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Abstract 26 

Life history strategies vary dramatically between the sexes, which may drive divergence in 27 

sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that 28 
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protect the ends of chromosomes from erosion during cell division. Telomeres have been 29 

implicated in senescence and mortality because they tend to shorten with stress, growth and 30 

age. We investigated age-specific telomere length in female and male red-sided garter 31 

snakes, Thamnophis sirtalis parietalis. We hypothesized that age-specific telomere length 32 

would differ between males and females given their divergent reproductive strategies. Male 33 

garter snakes emerge from hibernation with high levels of corticosterone, which facilitates 34 

energy mobilization to fuel mate-searching, courtship, and mating behaviours during a 2-4 35 

week aphagous breeding period at the den site. Conversely, females remain at the dens for 36 

only about four days and seem to invest more energy in growth and cellular maintenance, as 37 

they usually reproduce biennially. As male investment in reproduction involves a yearly bout 38 

of physiologically stressful activities, while females prioritise self-maintenance, we predicted 39 

male snakes would experience more age-specific telomere loss than females. We investigated 40 

this prediction using skeletochronology to determine the ages of individuals and qPCR to 41 

determine telomere length in a cross-sectional study. For both sexes, telomere length was 42 

positively related to body condition. Telomere length decreased with age in male garter 43 

snakes, but remained stable in female snakes. There was no correlation between telomere 44 

length and growth in either sex, suggesting that our results are a consequence of divergent 45 

selection on life histories of males and females. Different selection on the sexes may be the 46 

physiological consequence of the sexual dimorphism and mating system dynamics displayed 47 

by this species.  48 

 49 

Keywords: telomeres, condition, life history strategies, sex-differences, reptile 50 

Introduction 51 

Life history strategies vary widely both between and within species. Such strategies 52 

describe how limited resources are used and prioritised [1, 2], generating trade-offs between 53 

different physiological processes that mediate growth, reproduction and survival [3-5]. For 54 
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example, organisms that “live fast” are characterised by rapid growth and maturation, and 55 

high reproductive output, but age more quickly and have short lifespans [6, 7]. Conversely, 56 

organisms that “live slow” grow and mature more gradually and have lower reproductive 57 

output, but age more slowly and have longer life spans [6, 7]. Reproduction-longevity trade-58 

offs are often difficult to detect within a population due to condition-mediated positive 59 

correlations between natural history traits [8, 9]. However, there should be a link between 60 

condition, cellular maintenance and aging.  Body condition reflects the efficient collection, 61 

assimilation and deployment of resources and depends on the individual’s capacity to cope 62 

with handicaps like infection, injury, parasitism and environmental stress throughout 63 

ontogeny [10-15].  64 

As long-lived organisms age, they tend to experience reduced survival and 65 

reproductive output that may be mediated by condition [16, but see, 17]. One mechanism 66 

linking differences in life histories, lifespans and aging appears to be variation in telomere 67 

dynamics [18-20]. Telomeres are hexameric tandem repeat sequences of 5’-TTAGGG-3’ at 68 

the ends of chromosomes that typically shorten over the life of an organism due to repeated 69 

cellular divisions and damage caused by reactive oxygen species [ROS; 21, 22]. Among 70 

species, telomere dynamics may covary with life history strategies [23, 24], and the rate of 71 

telomere attrition correlates with lifespan [18, 25]. However, it is unclear whether short 72 

telomeres cause death or whether they are correlated with some other mechanism of 73 

senescence [19, 26, 27]. Body condition indices (BCI: body mass controlled for structural 74 

length) may be a useful measurement of somatic maintenance that is associated with longer 75 

telomeres [e.g., 28].   76 

Interspecific differences in telomere attrition are likely due to prioritising cellular 77 

maintenance (e.g., DNA-repair) over other cellular functions [29, 30], as autosomal mutations 78 

are negatively correlated with lifespan [mammals, 31]. DNA damage can lead to mutations, 79 



4 
 

telomere loss, and cellular senescence; thus, the maintenance of the genome likely explains 80 

telomere length stability in longer lived organisms [32, 33].  To date, most studies of 81 

telomere dynamics and life history strategies have focused on interspecific comparisons [18, 82 

20, 23, 26]. While these studies have yielded insight into telomere dynamics, elucidating the 83 

mechanisms underlying the observed trends is complicated by genetic variation between 84 

species. Studying organisms that exhibit intraspecific differences in reproductive tactics 85 

and/or life history strategies provides a natural experimental scenario to study telomere 86 

dynamics while minimising the noise of interspecific genetic variation. For example, females 87 

and males often exhibit sex-related differences in reproductive strategies and sexual selection 88 

[34-38], which may result in sex-specific telomere dynamics [25, 39-41]. Thus, we sought to 89 

investigate telomere dynamics in a highly dimorphic species with well-characterised life 90 

history and reproductive strategies: the red-sided garter snake, Thamnophis sirtalis parietalis 91 

(a non-venomous colubrid).  92 

Red-sided garter snakes are sexually dimorphic with respect to body size, with 93 

females growing approximately 30% longer, on average, than males. [42]. In the Interlake 94 

populations of Manitoba, Canada, red-sided garter snakes hibernate for eight months in 95 

communal dens and emerge en masse in spring, to form large aggregations where males 96 

scramble to locate and mate with females [43, 44].  Mating activity at the dens lasts ~6 weeks 97 

from late April through May [45] with some males mate-searching and courting for two to 98 

four weeks [43, 46, 47].  99 

During the spring breeding season, male garter snakes are aphagous and have 100 

relatively high levels of corticosterone [48-52]. Courtship and copulatory plug production are 101 

energetically expensive [44, 53, 54], and males may lose 10% of body mass during two 102 

weeks of mate-searching, courtship and mating [46, 52]. In other species, physiological stress 103 

and fasting lead to increased ROS production, the depletion of endogenous antioxidants, and 104 
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increased cellular damage and senescence [55-63]. One of the hallmarks of male aging is 105 

poor sperm performance, which is strongly influenced by oxidative and other physiological 106 

stressors [reviewed in 64]. Indeed, larger [and therefore older,  65] male red-sided garter 107 

snakes have poorer sperm performance than smaller males [66], suggesting that these males 108 

undergo senescence in the wild. 109 

In contrast to males, female garter snakes seem to prioritise growth and maintenance 110 

over short-term reproductive success. Females reach sexual maturity at three years of age, 111 

while males are sexually mature at one or two years [67]. Most females mate every year 112 

before migrating to feeding grounds [68], but they reproduce only when they have acquired 113 

sufficient body mass or “capital”, which is typically every other year [69, 70].  Like most 114 

snakes, female garter snakes do not provide post-natal parental care [71]. Furthermore, 115 

female fecundity increases with body length [72-74] and, presumably, also with age because 116 

snakes exhibit indeterminate growth [65]. Biennial reproduction and increasing reproductive 117 

fitness with age may generate selection on increased cellular maintenance, body condition, 118 

and growth in females. In this species, body condition is positively correlated with fat mass 119 

(Uhrig et al. unpublished data). With such life history variation between the sexes, the red-120 

sided garter snake is an exceptional model for investigating how different reproductive 121 

strategies and telomere dynamics interact, while minimising the genetic variance that makes 122 

interspecific studies difficult to interpret.  123 

We hypothesized that the sex-specific reproductive strategies of red-sided garter 124 

snakes would be associated with differences in age-related declines in telomere lengths. This 125 

study aims to determine: i) the relationship between body condition, telomere length and age 126 

in garter snakes, and ii) whether this relationship differs with sex. We predict that male garter 127 

snakes will experience greater telomeric attrition with age than females, due to the much 128 
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more intense reproductive investment in males. Furthermore, if females are investing more in 129 

somatic maintenance than males, we expect females will maintain better body condition. 130 

 131 

Materials and methods 132 

 133 

At the peak of breeding season (May 10, 2015), we collected an excess of snakes by hand 134 

from mating aggregations with the aim to collect the full range of body lengths found at our 135 

Inwood, Manitoba study site (males: N = 100; females: N = 50). We transported snakes to 136 

Chatfield research station, 16 km away, where they were weighed (±0.01g) and measured for 137 

snout-vent length (SVL: ±1mm) where we culled our sample to ensure an equal distribution 138 

of sizes for each sex. We selected the 4 longest and 4 shortest animals of each sex and an 139 

even distribution of intermediate sizes, obtaining a final sample of 42 males and 30 females 140 

(see FIGURE 1a), the remaining 78 animals were returned to the point of capture the next 141 

day. All animals were adults; juveniles are only rarely found at den sites [RTM > 25 years of 142 

pers. obs.; 43, 72]. Blood (<0.1mL) for telomere analysis was taken from the caudal vein, 143 

added to 300 µL of RNAlater and frozen (-30˚C) until DNA extraction. Approximately 1cm 144 

of Tails tissue was collected for skeletochronological aging; see expanded methods in 145 

supplemental document 1 for more details.  146 

Skeletochronology/Histology 147 

Individual age was estimated by a modified version of the technique described by Waye and 148 

Gregory [76, 1999] and Clesson, Bautista [77].  Vertebrae were examined microscopically 149 

and the number of growth rings was identified for each animal; see supplement for more 150 

details.  151 
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Quantifying telomere length 152 

Telomere length was measured using real-time quantitative PCR (qPCR) as we have done 153 

previously [78] using the 18S ribosomal RNA (18S) gene as the non-variable in copy number 154 

reference gene [78-80]; see supplement more details.  155 

Statistical analyses 156 

 157 

We calculated two measures of body condition indices (BCI). In both cases BCI is the 158 

standardized residuals (mean = 0; standard deviation =1) from linear regressions of ln(body 159 

mass) as a function of ln(SVL) [81].  We ran this linear regression model once with males 160 

and females pooled, and it was clear that females had much higher BCI than males. 161 

Therefore, it was more biologically relevant to generate BCI for each sex separately using a 162 

separate regression model for each sex, thus creating BCI specific for each sex (ssBCI) to 163 

account for differences in allometry [81]. Growth was calculated as size (SVL)/age. Visual 164 

inspection of regression plots for male telomere length given age suggested a curvilinear 165 

relationship as has been described in many taxa, including squamate reptiles [26, 40, 82-85], 166 

and F-tests we used to formally test the goodness of fit for first-order versus quadratic 167 

regressions. We used ANCOVA to test for age-specific sex differences in telomere length 168 

and body condition. When we found a significant sex by age interaction we used the Johnson-169 

Neyman (J-N) procedure to determine ages where the sexes differed in condition [86]. All 170 

analyses were conducted in SigmaPlot 13.0, except the J-N procedure which was conducted 171 

in MS Excel on the spreadsheet provided as a supplement in White [86]. See supplement for 172 

more details. 173 

Results 174 

 175 

Skeletochronology, size and body condition 176 

Age and sex predicted body size (SVL): older animals were longer and females were 177 

significantly longer than males of the same age (ANCOVA: Sex x Age P = 0.487 (dropped 178 
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from model): R2 = 0.366; Age: F1,69 = 14.636, P < 0.001; Sex: F1,69 = 16.569, P < 0.001; 179 

FIGURE 1a). The shape of the age distributions was not different between the sexes 180 

(Kolmogorov-Smirnov test: D = 0.205, P = 0.412) and females in our sample were 181 

significantly older than males (F1,70 = 6.384, P = 0.014; mean (range), Females: 4.3 y (2-9 y); 182 

Males: 3.5 y (2-6 y)). There was a significant Sex x Age interaction on BCI (ANCOVA: R2 = 183 

0.542; Age: F1,69 = 5.403, P = 0.023; Sex: F1,69 = 0.003, P =0.953; Sex x Age F1,69 = 8.695, P 184 

= 0.004), suggesting that females and males differentially maintain body condition as they 185 

age. Because of the significant Sex x Age interaction, we computed the region of non-186 

significance for the age-effect on BCI between the sexes (-8.454 to 2.029 yrs) using the 187 

Johnson-Neyman procedure [86]. This approach demonstrates that BCI differed between the 188 

sexes at ages greater than 2.03 years, which included most of the snakes in this sample 189 

(FIGURE 1b; note age values < 0 are meaningless and omitted from the figure). Given the 190 

profound sex-differences in body condition, we recalculated BCI for each sex with separate 191 

regressions (i.e., “sex-specific” BCI) and reran the analysis. We still found a significant Sex x 192 

Age interaction (P = 0.023), which revealed that sex-specific body condition tends to increase 193 

with age in females, but decreases with age in males (Supplemental Figure 2).  We used this 194 

sex-specific BCI (ssBCI) to explore the relationship between body condition and telomere 195 

length in further analyses.  196 

Telomere length and age 197 

Telomere length was shorter in males than females (F1,70 = 7.288, P = 0.009) . The 198 

relationship between telomere length and age was different for males and females. Age did 199 

not predict telomere length in females (Females: simple linear regression R2 = 0.000, F1,29 = 200 

0.005, P = 0.945: quadratic regression; R2 = 0.000, F2,28 = 0.050, P = 0.951; FIGURE2a). 201 

However, in males, telomeres shorten with age, a relationship better fit by quadratic 202 

regression than linear regression (test of first order = null hypothesis vs quadratic:  F2,41 = 203 
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5.538, P = 0.024: simple linear regression: R2 = 0.108, F1,41 = 4.856, P =0.033; quadratic 204 

regression: R2 = 0.219, F2,39 = 5.472, P =0.008; FIGURE 2b).  205 

 206 

Telomere length, body size and growth 207 

Although age and SVL were directly related in both sexes (see above), SVL and telomere 208 

length were not related (ANCOVA Sex x SVL P = 0.538 (dropped interaction): R2 = 0.095; 209 

Sex: F1,69 = 5.900, P = 0.018; SVL: F1,69 = 0.057, P = 0.813). Separate analyses to test for a 210 

quadratic relationship, as was found in males for age and telomere length, showed no 211 

evidence for a relationship between SVL and telomere length in either sex (Females P = 212 

0.200; Males P = 0.229). Finally, growth (size/age) was not significantly associated with 213 

telomere length (either SVL/age: R2 = 0.052, P = 0.085; residual SVL given age: R2= 0.031, 214 

P = 0.137; or sex-specific residual SVL given age: R2= 0.001, P = 0.766). 215 

 216 

Telomere length and body condition 217 

Sex-specific body condition (ssBCI) and blood telomere length were positively correlated 218 

(R2= 0.131, F1,70 = 10.564, P = 0.002), and, although females had higher ssBCI than males, 219 

the relationship between ssBCI and telomere length was the same for both sexes (ANCOVA 220 

Sex x ssBCI: P = 0.510 (dropped interaction): R2 = 0.145; Sex: F1,69 = 7.601, P = 0.007; 221 

ssBCI: F1,69 = 4.005, P = 0.049, FIGURE 3). 222 

Discussion 223 

Sex differences in aging may result from sex-specific optimization of investment to 224 

reproduction and somatic maintenance in response to the challenges of different life history 225 

strategies between the sexes. We have shown that body condition positively correlates with 226 

telomere length in both sexes of red-sided garter snakes, which supports our assertion that 227 

body condition is an intuitive measure of somatic investment. However, the relationship 228 

between body condition and age differed strikingly between sexes, with females maintaining 229 
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their body condition with age, while condition decreased with age in males. Likewise, 230 

telomeres were exponentially shorter in older male garter snakes, while the telomere lengths 231 

of females are independent of age. Non-linear relationships between telomere length and age 232 

have been shown in several taxa [e.g., 82, 85], and is consistent with an exacerbating cycle of 233 

cellular damage and increased dysfunction seen in aging humans [87]. Females had the 234 

longest telomeres and were the oldest individuals in our sample, suggesting they live longer 235 

than males in this population. These results support our prediction that males experience 236 

greater telomere loss with age due to prioritisation of current reproduction over cellular 237 

maintenance and longevity. Overall, the decrease in both body condition and telomere length 238 

in males with age suggests that they senesce at an earlier age than females.  239 

Telomere shortening has been implicated as a cost of reproduction in several species.  240 

For example, in blue tits (Cyanistes caeruleus), when brood size was experimentally 241 

increased, parents experienced a decrease in blood telomere length, with males suffering from 242 

greater telomere loss than females [88]. Relative reproductive success seems to result in 243 

greater telomere attrition in common terns (Sterna hirundo) [89]. For both male and female 244 

Atlantic silversides (Menidia menidia), gonadal somatic index (GSI: gonad mass relative to 245 

total body mass) was negatively correlated with telomere length and lifespan [90]. These 246 

studies suggest increased reproductive investment comes at a cost of telomere attrition.  247 

Studies of telomere dynamics are rare in reptiles and only two reports on snakes. 248 

Bronikowski [91] reported telomere lengths for male wandering garter snakes (Thamnophis 249 

elegans). Wandering garter snakes are an interesting species for studying telomere dynamics 250 

because, in the mountains of Northern California there are two eco-types with very different 251 

life-histories: one short lived “meadow” eco-type and a long-lived “lakeshore” eco-type [92-252 

94]. As in our study, Bronikowski [91] showed declining telomere length with male age (up 253 

to 12 years of age, based on skeletochronology), but was unable to find among eco-type 254 
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differences, and did not report telomere lengths for females. In water pythons (Liasis fuscus) 255 

of Northern Territory, Australia,  females have longer telomeres than males [83], similar to 256 

our study. Furthermore, telomere length increased from hatching to four years of age, but 257 

declined very slightly with age in both sexes up to 18 years of age [83].  258 

Why might selection on telomere dynamics differ between male and female garter snakes?  259 

Our study is observational and cross-sectional, so our causal interpretation of the sex-260 

specific differences in the relationship between age and telomere length is necessarily 261 

tentative. In Manitoba’s Interlake region, winter temperatures often hover around -40˚C for 262 

weeks and, since snow provides insulation from the cold, there are likely cryptic mass 263 

fatalities deep within dens during years of light snowfall [72].  The snakes’ brief three to four 264 

month active season begins and ends with chance freezes and floods that lead to mass 265 

mortality events that are likely to generate selection on rapid growth and early maturity in 266 

both sexes [72, 95]. Mortality due to these stochastic events is usually not consistently biased 267 

toward either sex and adult sex-ratio is 1:1 [43, 72, 95]. Predation and road kills are not sex 268 

biased either [95]. However, a mass mortality event could differentially affect size classes 269 

among sexes. For example, a winterkill event in 1998-1999 shifted the size distribution 270 

toward smaller animals in subsequent years in both sexes, but the largest females were most 271 

strongly affected [95]. Small males, and to a lesser extent large females, are more likely to be 272 

trapped and suffocate in large mating aggregations (> 500 animals) [96]. Such events could 273 

cull a size class or spare only old females with the longest telomeres, generating results 274 

similar to ours. Nevertheless, we have not witnessed similar events in our yearly visits since 275 

1999, thus other explanations may better fit our results. 276 

Males engage in energetically expensive reproductive behaviour annually, while most 277 

females generally reproduce biennially. Although male size affects mating success when a 278 

single pair of males competes for copulation, the effect is small to non-existent in the largest 279 

aggregations at the den sites, reducing selection for increased male size [97, 98]. The largest 280 
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females, however, are able to reproduce annually, leading to greater fecundity and generating 281 

higher selection on female growth and longevity [72-74, 99]. Females in Interlake 282 

populations seem to have higher reproductive output given female size than populations 283 

farther south in less harsh climates with longer feeding/growth seasons [72, 100]. Therefore, 284 

selection on cellular maintenance and longevity are likely to be stronger in females than 285 

males because the costly mechanisms that prevent telomere loss are balanced by increasing 286 

fecundity with age and size in females, but have fewer benefits for males.  287 

What physiological mechanisms might explain sex-specific telomere attrition?  288 

We do not know the specific mechanisms that lead to sex-differences in telomere 289 

length, but there are several non-mutually exclusive hypotheses to explain our results. For 290 

these ectotherms, body temperature and metabolic rate are very low during winter brumation 291 

[~1°C  101] and only rise in late April when the ground warms. Both sexes enter winter 292 

hibernacula at the same time [72], but males, on average, emerge earlier than most females. 293 

Therefore, body temperature and metabolic rate will be lower, for slightly longer, in females 294 

than males. Lower body temperature associated with torpor is correlated with positive effects 295 

on telomere length and somatic maintenance in some mammals [e.g., 102].  296 

High levels of corticosterone experienced by males during the mating season [51] 297 

may increase metabolism, but also may increase mitochondrial ROS production, DNA 298 

damage, and telomere erosion [33, 58, 103, 104]. The high energetic demands of courtship 299 

and mating of aphagous males [53] likely limits the resources that can be allocated to DNA 300 

repair mechanisms, limiting the chance for telomere repair [105]. For example, as the 301 

increased male-male competition among male rhesus macaques (Macaca mulatta), is 302 

correlated with DNA oxidative damage (8-OHdG) and shorter lifespan [59]. In red-sided 303 

garter snakes, the energy for antioxidant synthesis, DNA repair and telomere maintenance is 304 

limited by male fasting [29, 56, 57, 61, 106]. Fasting itself may increase oxidative stress [55, 305 

60, 62, 63]. Fasting increases the generation of mitochondrial ROS and lipid peroxidation in 306 
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rats (Rattus norvegicus) [63]. Fasting male northern elephant seals (Mirounga angustirostris) 307 

exhibit increased oxidative damage to DNA and lipids [60]. Given the stochastic mortality, 308 

weak sexual selection on male size, and oxidative stress induced by during energetically 309 

costly courtship and mating while fasting, selection to mitigate damage by ROS via 310 

investment in cellular maintenance and growth may be weak in male red-sided garter snakes. 311 

Weak selection for enhanced cellular maintenance might explain both the reduction of body 312 

condition and telomere length with age. This may be the consequence of selection for a live 313 

fast, die young strategy in males.  314 

Females were in better body condition than males in our study, which generally 315 

indicates they have larger energy stores than males [107]. In brown tree snakes, Boiga 316 

irregularis, this additional energy reserve correlates with lower levels of corticosterone [108], 317 

potentially leading to lower stress overall and more stable telomere length [30, 109].  318 

Furthermore, having greater energy reserves may allow for greater expenditure on 319 

antioxidants and cellular repair. Species of snakes that live longer are capable of producing a 320 

stronger response to DNA damage by activating repair mechanisms and experience lower 321 

levels of mitochondrial reactive oxygen species, which presumably generates less oxidative 322 

damage to DNA [91, 110]. We show that female T. sirtalis parietalis have a greater lifespan 323 

than males and may potentially use mechanisms similar to those of other snakes to maintain 324 

genome stability and telomere length. The underlying mechanisms causing the sexual 325 

dimorphism may provide explanations for sex-specific differences in telomere length.  326 

Sexual size dimorphism varies greatly across taxa, and trends associated with 327 

dimorphism, lifespan, and telomere attrition are not consistent [25, 111]. For garter snakes, 328 

the difference in size between males and females seems to be controlled by testicular 329 

androgens suppressing growth in males [112]. Testosterone can reduce cellular resistance to 330 

free radicals [113], leading to increased DNA damage and telomeric attrition [20, 114]. In the 331 



14 
 

closely related red-spotted garter snake, Thamnophis sirtalis concinnus, females treated with 332 

an estrogen receptor antagonist, tamoxifen, experienced a decrease in growth rate [115], 333 

suggesting that estrogen plays a role in the sexual size dimorphism observed in T. sirtalis 334 

parietalis. Estrogens act as antioxidants and/or stimulate endogenous antioxidant and cellular 335 

repair mechanisms [116-118] potentially reducing ROS and leading to the telomeric stability 336 

observed in the present study and in females across other taxa [25, 40]. The most 337 

energetically demanding component of reproduction for female garter snakes is the 338 

production of yolk proteins (i.e., vitellogenesis) [119]. There is evidence that the yolk protein, 339 

vitellogenin, may act as an antioxidant, [120-124] reducing DNA damage, telomere attrition, 340 

and cellular senescence at a time when cellular respiration and ROS production are highest. 341 

Thus, selection acting on the mechanisms that increase female growth and provisioning of 342 

offspring seem to also favour antioxidant production, a reduction in oxidative stress, and 343 

cellular repair involved in slowing the aging process.  344 

In the current cross-sectional study, we investigated differences in telomeres within a 345 

single species. We found that telomere dynamics are strongly linked with sex and therefore 346 

life history strategies. Sex-specific telomere dynamics may be tightly linked to selection on 347 

males for early reproduction and costs associated with yearly energetic investment in 348 

courtship and mating while fasting. In contrast, females have biennial reproduction and 349 

investment in somatic maintenance has a fitness payoff of greater fecundity with increasing 350 

size later in life. Future studies should include longitudinal data, increased sampling of the 351 

largest size classes, the measurement of telomerase activity, general DNA damage, and 352 

antioxidant production throughout the entire active season, to assess our hypothesis that 353 

females live longer by investing more in cellular maintenance and repair than males.  354 
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 697 

Figure 1: a) Age (years) and sex predicted body size (ln (snout to vent length): ln(svl)): older 698 

animals were longer and females were significantly longer than males of the same age. Open 699 

circles indicate males and solid triangles indicate females (note: for clarity with overlapping 700 

data points, male data are offset slightly to the right). The least-squares regression lines were 701 

calculated separately for females (solid line, r = 0.400) and males (dashed line, r = 0.445). b) 702 

Body condition (BCI) differed with age and sex and there was a significant sex x age 703 

interaction (P = 0.004). Females had higher BCI than males and BCI decreased with male age 704 

but not females. Open circles indicate males and solid triangles indicate females. The least-705 

squares regression lines were calculated separately for females (solid line, r = 0.015) and 706 

males (dashed line, r = -0.479). The diagonal hatched box (Age = 0.00 to 2.03), is the age-707 

range through which BCI did not differ between females and males as determined by the 708 

Johnson-Neyman procedure [86]. 709 

 710 

 711 
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Figure 2: The relationship between natural log of blood telomere length and age in years was 712 

different for females (a) and males (b). (a) Age did not predict telomere length in females 713 

(Females: simple linear regression; r = 0.013, F1,29 = 0.005, P = 0.945: quadratic regression; r 714 

= 0.067, F2,29 = 0.050, P = 0.951). (b) However, in males, telomeres shorten with age, which 715 

is better fit by quadratic regression than a linear regression (test of first order = null 716 

hypothesis vs quadratic:  F2,41 = 5.538, P = 0.024: quadratic regression: r = 0.468, F2,41 = 717 

5.472, P =0.008). 718 

 719 

 720 

 721 

 722 



24 
 

Std. residual sex specific BCI

-3 -2 -1 0 1 2 3

ln
(r

e
la

ti
v
e

 t
e

lo
m

e
re

 l
e

n
g

th
)

2.0

2.5

3.0

3.5

4.0

4.5

 723 

Figure 3: Combined sex-specific body condition (standardized residuals from separate 724 

regressions of body mass given snout-to-vent length for each sex) and natural log of blood 725 

telomere length were positively correlated (r = 0.602). Females had higher BCI than males, 726 

but the relationship between BCI and telomere length was the same. Open circles indicate 727 

males, and solid triangles indicate females. The least-squares regression lines were calculated 728 

separately for females (solid line, r = 0.362) and males (dashed line, r = 0.506). 729 
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