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Thermionic enhanced heat transfer in electronic devices based on 3D Dirac materials

Sunchao Huang, R. A. Lewis and Chao Zhanga)

School of Physics, University of Wollongong, Wollongong, New South Wales 2522,

Australia

We calculate the heat transfer from electronic devices based on three-dimensional

(3D) Dirac materials without and with thermionic cooling. Without thermionic cool-

ing, the internal temperature of the devices is at best equal to and usually higher than

the temperature of the surrounding environment. However, when thermionic cooling

is employed to transport heat, the internal temperature can be considerably lower

than the environmental temperature. In the proposed thermionic cooling process,

the energy efficiency can be as high as 75% of the Carnot efficiency.

a)czhang@uow.edu.au
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I. INTRODUCTION

The heat power density of electronic devices increases rapidly with their miniaturization

and integration, which are the main developments of future devices. The high density of

heat power demands more powerful methods to transport heat. Otherwise, a high internal

temperature will result. For electronic devices, a high internal temperature reduces not

only their efficiency but also their lifetime1. There are several cooling schemes to overcome

these problems, such as high-flux heat pipes, air-cooled heat sinks, direct liquid immersion

and thermionic cooling2,3. Thermionic cooling is based on thermionic emission that was

discovered by Richardson in 1901. Thermionic emission refers to the process where electrons

are driven by thermal energy across a surface barrier, which is a hot research topic4–8.

For conventional materials with a parabolic energy-momentum dispersion, the thermionic

emission density is described by the Richardson-Dushman (RD) law:

JR(T ) =
qmk2B
2π2~3

T 2e−qφβ, (1)

where q is the electron charge, m is the electron mass, kB is the Boltzmann constant, ~ is

the reduced Plank’s constant, φ is the surface potential and β = 1/(kBT ), where T is the

thermodynamic temperature. A 3D Dirac semimetal phase with a linear energy-momentum

dispersion has been experimentally observed in Cd3As2 by means of angle-resolved pho-

toemission spectroscopy9. The material has attracted considerable attention10–13 and has

been found to have many astounding properties such as the extraordinarily high mobility of

electrons (10,000 cm2/V s at room temperature)14, tunable mid-infrared optical switching15,

low thermal conductivity16 and high efficiency and non-Richardson thermionics17,18. By us-

ing the linear energy-momentum dispersion, the thermionic emission of Dirac materials is

determined to be17

J(T ) =
qk2B

4π2~3v2F
(qφ+ EF + 2kBT )T 2e−qφβ, (2)

where EF is the Fermi energy and vF is the Fermi velocity. In our work, we set the value of

vF to 1 × 106 m/s for Dirac semimetal Cd3As2 according to an experiment result19.

Based on thermionic emission processes, two kinds of devices, namely thermionic genera-

tors and thermionic coolers, have been proposed3,20,21. Thermionic generators show promis-

ing applications in harvesting thermal energy22,23. In addition, they have been used to

convert solar energy to electricity24. The investigation of thermionic cooling can be dated
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back to 1994, when G. D. Mahan described thermionic refrigeration25. The thermionic cooler

is made of two parallel planes and a thermal barrier. Theoretically, the cooler can work as

a room temperature refrigerator if the work function of its anode material is about 0.3 eV.

A few years later, Mahan extended the work to multilayer thermionic refrigeration26. Some

of our authors have obtained several results on thermionic cooling such as numerical calcu-

lation of thermionic cooling efficiency in a double-barrier semiconductor heterostructure27;

electronic efficiency in nanostructured thermionic and thermoelectric devices28, space charge

effects in I-V characteristics of multilayer semiconductor thermionic devices29 and high ef-

ficiency non-Richardson thermionics in three dimensional Dirac materials17. The results

show space charge has considerable influence on thermionic devices, and the performance

of thermionic performance can be improved by engineering the electron energy spectrum.

We have found that 3D Dirac semimetals have the best thermal efficiency and coefficient of

performance when compared to conventional semiconductors and graphene. Since the low

emission current suffered in graphene due to the vanishing density of states is enhanced by

an increased group velocity in 3D Dirac materials. Additionally, the thermal energy per

degree of freedom carried by electrons in 3D Dirac materials is twice of that carried by an in

electron in conventional materials. Recently, much work has been carried out to understand

the thermionic emission in graphene systems and in Schottky heterostructures30–39.

In the present work, we demonstrate that thermionic emission in 3D Dirac materials can

be used to cool electronic devices effectively. Additionally, the energy (power) consumed by

the process is low, and the cooling efficiency is high.

II. MODEL

A schematic diagram of electric devices without and with thermionic cooling is shown in

Fig. 1(a) and (b), respectively. The red part of the centre plane is the heart of the electronic

device that realizes all electronic functions, which is coated by a layer of insular materials

indicated by yellow. The green outer layer of the centre plane is the cathode giving out

thermionic emission, and its temperature is the internal temperature. The left and right

planes are the boundaries of the device and provide mechanical protection. Between the

centre plane and the boundary planes, there is a thermal barrier. This can be a vacuum gap

or a barrier material. The centre plane will produce heat at a constant power Pin while the
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device runs. For devices without thermionic cooling, the heat is transferred to the boundary

planes by thermal radiation and thermal conduction. For device with thermionic cooling,

the heat is also transferred to the boundary planes by thermionic cooling. In our model, the

temperature of centre plane (the internal temperature, T ) is assumed to be uniform, and

the temperature of boundary planes (the environmental temperature, TE) is assumed to be

both uniform and constant. According to the Stefan-Boltzmann law, the thermal radiation

heat is approximately given by 2Aεσ(T 4 − T 4
E), where σ = 5.67 × 10−8 Js−1m−2K−4 is the

Stefan-Boltzmann constant, ε is the emissivity and 2A (here 2 for the left and right sides) is

the surface area of the centre plane. The thermal conduction heat is given by 2AK(T −TE),

where K is the heat transfer coefficient. For the convenience of plotting, we set K = aK0,

where K0 = 2× 103 W/cm2K and a is a dimensionless parameter. In practical applications,

the value of K can be varied by changing materials or the sample thickness. The thermionic

cooling is realized by carefully choosing materials and applying an external voltage (V )

between the centre plane and the boundary planes. We assume both centre and boundary

planes are made up of the 3D Dirac material Cd3As2. In our device, the thermionic cooling

can be turned on and off by controlling the external voltage, while the thermal radiation

and thermal conduction will always be present.

For thermionic based cooling devices, a small work function is always preferred since a

smaller work function results in a higher thermionic emission current. However, the work

function of typical materials is of order eV in bulk materials and a few hundred meV in

low dimensional materials. In our calculations, we choose a relative low work function

qφ = 250 meV to demonstrate the thermionic effect. For a specific work function, there is

an optimal external bias, which produces the highest thermionic cooling and efficiency. Here

the optimal bias is V = 55 mV. Additionally, we assume the maximum running temperature

of the electric devices is 40 ◦C.

III. RESULTS AND DISCUSSION

At the outset, we discuss the heat transfer in devices without thermionic cooling. The

heat is transferred by two kinds of mechanism i.e. thermal radiation and thermal conduction.

The whole heat transfer processes can be described by the following equation,

∆Q = mCv∆T = APindt− 2Aεσ(T 4 − T 4
E)dt− 2AK(T − TE)dt, (3)
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FIG. 1. (Color online) A schematic diagram of the electric devices (a) without thermionic cooling

(b) with thermionic cooling. The red part of the centre plane is the heart of the device, which is

coated by a layer of insular materials indicated by yellow. The green outer layer of the centre plane

is the cathode giving out thermionic emission, and its temperature (T ) is the internal temperature.

The left and right planes are the boundaries of the device, which have constant temperature TE,

named as environmental temperature. The green part of the planes is made of Dirac semimetal.

The centre green plane is grounded, and the green boundary planes are positively biased. The (a)

and (b) have the same structure except for the external voltage.

where ∆Q is the heat change of the centre plane in a small period of time dt, m = ρAd is the

mass of the centre plane, ρ = 3.03 × 103 kg/cm3 is the volumetric mass density of Cd3As2,

d = 1 mm is the thickness of the centre plane, ∆T is the change of the internal temperature,

K is the heat transfer coefficient, and Cv is the specific heat capacity of Cd3As2. Since this
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value is not available, we assume it can be approximately calculated by,

Cv =
3mCdC

Cd
v + 2mAsC

As
v

3mCd + 2mAs

, (4)

where CCd
v = 230 J/kg K and CAs

v = 330 J/kg K are the specific heat capacity at room

temperature of cadmium (Cd) and arsenic (As), respectively, and mCd and mAs are the

standard atomic weights of Cd and As. The calculated Cv is 260 J/kg K, and we assume it

is constant in our calculation. After some algebra, Eq. 3 can be rewritten as

∆T =
2

ρdCv
[
Pin

2
− εσ(T 4 − T 4

E) −K(T − TE)]dt, (5)

where Pin = 1 W/cm2 and ε = 0.5. There are only two unknown parameters i.e. ∆T and

dt. Therefore, the time dependence of the internal temperature can be calculated.

0 1 2 3 4 5

t (s)

5

10

15

20

25

T
 (
°
C

)

T
E

 = 25 °C

(c)

0 1 2 3 4 5
25

30

35

40

45

50

T
 (
°
C

)

(a)

T
E

 = 25 °C

K = 0.2K
0

K = K
0

K = 5K
0

0 1 2 3 4 5
60

65

70

75

80

85

(b)

T
E

 = 60 °C

0 1 2 3 4 5

t (s)

20

30

40

50

60

T
E

 = 60 °C

(d)

FIG. 2. (Color online) Time dependence of the internal temperature at three different values of

K where (a), (b) for devices without thermionic cooling and (c), (d) for devices with thermionic

cooling. TE = 25 ◦C for (a), (c) and TE = 60 ◦C for (b), (d). For all situations, the internal

temperature reaches a saturation value and keeps constant after a few seconds.

The numerical results are shown in Fig. 2 (a) and (b) for TE = 25◦C and 60◦C. In the

present work, 40 ◦C is assumed to be the highest internal running temperature of the de-

vices. For K = 0.2K0 and TE = 25 ◦C, the internal temperature reaches 40 ◦C in just one
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second and then reaches a maximum temperature of 50 ◦C. When TE = 25 ◦C, the maximum

internal temperatures for K = K0 and K = 5K0 are about 30 ◦C and 26 ◦C, respectively,

which indicates the devices running well at an environmental temperature TE = 25 ◦C. When

TE = 60 ◦C, the internal temperatures for three K are always greater than 40 ◦C, to be more

precise, greater even than 60 ◦C. From the results, three conclusions can be drawn. Firstly, a

large K is highly desirable in devices without thermionic cooling since it means better ther-

mal conduction that can quickly transport heat into surroundings. Secondly, the internal

temperature may reach the maximum temperature in just a few seconds. Lastly, no matter

how large K is, the internal temperature is higher than or equal to the environmental tem-

perature. Before the device is turned on, the internal temperature equals the environmental

temperature. When the device is turned on, the internal temperature will gradually become

higher than the environmental temperature. This feature considerably hinders the applica-

tions of the devices. For example, if the environmental temperature is higher than 40 ◦C,

then the internal temperature will always be higher than the highest running temperature.

Now, we discuss the heat transfer in the devices with thermionic cooling. Unlike thermal

radiation and thermal conduction, thermionic cooling can transport net heat from a cold

object to a hot object17. This means the internal temperature can be lower than the en-

vironmental temperature. When thermionic cooling is introduced, Eq. 5 can be rewritten

as,

∆T =
2

ρdCv
[
Pin

2
− εσ(T 4 − T 4

E) −K(T − TE) − JQ]dt, (6)

where JQ is the heat flow contributed by thermionic cooling, given by17

JQ = [(qφ+ 4kBT )J(T ) − (qφ+ 4kBTE)J(TE)eqV β]/q. (7)

The time dependence of the internal temperature at three values of K is shown in Fig. 2(c)

for TE = 25 ◦C and (d) for TE = 60 ◦C. When TE = 25 ◦C, the internal temperatures for three

values of K are well below 40 ◦C. When TE = 60 ◦C, the maximum internal temperature

is about 24 ◦C and 36 ◦C for K = 0.2K0 and K = K0, respectively, indicating that the

thermionic enhanced devices can run well at TE = 60 ◦C. For K = 5K0, the maximum

internal temperature is lower than the environmental temperature and higher than the

highest running temperature. In devices without thermionic cooling, a large K results in

a low internal temperature. However, in thermionic enhanced devices, a large K results in
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a high internal temperature. The fundamental reason is that the internal temperature is

lower than the environmental temperature in thermionic enhanced devices. In such devices,

a large K accelerates the heat conduction from the surroundings to the interior of the

devices, leading to a high internal temperature. Therefore, in thermionic enhanced devices,

a small K is wanted instead of a large one. Additionally, the internal temperature reaches

the maximum temperature in one second.
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FIG. 3. (Color online) Time dependence of the consumed power in thermionic cooling process

(dashed line with left y-axis as indicated by the magenta dashed arrow) and the cooling energy

efficiency (solid line with right y-axis as indicated by the magenta solid arrow), where TE = 60 ◦C.

In thermionic enhanced devices, an external voltage is needed to drive the thermionic

cooling, which consumes energy. The consumed power density P can be calculated by,

P = JnetV, (8)

where the Jnet = 2[J(T ) − J(TE)eqV β] is the net current density. The time dependence of

P is shown in Fig. 3 with the dashed curves, where TE = 60 ◦C. The curves share a similar

trend with those in Fig. 2(c) and (d). The reason is that P depends only on T when V and

8



TE are fixed. Therefore, P and T share a similar time dependence. Combining Fig. 2 and

Fig. 3, we find the device with the smallest K has the best performance in the thermionic

cooling process, having the lowest internal temperature and the smallest consumed power.

The underlying reason is found in Eq. 8, where a smaller T leads to a smaller P .
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FIG. 4. (Color online) The minimum work function (qφ) as a function of environmental temperature

(TE) at three values of K, where V = 60 mV and T − TE= 20 K.

In order to characterize the cooling energy efficiency of the thermionic enhanced devices,

a relative efficiency is defined as,

η =
JQ
P

× TE − T

T
, (9)

where T/(TE − T ) is the Carnot efficiency. According to the equation, the time dependence

of η is plotted in Fig. 3 with the solid curves. The results show that η decreases with K,

which indicates again that the thermionic enhanced device with the smallest K has the best

performance in thermionic cooling. The energy efficiency is rather high, up to 75% of the

Carnot efficiency. However, we should point out that the device with the smallest K has a

rather low Tc1, and this limits the applications of the device.
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Thermionic emission current is sensitive to the work function and the temperature. In

order to generate enough thermionic cooling, there is a minimum work function for a specific

work temperature. The minimum work function vs TE is plotted in Fig. 4, where V = 70 mV

and TE − T= 20 K. Here a relative larger external voltage is used to obtain the maximum

thermionic emission current for all work functions. The difference between TE and T keeps

constant for all work functions. The results show the minimum work function considerably

depends on TE. In Eq. 2, the thermionic emission current is mainly determined by the

exponent part e−qφβ, which results in a linear temperature dependence of the work function.

Additionally, there is a nonlinear part qφ + EF + 2kBT . This is why a quasi-linear TE

dependence of qφ is observed.

IV. CONCLUSION

We have shown that the thermionic effect can be employed to enhance heat transfer in

electronic devices. With thermionic cooling, the internal temperature of the devices may

be considerably lower than the surrounding environmental temperature. In this sense, the

operating temperature range of the devices may be significantly extended. The energy

consumed by thermionic cooling and its energy efficiency are consonant with an excellent

heat transfer performance. These findings promise to be useful in developing future electronic

devices.
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