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ABSTRACT 16 

Understanding how multi-protein complexes function in cells requires detailed quantitative 17 

understanding of their association and dissociation kinetics.  Analysis of the heterogeneity of 18 

binding lifetimes enables interrogation of the various intermediate states formed during the 19 

reaction. Single-molecule fluorescence imaging permits the measurement of reaction kinetics 20 

inside living organisms with minimal perturbation. However, poor photo-physical properties 21 

of fluorescent probes limit the dynamic range and accuracy of measurements of off rates in live 22 

cells. Time-lapse single-molecule fluorescence imaging can partially overcome the limits of 23 

photobleaching, however, limitations of this technique remain uncharacterized. Here, we 24 

present a structured analysis of which timescales are most accessible using the time-lapse 25 
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imaging approach and explore uncertainties in determining kinetic sub-populations. We 26 

demonstrate the effect of shot noise on the precision of the measurements, as well as the 27 

resolution and dynamic range limits that are inherent to the method. Our work provides a 28 

convenient implementation to determine theoretical errors from measurements and to support 29 

interpretation of experimental data. 30 

STATEMENT OF SIGNIFICANCE 31 

Measuring lifetimes of interactions between DNA-binding proteins and their substrates is 32 

important for understanding how they function in cells. In principle, time-lapse imaging of 33 

fluorescently-tagged proteins using single-molecule methods can be used to identify multiple 34 

sub-populations of DNA-binding proteins and determine binding lifetimes lasting for several 35 

tens of minutes. Despite this potential, currently available guidelines for the selection of 36 

binding models are unreliable, and the practical implementation of this approach is limited. 37 

Here, using experimental and simulated data we identify the minimum size of the dataset 38 

required to resolve multiple populations reliably and measure binding lifetimes with desired 39 

accuracy. This work serves to provide a guide to data collection, and measurement of DNA-40 

binding lifetimes from single-molecule time-lapse imaging data.41 
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INTRODUCTION 42 

Understanding fundamental processes of life requires characterization of the kinetics of 43 

interactions between biological molecules. At single-molecule levels, these systems often 44 

exhibit kinetic heterogeneity that is inherent to the presence of multiple intermediate states (1-45 

17). Advances in single-molecule imaging have enabled the detection and characterization of 46 

heterogeneous sub-populations in reactions conducted in vitro as well as, in vivo. Ultimately, 47 

these investigations enable the construction of detailed molecular mechanisms to explain how 48 

various biomolecular interactions proceed.  49 

Compared to in vitro studies, live-cell investigations offer the key advantage of studying 50 

biochemical reactions at physiological conditions that can be difficult to reconstitute. Single-51 

molecule live-cell imaging commonly relies on fluorescent proteins that are genetically fused 52 

to the protein of interest (Fig. 1A) (18-22). Tracking the fluorescence signal of thousands of 53 

molecules, one molecule at a time, enables the building of physical models, from which 54 

physical parameters such as diffusion constants and detachment rates from DNA can be 55 

determined. Where detachment rates are concerned, the trajectory lengths of thousands of 56 

molecules are aligned to obtain a cumulative residence time distribution (CRTD). At the single-57 

molecule level, the dissociation of a protein from its substrate is a stochastic process. This 58 

phenomenon can be adequately described as a two-state kinetic model with the interconversion 59 

of populations being modelled as a Poisson process. The resulting CRTD can be fit to 60 

exponential functions to obtain decay rates. In the case of a fluorescently tagged protein where 61 

loss of fluorescence is attributable to either dissociation, or photobleaching of the 62 

chromophore, the decay rate represents a combination of dissociation rates and photobleaching 63 

rate (Fig. 1B-C) (23). 64 
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 65 

FIGURE 1 Experimental approach for characterizing kinetic heterogeneity of protein binding 66 

in live cells using single-molecule fluorescence imaging. (A) The protein of interest is tagged 67 

with a fluorescent protein. When the protein binds to DNA substrate, its fluorescence signal 68 

appears as a diffraction-limited focus that can be tracked in real time. Subsequent dissociation 69 

results in the disappearance of the focus and a redistribution of fluorescence signal throughout 70 

the cell. Yellow outlines illustrate the bacterial cell membrane. (B) The loss of fluorescence is 71 

attributable to either dissociation, or photobleaching of the chromophore. (C) Cumulative 72 

residence time distribution (CRTD) constructed from binding durations of thousands of 73 

molecules. Fitting the exponential function (Eq. 1) to CRTD yields an effective rate keff, which 74 

is the sum of off rate (koff) of the protein of interest and photobleaching rate (kb) of the 75 

fluorescent probe (23). (D) To deconvolute kb and koff, excitation and integration durations (int) 76 

can be spaced with various dark intervals (d). (E) Through exponential analyses, CRTDs 77 

obtained at various intervals result in kefftl plots which are indicators of kinetic heterogeneity 78 

(23). A single kinetic population yields a straight line whereas deviations from linear fits 79 

indicate the presence of a second kinetic sub-population. For a single kinetic population, the 80 

slope is the off rate and y-intercept is proportional to the photobleaching rate. 81 

Photobleaching, a result of fluorescent proteins being damaged upon exposure to excitation 82 

sources, leads to the loss of fluorescence signal (24). Under excitation conditions that guarantee 83 

good signal-to-background ratios, fluorescent proteins can only stay ‘on’ for a few frames 84 

during continuous acquisitions. This limited visualization window reflects the ‘photon budget’ 85 

(25). Thus, when photobleaching occurs faster than the dissociation process, lifetime 86 

measurements are limited by the photobleaching rate. To overcome this problem and extend 87 

the observation time, the observation time window can be expanded by temporally spacing the 88 

photon budget using stroboscopic imaging (26). In this method, a dark interval (d) is inserted 89 
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between integration time (int), effectively scaling the observation time with a factor of tl/int 90 

(tlint + d). Instead of using one dark interval, Gebhardt and co-workers (2013) developed 91 

an approach involving ‘time-lapse illumination with a fixed integration time, interspersed with 92 

dark periods of varying duration’ in which fluorescence acquisitions are collected at a series of 93 

time-lapse intervals (Fig. 1D) (23, 27). This method has also been variously referred to as ‘time-94 

lapse imaging’ (28), ‘time-lapse illumination with different dark times’ (29), ‘time-lapse 95 

imaging at multiple timescales’ (30) and ‘stroboscopic single particle tracking PALM’ (31). 96 

For the purpose of brevity, and to distinguish from a time-lapse imaging mode with a single 97 

dark interval, we have adopted the term ‘interval imaging’ in our lab (32). Briefly, the approach 98 

works as follows: First, several movies (each with a unique dark interval) are collected while 99 

keeping the photon budget constant (in practice this is achieved by keeping the number of 100 

frames constant across all the movies). In cases where the copy number of the tagged protein 101 

is high and single-molecule imaging conditions may be difficult to attain, the cellular 102 

fluorescence is first photobleached such that only single-molecule fluorescence is observable. 103 

Subsequently, using particle tracking algorithms that enable measurements of lifetimes of 104 

bound molecules within a specified localization radius, a CRTD can be compiled. Fitting the 105 

CRTDs to effective rates (keff), one can obtain the so-called kefftl plot which is linear for mono-106 

exponential distributions (Fig. 1E) (23). In this case, since the photobleaching rate is 107 

maintained constant across all conditions, it can be read off from the intercept on the Y-axis. 108 

A population of molecules dissociating with a finite and measurable off rate manifests as a 109 

straight line, where the slope reports on the off rate of the dissociation kinetics. A mixed 110 

population composed of species dissociating with multiple lifetimes manifests as a deviation 111 

from the linear fit (Fig. 1E) (23). Fitting the experimental data to a model describing mixed 112 

populations can then be used to extract the relative amplitudes and rates of the various 113 

populations. This power to deconvolute the photobleaching rate from multiple off rates has 114 
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been successfully harnessed to dissect the kinetic heterogeneity of various DNA binding 115 

proteins including transcription factors and DNA replication and repair proteins in live cells 116 

(23, 27-33).  117 

However, limitations arising from the practical implementation of this elegant method remain 118 

uncharacterized. In particular, we address the following questions: 1) What is the minimum 119 

number of observations needed to determine the binding lifetime of a species within a specified 120 

confidence? 2) For a given experimental setup, what is the dynamic range in binding lifetimes 121 

that can be detected? 3) How many populations can be resolved? and 4) What limits the ability 122 

to reliably resolve multiple populations? We consider four cases below to answer these 123 

questions. This study serves to provide a practical guide to realize the power as well as 124 

limitations of practical implementations of the interval imaging approach to measure 125 

intracellular binding kinetics of fluorescently tagged proteins.   126 

METHODS 127 

Rationale and model 128 

For an introduction to the method, we direct the reader to seminal work by Gebhardt and co-129 

workers who have developed and demonstrated the time-lapse imaging approach discussed 130 

here (23). Here, we first summarize the theoretical development to establish the context of the 131 

problem for this report. Consider a system containing ‘A’ number of fluorescently tagged 132 

DNA-bound proteins, wherein the proteins dissociate from DNA with a single off rate (koff). 133 

Upon exposure to excitation photon sources, the fluorescent proteins exhibit photobleaching 134 

with a rate kb, resulting in the loss of fluorescence signal. Additionally, dissociation contributes 135 

to the loss of fluorescent foci as protein molecules move out of the localization radius. Since 136 

dissociation and photobleaching are independent, and both are Poisson processes, the loss of 137 

observations as a function of time t can be described as: 138 
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𝑓1(𝑡) = 𝐴exp(−(𝑘b + 𝑘off)𝑡) (1, ref. (23)) 

Observation times of genetically expressible fluorescent proteins are severely limited to the 139 

duration of a few acquisition frames due to photobleaching, limiting measurements of long-140 

lived binding events (34). To extend observation times, the frame rate can be reduced by 141 

inserting a dark interval (d) after a short integration time (int). Scaling the photobleaching rate 142 

appropriately, Eq. 1 then becomes: 143 

𝑓2(𝑡) = 𝐴exp(−(𝑘bτint τtl⁄ + 𝑘off)𝑡) (2, ref. (23)) 

where the time-lapse time tl is the sum of int and d. The sum of two decay rates kb and koff 144 

can be approximated with an effective decay rate (keff): 145 

𝑘eff = 𝑘bτint τtl⁄ + 𝑘off   (3, ref. (23)) 

Rearrangement of Eq. 3 yields: 146 

𝑘effτtl = 𝑘bτint + 𝑘off τtl  (4, ref. (23)) 

As kbint is maintained constant at a certain imaging condition, kefftl increases linearly with tl, 147 

with the coefficient (slope) koff. 148 

In systems with two sub-populations each dissociating at different rates koff1 and koff2, Eq. 2 149 

then becomes: 150 

𝑓3(𝑡) = 𝐴(𝐵exp(−(𝑘bτint τtl⁄ + 𝑘off1)𝑡)

+ (1 − 𝐵)exp(−(𝑘bτint τtl⁄ + 𝑘off2)𝑡)) 

(5, ref. (23)) 



8 

 

where B (0 < B < 1) and (1 – B) are the amplitudes of koff1 and koff2 sub-populations respectively. 151 

Similarly, a system with three kinetic sub-populations can be described by: 152 

𝑓4(𝑡) = 𝐴(𝐵1exp(−(𝑘bτint τtl⁄ + 𝑘off1)𝑡)

+ 𝐵2exp(−(𝑘bτint τtl⁄ + 𝑘off2)𝑡)

+ (1 − 𝐵1 − 𝐵2)exp(−(𝑘bτint τtl⁄ + 𝑘off3)𝑡)) 

(6, ref. (29)) 

where B1, B2 (0 < B1, B2 < 1 and B1 + B2 < 1) and (1 – B1 – B2) represent the amplitudes of koff1, 153 

koff2 and koff3 sub-populations respectively. 154 

155 
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Experimental considerations 156 

The specifics of the experimental setup for different model organisms should be tailored to 157 

requirements for the respective system. However, to provide the reader with a starting point, 158 

we describe the experimental configuration used in our lab to measure binding lifetimes of 159 

DNA-repair proteins labelled with the fluorescent protein, YPet in the model organism 160 

Escherichia coli (E. coli) (see Fig. S1 and ref. (32)). Bacterial cells in early exponential phase 161 

are loaded into a custom-built flow cell made up a glass coverslip and a quartz top. The bottom 162 

coverslip is functionalized with (3-Aminopropyl)triethoxysilane (APTES, Alfa Aesar, USA) 163 

to facilitate cell adhesion to the surface of the coverslip. The temperature of the flow cell is 164 

kept constant at 30 °C. Cells are supplied with aerated rich defined media (EZ rich defined 165 

medium supplemented with glucose, Teknova) to maintain fast growth. YPet is excited with 166 

514-nm laser (Sapphire LP laser, Coherent, USA) in near-TIRF configuration (35) at a power 167 

density of 71 W/cm2 (measured directly above the inverted objective). Fluorescent signal is 168 

recorded using an electron-multiplying (EM)-CCD camera (Photometrics Evolve, 169 

Photometrics, USA), with an EM gain of 1,000. The camera exposure time is 0.1 s and time-170 

lapse imaging is acquired with a 10-s tl set (Table S2). Typically, a time-lapse imaging 171 

experiment lasts three to five hours and in generally four to ten experiments are required to 172 

obtain more than a thousand binding events at each tl. 173 

Resolution of binding events in bacterial cells expressing copy numbers of fluorescent proteins 174 

in excess of ~ 20 copies per cell is challenging due to the limitations of particle tracking 175 

algorithms to resolve closely spaced foci. Further, distinguishing bound molecules from freely 176 

diffusive molecules in the cytosol is also challenging when copy numbers are high. In this case, 177 

to enable reliable observation of single- molecule cells are exposed to continuous illumination 178 

such that the majority of the emitters are darkened or photo-bleached, and only stochastically 179 
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reactivated emitters are observed in single-molecule imaging conditions (36).  180 

This setup allows us to unambiguously detect single-molecule foci using a relative signal-to-181 

background ratio between six and eight. Foci detected in at least two consecutive frames within 182 

a 300-nm (3 pixels) radius are defined as a binding event. For each tl, all binding events are 183 

combined, and bootstrapping analysis is performed by randomly selecting with replacements 184 

80% of all binding events. CRTDs are constructed from bootstrapped samples and are fit to 185 

exponential models to obtain kefftl plots, as well as kb and 186 
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Simulating concurrent dissociation and photobleaching 187 

In order to maintain full control of the kinetic variables, we chose to perform simulations of 188 

the experiment. Simulations of exponential distributions and curve-fitting were performed with 189 

custom-written program in MATLAB (The MathWorks, Natick, MA). We simulated 190 

exponential distributions (Eq. 2,5,6) using the exprnd function in MATLAB (Supplementary 191 

Notes). This function generates exponentially distributed random numbers with a specified 192 

decay constant. Here, each number returned by exprnd function represents the lifetime of a 193 

simulated ‘trajectory’. For the purposes of this work, we have not accounted for blinking of 194 

bound molecules that may yield prematurely truncated binding events. Accommodation of such 195 

a feature will require reasonable estimates of FP blinking under the conditions of the 196 

experiment that will be unique to the fluorescent probe used. To simulate a sub-population of 197 

molecules dissociating with a specified off rate a set of trajectories was generated and binned 198 

to produce histograms with ten bins, whose edges correspond to frame times (integer multiples 199 

of tl). The exprnd function was iterated until the counts of the first bin exceeded the number 200 

of binding events in that sub-population (typically between three and six iterations, see Fig. 201 

S2). To simulate experiments where multiple sub-populations are present, each sub-population 202 

was simulated in defined proportions and all trajectories were pooled together. Finally, to 203 

generate the CRTDs, we rejected molecules in the first bin (0 to tl) and only carried forward 204 

observations from tl to 10tl to the next step in accordance with our definition of a binding 205 

event (or trajectories), i.e, the observation must be present in two consecutive frames.  206 

To simulate uncertainty in each simulation sample, ten rounds of bootstrapping were 207 

performed, each involved randomly sampling 80% of the simulated population. Next, fitting 208 

was performed on each bootstrapped CRTDs (henceforth referred simply as CRTDs). First, the 209 

CRTD at each tl was fit to a mono-exponential model to obtain keff (Eq. 2, 3 and Fig. 1C). 210 
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These values for keff, corresponding to the number of tl, were then used to construct the kefftl 211 

plot. Error bands in these plots represent standard deviations from ten bootstrapped samples. 212 

Second, the CRTDs for all tl were fit to objective functions based on Eq. 2, 5 and 6 (global 213 

fitting, see Supplementary Notes). The list of parameters, initial conditions, bound constraints, 214 

termination criteria and algorithm is presented in Table S1. Throughout the paper, A was set as 215 

a local parameter to mimic experimental conditions where counts may be different across tl, 216 

even though this often leads to less accurate results compared to when A was set as a global 217 

parameter (Fig. S3B-C). 218 

For each simulation, outcomes from globally fitting the ten bootstrapped CRTDs were 219 

averaged and reported. To determine uncertainty in the estimate, we repeated the simulation a 220 

hundred times. The standard deviations of the binding lifetime (σ) from a hundred simulations 221 

using the same conditions was calculated according to Eq. 7. 222 

στ = (∑(τ𝑖 − 〈τ〉)2

100

𝑖=1

100⁄ )

1 2⁄

 (7) 

where  denotes the true binding lifetime, which is calculated by 1/ koff. 223 

Unless otherwise stated, kbint was fixed at 0.7 to mimic experimental values obtained in our 224 

published work (32). Four sets of tl were used: 10-s tl, 100-s tl, the three- and five- tl sets 225 

(Table S2). 226 

227 
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RESULTS 228 

Influence of experimental sample size on uncertainty of the estimate of the 229 

binding lifetime 230 

First, we set out to investigate whether the size of the experimental data set influences the 231 

uncertainty in the error estimate of the outcomes from global fitting, such as the binding 232 

lifetime  and photobleaching rate kb. This can be achieved by randomly selecting a fraction of 233 

experimental data (3%-30%) at each tl, following by bootstrapping and global fitting. Toward 234 

this goal, we revisited published data from our laboratory where interval imaging was used to 235 

determine dissociation kinetics of the transcription-repair coupling factor Mfd from DNA in 236 

live E. coli (32). The entire dataset (100%) contains between 1,000 to 2,000 trajectories (counts 237 

lasting at least two frames) at each tl (Fig. 2A, right-most panel). Representative CRTDs 238 

following sub-sampling the experimental dataset (3%, 10% and 30%) at each tl are shown in 239 

(Fig. 2A). While the kefftl plot derived from the whole dataset resembles a straight line, 240 

deviations from linear fits in kefftl plots can be seen when only a sub-set of experimental data 241 

was used (Fig. 2B). 242 

To determine the uncertainties in kb and  as a result of under-sampling, we repeated the sub-243 

sampling a hundred times and kb and  values were obtained from global fitting using Eq. 2 244 

(Fig. 2C-D). Here, uncertainties in the estimates of kb and  are smallest when the entire data 245 

set is used (2% and 5% respectively, Fig. 2C-D), and as expected, increase with decreasing 246 

number of counts (Fig. 2C-D). For kb, uncertainties increase from 3% to 10% as the percentage 247 

of experimental data drop from 30% to 3% while uncertainties in determining binding lifetimes 248 

increase from 8% to 35% (Fig. 2C-D). 249 

Fitting individual CRTD to mono-exponential model to obtain kefftl plots has been suggested 250 
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to be used as a guide to determine kinetic heterogeneity (23). Our analysis demonstrates that 251 

deviation from linear fits in the kefftl plots can potentially simply reflect under-sampling. Since 252 

deviations from linear fits in kefftl plots can also be used to guide the choice of bi- and tri-253 

exponential models (23), a fundamental question that faces users is, what governs the choice 254 

of exponential model? What is the minimum size of data, for which a multi-exponential model 255 

is appropriate for consideration? Are deviations in the kefftl plots reliable indicators for the 256 

choice of model? To explore these questions in greater detail, we chose to perform simulations 257 

that permit us to retain full control of the model parameters, and overcome practical limitations 258 

of generating large data sets from microscopy experiments. 259 

 260 

FIGURE 2 Determination of the photobleaching rate and binding lifetime from sub-sampling 261 

experimental data presented in ref (32). (A) Representative CRTDs when only 3%, 10% or 262 

30% of experimental trajectories were randomly selected. Counts can be approximated as y-263 

intercepts of exponential fits of CRTDs. The CRTD from the full dataset (right most panel) is 264 
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reproduced from ref. (32). (B) kefftl plots of the corresponding CRTDs (above). Shaded error 265 

bands are standard deviations from ten bootstrapped samples. (C) Scatter plots show 266 

distributions of kb obtained using global fitting 100 subsets of the experimental data at the 267 

indicated fraction. Each point represents the average of results from ten bootstrapped samples. 268 

(D) Scatter plots show distributions of  obtained using global fitting 100 subsets of the 269 

experimental data at the indicated fraction. Similarly, each point represents the average of 270 

results from ten bootstrapped samples. Red bars and boxes represent means and standard 271 

deviations of the fitting outcomes of 100 subsets of the dataset respectively. The experimentally 272 

measured value of  = 17.9 ± 0.9 s for the entire data set is reproduced from ref (32). 273 

Case I: Influence of the size of the data set on the measured lifetime for a single 274 

dissociating species 275 

We first explored the relationship between the number of counts (n) at each tl and uncertainties 276 

in estimates of binding lifetimes from mono-exponential distributions. To this end, we 277 

simulated a population of molecules dissociating with koff of 0.1 s-1, corresponding to a binding 278 

lifetime  of 10 s, and photobleaching rate kb of 7 s-1 (see Methods). While int was constant 279 

at 0.1 s, tl was varied from 0.1 s to 10 s (Table S2). These values of kb, , int and tl were 280 

initially chosen to closely match experimental values used in our published work (see Fig. 2 281 

and ref. (32)).  The theoretical kefftl plot is shown as the dashed line (Fig. 3A). At n = 1x103 282 

observations (Fig. 3A), the kefftl plot deviates noticeably from the theoretical line (purple 283 

curve). However, as n increases, the error bands reduce, and the plots closely resemble straight 284 

lines (purple curves, Fig. 3B-D). At 1x105 observations, linearly fitting the kefftl plot (Fig. 3D) 285 

yielded a slope of 0.1 and y-intercept of 0.6992, reflecting the specified koff (0.1 s-1) and kbint 286 

(0.7). As expected, mono-exponential distributions with the same kbint but smaller off rate (koff 287 

= 0.01 s-1) or without off rate (koff = 0 s-1) yielded lines with smaller slope (Fig. 3A-D, green 288 

curves) or essentially flat lines (Fig. 3A-D, black curves). 289 
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 290 

FIGURE 3 Determination of binding lifetimes from mono-exponential distributions. (A-D) 291 

kefftl plots of mono-exponential distributions with kbint of 0.7 and koff of 0.1 s-1 (purple curves), 292 

0.01 s-1 (green curves) or 0 s-1 (black curves). Panels A-D reflect kefftl plots obtained from 293 

simulations containing number of observations (n) equaling (A) 1x103, (B) 3x103, (C) 1x104 294 

or (D) 1x105 counts in the first bin (see Methods). (A) Dashed lines correspond to theoretical 295 

kefftl plots at the specified koff values. Shaded error bands are standard deviations from ten 296 

bootstrapped samples. (E) Scatter plots show distributions of  obtained using global fitting 297 

from 100 simulated samples for each n value. Red bars represent the mean values. (Inset) The 298 

relative error in determining  (σ /) reduces with n-1/2 for increasing n. Dashed line is the 299 

linear fit to six data points. (F) Coefficient in function of σ/ versus n-1/2 at various . 300 

The sharp increase in coefficients for  larger than 50 s indicates larger uncertainties in 301 

measuring slow processes when the maximum tl is limited to 10 s. 302 

303 
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To characterize the uncertainty (standard deviation, σ) in the estimate of the binding lifetime, 304 

we repeated the simulation a hundred times for each value of n and determined  using global 305 

fitting (Fig. 3E). As expected for shot noise (37), the relative error σ/is proportional to 306 

the inverse of the square root of n with a coefficient of 3.8 (Fig. 3E, inset). Importantly, the 307 

coefficient fluctuates between 3.7 and 5.7 for ≤ 50 s, but rises sharply for  greater than 308 

50 s (Fig. 3F). This result demonstrates that the uncertainty in estimating lifetime of long-lived 309 

binding events becomes arbitrarily large when the extended lifetime of the fluorophore (by 310 

introduction of d) becomes comparable to the binding lifetime. In principle, this limit can be 311 

readily overcome by simply selecting larger tl values; indeed, simulations of mono-312 

exponential distributions of long-lived binding events (= 100 s) indicated that σ is lower at 313 

lower values of n, when tl is extended to 100 s, compared to 10 s (Fig. S3). 314 

Therefore, we propose that accurate measurements of lifetime of long-lived binding events 315 

require significant increases in either the number of observations (n) or the length of tl for a 316 

fixed photobleaching rate. However, it should be noted that extension of tl up to 100 s may 317 

not be experimentally feasible for all systems. In our work involving bacterial live-cell imaging 318 

in rich media, cell growth and division on the timescale of imaging limit the tracking binding 319 

events lasting on the timescale of tens of minutes. Practical limitations imposed by the model 320 

organism, growth conditions and choice of fluorescent protein dictate optimal experimental 321 

design. 322 

Further, we anticipated that photobleaching rate also contributes to στ as faster photobleaching 323 

reduces observation times. To examine the effect of kbint, we performed a comprehensive set 324 

of simulations with the 10-s tl set (Table S2) and kbint varying from 0.007 to 2.1 (kb
 from 0.07 325 

to 70 s-1 and int from 0.01 to 0.1 s). We obtained the relationship between σ/, n and kbint as 326 
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in Eq. 8.  327 

𝜎τ

τ
=

(2.7379𝑘bτint)2

𝑛1 2⁄
 

(8) 

This formula describes the lower bound of errors as other sources of practical errors, such as 328 

localization uncertainties and experimental variations, have not been considered. The minimum 329 

number of observations required to determine  (≤ 50 s) with a given uncertainty is 330 

therefore: 331 

𝑛 = (τ 𝜎τ⁄ )2 × (2.7379𝑘𝑏τint)4   (9) 

For example, when kbint is 0.7, the number of observations required to achieve relative error 332 

of 10% in the estimate of  (where ≤ 50 s) is about 1350 (see Fig. 3E). This equation also 333 

highlights the importance of using fluorophores with high photo-stability: a two-fold increase 334 

in kb needs to be compensated by a 16-fold increase in n. 335 

Case II: Detection of two species with resolvable lifetimes  336 

Next, we examined the situation where a second kinetic sub-population is present in the system. 337 

A second population with a faster off rate yields kefftl plots that deviate from straight lines (23). 338 

However, as we demonstrate deviations can also be a result of shot noise at low n (see Fig. 2B 339 

and Fig. 3A-D). To identify the minimum n at which one can determine with a specified 340 

confidence that a bi-exponential model is appropriate, we simulated CRTDs using Eq. 5. First, 341 

we performed simulations with off rates that are an order of magnitude apart: koff1 = 0.1 s-1 342 

(intermediate rate) and koff2 = 1 s-1 (fast rate). The amplitude B of the intermediate dissociating 343 

population was varied from 10% to 90% (Fig. 4).  344 

345 
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 346 

FIGURE 4 Determination of binding lifetimes and amplitudes from bi-exponential 347 

distributions with an intermediate rate (koff1) and a fast rate (koff2 = 10 koff1). (A-D) kefftl plots 348 

of bi-exponential distributions with kbint of 0.7, koff1 and koff2 of 0.1 and 1.0 s-1 respectively, 349 

with (A) 103, (B) 3x103, (C) 104 or (D) 105 observations. The amplitude of koff1 (B) is 10% 350 

(orange), 25% (purple), 50% (green) or 90% (black). Shaded error bars are standard deviations 351 

from ten bootstrapped samples. (E-G) Heatmaps show errors in estimates of B, 1 and 2 352 

obtained using global fitting of 100 simulated distributions for each n value (see Fig. S4 for 353 

distributions). 354 

When the majority of the population dissociates with the intermediate rate koff1 (B = 90%), the 355 

kefftl plots resemble those of mono-exponential distribution with the single koff of 0.1 s-1 356 

(compare Fig. 4A-D, black curves and Fig. 3A-D). As before, increasing the number of 357 
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observations significantly improved the quality of the kefftl plots (Fig. 4A-D). These 358 

simulations reveal that a short-lived second sub-population does not manifest as a visible 359 

feature in the kefftl plots when it is present only to the extent of 10% in the observations. To 360 

examine if the two populations could be resolved with global fitting using the bi-exponential 361 

model, we determined binding lifetimes and amplitudes from 100 simulations (Fig. S4). 362 

Unsurprisingly, we found that the accuracies and precisions of determining B, 1 and 2 increase 363 

with n. While estimation of 1 is robust (Fig. 4F, Fig. S4B), global fitting of CRTDs to the bi-364 

exponential model at low counts suffers from a bias towards the fast dissociating sub-365 

population, with its amplitude being overestimated and 2 being underestimated (Fig. 4E, G, 366 

Fig. S4A, C). This bias is observed to a lesser extent when koff1 is present at 75% or 50% (Fig. 367 

4E-G, Fig. S4). 368 

As the amplitude of the fast dissociating sub-population increased (B equal to 25% or 10%), 369 

fewer observations were found at long intervals. Insufficient counts resulted in missing data 370 

points at these tl (tl≥ 5 s) in kefftl plots at low counts (103 and 3x103, Fig. 4A-B).  However, 371 

the kefftl plots extended to the full tl range of 10 s when n increases to 104 and 105 (Fig. 4C-372 

D). As expected, deviations from straight lines were found in the 0-5 s regime, reflecting the 373 

presence of the fast dissociating sub-population. Since contributions from the fast dissociating 374 

sub-population drop sharply at long timescales, the kefftl plots converge to the straight line 375 

exhibited by mono-exponential distributions with koff1 (Fig. 4C-D). Further analysis by 376 

integrating the area under the peaks in the 0-to-5 s region shows the area increases 377 

exponentially with the amplitude of the fast dissociating sub-population (Fig. S5). When the 378 

fast dissociating sub-population represents the majority, the accuracy and precision in 379 

determining B, 1 and 2 also increase with n (Fig. 4E-G, Fig. S4). 380 

Based on the observation that accurate measurements of long-lived binding events require the 381 
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extension of tl to greater than 10 s, we anticipated that resolving two kinetic sub-populations 382 

[one with a slow rate (koff1 of 0.01 s-1;  = 100 s) and an intermediate rate (koff2 of 0.1 s-1; 383 

= 10 s)] is challenging when the largest tl is 10-s. Consistent with this, the kefftl plots in 384 

the 0-10s range appear linear (Fig. 5A-C), resembling those of mono-exponential distributions. 385 

Hence, we attempted to fit the CRTDs at 105 counts to mono-exponential model (Eq. 2), 386 

yielding apparent binding lifetimes (*) that lie between 1 and 2 (Fig. 5D). Fitting mean 387 

* vs. B to exponential function results in Equation 10: 388 

τ∗ = 〈τ2〉𝑒𝑙𝑜𝑔(〈τ1〉 〈τ2〉⁄ )𝐵   (10) 

Thus, B can be derived from * where 1and 2are known. 389 

From the simulations, fitting the CRTDs with n less than 3x104 to the bi-exponential model 390 

yields unreliable results (Fig. 5E-G, Fig. S6). Across various amplitudes of koff1, the species 391 

with lifetime 1, is often underestimated and corresponds to * at that amplitude (compare Fig. 392 

5F to Fig. 5D). Similarly, 2 is also underestimated, but eventually approaches 2 of 10 s 393 

when n reached 106 counts and the amplitude of koff2 sub-population is more than 25% (Fig. 394 

5G). 395 
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 396 

FIGURE 5 Determination of binding lifetimes and amplitudes from bi-exponential 397 

distributions with a slow rate (koff1) and an intermediate rate (koff2 = 10koff1). (A-C) kefftl plots 398 

of bi-exponential distributions with kbint of 0.7, koff1 and koff2 of 0.01 and 0.1 s-1 respectively, 399 

with (A) 103, (B) 104 or (C) 105 observations. The amplitude of koff1 (B) is 10% (orange), 25% 400 

(purple), 50% (green) or 90% (black). Shaded error bars are standard deviations from ten 401 

bootstrapped samples. (D) Scatter plots show distribution of apparent  (*) obtained from 402 

fitting of 100 simulated bi-exponential distributions at a specified B and 105 counts to mono-403 

exponential model. Line is exponential fit between the average of * (red bars) and B. (E-G) 404 

Heatmaps show errors in estimates of B, 1 and 2 obtained using global fitting of 100 simulated 405 

distributions for each n value (see Fig. S6 for distributions). 406 

407 
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On the other hand, when the above distributions were simulated using the 100-s tl set, 408 

deviations from straight lines in kefftl plots were observed in the 0-30s regime and when B is 409 

smaller than 75% (Fig. S7A). In this case, as expected, accuracies in determining B, 1 and 2 410 

follow the same trends as discussed in Fig. 4 (Fig. S7B-D). 411 

Case III: Detection of two species with closely matched lifetimes 412 

Due to the resolution limit that is inherent to exponential analysis (34), we anticipated the 413 

ability to resolve rates that are closely spaced would reduce. To test this hypothesis, we 414 

simulated bi-exponential distributions with rates that are only three-fold apart: an intermediate 415 

rate koff1 of 0.1 s-1 and a fast rate koff2 of 0.3 s-1. Under conditions that yield sufficient 416 

observations at long intervals (n ≥ 104), examination of the kefftl plots often fails to identify the 417 

presence of multiple sub-populations in the form of deviation from straight lines (Fig. 6A-D). 418 

Only when the fast rate is present at 90%, can deviations be observed in the form of a broad 419 

convex spanning from 0 to 10 s (orange curves, Fig. 6C-D). Fitting to Eq. 5 yields unreliable 420 

results for B and 2 for n ≤ 104 (Fig. 6E, G, Fig. S8A, C) whereas the accuracy in determining 421 

1 requires 3 x103 observations or B to be larger than 25% (Fig. 6F, Fig. S8B). Fitting CRTDs 422 

at low counts (n ≤ 104) to the bi-exponential model should be avoided as one often obtains two 423 

kinetics sub-populations with artificially enhanced rate separation and substantial amplitudes, 424 

regardless of the true amplitudes (Fig. 6E-G, Fig. S8).  425 
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 426 

FIGURE 6 Determination of binding lifetimes and amplitudes from bi-exponential 427 

distributions with closely spaced rates (koff2 = 3koff1). (A-D) kefftl plots of bi-exponential 428 

distributions with kbint of 0.7, koff1 and koff2 of 0.1 and 0.3 s-1 respectively, with (A) 103, (B) 429 

3x103, (C) 104 or (D) 105 observations. The amplitude of koff1 (B) is 10% (orange), 25% 430 

(purple), 50% (green) or 90% (black). Shaded error bars are standard deviations from ten 431 

bootstrapped samples. (E-G) Heatmaps show errors in estimates of B, 1 and 2 obtained using 432 

global fitting of 100 simulated distributions for each n value (see Fig. S8 for distributions). 433 

434 
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Case IV: Detection of three species 435 

The resolution limit as well as dynamic range limit that we demonstrated above raise the 436 

question if tri-exponential distributions can be faithfully resolved under the specified 437 

experimental condition (ranges of tl and n). To address this issue, we simulated tri-exponential 438 

distributions (Eq. 6), with off rates spanning two orders of magnitude (0.01, 0.1 and 1 s-1), 439 

using the 100-s tl set. The diversity in kefftl plots obtained by varying B1 and B2 is illustrated 440 

in Fig. 7A. Three kinetic sub-populations are apparent when B1 is a third of B2 and B2 in turn 441 

is a third of B3 (1 – B1 – B2). We further characterized uncertainties in amplitudes and binding 442 

lifetimes obtained using global fitting to the tri-exponential model (Methods). In general, 443 

accuracy in determining the amplitudes and lifetimes improves with increasing n (Fig. 7B-F, 444 

Fig. S9). However, when the slowly dissociating sub-population dominates (B1 = 9/13), 445 

increasing n does not yield more accurate estimates. As in the case of the bi-exponential 446 

simulations, we observed consistent biases towards faster binding lifetimes (Fig. S9). 447 

448 
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 449 

FIGURE 7 Determination of binding lifetimes and amplitudes from tri-exponential 450 

distributions with a slow rate (koff1), an intermediate rate (koff2 = 10koff1) and a fast rate (koff3 = 451 

10koff2), using the 100-s tl set. From left to right, five panels in each row correspond to different 452 

amplitudes of each sub-population (displayed on top). (A) kefftl plots of tri-exponential 453 

distributions with kbint of 0.7, koff1, koff2 and koff3 of 0.01, 0.1 and 1 s-1 respectively, with 106 454 

observations. Shaded error bands are standard deviations from ten bootstrapped samples. (B-455 

F) Heatmaps show errors in estimates of B1, B2, 1, 2 and 3 obtained using global fitting of 456 

100 simulated distributions at various pre-set values of B1 and B2 (see Fig. S9 for distributions). 457 

458 
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The choice of tl 459 

Given a finite amount of experimental time, should one sample with more tl values (increase 460 

Ninterval) or obtain more observations (increase n) with a set containing fewer tl values? To 461 

identify the optimum choice of tl, we simulated bi-exponential distributions with an 462 

intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1) using a tl set containing either 463 

three (N3) or five (N5) tl values, ranging from 0.1 to 10 s (Table S2). Since fitting outcomes 464 

are unreliable in the three tl set (compare Fig. S10 to Fig. S11), we decided to examine the 465 

simulations with the five tl set further. These simulations yielded kefftl plots that closely 466 

resemble those in Fig. 4 (see Fig. 8A-D) and similarly, deviations from straight lines are also 467 

reliable indicators of kinetic heterogeneity when B is less than 90%. As expected, estimates of 468 

B, 1 and 2 are more accurate with larger n (Fig. S10). 469 

Compared the simulations using the five tl and the 10-s tl (11 tl values) sets for the same n, 470 

errors of estimates are almost always smaller in simulated distributions with the 10-s tl set 471 

(σ11/σ5 < 1, see Fig. 8E). By extension of Eq. 8, error ratios (σ11/σ5) smaller than 1/√(11/5) or 472 

0.67 indicate the benefit of increasing Ninterval outweighs the benefit of increasing n with the 473 

five tl set whereas error ratios larger than 0.67 represent redundancy in tl. Redundancy in tl 474 

was observed in some cases when the intermediate dissociating sub-population is the majority 475 

(B between 75% and 90%) (Fig. 8E). However, when the majority dissociates with the fast rate 476 

(B between 10% and 50%), the benefit of sampling with more tl is clear (σ11/σ5 < 0.67), 477 

especially with n ≥ 104. Thus, we concluded the net benefit of increasing Ninterval is greater than 478 

increasing the number of counts with a set of fewer tl values. 479 
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 480 

FIGURE 8 Determination of binding lifetimes and amplitudes from bi-exponential 481 

distributions using a tl set containing five tl values (Table S2), an intermediate rate (koff1 = 0.1 482 

s-1) and a fast rate (koff2 = 1 s-1). (A-D) kefftl plots of bi-exponential distributions with (A) 103, 483 

(B) 3x103, (C) 104 or (D) 105 observations. The amplitude of koff1 (B) is 10% (orange), 25% 484 

(purple), 50% (green) or 90% (black). Shaded error bands are standard deviations from ten 485 

bootstrapped samples. (E) Bar plots show ratios of error estimates obtained from simulations 486 

with eleven and five tl values at the same n. Blue: B, green: 1, yellow: 2. 487 

488 
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DISCUSSION 489 

In this work, we used experimental and simulated data to explore the influence of shot noise, 490 

resolution limit and dynamic range limit on resolving multiple kinetic sub-populations in 491 

single-molecule time-lapse imaging experiments (Fig. 9). Within the dynamic range and 492 

resolution limit, determination of binding lifetimes and amplitudes in mono-exponential and 493 

multi-exponential distributions are reliable in general, especially with at least 104 counts. 494 

  495 

FIGURE 9 Dynamic range and resolution limits in resolving multiple populations using the 496 

time-lapse imaging technique with photobleaching-prone fluorescent probes. Dynamic range 497 

limit is a function of photobleaching rate (kb) and the maximum tl (tl_max) used in experimental 498 

conditions. n-1 is the longest binding lifetime in a multi-exponential distribution within pairs 499 

of off rates kn and kn-1. Orange zones indicate conditions where errors in estimates of  and the 500 

amplitude are high. 501 

As showed in Eq. 8, the relative error in  determination scales with the square of kbint and the 502 

inverse square root of n. This emphasizes the importance of choosing imaging conditions to 503 

minimize kbint as a two-fold increase in kbint needs to be compensated by a 16-fold increase 504 

in n. A balance has to be struck here to ensure good signal-to-background ratio, a prerequisite 505 

for reliable particle tracking. These findings also highlight the importance of developing and 506 

using fluorophores with higher photo-stability and brightness for live-cell applications as these 507 

would greatly reduce uncertainties in measurements. In practice, the choice of fluorescent 508 



30 

 

protein should be made with great care, as fluorescent proteins often exhibit undesirable 509 

properties that limit their utility (38-42). 510 

Errors obtained from repeating the experiments can be an underestimation compared to 511 

inherent errors conferred by shot noise when fitting is ill-conditioned (43), which is often the 512 

case when minimizing using multi-objective functions (44). Therefore, reports of binding 513 

lifetimes measurements using these time-lapse imaging approaches should clearly state kbint 514 

from fitting and n from experimental data. This would enable a theoretical error estimation of 515 

and avoid over-interpretation of experimental results.  516 

We found kefftl plots useful for guiding the fitting model when the number of counts is 517 

sufficiently large (more than 104) as deviations from straight lines faithfully reflect 518 

heterogeneity in binding kinetics. The reverse is not necessarily true. Good linear fits, seen at 519 

large n values, can reflect one of the following three scenarios: (i) the absence of multiple 520 

populations, (ii) sub-populations with off rates that are within the resolution limit, or (iii) sub-521 

populations where the off rate of one population lies beyond the dynamic range. This dynamic 522 

range is determined by the photobleaching rate and the maximum tl used in the experiment. 523 

When the mono-exponential model is used to fit those data, an apparent binding lifetime *, 524 

whose value lies between the two true binding lifetimes, is obtained. While sub-optimal, * 525 

depends on the proportion of molecules in each kinetic sub-population: a larger presence of the 526 

fast dissociating sub-population yields smaller *. This in turn can report on change in binding 527 

kinetics when the biology is manipulable – for instance with binding partners or drugs.  528 

Can statistical information such as reduced χ2 be used to decide the model that best describes 529 

the data? Computing these criteria requires the determination of the degree of freedom, which 530 

still needs to be analytically derived for the non-linear models used in this method (45-48). 531 
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Instead of using statistical criteria, the selection of the fitting model using kefftl plot can be 532 

complemented with experimental design. For example, in case where a bi-exponential model 533 

is invoked, it might be tempting to attribute sub-populations to molecules performing certain 534 

activities such as binding of DNA repair proteins to a damaged or non-damaged substrate. 535 

These hypotheses can be tested using structure-function mutants in which one or few catalytic 536 

activities are inhibited, hence, yielding predictable changes in kefftl plots and fitting results. 537 

Finally, where possible, we recommend approaches that utilize multiple experimental designs 538 

to reproducibly observe or enrich the hypothesized populations. 539 
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Supplementary table 

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. n0 is the 

minimum number of counts in the second bin across tl. 

Model 
Initial 

conditions 
Bound constraints 

Termination 

tolerance 
Algorithm 

MATLAB 

function 

Mono 

(Eq. 2) 

kb = 1 s-1 

koff = 1 s-1 

kb > 0 s-1 

0 s-1 < koff < 1/int s-1 
10-6 

trust-region-

reflective 
lsqnonlin 

Bi 

(Eq. 5) 

kb = 1 s-1 

koff1 = 1 s-1 

B = 0.5 

koff2 = 2 s-1 

kb > 0 

10-3 s-1 < koff1 < 1/int s-1 

1/n0 < B < 1 – 1/n0 

10-3 s-1 < koff2 < 1/int s-1 

10-6 
trust-region-

reflective 
lsqnonlin 

Tri 

(Eq. 6) 

kb = 1 s-1 

koff1 = 0.05 

s-1 

B1 = 0.3 

koff2 = 0.5 s-1 

B2 = 0.3 

koff2 = 5 s-1 

kb > 0 s-1 

10-3 s-1 < koff1 < 1/int s-1 

1/n0 < B1 < 1 – 1/n0  

10-3 s-1 < koff2 < 1/int s-1 

1/n0 < B2 < 1 – 1/n0 

10-3 s-1 < koff3 < 1/int s-1 

B1 + B2 < 1 – 2/n0  

10-9 
trust-region-

reflective 
fmincon 
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Table S2. The tl sets used in the study. 

tl sets tl values (s) 

10-s 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 3, 5, 8, 10 

100-s 0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 100 

Three- 0.1, 1, 10 

Five- 0.1, 0.3, 1, 3, 10 
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Supplementary figures 

 

Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria 

expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at 

30 ºC. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with 

an electron-multiplying CCD camera. 
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Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at 

a specified tl. The molecules were generated by a random number generator to produce a group of 

numbers following an exponential distribution (defined by koff1, kb, int and tl) (see Eq. 4-6 in main text). 

The number generator function was called a few times (typically 3-6) until the number of molecules in 

the first bin (n1) of the histogram exceeded the user-specified number of molecules (N1, N1 = A x B in 

mono-exponential distribution, or N1 = A x B1 in multiple-exponential distribution). The koff2 and koff3 sub-

populations were simulated in the same manner. Then, molecules from all simulated sub-populations 

were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred 

simply as CRTDs). This procedure was repeated for all specified values of tl. The global fitting was 

performed on CRTDs from all tl, using a CRTD for each tl. 
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Figure S3. Scatter plots show distributions of  obtained using global fitting on 100 simulated mono-

exponential (<> = 100 s) for each n value. (A) Simulation using the 10-s tl set. (B) Simulation using 

the 100-s tl set. (C) Simulated data from (B) were globally fitted with the amplitude as the global 

parameter. Apart from this panel, all global fittings in this study were performed with A as the local 

parameter. Red bars represent the averages. 
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Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an 

intermediate rate (koff1) and a fast rate (koff2 = 10koff1). (A-C) Scatter plots show distributions of B, 1 and 

2 obtained using global fitting from 100 simulated distributions for each n value. Each panel 

corresponds to a pre-set B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In 

each panel, n increases from 103 (1e3) to 105 (1e5). Dashed lines and red bars represent the true 

values and the average respectively. Orange shades represent distributions where B is larger than 0.1 

or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from 

scatter plots. 
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Figure S5. Bi-exponential distributions with an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 
s-1) with infinite counts. (A) Representative kefftl plots at 20 amplitudes of koff2. From top to bottom, the 
amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of koff2 amplitudes (open 
circles). Line is the exponential fit to data points (R2: 0.9996). The peak area is calculated as the 
difference between areas under the kefftl plots and the area under the line y = 0.7 + 0.1tl. 
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Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow 

rate (koff1 = 0.01 s-1) and an intermediate rate (koff2 = 0.1 s-1). (A-C) Scatter plots show distributions of 

B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel 

corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left 

to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars represent 

the true values and the average respectively. Orange shades represent distributions where B is larger 

than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were 

omitted from scatter plots. 
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Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow 

rate (koff1) and an intermediate rate (koff2 = 10koff1), simulated using the 100-s tl set. (A) kefftl plots of bi-

exponential distributions with kbint of 0.7, koff1 and koff2 of 0.01 and 0.1 s-1 respectively, with 105 

observations. The amplitude of koff1 (B, shown on top) increases from left to right (10% to 90%). Shaded 

error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show 

distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. 

Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 

90% from left to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars 

represent the true values and the average respectively. Orange shades represent distributions where 

B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when 

present) were omitted from scatter plots. 
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Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with 

closely spaced rates (koff2 = 3koff1). (A-C) Scatter plots show distributions of B, 1 and 2 obtained from 

fitting of 100 simulated distributions for each n value. Each panel corresponds to a pre-set B, which 

increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) 

to 105 (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange 

shades represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance 

visibility, outliers (less than 5% when present) were omitted from scatter plots. 
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Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a 

slow rate (koff1), an intermediate rate (koff2 = 10koff1) and a fast rate (koff3 = 10koff2), using the 100-s tl set. 

From left to right, five panels in each row correspond to different amplitudes of each sub-population 

(displayed on top). (A-E) Scatter plots show distributions of amplitudes (B1 and B2), 1, 2 and 3 obtained 

using global fitting 100 simulated samples. In each panel, n increases from 103 (1e3) to 106 (1e6). 

Dashed lines and red bars represent the true values and the averages respectively. Orange shades 

represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, 

outliers (less than 5% when present) were omitted from scatter plots. 
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Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated 

with the five tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter 

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed 

lines and red bars represent the true values and the average respectively. Orange shades represent 

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less 

than 5% when present) were omitted from scatter plots. 
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Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated 

with the three tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter 

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed 

lines and red bars represent the true values and the average respectively. Orange shades represent 

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less 

than 5% when present) were omitted from scatter plots. 
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Supplementary Notes 

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution 

with user-defined mean 

function [counts, each_molecule] = simulate_res_time(mu,edges,n_count) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  mu: mean of exponential distribution for a particular tl 
%%  edges: bin edges of histograms 

%%  n_count: the number of counts for a particular tl 
%% Outputs: 

%%  counts: vector describing CRTD 

%%  each_molecule: vector containing all random number corresponding to 

%%      lifetimes of binding events 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

each_molecule = [];    
counts = zeros(10,1); 

%% generate a set of random numbers corresponding to lifetimes of binding 

%% events until counts in the first bin exceed user-defined counts 
while counts(1) < n_count 

% single iteration of the exprnd function 
    sim = exprnd(mu,round(n_count/2.71),1); 

% construct the histogram with edges corresponding to frame times 

% N is a vector containing counts in all bins [from the latest iteration] 
    [N,~] = histcounts(sim,edges); 

    counts = counts + N'; % add counts to the previous iterations 
% combine lifetimes of binding events to existing population from previous 

% iteration of the exprnd function 
    each_molecule = [each_molecule; sim];  

end 
end % end of the function 
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2. Simulation of mono-, bi- or tri-exponential distribution across all tl  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  ttl:   vector containing the set of time-lapse intervals 

%%  kb:    photobleaching rate (unit: s-1) 

%%  tint:  camera integration time 

%%  koff1: user-defined off rate 1 

%% koff2: user-defined off rate 2 

%% koff3: user-defined off rate 3 

%% B(1):  amplitude of the first kinetic sub-population 

%% B(2):  amplitude of the second kinetic sub-population 

%% n_count_total: user-defined counts for each simulation 

%% Outputs: 

%%  bin: matrix containing CRTDs for all time-lapse intervals 

%%  d.data: contains the simulated population at a particular time- 

%% lapse interval 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i = 1:length(ttl)    % simulate CRTD for each time-lapse interval           
     time = ttl(i)*(0:10)';  % determine frame times for binning 
     %% define exponential distribution for each sub-population 
     keff1 = (kb*tint/ttl(i) + koff1); % effective rate 1 
     % mean of the exponential distribution of the first sub-population 

     mu1 = 1/keff1;  
     keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2 
     % mean of the exponential distribution of the second sub-population 

     mu2 = 1/keff2;  
     keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3 
     % mean of the exponential distribution of the third sub-population 

     mu3 = 1/keff3;  
     %% determine the number of counts for each sub-population based 
     %% on the amplitudes B1 and B2 

     % counts of the first kinetic sub-population 
     n_count1 = round(B(1)*n_count_total);  
     % counts of the second kinetic sub-population 

     n_count2 = round(B(2)*n_count_total); 

     % counts of the third kinetic sub-population             
     n_count3 = n_count_total - n_count1 - n_count2; 
     % bin1, bin2 and bin3 are vectors containing CRTDs of koff1, koff2 and       

     % koff3 sub-population respectively 
     % population1, population2 and population3 are vectors containing  

     % simulated koff1, koff2 and koff3 sub-population respectively. 
     bin2 = zeros(10,1); population2 = []; 
     bin3 = zeros(10,1); population3 = []; 
     % simulate koff1 sub-population 

     [bin1, population1] = simulate_res_time(mu1,time,n_count1); 
     % simulate koff2 sub-population 

     if n_count2 > 1 
          [bin2, population2] = simulate_res_time(mu2,time,n_count2);             
     end 
     % simulate koff3 sub-population 

     if n_count3 > 1 
          [bin3, population3] = simulate_res_time(mu3,time,n_count3); 
     end 
     % combine CRTDs from sub-population CRTDs 
            bin(:,i) = bin1 + bin2 + bin3; 
     % combine simulated population from simulated sub-populations 

     d(i).data = [population1; population2; population3];             
end 
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3. Global fitting 

function [p_out] = globalFit(i_model, X, Y, tint)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  i_model = 1 – mono-exponential model 

%% i_model = 2 – bi-exponential model 

%% i_model = 3 – tri-exponential model 

%%  X: matrix containing frame times of all time-lapse intervals 

%%  - row: frame times corresponding to one time-lapse interval 

%%  - column: increase in frame times 

%%  Y: matrix containing simulated CRTDs of all time-lapse intervals 

%% tint: camera integration time 

%% para: initial conditions 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% lb: lower constraints 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% ub: upper constraints 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% Outputs: 

%%  p_out: vector containing outcomes of global fitting 

%%  - p(1): kb 

%%  - p(2): koff1 

%%  - p(3): B1 

%%  - p(4): koff2 

%%  - p(5): B2 

%%  - p(6): koff3 

%%  - p(7): 1 – B1 – B2 

%%  - p(8)-p(end): counts at time 0 for all time-lapse intervals 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Known Parameters 
ttl = X(:,1); % vector containing all time-lapse intervals 
a_para = Y(:,1); % Initialize the vector for counts at time 0 
weights = ones(size(X)); % fitting weights 
lower_B = 1/min(a_para(a_para>0)); % the lower bound for the amplitudes 
upper_koff = 1/tint;     % the upper bound for off rates 
if i_model == 1   % fitting to mono-exponential function                              
     para = [1,  1, a_para']; % initial conditions: kb, koff1, counts 
     lb   = [0,  0, zeros(size(ttl))']; % lower bounds: kb, koff1, counts 
     % upper bounds: kb, koff1, counts 

     ub   = [Inf,upper_koff, Inf*ones(size(ttl))']; 
     % define function to minimize 

     f1 = @(p)(   (model(i_model,p,X,tint,ttl)-Y).*weights );  
     opts = optimset('Display','off'); 
     % Global fitting using the lsqnonlin function 
     [p] = lsqnonlin(f1,para,lb,ub,opts);   
     p_out = [p(1:2),1,zeros(1,4),p(3:end)]; 
elseif i_model == 2 % fitting to bi-exponential function         
     para = [1, 1, 0.5, 2, a_para']; 
     lb   = [0, 1e-3, lower_B, 1e-3, zeros(size(ttl))']; 
     ub   = [Inf, upper_koff, 1-lower_B, upper_koff, Inf*ones(size(ttl))'];  
     % define function to minimize 

     f1 = @(p)(   (model(i_model,p,X,tint,ttl)-Y).*weights ); 
     opts = optimset('Display','off'); 
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     % Global fitting using the lsqnonlin function 
     [p] = lsqnonlin(f1,para,lb,ub,opts); 
      % assign the smaller off rate to be koff1 
      p_temp = sortrows([p(2) p(3); p(4) (1 - p(3))]); 
      p_temp = p_temp';  
      p_out  = [p(1), p_temp(:)', zeros(1,2), p(5:end)]; 
elseif i_model == 3 
      para = [1, 0.05, 0.3, 0.5, 0.3, 5, a_para']; 
      lb   = [0, 1e-3, lower_B, 1e-3, lower_B, 1e-3, zeros(size(ttl))']; 
      ub   = [Inf, upper_koff, 1-lower_B, upper_koff, 1-lower_B,upper_koff,   

  Inf*ones(size(ttl))']; 
      % define function to minimize 

      f1 = @(p)( sum(sum((model(i_model,p,X,tint,ttl)-Y).^2.*weights,2 ))); 
      opts = optimoptions('fmincon', 'MaxFunctionEvaluations',10000,... 
            'MaxIter',3000,'Algorithm','interior-point','StepTolerance', 

  1.0000e-9); 
      b = 1-2*lower_B; 
      A = [0,0,1,0,1,0,zeros(1,size(a_para,1))]; 
      % Global fitting using the fmincon function 

      [p] = fmincon(f1,para,A,b,[],[],lb,ub,[],opts);              
      % assign the smallest off rate to be koff1 and the second smallest to 

 % be koff2 

 p_temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))]); 
      p_temp = p_temp';    
      p_out = [p(1),p_temp(:)',p(7:end)]; 
end 
end % end of function 

 
4. Define fitting models 

function f = model(i_model,para,X,tint,ttl) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  i_model = 1 – mono-exponential model 

%% i_model = 2 – bi-exponential model 

%% i_model = 3 – tri-exponential model 

%%  para: global parameters 

%%  X:    frame times 

%%  tint: camera integration times 

%%  ttl: time-lapse time 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% ampl: vector containing counts for all time-lapse intervals 
p = tint./ttl; p = p(:); 
if i_model == 1  
    kb = para(1); 
    koff1 = para(2); 
    ampl = para(3:end); 
    % mono-exponential model 

    f = (ampl'*ones(1,size(X,2))).* 
        (exp(-((kb.*p + koff1)*ones(1,size(X,2))).*X));    
elseif i_model == 2 % bi-exponential model 
    kb = para(1);     
    koff1 = para(2); 
    B1 = para(3); 
    koff2 = para(4); 
    ampl = para(5:end); 
    % bi-exponential model 

    f = (ampl'*ones(1,size(X,2))).*(B1.*exp(-((kb.*p + koff1)* 

 ones(1,size(X,2))).*X)+(1-B1).*exp(-(kb.*p + koff2)* 

 ones(1,size(X,2)).*X)); 
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elseif i_model == 3 
    kb = para(1); 
    koff1 = para(2);    B1 = para(3); 
    koff2 = para(4);    B2 = para(5); 
    koff3 = para(6); 
    ampl = para(7:end); 
    % tri-exponential model 

    f = (ampl'*ones(1,size(X,2))).* 
        (B1.*exp(-((kb.*p + koff1) * ones(1,size(X,2))).*X) 
        + B2.* exp( -(kb.*p + koff2)*ones(1,size(X,2)).*X )+ 
        (1-B1-B2).* exp( -(kb.*p + koff3)*ones(1,size(X,2)).*X )); 
end    
end % end of function 
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