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ABSTRACT: A facile one-step method was used to create a se-

lective and sensitive electrode for dopamine (DA) detection based 

upon a stainless steel (SS) filament substrate and reduced graphene 

oxide (rGO). The electrode successfully and selectively detects DA 

in the presence of uric acid and ascorbic acid without the need of a 

Nafion coating. The proposed electrode is easy to fabricate, low-

cost, flexible and strong. The rGO-SS electrode could also be in-

corporated into a 3-dimensional braided structure enabling DA de-

tection in a two-electrode fibre system. The sensor is an excellent 

candidate for production of affordable, robust and flexible weara-

ble and portable sensor and expands the application of textiles in 

point of care diagnostic devices.  

Dopamine (DA) is an important neurotransmitter in the mamma-

lian brain associated with the motivational and movement path-

ways1,2.  Abnormal DA levels in the human body are associated 

with several neurological diseases such as Alzheimer’s, and Par-

kinson’s diseases3,4.  In Parkinson’s disease, there is a loss of do-

paminergic cells, resulting in rigidity and tremor.  The main treat-

ment is levodopamine, which is metabolized in the brain to DA.  A 

simple and accurate method for monitoring DA level is required to 

manage disease progression and treatment. In recent decades, dif-

ferent DA detection methods such as electrochemical analysis5, 

photoelectrochemical6, chemiluminescence7, and Localized Sur-

face Plasmon Resonance (LSPR) sensors using silver nanoparticles 
8 have been reported. Among these techniques, electrochemical ap-

proaches due to their accuracy, cost-effectiveness and simplicity 

have been widely used to detect DA2,9,10. An electrochemical ap-

proach can be used to detect DA in-situ, allowing real-time re-

sponse to changes in DA concentrations.  

 Fast-scan cyclic voltammetry (FSCV), and differential pulse 

voltammetry (DPV) are typically used for electrochemical detec-

tion of DA11–14.  FSCV offers outstanding temporal resolution, but 

it suffers from large capacitance, requiring a background subtrac-

tion step.  This limits the sensitivity and selectivity of this method. 

On the other hand, DPV provides high sensitivity and selectivity, 

but with less  temporal resolution5.  

Poor selectivity of DA detection is caused by uric acid (UA) and 

ascorbic acid (AA) having very similar redox potentials. To im-

prove the selectivity of DA by electrochemical detection, chemical 

surface modifications using carbon-based materials3,15 and nano-

particles16,17 have been widely used18. Chemical surface modifica-

tion of electrodes by carbon nanotubes2, polypyrrole doped with 

sulfonated β-cyclodextrins19, poly(3,4-ethylenedioxyselenophene)  

(PEDOT)3 and graphene oxide (GO)15 have reported to improve 

selectivity and lowering the detection limit of DA20,21. Nanoparti-

cle-modified electrodes such as βMnO2
17, gold nanoparticles14, and 

molybdenum oxide16 have also displayed very high selectivity to-

wards DA. As a response to the rapid spread of serious illnesses 

around the globe, World Health Organisation has prioritised 

“ASSURED”, affordable, sensitive, specific, user-friendly, rapid 

and robust, equipment free and deliverable to end user, diagnostic 

devices22. After the first introduction of thread-based microfluidics 

in 201023,24, threads and textiles have been widely used as an im-

portant platform for the development of cost-effective sensors. Ow-

ing to the unique characteristics of textiles such as fluid wicking, 

cost-effectiveness, flexibility, ease of incorporation into wearable 

devices and robustness in wet state9,25,34,35,26–33, textiles have been 

widely used as a substrate for production of a range of flexible and 

cost effective detection devices to address the targeted 

“ASSURED” diagnostic devices. Metallic electrodes for electro-

chemical sensing have been introduced into textile structures using 

different methods, i.e. pins and threads36 and screen printing37,38 

which are relatively expensive in low-scale production.   

High performance graphene and carbon fibre  electrodes have 

been used for the selective and sensitive detection of DA. Gold na-

noparticle-decorated carbon fibre microelectrodes14 have been re-

ported for highly sensitive and selective amperometric detection of 

DA release from PC12 cells. Puthongkham et al. have also reported 

sensitive and selective detection of DA using modified carbon fibre 

microelectrodes12. PEDOT-modified carbon5 and graphene3 elec-

trodes have also been reported for sensitive and selective electro-

chemical detection of DA.  However, these fibres are inherently 

fragile, limiting their lifetime and hindering implantation of these 

fibres into tissue.  Stainless steel (SS) filament is more robust com-

pared to carbon and graphene fibres yet very flexible (Figure S1). 

These characteristics raise the possibility of the SS filaments being 

more suitable for wearable and implantable sensors. 



 

In this paper, we demonstrated a facile one-step approach for the 

development of a robust yet flexible fibre-based electrode with high 

sensitivity and selectivity towards dopamine eliminating any post-

processing or modifications, such as electrode oxidation or coating 

with Nafion, normally required for the development of DA sensors. 

As a proof of processability, the fibre-based electrode was braided 

into a 3D textile electrochemical cell and used for successful detec-

tion of dopamine.  

The surface of SS filament working electrodes were modified by 

simultaneous electrodepositing and reduction of LCGO. SS fila-

ments were washed with EtOH and DI water to clean surface im-

purities prior to electrodepositions. To produce consistent and re-

producible reduced LCGO (rGO)-coated SS filaments, only 5 mm 

of SS filaments were exposed for rGO electrodeposition by isolat-

ing SS filaments as shown in Figure 1a.  Deposition of rGO was 

optimized to perform at -1.2V for 5 min. 

Visible colour change in the electrode from silver to black after 

electrodeposition (Figure 1b) and SEM images of rGO-coated SS 

filaments (Figure S2) confirmed the successful reduction and dep-

osition of rGO on the SS filaments. Raman spectra of SS filament, 

LCGO and rGO-coated SS filament, shown in Figure 1c, further 

confirm the formation of rGO layer on SS filament. Characteristic 

D and G peaks of carbonaceous materials were observed at 1347 

and 1586 cm-1, respectively, in Raman spectra of LCGO40,41 and 

the rGO-coated SS filament. It is expected that the electrodeposi-

tion partially eliminates oxygen containing groups of LCGO and 

restores the pi-electron structure to some extent42,43. The observed 

Raman spectra of the rGO-coated SS, D and G bands shifted com-

pare to those of LCGO which is an indication for reduction of gra-

phene oxide40. Similarly, the ratio of the D/G bands (ID/IG) was 

noted to increase after electrodeposition (it was measured to be 1.21 

in LCGO to 1.35 rGO-coated SS), which has also been attributed 

to formation of new smaller graphitic domains confirming the re-

duction of LCGO41,44–46.   

 

Figure 1- (a) isolated SS filament with 5 mm exposed, (b) top:-

rGO-SS and bottom:SS filament and (c) Raman spectra of SS fila-

ment, LCGO and rGO-SS filament 

The electrochemical response of the rGO-SS and SS filament 

electrodes in the presence of DA was initially studied by cyclic 

voltammetry (CV). As shown in Figure 2a and Figure S3, unmod-

ified SS filament displayed no redox peaks in 200 µM DA solution. 

However, voltammetry of the rGO-SS filament exhibited an anodic 

peak (Epa) and cathodic peak (Epc) at about 0.250 V and 0.100V, 

respectively (ΔE= Epc-Epa≈0.150 V). This indicates that rGO elec-

trodeposition on SS filament greatly enhanced its electrochemical 

response to DA. As illustrated in Figure 2b, different concentra-

tions of DA ranging from 1 μM to 1 mM in 100 mM PBS were 

successfully detected using rGO-SS filament electrode. The ca-

thodic peak current increased linearly with DA concentration (Fig-

ure 2c). The proposed electrode demonstrated broader linear range 

of detection compared to the previous reported works using carbon-

based electrodes or modified electrodes using carbon-based mate-

rials5,6,11,18,47,48. Table 1 compares the performance this electrode 

with some other electrodes used to detect DA. Multiple cycle volt-

ammetry showed little change in peak current, indicating the sur-

face modification was stable.  To reduce the background capaci-

tance and increase the electrode sensitivity, DPV was also applied. 

As illustrated in Figure 2d different concentrations of DA in 100 

mM PBS buffer solution ranging from 1 μM to 1 mM were suc-

cessfully detected using rGO-SS filament electrode using the DPV 

technique. A linear increase in cathodic current with an increase in 

concentration of DA was observed in low DA concentrations, i.e. 

up to  5 μM DA in 100 mM PBS solution (Figure 2e).  

 

Figure 2- (a) CV curves of 200 µM DA in 100 mM PBS at  100 mV 

s-1 scan rate using SS or rGO-SS working electrodes, (b) CV curves 

of different concentrations of DA in 100 mM PBS at  100 mV s-1 

scan rate,  (c) Linear increase in cathodic peak current of CV curves 

with increasing DA concentration, (d) DPV curves of different con-

centrations of DA in 100 mM PBS and (e) Increase in peak cathodic 

current of DPV curves with increasing DA concentration, inset: lin-

ear increase in  cathodic current with an increase in concentration 

of DA up to 5 μM  

  



 

Table 1. Comparison of linear range and detection limit for 

electrochemical detection of DA on representative electrode 

materials  

Electrode Linear rage 

(µM) 

R2 LOD 

(µM) 

Ref. 

3D SWNTs–Ppy composite 5–50 0.998 5  48 

Nafion-coated MWNT 0.1-5 0.995 0.01  2 

rGO-GCE 0.1–100 

and 

100–400 

0.991 

and 

0.997 

0.1 15 

molybdenum oxide nanopar-

ticles modified screen printed 

carbon paste electrode 

0.1–600 0.995 0.00

043 

16 

PEDOT modified laser 

scribed graphene  

1–150 0.995 0.33 3 

(GQDs–

NHCH2CH2NH)/GCE 

1-150 0.996 0.11

5 

1 

Graphene-modified GCE 4-100 0.988 2.64 47 

rGO-SS 1-1000 0.997 <1 This 

work 

Note: SWNTs: single wall carbon nanotubes; Ppy: polypyrrole; 

GCE: glassy carbon electrode; MWNT: multi wall carbon nano-

tubes; GQDs: graphene quantum dots 

The rGO-SS filament electrode shows excellent selectivity of 

DA over UA and AA. As shown in Figure 3a and Figure 3b, 25 

µM DA in PBS was selectively detected by rGO-SS filament elec-

trode in the presence of UA and AA at ten times higher concentra-

tion without any further surface modifications such as Nafion coat-

ing. DA is positively charged1, while rGO sheets contain a net neg-

ative charge due to the oxygen containing functional groups on the 

surface5,49. Therefore, positively charged amine groups of DA(pKa 

= 8.87) could be attracted to the surface of the rGO-SS filament 

electrode by electrostatic interaction and π–π bonding1,18. In con-

trast, UA (pKa=5.75) and AA (pKa=4.1) are negatively charged, 

which can result in electrostatic repulsion from the rGO-SS fila-

ment electrode1,18,49. Reaction mechanism of DA on rGO-SS fila-

ment electrode is illustrated schematically in Figure 3c. Although 

the proposed electrode is highly selective to DA over AA and UA, 

increasing the rGO electrodeposition time (from 5 to 10 minutes) 

resulted in an electrode sensitive to DA and UA (Figure S4). This 

can be attributed to the higher degree of GO reduction, removal of 

oxygen functionality and consequently more neutral surface 

charge46. This was confirmed by Raman spectra, which exhibited 

an increase in the intensity ratio of the D and G bands (ID/IG) for 

the electrode prepared by 10 minutes electrodeposition compared 

to that of prepared by five minutes (Figure S4a).  

 

Figure 3- DA selectively being detected in the presence of UA and 

AA at ten times higher concentration using (a) CV and (b) DPV 

methods, and (c) schematic of the reaction mechanism of DA on 

the rGO-SS filament electrode  

As a proof of processability of the electrodes, a 3D braided struc-

ture comprising two parallel SS electrodes, using the method we 

have previously shown40, was fabricated. Separated electrodes in a 

braided structure are shown in Figure 4a. The working electrode in 

the braided structure was modified by electrodeposition of rGO us-

ing the method described earlier. Figure 4b shows the structure with 

modified working electrode.  As a proof of concept, a 3D braided 

structure with modified working electrode was connected in a two-

electrode system, where a rGO-coated SS filament was used as the 

working electrode and an SS filament was used as a combined ref-

erence and counter electrode (schematically shown in Figure 4c). 

The 3D braided electrochemical cell successfully detected 50 µM 

DA in 100 mM PBS utilizing CV and DPV techniques (Figure 4d 

and Figure 4e). The proposed electrode benefits from great flexi-

bility and processability compared to other electrodes proposed for 

DA detection, e.g. modified glassy carbon electrodes17,49,50, modi-

fied laser scribed graphene3, modified screen printed electrodes16 

and modified Pt electrodes2,19, which facilitate its incorporation 

into 3D electrochemical cells. 

 

Figure 4-(a) optical micrograph of a 3D braided structure com-

prised of two parallel SS filaments separated by insulating PET 

yarns (scale bar: 1 mm), (b) 3D textile electrochemical cell with 

rGO-SS filament working electrode, (c) schematic experimental 

setup using integrated electrodes in a 3D braided structure, (d) DPV 

and (e) CV (scan rate 100 mV s-1) of 50 µM DA in 100 mM PBS 

using integrated electrodes in a 3D braided structure (scan rate 100 

mV s-1) 



 

This study demonstrates a simple one-step method for produc-

tion of a selective and sensitive fibre-based electrode for detection 

of DA utilising electrodeposition of rGO on SS filaments tech-

nique. This method provides a simple one-step technique to create 

a very low-cost electrode compared to Pt and CNT sensors being 

used to detect DA and eliminates any post-processing steps. As a 

proof of processability, the developed flexible yet strong electrode 

was successfully incorporated into a 3D braided structure and able 

to detect DA in a two-electrode system. The electrode benefits from 

features such as being low-cost, flexible and easy to use making it 

an excellent candidate for production of ASSURED devices. It also 

can be easily incorporated into electrochemical cells and wearable 

and portable sensors, tackles miniaturization issue and expands the 

application of textiles in point of care diagnostic devices and other 

integrated microfluidic chips in future. 
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