
University of Wollongong University of Wollongong 

Research Online Research Online 

Australian Institute for Innovative Materials - 
Papers Australian Institute for Innovative Materials 

1-1-2019 

A 3D-Printed Electrochemical Water Splitting Cell A 3D-Printed Electrochemical Water Splitting Cell 

Chong Yong Lee 
University of Wollongong, cylee@uow.edu.au 

Adam Taylor 
University of Wollongong, taylora@uow.edu.au 

Stephen T. Beirne 
University of Wollongong, sbeirne@uow.edu.au 

Gordon G. Wallace 
University of Wollongong, gwallace@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers 

 Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Lee, Chong Yong; Taylor, Adam; Beirne, Stephen T.; and Wallace, Gordon G., "A 3D-Printed Electrochemical 
Water Splitting Cell" (2019). Australian Institute for Innovative Materials - Papers. 3836. 
https://ro.uow.edu.au/aiimpapers/3836 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiim
https://ro.uow.edu.au/aiimpapers?utm_source=ro.uow.edu.au%2Faiimpapers%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Faiimpapers%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Faiimpapers%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/aiimpapers/3836?utm_source=ro.uow.edu.au%2Faiimpapers%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages


A 3D-Printed Electrochemical Water Splitting Cell A 3D-Printed Electrochemical Water Splitting Cell 

Abstract Abstract 
3D printing offers an attractive approach in fabricating complex designs across a wide range of materials 
to meet the functional requirements of targeted applications. In this study, the surface-patterned metallic 
electrodes are printed and integrated with custom built reaction vessels produced via a polymer-based 3D 
printing approach to create a complete electrochemical cell. It is shown that metallic electrodes with 
conical surface structures can be printed from Ti and Ni. In addition to conventional flat electrodes, the 
design can be tailor-made to any desirable geometry such as a curved structure. The transformation of 
inactive Ti electrodes with the deposition of an active catalyst can be readily obtained by 
electrodeposition to enhance the electrode functionality. A new design of fully printed compartmented 
electrochemical cell with both anode and cathode facing outward, separated by a Nafion membrane, 
enabling the water oxidation and proton reduction reactions to occur in their respective compartments is 
fabricated. 

Disciplines Disciplines 
Engineering | Physical Sciences and Mathematics 

Publication Details Publication Details 
Lee, C., Taylor, A. C., Beirne, S. & Wallace, G. C. (2019). A 3D-Printed Electrochemical Water Splitting Cell. 
Advanced Materials Technologies, 4 (10), 1900433-1-1900433-6. 

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/3836 

https://ro.uow.edu.au/aiimpapers/3836


     

1 

 

DOI: 10.1002/((please add manuscript number)) 

Article type: Communications 

 

 

A 3D-Printed Electrochemical Water Splitting Cell 

 

Chong-Yong Lee*, Adam C. Taylor, Stephen Beirne, Gordon G. Wallace* 

 

Dr. C.-Y. Lee, A. C. Taylor, Dr. S. Beirne, Prof. G. G. Wallace 

ARC Centre of Excellence for Electromaterials Science, 

Intelligent Polymer Research Institute, 

AIIM, Innovation Campus, 

University of Wollongong, Wollongong, NSW 2500, Australia. 

 

E-mail: cylee@uow.edu.au, gwallace@uow.edu.au 

 

Keywords: 3D printing, water splitting, conical arrays, electrochemical cell, additive 

manufacturing  

 

 

ABSTRACT 

3D printing offers an attractive approach in fabricating complex designs across a wide range of 

materials to meet the functional requirements of targeted applications. In this study, the surface-

patterned metallic electrodes are printed and integrated with custom built reaction vessels 

produced via a polymer based 3D printing approach to create a complete electrochemical cell. 

We show that metallic electrodes with conical surface structures can be printed from Ti and Ni. 

In addition to conventional flat electrodes, the design can be tailor-made to any desirable 

geometry such as a curved structure. The transformation of inactive Ti electrodes with the 

deposition of an active catalyst can be readily obtained by electrodeposition to enhance the 

electrode functionality. A new design of fully printed compartmented electrochemical cell with 

both anode and cathode facing outwards, separated by a Nafion membrane, enabling the water 

oxidation and proton reduction reactions to occur in their respective compartments was 

fabricated.        
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3D printing, or additive manufacturing technologies, have grown rapidly and are 

revolutionising the approaches to design, development and manufacturing across a wide range 

of fields. Driven by a digital blueprint, and built in incrementally added layers, these 

technologies can replace traditional manufacturing approaches that commonly involve multiple 

assembly steps. The layer-by-layer fabrication process adds material from the bottom up, and 

has simplified the manufacturing process; reducing production cost and carbon footprint.[1,2] 

The flexibility in design, high precision in fabrication of complex geometry, material savings, 

and ease of customisation are among the key advantages of 3D printing. To date, fabrication of 

3D printed structures covers a wide range of materials including polymers, metals, alloys, 

semiconductors, carbons, ceramics, and biomaterials.[1-11] Advances in additive fabrication 

technologies has allowed the incorporation of different materials in a single printing process.  

The flexibility in fabrication from metal printing offers the reality of creating tailor-

made conductive components of desirable geometries. Printing of metallic structures can 

involve rather large objects for aerospace and biomedical engineering applications, and is 

increasingly employed in fabrication of micro-scaled devices for electrochemical storage and 

conversion applications, such as in water splitting,[10-13] batteries,[14-16] supercapacitors,[17-19] 

fuels cells,[20-22] and solar cells[23]. For the former, electrochemical water splitting to produce 

hydrogen offers an attractive approach for renewable fuel generation.[24-26-] The key to 

advancing practical usage of this technology is the development of earth abundant and low cost 

electrocatalysts.[27,28] This can be achieved by printing of established and efficient earth 

abundant electrocatalysts, such as Ni, or post-processing them into printed electrodes that can 

be integrated to an electrochemical cell.           

We have recently reported the use of Selective Laser Melting (SLM) to facilitate the 

printing of a tuneable array of Ti-based conical structures to achieve enhanced 

photoelectrochemical water splitting performance.[10] This conductive metallic structure 
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provided a suitable platform to grow 1D nanotubular structures, resulting in 1D nanostructures 

on the 3D conical array. Our demonstration however, was based on single electrodes, and it 

would be desirable if those electrodes could be incorporated into an electrochemical water 

splitting cell. In this work, we design and print all aspects possible for a functioning 

electrochemical cell; from the metallic electrode to drive the water oxidation and hydrogen 

evolution reactions, to the electrochemical cell casing based on polymer printing.  

There were reports on the assembly of prototype 3D-printed electrochemical cells. 

Ponce de Leon and co-workers fabricated a flow reactor made from acrylonitrile butadiene 

styrene (ABS) and 3D printed nickel electrodes.[29] Cronin and co-workers electrodeposited Ag 

catalyst on Ag coated polypropylene (PP) flow plates,[12] as well as Pumera and co-workers on 

polylactic acid (PLA) plates with catalyst electrodeposited on the stainless steel electrodes.[30] 

Here, we demonstrate the impact of surface patterning of the electrode topography towards 

enhanced electrocatalytic performance. We show the feasibility of designing electrodes with a 

concave base, as well as its integration to the full water splitting cell. Furthermore, the new 

design with both anode and cathode facing outward offers the possibility of using such a cell 

for photoelectrochemical water splitting application.               

The 3D printed Ti and Ni electrodes were fabricated with conical array features using SLM 

and the work flow as described previously.[8] In brief, the desired electrode geometry was 

modelled using computer aided design (CAD) software and was subsequently translated to 

standard tesselation language format (.stl), which was then sliced into layers. The sliced file is 

then converted to a metal printing file format, where the required laser parameters are linked to 

each individual layer. Each material has a unique set of values for fabrication via SLM, and 

associated post-processing (thermal treatment). These values vary on the basis of the 

printability of the metallic powder (assuming the powder is spherical in nature and 

dimensionally within a finite diameter range); properties such as thermal conductivity, 
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wavelength reflectance and melt temperature heavily dictate the fabrication process, while 

phase diagrams govern post-processing temperatures.  

 The conical-array features provide the desirable effect of enhancing surface area, in 

comparison to that of the similarly sized flat electrode. This electrode patterning offers a 

platform upon which further enhanced surface functionality and roughness can be introduced 

by post-processing via electrochemical or other approaches. We employed electrodes with the 

conical sizes with height of 800 µm, base of 250 µm, and distance between cones of 700 µm 

(Figure S1). Such surface structures will also facilitate enhanced contact with the reactant, as 

in this case of aqueous electrolyte for both water oxidation and proton reduction reactions. The 

distribution of products, oxygen and hydrogen, may also be facilitated by such design. As a 

proof-of-concept in the flexibility of 3D printing to tune electrode features, we further fabricate 

a concave-based electrode structure (Figures 1b and 1d) which differs to the flat-based structure 

(Figures 1a and 1c). Inset in Figures 1c and 1d show the optical images of the fabricated 

electrodes with flat- and curvy-based structures producable in both Ti and Ni. Our calculation 

of mathematical surface area indicates both flat and curvy-based structures provide almost an 

identical surface area. From a design perspective, such a concave-based structure could offer 

advantage in task-specific configurations. We focus here the fabrication of an all printable 2-

compartment electrochemical cell from the electrode to the cell designs. 
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Figure 1 Schematic diagram of a flat (a) and a curvy (b) based 3D printed conical array 

electrodes. Optical images of a flat (c) and curvy (d) electrodes taken from the side views. Inset 

shows the optical photograph of the whole electrodes. SEM images of the (e) conical Ti 

electrode electrodeposited with Ni, and (f) higher magnification image showing Ni particles. 
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(g) XRD spectra of Ni and Ti electrodes, and Ni catalyst electrodeposited on Ti electrode. (h) 

EDX of Ti and Ni elements on Ni electrodeposited Ti electrode.    

 

   

 Ni is an abundant and cheap metal that is known to be an efficient catalyst for 

electrochemical water spliting. Conversely, Ti is relatively inefficient and in comparison results 

in a significantly large overpotential. Nevertheless Ti is the most widely employed 3D printed 

materials with matured printing capability, and it is of interest to examine if this material can 

be transformed as a support by post-processing of a layer of electrocatalytically active material. 

Taking advantages of  Ti as a conductive metallic structure, we electrodeposited an active metal 

to enable efficient electrochemical water splitting. The Ni catalyst was deposited on Ti by a 

simple electrodeposition in nickel sulphate solution containing sodium citrate. Figures 1e and 

1f  show the SEM images of Ni catalyst deposited onto conical arrays of Ti. The Ni catalyst 

with particle sizes of ~ 0.5 µm formed a layer on the Ti electrode surface. XRD data in Figure 

1g indicates the peaks corresponding to Ni and Ti, with the Ni electrodeposited on Ti resulting 

in peaks containing both mixed Ni and Ti. Energy Dispersive X-Ray Analyser (EDX) analysis 

in Figure 1h confirms the presence of both Ni on Ti elements with the Ni homogenously 

electrodeposited on Ti electrode.      
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Figure 2  Comparison between the nickel electrode without (Ni) and with conical structure 

(Ni Con), with (a) showing linear sweep voltammograms, and b) cyclic voltammograms. c) 

Comparison of the linear sweep voltammograms of conical structure based on Ni and Ti. d) 

Comparison of linear sweep voltammograms of nickel electrodeposited on conical structure of 

titanium.         

 

 

 Figures 2a and 2b show the comparison of electrocatalytic water oxidation of 3D printed 

Ni with and without conical structures in 1.0 M KOH. The conical arrays exhibits enhanced 

peak current in comparison to the flat Ni. This is consistent with the increment in the peak area 

under the redox peak at ~ 1.40 V vs. RHE which indicates that conical array structure resulting 

in enhanced surface area. At 10 mA cm-2 and 40 mA cm-2, water oxidation overpotentials of 
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400 mV and 530 mV were required, respectively for the conical structure electrodes. To drive 

the water oxidation for control electrodes at the aforementioned current densities, larger 

overpotentials of 490 mV and 740 mV were needed in the flat nickel structure. In compare to 

the nickel electrodes, the use of titanium electrodes exhibited almost negligible catalytic peaks 

at both oxidative and reductive potential regions were obtained (Figure 2 c and 2d). Upon the 

electrodeposition of nickel catalyst on the titanium electrode surface, catalytic peaks 

corresponding to water oxidative and proton reduction were readily observed.          

 Based on the fabricated electrode, we further designed an assembly that intergrated the 

electrodes in a two-compartmental electrochemical cell seperated by a nafion membrane as 

schematically shown in Figure 3a. Figure 3b shows a Ti-plate with 1 cm x 1 cm exposed area, 

which was deposited with Ni. A small hole in the middle of the electrode allows electrolyte 

contact between anodic and cathodic compartments via the nafion membrane. A small tab on 

top of the electrode enables electrical connection. We employed a Stratasys Connex 350 high 

resolution 3D printing platform to print polymeric water-tight cathodic and anodic chambers 

using translucent proprietary photopolymer material (Stratasys - MED610). Meanwhile, a 

simple low cost fused deposition modelling system was employed to produce the ABS plastic 

locating base. Ethylene propylene diene monomer (EPDM) rubber gaskets were produced using 

a laser cutter and assembled between the plate, nafion membrane and cell compartment, 

ensuring water and gas tight sealing of the cell assembly. When necessary, the cell can be 

converted to a photoelectrochemical water splitting cell by placing quartz glass at the entrance 

port for light illumination on the electrode. O2 and H2 gases can be collected in their respective 

anodic and cathodic compartments. In the assembled cell, Ni electrodeposited Ti electrodes 

were employed as both anode and cathode. The assembly of full water splitting cell employed 

with printed anode and cathode. Instead of 1 cm x 1 cm electrode as previously reported,[8] the 

electrode was printed to be integrated for the cell assembly. The fabrication of a larger electrode 

meant the heat-generation is greater, therefore the internal stresses within the printed structures 
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from the fabrication process was managed by supporting the electrodes at a small angle of 

inclination to allow gradual introduction of the welded cross sectional area, and then the excess 

support material and post-processed by heat-treatment at  950 oC. This temperature profile was 

selected so as not to introduce phase transitions into the material, but rather to eliminate internal 

thermal stresses produced as a result of the fabrication process. 

 

 

 

Figure 3    (a) Schematic diagram of the assembly of 3D printed electrochemical water 

splitting cell consists of printable components. (b) The electrode with design allowing direct 

integration to the cell. (c) The optical photograph of the cell assembly, with the bottom white 

support to hold the cell.       
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Figure 4   (a) The comparison of a full cell with both anode/cathode consists of either conical 

arrays of Ti or Ni modified conical arrays of Ti, with experiment performed in 1.0 M NaOH 

solution at a scan rate of 5 mV s-1. (b) The controlled potential electrolysis performed on Ni 

modified conical arrays of Ti at the applied potential of  1.87 V.         

 

 Figure 4 shows the full water spliting cell by the employment of electrodes with Ti coated 

with Ni catalyst in both anodic water oxidation, and cathodic proton reduction reaction. 

Comparison was also made with the Ti sample without further modification. As expected Ni 

electrodeposition was essential for full water splitting to be performed at a lower overpotential. 

The use of titanium alone resulted in a very low electrocatalytic current. The applied potential 

of 1.87 V was required for the water splitting to occur with a current density of 10 mA cm-2. 

Using the nickel modified Ti conical array electrode, about 80 % of current retention after 1 h 

electrolysis (Figure 4b). Comparison of the SEM images show that there is no obvious change 

in the surface morphology of the electrodeposited Ni after 1 h  electrolysis (Figure S2). There 

is a room of improvement with respect to the electrodes performance and stability, which 

requires further optimisation of the electrodeposition parameters.  



     

11 

 

 In summary, the combination of metallic and polymeric based 3D printing approaches 

allows the fabrication of a 3D printable compartmental electrochemical water splitting device. 

The metal printing approach facilitates tailor-made electrode designs of desirable structures that 

can be readily integrated into a polymeric housing to serve as a full water splitting cell. The 

metallic electrode such as titanium which is a non-active water oxidation catalyst can be 

employed as a support for catalyst loading to facilitate electrocatalytic reaction, in this study by 

the electrodeposition of nickel. The used of other more active catalysts, is expected to lead to 

enhanced electrocatalytic performance.31-34 The next strategy that can be employed is direct 

incorporation of a second metal during SLM printing, to obtain novel alloys that may offer 

enhanced electrocatalytic performance.      

 

 

Experimental Section 

Materials and Chemicals: All materials and chemicals employed in this work were used as 

received without further purifications. Deionized water that was purified by a Mili-Q system 

was used for preparation of all solutions and for the purpose of rinsing. 

 

3D Printing: Metallic and polymeric 3D printing approaches were employed for electrodes, 

and the compartmented cell fabrication, respectively. 3D metal printing utilised a Realizer 

SLM50 metal printer (Realizer, Germany) with Ti and Ni based electrodes produced using a 

Grade 2 Ti metal (Fe 0.03, O 0.19, C 0.02, N 0.04, H 0.005 wt %, TLS TechnikSpezialpulver) 

and Ni metal (Ni 99.99%, TLS TechnikSpezialpulver) powders. The printed parts were 

removed from the build plate manually using a cutting process and underwent post-processing 

sonication in iso-propyl alcohol (Sigma Aldrich) for 60 minutes. This sonication process would 

remove any loosely bound titanium particles, which may have adhered to the surface during the 

print process, but had not completely bonded to the component. The electrodes were sonicated 
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with the array facing downwards to prevent any loose powder accumulation in the conical array. 

Samples were then dried using pressured nitrogen. In the fabrication of a larger 3D printed 

electrode for cell assembly, the internal stresses within the printed structures arising from the 

fabrication process were managed by supporting the electrodes at a small angle of inclination 

to allow gradual introduction of the welded cross sectional area, and then the excess support 

material. The formed structure was post-processed by heat-treatment at  950 oC. The locating 

base for the cell assembly was produced in ABS plastic using a simple low cost fused deposition 

modelling platform. The cathodic and anodic chambers were produced in a translucent 

proprietary photopolymer (MED610, Stratasys) via a Stratasys Connex 350 high resolution 3D 

printing platform.  

 

 

Electrodeposition: The nickel nanoparticle was electrodeposited onto the Ti conical array 

electrodes in solution consisting of 0.1 M nickel sulfate hexahydrate and 0.2 M sodium citrate, 

at -1.0 V for 20 min.  

 

Electrochemical water splitting experiments: Electrochemical water splitting measurements 

were performed in a three-electrode configuration using an Ag/AgCl (3 M NaCl, BASi) 

electrode as a reference electrode, platinum foil as a counter electrode and the 3D-printed 

metallic electrodes as anode and cathode, measured with a potentiostat (CH Instrument 650D). 

The measurements were performed in 1.0 M NaOH (Sima-Aldrich) and the potential value was 

converted to a RHE scale using the relationship ERHE = EAg/AgCl + 0.0591 × pH + 0.1976 V.  

 

Characterization:  The electrodes were analysed by X-ray diffraction (XRD, GBC MMA 

diffractometer) with Cu Kα radiation at a scan rate of 2 degree per min. The morphology of the 

samples was investigated by field emission scanning electron microscopy (FESEM, JEOL 

file:///E:/LEE%20INFO/aWollongong%20Papers/maybe/A%203D%20Printed%20Echem%20Cell/Submitted/MED610,
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JSM-7500FA). The resulting electrodes were imaged using a Leica M205 optical microscope 

and the associated dimensions compared to the CAD counterparts for physical reference.  

 

 

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the author. 
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The combination of 3D metal and polymer printings allow the fabrication of full water 

splitting cell. Direct integration of electrodes design is achievable with the tailored made printed 

design. New design with both anode and cathode facing outward is demonstrated, with 3D 

printed metallic electrodes also allow an ease of functional post-processing modifications. 

 

 

 

 

 

 

 

Keyword 

 

3D printing, water splitting, conical arrays, electrochemical cell, additive manufacturing 

 

 

Chong-Yong Lee*, Adam C. Taylor, Stephen Beirne, Gordon G Wallace*  

 

A 3D-Printed Electrochemical Water Splitting Cell 

 

 



     

16 

 

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. 

 

 

Supporting Information  
 

 

 

 

A 3D-Printed Electrochemical Water Splitting Cell 

 

Chong-Yong Lee, Adam C. Taylor, Stephen Beirne and Gordon G. Wallace 

 

ARC Centre of Excellence for Electromaterials Science, 

Intelligent Polymer Research Institute, AIIM,  

Innovation Campus,  

University of Wollongong, Wollongong,  

NSW 2500, Australia. 

 

E-mail: cylee@uow.edu.au, gwallace@uow.edu.au 

 

 

mailto:cylee@uow.edu.au
mailto:gwallace@uow.edu.au


     

17 

 

 
 

 

Figure S1     The top (a) and side (b) views of optical images of the 3D printed conical arrays 

Ti electrodes.  
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Figure S2     Comparison of the SEM images of Ni electrodeposited on Ti electrode, in the 

conditions of as prepared electrode (a1, a2) and electrode after performed 1h electrolysis at 

1.87 V (b1, b2).      
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