clear.
Nevertheless, α2M is reported to bind to a broad range of
misfolded proteins including the infectious prion protein
that is responsible for transmissible spongiform encephalop-
athies [45] and α-synuclein, the major constituent of mis-
folded protein deposits in Parkinson’s disease [17]. In the
case of the prion protein, it has been reported that binding
to α2M in vitro facilitates the conformational change in the

prion protein that is responsible for its infectious characteris-
tics [45]. On the other hand, similar to the protective effect of
α2M on Aβ toxicity, the binding of α2M to α-synuclein is
cytoprotective [17]. α2M also potentially inhibits neurode-
generation by influencing the activity of neurotrophins such
as NGF and pro-NGF or by inhibiting the activity of neuro-
trophin receptors directly [12, 23, 24]. The latter could have
relevance in a range of neurodegenerative diseases including
Alzheimer’s disease, Parkinson’s disease, and Huntington’s
disease in which aberrant neurotrophin signalling is impli-
cated [46]. Moreover, the ability of α2M to bind to proinflam-
matory mediators such as TNF-α, IL-6, and IL-1β [47–49]
supports the idea that α2M has generalised importance in
controlling inflammatory processes including in the central
nervous system.

3. Hypochlorite, a Novel Regulator of
α2M Functions

Hypochlorite (OCl-) is a powerful oxidant that is produced
by the action of the enzyme myeloperoxidase during inflam-
mation. Myeloperoxidase is not detected in the brains of
healthy individuals; however, in neuroinflammatory disor-
ders, myeloperoxidase is generated by activated microglia
and astrocytes [50–54]. Infiltrating monocytes/macrophages
and neutrophils can also contribute to myeloperoxidase
production in the brain [50, 55]. Although the reasons for
this are unclear, myeloperoxidase-immunoreactivity is also
detected in neurons in Alzheimer’s disease [50, 51]. Interest-
ingly, in a mouse model of Parkinson’s disease, ablation of
the myeloperoxidase gene is protective, which supports the
conclusion that myeloperoxidase is a major contributor to
the oxidative damage generated by pathological neuroinflam-
matory processes [56].

Hypochlorite production is primarily considered impor-
tant for defence against invading microbes [57]. The effec-
tiveness of hypochlorite as a microbicidal agent is linked to
the potency with which hypochlorite damages proteins,
inducing their misfolding [58, 59]. Given that reaction with
hypochlorite is not specific to molecules of microbial origin,
the generation of hypochlorite is associated with collateral
damage to the host organism. As a result of aberrant inflam-
matory activity, hypochlorite-modified proteins accumulate
in a large number of pathologies including Alzheimer’s
disease [51], atherosclerosis [60], kidney disease [61], rheu-
matoid arthritis [52] and in experimental animal models of
Parkinson’s disease [56] and multiple sclerosis [62].
Hypochlorite-induced modification can directly cause pro-
teins to adopt immunostimulatory and cytotoxic properties.
For example, hypochlorite-induced modification of apolipo-
protein B-100, the major protein component of low-density
lipoprotein particles, promotes macrophage foam cell forma-
tion and triggers platelet aggregation [63]. Additionally,
hypochlorite-modified albumin is known to promote proin-
flammatory signalling [64], endothelial cell dysfunction
[65], and apoptosis [66].

It is well-known that antioxidants are the first line of
defence that protects the host from excessive oxidative dam-
age during inflammation. However, evidence has emerged
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that supports the conclusion that specialised hypochlorite-
inducible systems are also important. Around a decade ago,
it was demonstrated that the activity of the bacterial chaper-
one Hsp33 is directly enhanced following reaction with hypo-
chlorite and the chaperone activity of hypochlorite-modified
Hsp33 protects bacteria from hypochlorite-induced death
[59]. More recently, it has been demonstrated that reaction
with hypochlorite induces the dissociation of the native
α2M tetramer into dimers that have dramatically enhanced
chaperone activity compared to the native α2M tetramer
[25] (Figure 1(b)). The mechanism responsible for the
enhanced chaperone activity of hypochlorite-modified
α2M dimers involves the exposure of the normally buried
hydrophobic surfaces that are situated at the interface of
noncovalently-associated dimers in the native α2M tetra-
mer [25] (Figure 2). It has been reported that methionine
oxidation is largely responsible for the hypochlorite-
induced dissociation of α2M into dimers [67]; however,
aromatic amino acids are also modified by physiologically
relevant levels of hypochlorite [25, 68, 69]. The results of
biophysical analyses show that physiologically-relevant
levels of hypochlorite also alter the secondary structure of
α2M subunits [25, 68]. Precisely how hypochlorite-induced
modification of the secondary structure of α2M influences
its functions is not known.

During inflammation, extracellular protease activity
and the generation of hypochlorite are both elevated;
therefore, it is plausible that protease-transformed α2M

and hypochlorite-induced α2M dimers are concomitantly
generated in vivo. Hypochlorite-induced modification of
native α2M exposes its LRP1 binding sites ([25, 70]); there-
fore, during inflammation, α2M and its cargoes are poten-
tially cleared via two distinct mechanisms involving LRP1
(Figure 1(a): protease-transformed α2M and Figure 1(b):
hypochlorite-induced α2M dimers). The dissociation constant
for the binding of hypochlorite-modified α2M to LRP1 is
reportedly ~0.7 nM [70] compared to 40pM—2nM for the
transformed α2M [71]. Unlike native α2M, reaction with
hypochlorite does not induce transformed α2M (generated
using methylamine) to dissociate into dimers, and the resul-
tant hypochlorite-induced damage reduces the binding of
transformed α2M to LRP1 [70]. Therefore, during inflamma-
tion, the generation of hypochlorite potentially enhances the
delivery of hypochlorite-modified α2M dimers that are gener-
ated from the native α2M tetramer to LRP1, while impeding
the delivery of transformed α2M to the same receptor.

Although the chaperone activity of native α2M is
enhanced following hypochlorite-induced modification, sim-
ilar levels of hypochlorite-induced modification abolish the
protease trapping function of α2M [72, 73]. Collectively, the
evidence suggests that reaction with hypochlorite is a rapid
switch that regulates the activities of α2M during inflamma-
tion. Supporting this idea, it has been reported that
hypochlorite-induced modification of α2M also regulates its
binding to cytokines and growth factors in a manner that
increases its binding to TNF-α, IL-2, and IL-6 (involving

+ Protease 

+ Hypochlorite

(a) (b)

(i) Native �훼2M tetramer (ii) Transformed �훼2M tetramer 

(iii) �훼2M dimers (iv) Native PZP dimer

Figure 2: Theoretical model showing the binding sites for monomeric Aβ on native α2M and PZP. (a) The binding sites for monomeric Aβ
(magenta; centred at amino acids 1314–1365 according to [21]) are normally concealed at the noncovalent interface of the (i) native α2M
tetramer. (ii) Binding to proteases (yellow triangles) results in the partial opening of the noncovalent interface between α2M dimers and
exposes the binding sites for monomeric Aβ on each subunit of transformed α2M. (iii) The binding sites for monomeric Aβ are also
exposed by hypochlorite-induced dissociation of the native α2M tetramer into dimers. (iv) Native PZP (a disulfide-linked dimer) shares
82.7% sequence identity with α2M in the Aβ binding region (magenta). The dimeric quaternary structure of native PZP results in surface
exposure of the binding sites for monomeric Aβ. Although the binding sites for other misfolded proteins are not known, intuitively, they
are also located at the normally buried hydrophobic interface of noncovalently associated α2M dimers. (b) Image of the crystal structure of
the transformed α2M tetramer from PBD 4ACQ [3] with the binding sites for monomeric Aβ shown in magenta, which is comparable to
the model shown in (a (ii)). The crystal structures of native α2M or hypochlorite-modified α2M dimers have not been solved.
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preferential binding to hypochlorite-induced α2M dimers)
and decreases its binding to β-NGF, PDGF-BB, TGF-β1,
and TGF-β2 in vitro [74] (Figure 1(b)). Furthermore,
hypochlorite-induced dissociation of α2M enhances its cyto-
protective effect against TNF-α in vitro [74]. Interestingly, it
has been reported that the complement system, which
includes several proteins that are closely related to α2M,
is also activated by reaction with hypochlorite [75, 76].
Therefore, it is tempting to speculate that hypochlorite-
induced regulation is a characteristic that is shared by this
family of proteins.

Studies of the hypochlorite-induced regulation of α2M are
currently limited to in vitro systems; however, using the spe-
cific marker for reaction with hypochlorite 3-chlorotyrosine,
it has been shown that α2M is modified by hypochlorite in
synovial fluid from inflamed joints [69]. Moreover, consider-
ing that hypochlorite levels are predicted to reach the low
millimolar range in tissues during inflammation [77], it
is plausible that hypochlorite-modified α2M dimers are
generated in biological fluids during inflammation. Of the
studies reporting an association between mutation in α2M
and risk of Alzheimer’s disease, one study has reported that
there is a synergistic effect between polymorphisms in α2M
and myeloperoxidase and an increased risk of Alzheimer’s
disease [36]. The results of the latter study support the idea
that the functions of these two proteins might interrelate in
a way that is important to neurodegeneration. It is not cur-
rently known if any of the other identified extracellular chap-
erones (e.g., clusterin and haptoglobin) might also have their
activities regulated by hypochlorite-induced modification,
but this is an area worthy of future investigation.

4. PZP, a Dimeric α2M-like Molecule

The major structural modification induced by reaction with
hypochlorite that is responsible for functionally controlling
α2M is the dissociation of the native α2M tetramer into
dimers. Strikingly, many mammals are capable of generating
large amounts of a dimeric α2M-like protein known as preg-
nancy zone protein (PZP). In humans, α2M and PZP share
very high sequence homology in all domains (71% amino
acid identity), with the exception of the bait region [4, 78].
As a result, the ability of PZP to inhibit proteases is much
more restricted compared to that of α2M. Few in vitro
studies have focused on characterising the functions of
PZP; however, it has been proposed that PZP contributes
to regulating glycodelin-A (a paracrine mediator in early
pregnancy) and TGF-β2 (important for embryonic develop-
ment) [12, 79–81]. Consistent with this idea, PZP is usually
lowly abundant in biological fluids but is markedly upregu-
lated in pregnancy [82]. On the other hand, glycodelin-A
and TGF-β2 are also ligands for constitutively abundant
α2M ([12, 79–81]); therefore, the precise importance of PZP
as a modulator of these signalling pathways remains unclear.
Similarly, several neurotrophins are shared ligands of PZP
and α2M, but the precise biological importance of these inter-
actions is not known [12]. Pregnancy-independent expres-
sion of PZP is widely reported in diseases such as
Alzheimer’s disease [83, 84], Parkinson’s disease [85],

rheumatoid arthritis [86], Behcet’s syndrome [87], psoria-
sis [88, 89], Chagas disease [90], viral infection [91, 92],
inflammatory bowel disease [93], and cancers [94, 95]. The
latter observations support the idea that the upregulation of
PZP could be a general stress response that is related to
chronic inflammation. This limits the usefulness of PZP as a
diagnostic marker; however, the results of studies of lym-
phoma and arthritis patients suggest that PZP levels are poten-
tially useful for monitoring disease progression [95, 96].

The ability of native tetramericα2M to inhibit Aβ aggrega-
tion is restricted to binding to soluble Aβ oligomers formed
early during the aggregation pathway [20]. In contrast, trans-
formed α2M and hypochlorite-modified α2M dimers bind to
monomeric Aβ [21, 25], presumably via the hydrophobic
binding site (centred at amino acids 1314–1365) identified
by [21] (Figure 2). Intuitively, surface exposure of this site con-
tributes to the efficiency with which hypochlorite-modified
α2Mdimers inhibit Aβ amyloid formation compared to native
α2M [25]. Similarly, the results of recent studies show that PZP
binds to themonomeric Aβ peptide and prevents the aggrega-
tion of the Aβ peptide much more efficiently than native α2M
[97]. Whether or not PZP contributes to the clearance of the
Aβ peptide in vivo is currently unknown; however, it has
been demonstrated that PZP levels are elevated in women
with presymptomatic Alzheimer’s disease and PZP is found
colocalised with microglia around Aβ plaques in the brain
in Alzheimer’s disease [83, 84]. Combined, these observa-
tions suggest that PZP is likely to participate in Aβ homeo-
stasis. Whether or not the role of PZP overlaps with or is
discrete from that of α2M remains to be determined.

5. Concluding Remarks

α2M is a remarkably multifunctional protein that can influ-
ence a broad range of biological processes. Direct injection
of α2M into inflamed joints has been shown to have protective
effects in a rodent model of osteoarthritis ([98]); however, the
efficacy and safety of this as a human therapy is not yet
known. An alternative α2M-based anti-inflammatory strategy
involves the oral administration of proteases, which is pro-
posed to increase levels of transformed α2M in blood plasma
[99, 100]. This strategy is clearly limited by the poor bioavail-
ability of orally administered proteases, but this problem
could potentially be overcome by the identification of
bioavailable small molecule modifiers of α2M function.

Growing evidence suggests that hypochlorite-induced
dissociation of α2M into dimers is a rapid switch that
enhances the ability of α2M to facilitate the clearance of
disease-associated misfolded proteins and proinflammatory
cytokines during inflammation. This is potentially a broadly
important process that occurs in response to inflammation,
including in neurodegenerative disorders in which neuroin-
flammation is known to be an early event that precedes other
pathological changes (reviewed in [101]). A deeper under-
standing of the physiological relevance of hypochlorite-
induced α2M dimers has the potential to shed much
needed light on the participation of α2M in controlling
inflammatory processes and extracellular protein homeosta-
sis during neuroinflammation.
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