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Abstract

Purpose: We introduce a technique that employs a 2D detector in transmission

mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measure-

ments, when taken at a different surface‐to‐detector distance (SDD), allow for the

area at dmax (in which the dose map is calculated) to be adjusted.

Methods: We considered the detector prototype “MP512” (an array of 512 diode‐
sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode

were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measure-

ments were made at dmax in Solid Water. We considered radiation fields in the

range from 2 × 2 cm2 to 10 × 10 cm2, produced by 6 MV flattened photon beams;

we derived a relationship between DM and TM measurements as a function of

SDD and field size. The relationship was used to calculate, from TM measurements

at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2, and

in IMRT fields. Calculations were cross‐checked (gamma analysis) with the treatment

planning system and with measurements (MP512, films, ionization chamber).

Results: In the square fields, calculations agreed with measurements to within

±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/

1 mm, calculations had respective gamma passing rates greater than 96.89%,

90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a

24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter

misalignments, dose averaging in calculations, noise artifacts in film dosimetry.

Conclusions: It is possible to perform TM measurements at the SSD which pro-

duces the best fit between the area at dmax in which the dose map is calculated and

the size of the monitored target.

K E Y WORD S

2D solid‐state array detector, MP512, transmission detector, in vivo QA
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1 | INTRODUCTION

Conformal radiotherapy techniques such as intensity‐modulated

radiotherapy (IMRT) and volumetric‐modulated arc radiotherapy

(VMAT)1,2 require accurate verification of treatment plans. Pretreat-

ment quality assurance (QA)3 considers point‐dose measurements

performed with an ionization chamber4 and dose distribution mea-

surements performed with an electronic portal imaging device

(EPID),5–7 a phantom‐based electronic array8–11 or films. However,

time‐consuming pretreatment QA is typically considered only once

before the first treatment session; potential changes or errors in all

sessions will remain unaddressed and/or undetected.12,13

An in vivo verification approach validates, in real time, accuracy,

and integrity of treatment plans; parameters monitored include, for

instance, the output of a medical linear accelerator (linac) and the

position and/or movement of the leaves of a multileaf collimator

(MLC).12–15 Solutions for in vivo monitoring include16 the use of

transit and transmission detectors.

Transit detectors such as EPIDs are placed so that the beam

penetrates the patient first, and then the detector.17–19 QA with

transit EPIDs is challenging; their response is energy dependent and

there is additional scatter from the patient; also, they are not able to

discriminate between changes in signal due to changes in fluence

incident on the patient from changes in signal due to anatomical

variations within the patient.20

Transmission detectors are, instead, placed between the linac

head and the patient. Commercially available options include the

Device for Advanced Verification of IMRT Delivery (DAVID) system

(PTW, Freiburg, Germany), a flat, multiwire transmission‐type ioniza-

tion chamber21,22; the Dolphin detector with the COMPASS soft-

ware (IBA Dosimetry, Germany), which uses 1513 air‐vented plane

parallel ionization chambers,23–25 the integral quality monitoring

(IQM) system (iRT Systems GmbH, Koblenz, Germany), a large‐area
wedge ionization chamber12,13,26,27; the Delta4 Discover (ScandiDos

AB, Uppsala, Sweden), a 2D solid‐state array.16 Several prototypes

have also been proposed in the literature, including optical attenua-

tion‐based scintillating fibers28; 2D solid‐state arrays, such as the

MP12129,30 and the MP512.31

Transmission detectors allow for independent monitoring of the

output of a linac, and of the position and/or movement of the leaves

of an MLC.16 However, they have limitations. Any device placed in

the beam path affects beam quality and introduces beam attenua-

tion,12 and as such has to be modeled in the treatment planning sys-

tem (TPS).27 Also, transmission detectors may increase surface

dose16,23 and their efficacy for beam monitoring is limited by their

shape, active area, and spatial resolution.

The present study introduces a novel technique for using a 2D

solid‐state array prototype, the MP512 (512 diode‐sensitive volumes,

2 mm spatial resolution). The MP512 was used in transmission mode

(TM) to verify dose maps at a depth of dmax in Solid Water. TM

measurements were taken at different surface‐to‐detector distances

(SDDs) in order to adjust the area at dmax where the dose map is cal-

culated.

2 | MATERIALS AND METHODS

2.A | Linear accelerator and treatment planning
system

All measurements were performed at the Illawarra Cancer Care Cen-

tre (Wollongong, NSW, Australia) using a Varian Clinac® iX (Varian

Medical Systems, Palo Alto, CA, USA) linac equipped with a Millen-

nium 120‐MLC with leaf width at the center of 5 mm. The linac

operated with a pulse frequency of 360 Hz and was calibrated to

deliver 1 cGy/MU at dmax in water, at 100 cm source‐to‐surface dis-

tance (SSD). In all cases, a 6 MV flattened photon beam was used.

For all dose calculation with a TPS, and for all IMRT plans, we

used the Pinnacle's adaptive convolution‐superposition (CS) algo-

rithm implemented into the Pinnacle3 TPS version 14 (Philips Medi-

cal Systems, Eindhoven, the Netherlands). Dose calculations were

performed with a grid of 2 mm. Also, clinical IMRT plans were cre-

ated, within the TPS, based on computed tomography (CT) datasets

of the Solid Water phantom; a SOMATOM CT Scanner (Siemens

Healthineers, Erlangen, Germany), acquiring axial slices of 2 mm, was

used.

2.B | The MP512 system

The MP512 is a prototype of a monolithic silicon‐array detector; it

was developed at the Centre for Medical Radiation Physics (Univer-

sity of Wollongong, NSW, Australia). The prototype has 512 diode‐
sensitive volumes; these have an area of 0.5 × 0.5 mm2 and are uni-

formly distributed with a pitch of 2 mm over an active area of

52 × 52 mm2. The MP512 is operated in passive mode (i.e., no

external bias is applied); its associated readout electronics has a high

temporal resolution (pulse‐by‐pulse signal acquisition).32

In the literature, the MP512 has been characterized as a phan-

tom‐based detector for quality assurance in modern radiotherapy; it

was demonstrated to be an accurate dosimeter for the measurement

of output factors, percentage depth dose distributions, and lateral‐
dose profiles; furthermore, its angular dependence was investigated

and corrected for, making it a suitable candidate for quality assur-

ance in arc deliveries.33–35 The use of the MP512 as a transmission

detector was also assessed.31 In that study, it was reported that the

MP512 in TM increases the surface dose by <25% for a SDD in the

range from 0.3 to 18 cm, and by <5% for SDD >18 cm.31 The trans-

mission factor, at dmax depth in Solid Water, 100 cm SSD, was in the

range from 1.020 to 0.997 for SDDs from 0.3 to 24 cm.31

2.C | Gafchromic™ EBT3 films and Farmer
ionization chamber

We considered measurements with Gafchromic™ EBT3 films and

with a Farmer NE2571 ionization chamber, performed under the

same experimental conditions.

Films were scanned with an EPSON Expression 10000 XL

flatbed scanner using a 48‐bit RGB and a resolution of 72 dpi. Films
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were pre‐ and post‐scanned (24 hrs after irradiation) six times main-

taining a consistent orientation and using only the last three optical

density maps. Films were calibrated using absolute dose measure-

ments with the Farmer chamber.36 Film analysis methodology was

the same as that used by Aldosari et al.37

2.D | Measurements in transmission mode and in
dose mode

The MP512's active area was made light‐tight using a black plastic

sheet of thickness 80 µm. An equalization procedure, performed

prior to all measurement, was used to address a nonuniformity in

the integral response of the MP512's sensitive volumes.38 Also, to

convert readings to absolute dose, the MP512 was calibrated using

measurements of response linearity with dose; those measurements

were performed in jaws‐defined fields of 10 × 10 cm2, at a depth of

dmax in Solid Water, 100 cm SSD. Delivered MUs were in the range

from 1 to 1000 MU, at a fixed dose rate of 600 MU/min. The

Farmer chamber was used for the absolute dose measurements at a

depth of dmax in Solid Water.36

For TM measurements, the MP512 was sandwiched between

two protective slabs of PMMA of thickness 3 mm. To minimize the

resulting composite thickness, each slabs had an opening, centered

on the axis of the MP512's active area, of 9.5 × 9.5 cm2 (Figure 1).

The MP512 was then lodged into a movable holder of PMMA; by

moving the holder, the SDD could be varied in the range from 0.3

to 24 cm (Figure 2). The effective area (Aeff), at a depth of dmax in

Solid Water, was defined as a function of SDD as:

Aeff ¼ AMP512
SSDþ 1:5
SSD� SDD

� �2

; (1)

with AMP512 the MP512's active area.

For dose mode (DM) measurements, the MP512 was placed at a

depth of dmax, in Solid Water on the treatment couch. In that case,

the MP512 was sandwiched between two slabs of PMMA of

thickness 5 mm; the top slab had a small recess (or air gap),39 cen-

tered on the axis of the MP512's active area, of thickness 0.5 mm.

The air gap was necessary to minimize, in small radiation fields,40 the

number and size of corrections required to relate the MP512's read-

ings to dose.41

TM and DM measurements were performed in jaws‐defined sta-

tic fields of 2 × 2 cm2, 3 × 3 cm2, 5 × 5 cm2, 8 × 8 cm2, and

10 × 10 cm2, as defined at 100 cm SSD, delivering 200 MU at

600 MU/min. All measurements were repeated three times to mini-

mize random uncertainties and errors were calculated as one stan-

dard deviation. In all fields, the ratio between DM measurements

and TM measurements, as a function of SDD, was fit using the least

square method.

2.E | Dose calculations in static square fields and
IMRT fields

The response of the MP512 in TM was measured in static fields of

1 × 1 cm2 and 4 × 4 cm2, at 4 and 24 cm SDD. In each of these

F I G . 1 . (Upper panel) A snapshot of the
active area of the MP512 and protective
PMMA slabs. (Lower panel) A schematic of
the packaging of the MP512 system, with
the MP512 active area proper, upper and
lower PMMA protective slabs, and the
PCB‐FR4 board on which the detector is
wire bounded for signal readout.

F I G . 2 . Use of the MP512 system in transmission mode (not to
scale).
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fields, the response of the MP512 in DM at dmax was then calcu-

lated using the relationship between DM and TM measurements

derived as described in the previous section. Note that these fields

were not part of those used to obtain the relationship in the first

place. As the field of 1 × 1 cm2 was smaller than the smallest field

used for the fit, the calculated response in DM was extrapolated.

The response in DM in the square field of 4 × 4 cm2 was calculated

by interpolation. Calculated responses in DM were then compared

with responses in DM measured with the MP512 itself, with Gaf-

chromic™ EBT3 films and with a Farmer ionization chamber.

Additionally, the response of the MP512 in TM was measured at

4 and 24 cm SDD in clinical IMRT fields; these fields were delivered

with a treatment plan used to treat a malignant base of skull chor-

doma. The step‐and‐shoot plan, consisting of six static fields defined

by the MLC, delivered a nominal dose 1.8 Gy per fraction to a gross

tumor volume (GTV) of 12.40 cm3. All fields were delivered with the

gantry at 0° (incident beam perpendicular to the active area of the

MP512) to rule out angular dependence effects on the response.35,42

Equivalent square fields (Aeq) of IMRT fields were calculated using43:

Aeq ¼ 2xy
xþ y

(2)

As above, in each of these fields, the response of the MP512 in DM

at dmax was then calculated using the relationship between DM and TM

measurements. Calculated dose distributions were compared with TPS

calculations and with DM measurements with the MP512 itself and

with Gafchromic™ EBT3 films. The comparison was performed with a

gamma index analysis with the following acceptance criteria: 1%/1 mm,

2%/2 mm, and 3%/3 mm; a global threshold of 10%was applied.

3 | RESULTS

3.A | Measurements in transmission mode and in
dose mode

Figure 3 shows ratios between DM and TM measurements with the

central sensitive volume of the MP512. Ratios, a function of field

size and SDD, were fit; corresponding slopes (M) and axis intercepts

(BA0) are in Table 1. It was observed that M depends weakly on field

size. Based on this result, it was chosen to work with its value aver-

aged across all considered fields. Also, to compute M and BA0, we

operated on the central sensitive volume first; we then repeated the

procedure for all other sensitive volumes — all volumes had values

of M and BA0 in agreement to within 1.79%.

Using the averaged M (0.0196) and the BA0 value corresponding

to any given field size, the dose in DM at dmax was calculated using

the TM measurement at a given SDD as:

DM ¼ TMSDD � BA0 �M� SDDð Þ (3)

For an arbitrary radiation field of area A, BA0 could be found

from the piecewise polynomial fit (adjusted regression coefficient

R2 = 1) (Figure 4):

BAo ¼ �0:000142� A2 � 0:002392� Aþ 1:176743; (4)

for 0 cm2 ≤ A ≤ 25 cm2, and

BAo ¼ 0:000015� A2 � 0:002822� Aþ 1:089544; (5)

for 25 cm2 ≤ A ≤ 100 cm2.

3.B | Dose calculations in regular static fields and
IMRT fields

BA0 values relative to static fields of 1 × 1 cm2 and 4 × 4 cm2 side,

and to IMRT fields, were calculated using Equations 4 and 5.

F I G . 3 . Central sensitive volume of the MP512: ratio of dose
mode measurements to transmission mode measurements as a
function of surface‐to‐detector distance, for all considered square
fields. Error bars did not exceed symbol size.

0.90

1.00

1.10

1.20

0 10 20 30 40 50 60 70 80 90 100

BA
o

A [cm2]

F I G . 4 . Ratio of measurements in dose mode at dmax to
measurements in transmission mode: BAo as a function of radiation
field area A. Error bars did not exceed symbol size.

TAB L E 1 Central sensitive volume of the MP512: slope (M) and
axis intercept (BA0) of the ratio of dose mode measurements to
transmission mode measurements, for all considered square fields;
absolute values.

Parameter

Square field, side [cm]

2 3 5 8 10

M 0.020 0.021 0.018 0.019 0.020

BAo 1.165 1.144 1.028 0.969 0.953
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Table 2 shows calculated dose at dmax (using TM measurements

at 4 and 24 cm SDD) along with corresponding TPS calculations and

DM measurements performed with the MP512 itself, with Gafchro-

mic™ EBT3 films, and with a Farmer ionization chamber.

Table 3 shows gamma passing rates (%GP) between calculated

dose distributions for IMRT fields at dmax (using TM measurements

at 4 and 24 cm SDD) and corresponding TPS calculations and DM

measurements performed with the MP512 itself and Gafchromic™

EBT3 films.

4 | DISCUSSION

A relationship was derived (Equation 3) for calculating dose, at a

depth of dmax, by using TM measurements with the MP512 at a

given SDD, in any given field. The relationship was used to calculate

dose at dmax by using TM measurements, at 4 and 24 cm SSD, in

static fields of 1 × 1 cm2 and 4 × 4 cm2. Calculations agreed to

within ±2.36% (mean difference 1.43%) with TPS calculations and

DM measurements performed with the MP512 itself, with Gafchro-

mic™ EBT3 films, and with a Farmer ionization chamber.

The relationship was also used to calculate dose at dmax by using

TM measurements, at 4–24 cm SSD, in step‐and‐shoot clinical IMRT

fields. Calculated dose maps had %GP, when compared with TPS cal-

culations and film dosimetry, greater than 96.89%, 90.50%, 62.20%

(SDD 4 cm) and greater than 97.22%, 93.80%, 59.00% (SDD 24 cm),

using acceptance criteria of 3%/3 mm, 2%/2 mm, and 1%/1 mm,

respectively.

In the clinical practice, dose distributions are typically compared

using gamma index analysis,44–46 with a clinically significant accep-

tance criterion of a 3% dose difference (%DD) and 3 mm distance‐
to‐agreement (DTA).1,47,48 In the present study, more stringent crite-

ria were also considered for completeness. Our dose calculations

had significantly lower %GP when considering a 1%/1 mm accep-

tance criterion. This result can be explained by factors such as sub-

millimeter misalignments in TM detector positioning, dose averaging

in TPS calculations over a 2 mm grid, noise artifacts created by film

heterogeneities, as well as handling and scanning procedures.

Misleading results from the gamma index analysis may also originate

from the use of detectors with a resolution not appropriate for the

selected acceptance criterion.49 The use of a 2D solid‐state detector

prototype in TM with a higher resolution than the MP512, such as

the Octa (0.3 mm),50,51 would help to shed light.

Note that, in the present study, the MP512 was not modeled

into the TPS. Its transmission factor was reported to be in the range

from 1.020 to 0.997 for SDDs from 0.3 to 24 cm.31 However, if

clinical use will be considered, it is suggested that transmission fac-

tor has to be adequately incorporated into a TPS.12

The effective area, at a depth of dmax in Solid Water (Equation

1), in which dose maps could be calculated based on TM measure-

ments varied in the range from 28 cm2 (SDD 0.3 cm) to 48.2 cm2

(SDD 24 cm); those values reflected a MP512 having an active area

of 27.04 cm2. Depending on the clinical application, a 2D detector

of larger active area may be required.

Using the MP512 in TM lodged on a holder positioned away

from the linac head has the additional advantage of minimizing the

contribution of scattered electrons, so that the detector response is

mostly driven by the photon energy fluence, potentially simplifying

3D dose reconstructions at dmax in phantom.

Our study, a preliminary investigation, had the limitations of con-

sidering only 6 MV flattened photon beams, of not assessing the

DM to TM ratio in fields off‐axis, and of using a unique BA0 value

for both jaws‐defined and MLC‐defined fields, also neglecting the

influence of the backup jaws.

TAB L E 2 Static square field of 1 and 4 cm side: calculated dose
[Gy] at dmax (using transmission mode measurements at 4 and 24 cm
SDD) compared with treatment planning system (TPS) calculations
and dose mode measurements performed with the MP512, with
films and with a Farmer ionization chamber.

Square
field, side
[cm]

MP512, calc.

MP512,
meas. TPS EBT3

Farmer
chamber

4 cm
SDD

24 cm
SDD

1 0.798 0.821 0.816 0.810 0.809 0.813

4 1.013 1.020 1.004 0.996 0.998 1.010

TAB L E 3 Intensity‐modulated radiotherapy fields: gamma evaluation for dose calculations at dmax (using transmission mode measurements at
4 and 24 cm SDD) and corresponding treatment planning system calculations and dose mode measurements performed with the MP512 and
with films.

SDD
[cm]

Acceptance criteria

3%/3 mm 2%/2 mm 1%/1 mm

MP512,
calc. vs.
TPS

MP512,
calc. vs.
EBT3

MP512, calc. vs.
MP512, meas.

MP512,
calc. vs.
TPS

MP512,
calc. vs.
EBT3

MP512, calc. vs.
MP512, meas.

MP512,
calc. vs.
TPS

MP512,
calc. vs.
EBT3

MP512, calc.
vs. MP512,
meas.

4 98.14% 96.89% 99.79% 90.50% 92.00% 98.59% 62.20% 69.40% 99.40%

24 97.22% 97.53% 99.69% 93.80% 93.80% 97.69% 59.00% 71.00% 99.00%
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The introduced technique uses a variable SDD for transmission

mode (TM) measurements with a 2D detector. In this way, dose

maps at a depth of dmax in Solid Water are calculated in an effective

area (Aeff) tailored to the size of the monitored target.

When considering a gamma index analysis with a strict 1%/1 mm

acceptance criterion, lower gamma passing rates (%GP) between our

dose calculations and benchmarks (treatment planning system calcu-

lations, film dosimetry), which can be due to submillimeter misalign-

ments in detector positioning or dose averaging in calculations,

emphasize the importance of developing array detectors with high‐
spatial resolution.

This study represents a first step in the development of a real‐
time high‐resolution 3D dose reconstruction technique based on TM

measurements with the MP512 prototype.
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