
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Science, Medicine and Health - 
Papers: Part B Faculty of Science, Medicine and Health 

1-1-2019 

Spy-ing on Cas9: Single-molecule tools reveal the enzymology of Spy-ing on Cas9: Single-molecule tools reveal the enzymology of 

Cas9 Cas9 

Kelsey Whinn 
University of Wollongong, ksw842@uowmail.edu.au 

Antoine M. van Oijen 
University of Wollongong, vanoijen@uow.edu.au 

Harshad Ghodke 
University of Wollongong, harshad@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/smhpapers1 

Publication Details Citation Publication Details Citation 
Whinn, K., van Oijen, A. M., & Ghodke, H. (2019). Spy-ing on Cas9: Single-molecule tools reveal the 
enzymology of Cas9. Faculty of Science, Medicine and Health - Papers: Part B. Retrieved from 
https://ro.uow.edu.au/smhpapers1/976 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/smhpapers1
https://ro.uow.edu.au/smhpapers1
https://ro.uow.edu.au/smh
https://ro.uow.edu.au/smhpapers1?utm_source=ro.uow.edu.au%2Fsmhpapers1%2F976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/smhpapers1/976?utm_source=ro.uow.edu.au%2Fsmhpapers1%2F976&utm_medium=PDF&utm_campaign=PDFCoverPages


Spy-ing on Cas9: Single-molecule tools reveal the enzymology of Cas9 Spy-ing on Cas9: Single-molecule tools reveal the enzymology of Cas9 

Abstract Abstract 
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) 
systems are an adaptive immune response mechanism in prokaryotes which can target and cleave 
invading DNA or RNA. The rapid understanding of the type II CRISPR/Cas9 system through biochemical, 
genetic and structural investigations has contributed to the development of Cas9 for various DNA- and 
RNA-targeting applications. Recent single-molecule investigations of CRISPR/Cas9 mechanisms have 
further extended our understanding of target search, binding and cleavage. These investigations are 
fundamental to the further development of CRISPR/Cas9 tools. This review discusses how single-
molecule techniques have illuminated the enzymology of Cas9 endonucleases. 

Publication Details Publication Details 
Whinn, K. S., van Oijen, A. M. & Ghodke, H. (2019). Spy-ing on Cas9: Single-molecule tools reveal the 
enzymology of Cas9. Current Opinion in Biomedical Engineering, 12 25-33. 

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers1/976 

https://ro.uow.edu.au/smhpapers1/976


1 
 

Spy-ing on Cas9: Single-molecule tools reveal the enzymology of 

Cas9  
 

Kelsey S. Whinna,b, Antoine M. van Oijena,b*, Harshad Ghodkea,b*,  

a Molecular Horizons and School of Chemistry and Molecular Bioscience, University of 

Wollongong, Wollongong, Australia;  

bIllawarra Health and Medical Research Institute, Wollongong, Australia 

*Corresponding authors: van Oijen, Antoine M (vanoijen@uow.edu.au) & Ghodke, 

Harshad (harshad@uow.edu.au) 

 Keywords: Single-molecule, CRISPR/Cas, SpyCas9, SpydCas9 

Abbreviations:  

CRISPR/Cas  Clustered regularly interspaced short palindromic repeats/CRISPR-

associated proteins 

SpyCas9  Streptococcus pyogenes Cas protein 9  

SpydCas9  Catalytically inactivated SpyCas9  

gRNA  Guide RNA  

sgRNA Synthetic single gRNA 

 

Abstract  

CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-

associated protein) systems are an adaptive immune response mechanism in 

prokaryotes that can target and cleave invading DNA or RNA. The rapid 

understanding of the type II CRISPR/Cas9 system through biochemical, genetic and 

structural investigations have contributed to the development of Cas9 for various 

DNA- and RNA-targeting applications. Recent single-molecule investigations of 

CRISPR/Cas9 mechanisms have further extended our understanding of target 

search, binding and cleavage. These investigations are fundamental to the further 

development of CRISPR/Cas9 tools. This review discusses how single-molecule 

techniques have illuminated the enzymology of Cas9 endonucleases.   

1.1 Introduction  

In recent years, the ability to target specific DNA sequences has been revolutionised 

by the discovery of the prokaryotic CRISPR (clustered regularly interspaced short 

palindromic repeats) systems [1, 2]. CRISPR systems possess a rich and complex 

biology. Identified as an adaptive immune response mechanism in bacteria and 

archaea, the CRISPR system allows the host to site-specifically target and destroy 
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invading DNA or RNA [2-5]. Single-molecule techniques have been successfully 

used to identify the elemental processes that underlie biological complexity [6-10]. 

These techniques directly measure the diverse and dynamic behaviours of single 

molecules without the need for synchronization, thus removing the ensemble 

averaging of biological states. Further, by permitting observation of transient and 

rare intermediate states along the reaction pathway, these techniques overcome the 

detection limits of ensemble-based methods. More recently, an expanding toolkit of 

single molecule techniques has enabled in situ observation of reactions occurring in 

living organisms, demystifying how individual protein actors work inside the cellular 

milieu [11-19]. In this report, we discuss the biology of the type II CRISPR/Cas 

system and the power of single-molecule methods in revealing the fine mechanistic 

details that are central to it. 

2.1 CRISPR Systems  

Currently two main classes of CRISPR systems have been described [20]:  Class 1 

and Class2, with the key difference being the number of protein effectors (CRISPR-

associated proteins or ‘Cas’) required to perform the reaction. Briefly, class 1 

systems, containing types I, III and IV, require multi-subunit complexes for RNA-

guided surveillance in bacteria and archaea [4, 5, 20, 21]. In contrast, class 2 

systems, comprising types II, V and VI, use a single RNA-guided nuclease to target 

and cleave specific invader DNA or RNA sequences [20, 22-24] (Table 1).  

3.1 SpyCas9 

The best characterized type II CRISPR system of Streptococcus pyogenes is 

comprised of the Cas9 (SpyCas9) endonuclease (Figure 1) [2, 3, 22, 25]. In this 

case, CRISPR-mediated adaptive immunity arises from a genetic locus composed of 

an operon encoding Cas9 and a repeat-spacer array [3]. This array of identical 

repeat sequences contains unique DNA sequences derived from an infecting virus or 

plasmid DNA. The acquisition of invader sequences forms the first step of the 

CRISPR-mediated immunity mechanism (Figure 1) [3]. The repeat-spacer array is 

then transcribed, producing precursor CRISPR-RNA (pre-crRNA) that is 

subsequently base paired with a non-coding RNA molecule, trans-activating RNA 

(tracrRNA), and processed to form a mature duplexed crRNA:trcrRNA (gRNA) [26]. 

Construction of a synthetic single-gRNA (sgRNA) chimera has also been used to 

direct SpyCas9 to specific sequences [2]. The mature gRNA is then recruited by 
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SpyCas9 proteins to form mature RNA-guided ribonucleoprotein effectors. These 

programmed SpyCas9 proteins then survey the cellular environment for the 

presence of a short NGG motif, termed the protospacer adjacent motif (PAM), and 

invader sequences that are complementary to the guide RNA [2, 4]. Successful 

recognition of the complementary sequence is then followed by cleavage of the 

double-stranded DNA (dsDNA).  

3.1.1. Structural biology of SpyCas9 

SpyCas9 is a 1368 amino acid, globular protein whose domain architecture is 

composed of two major lobes; a nuclease (NUC) lobe and a recognition (REC) lobe 

(Figure 2) [27-30]. The REC lobe contains the REC1 and REC2 domains and a 

bridge helix. Of these, the REC1 lobe is critical for interactions with the gRNA, 

whereas the bridge helix is important for interactions with both the target DNA, as 

well as the gRNA [30]. The NUC lobe consists of the PAM-interacting (PI) domain 

and two nuclease domains, HNH and RuvC, that cleave DNA targets using one 

metal and two metal catalytic mechanisms, respectively [30]. Within the NUC lobe, 

the RuvC domain interfaces with the PI domain, forming a positively-charged surface 

that interacts with the 3 tail of the gRNA [30]. We direct readers to reference [31] for 

a detailed review on the structural biology of Cas9. 

3.1.2 Enzymology of SpyCas9 

The first step in the formation of the mature effector requires the loading of the 

crRNA:tracrRNA into the SpyCas9 protein. Cryo-EM studies of apo-SpyCas9 reveal 

that in the absence of RNA, SpyCas9 is a highly flexible molecule, and large 

conformational rearrangements are triggered by the binding of RNA (Figure 3a, b) 

[29]. High-speed fluid atomic force microscopy studies further reveal that these 

structural transitions occur on the time scale of seconds on SpyCas9 molecules 

immobilized on mica [32]. In agreement, enhanced MD simulations of apo-SpyCas9 

found that conformational rearrangement upon gRNA binding mainly involved the 

opening of the REC lobe with respect to the NUC lobe [33]. Opening of the bi-lobed 

structure results in the formation of a positively charged cavity capable of 

accommodating RNA. Single molecule FRET (smFRET) studies further demonstrate 

that apo-SpyCas9 undergoes conformational rearrangement upon gRNA binding 

[34-36]. Binding of sgRNA to apo-SpyCas9 containing FRET-pair labelled REC1 and 

RuvC domains (approximately 21 Å apart), caused a 56 Å increase in distance 
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between the REC1 and RuvC domains resulting in a decrease in FRET efficiency 

[36]. This movement suggested that sgRNA binding triggers a drastic opening of the 

REC lobe relative to the NUC lobe [36]. Bulk measurements of the kinetics of the 

conformational change associated with sgRNA binding were described by a single 

time constant, independent of the sgRNA concentration used [34]. This led the 

authors to suggest that an initial collision complex (apo-SpyCas9:sgRNA) is formed 

rapidly, followed by a slower, induced conformational change leading to productive 

association (SpyCas9:sgRNA). Further, using truncated sgRNA variants, it was 

found that specific motifs at both ends of the 20-nucleotide sgRNA sequence are 

required to stabilize the mature SpyCas9:gRNA complex [35]. Collectively, these 

studies reveal that a complete crRNA:trcrRNA complex (or sgRNA) is required to 

trigger the flexible rearrangement of the REC lobe, to form a stable and mature 

SpyCas9:gRNA complex capable of executing target search.  

Undoubtedly, the CRISPR/Cas revolution is attributable to the remarkable ability to 

‘program’ and ‘target’ SpyCas9 to desired genomic loci. How does SpyCas9 

discriminate target sites from non-target sites? Single-molecule techniques have 

been extensively used to describe mechanisms involved in target search [11, 37-43]. 

Insight into this issue was first provided by Sternberg and co-workers who employed 

a double-tethered ‘DNA curtain’ assay to visualize quantum dot labelled nuclease 

dead SpyCas9 (SpydCas9):gRNA searching and binding to target sequences in  

DNA molecules, that are directionally stretched and tethered in a microfluidic flow 

cell using TIRF microscopy (Figure 4a-e) [44]. Both wild-type as well as 

SpydCas9:gRNA constructs employed 3-dimensional diffusion to locate and 

specifically bind to the target site (Figure 4c). In addition to long-lived binding 

observed at target sites, SpyCas9:gRNA was also found to bind transiently along the 

length of the DNA (Figure 4d). Strikingly, the probability of transient binding 

correlated strongly with the density of PAM sequences along the DNA substrate 

leading the authors to suggest that specific recognition of PAMs may be a crucial 

feature of target search by SpyCas9:gRNA (Figure 4e). smFRET studies of dwell 

times of SpyCas9:gRNA revealed that SpyCas9:gRNA is longer lived on DNA 

substrates containing multiple PAM sequences  [45]. By labelling the tracrRNA and 

DNA substrate with a FRET pair, this study determined that in conjunction with 3D 

diffusion, SpyCas9:gRNA employs 1D diffusion to rapidly sample neighbouring PAM 
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sites. Indeed, measurements of association rates of SpydCas9-YPet:sgRNA in live-

cells containing a contiguous array of target sites revealed that it takes 

SpydCas9:sgRNA approximately 6 hours to locate the target site in E coli (Figure 4f, 

g) [12, 46]. Binding of SpydCas9-Ypet:sgRNA programmed to the lacO1 operator 

sequence was triggered by the addition of isopropyl-β-D-thiogalactopyranoside 

(IPTG), which induced the dissociation of LacI from lacO1 and allowed SpydCas9-

YPet:sgRNA to bind [12] (Figure 4g). Measurements of DNA-bound residence times 

of SpydCas9-YPet:sgRNA revealed an average lifetime of 30 ms, that is sufficiently 

fast so that SpydCas9:sgRNA can sample the 106 PAMs present in the E coli 

chromosome [12]. Together, these studies unveil a search mechanism that is 

exquisitely predicated on the stability of SpyCas9:PAM interactions. The intrinsically 

weak nature of these interactions is critical for efficient sampling of the genome. 

Stable binding is only achieved on genomic loci containing PAM sequences at the 

correct target site. Following initial recognition, the gRNA invades the dsDNA to form 

an R-loop [2]. In this state, SpyCas9 wraps around the R-loop while excluding the 

non-target strand [27-30, 47] (Figure 2c, d). Numerous bulk studies have revealed 

the requirement of essential sequence complementarity between target DNA and 

gRNA, termed the seed region, for stable R-loop formation [2, 48, 49]. In vitro 

plasmid cleavage assays revealed that a seed region of at least 13 base pairs 

between crRNA:DNA proximal to the PAM is required for efficient cleavage, whereas 

up to six adjacent mismatches at the PAM-distal end are tolerated [2]. In agreement, 

deep sequencing of SpyCas9:sgRNA targeted loci in human cells showed that the 

specificity within the seed region ranges from 8-14 bp immediately upstream from 

the PAM [48]. Stopped-flow measurements of 2-aminopurine fluorescence in the 

seed region suggest that R-loop formation is the rate-limiting step of SpyCas9 target 

cleavage [50]. The stepwise formation of SpyCas9:gRNA R-loops has also been 

observed at the single-molecule level. The use of magnetic tweezers to investigate 

SpyCas9:gRNA binding revealed that R-loop formation occurs by a directional 

hybridization between the crRNA and target DNA, beginning at the PAM and 

extending toward the distal protospacer end [51]. Further, it was found that the PAM 

sequence primarily affects the association rate of the R-loop, while the base pairs 

distal to the PAM mainly affect R-loop stability [51]. Magnetic tweezer experiments 

interrogating the stability of the R-loop showed that PAM distal mismatches cause R-
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loop propagation to stall and any further propagation competes with the collapse of 

the hybridized structure [52]. smFRET investigations of the SpyCas9:gRNA complex 

on substrates containing varying numbers of mismatches, showed that the stability of 

the R-loop structure decreases linearly with the number of mismatches proximal to 

the PAM [53]. Notably, PAM-distal mismatches up to 11 bp in length still allowed the 

formation of a stable, but inactive complex [53].  

Further, smFRET studies have identified two distinct SpyCas9 domain conformations 

during R-loop propagation [54, 55]. The first of the two states, termed the ‘open’ 

conformation, represents a PAM-proximal bound complex that is capable of initiating 

R-loop formation. The second state, termed ‘zipped’ conformation, occurs after 

complete R-loop formation and represents a cleavage-competent state [54]. 

Recently, analysis of the dwell time of the zipped conformation revealed that the 

lifetime increases when the base-pairing length between the crRNA:DNA reaches a 

maximum of 18 bp [55]. The recent combination of optical tweezers with confocal 

fluorescence microscopy revealed that DNA stretching induced off-target 

SpyCas9:gRNA binding [56]. smFRET was then employed to interrogate the R-loop 

formation at these sites using DNA containing bubbles, showing that off-target 

binding and cleavage occurred in the presence of 10 bp mismatches within the R-

loop [56]. Together, these studies indicate that crRNA:DNA complementarity is 

essential to SpyCas9 stability and cleavage competency. The directional 

hybridization of the R-loop ensures that when enough mismatches are formed, 

further propagation is stalled allowing SpyCas9:crRNA to reject the site. Crucially, 

the cleavage-competent is only accessible when a stable R-loop with the maximum 

number of base pairs is formed.  

SpyCas9 and orthologs induce a blunt double-strand break (DSB), upstream and 

proximal to the guanine-rich PAM. Cleavage is catalyzed by the two nuclease 

domains within the NUC lobe, HNH and RuvC, that cleave the target and non-target 

strands, respectively [2, 28, 30] (Figure 2 a, c, d). Numerous SpyCas9 structures 

have provided insight into the flexibility and structural rearrangement of the HNH 

catalytic domain into its active state [27, 29, 30]. smFRET studies showed that the 

conformational flexibility of the HNH domain directly controls cleavage [35]. Further 

smFRET investigations of labelled SpyCas9:sgRNA complexes revealed that in the 

absence of DNA, SpyCas9:sgRNA primarily resides (approximately 50%) in a stable 
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state termed the R state (referring to the RNA bound SpyCas9 complex) [57]. 

Introduction of target-containing DNA led to the formation of a new state termed the 

D state (referring to the correctly base-paired, target DNA bound complex). The 

SpyCas9:sgRNA complex was found to transiently access a third intermediate state 

(I state). Strikingly, transitions from R state to the D state necessarily required visits 

to the I state. Considering that (1) rate of transitions to the D state are ten-fold 

slower, and (2) the observation that the stable residence in the D state is infrequently 

encountered on target DNA containing 1-3 bp mismatches, these investigators 

suggested that the intermediate state serves as a conformational checkpoint gating 

initial binding and DNA cleavage [57]. Consistent with this hypothesis, investigations 

of domain flexibility in the presence of mismatched target DNA substrates showed 

that the HNH domain has a decreased propensity for its cleavage competent state in 

the presence of mismatched R-loops [58]. Indeed, greater than 4-bp mismatches in 

the R-loop at the PAM-distal end prevent this domain rearrangement [58]. Thus, the 

conformational rearrangement of the HNH domain into its cleavage-competent state 

is only triggered upon confirmation that the correct target site has been bound by the 

SpyCas9 nuclease. This long-range allosteric communication between the flexible 

HNH domain and the PAM-distal end of the R-loop act as a final cleavage 

checkpoint to prevent the degradation of bound off-target sites.   

SpyCas9:gRNA complexes remain tightly bound to cleaved DNA products. 

Observations of quantum-dot labelled SpyCas9 proteins in DNA curtain assays 

showed that SpyCas9:gRNA remained bound to DNA after cleavage [44] (Figure 4c). 

Further, plasmid DNA cleavage assays at varying molar ratios of SpyCas9:gRNA 

and target DNA revealed that SpyCas9:gRNA complexes do not follow Michaelis-

Menten kinetics [44]. In agreement, measurements of binding kinetics of 

SpyCas9:gRNA interactions with substrate DNA performed using bio-layer 

interferometry revealed that the complex remains bound to cleaved products and 

displays an identical lifetime to SpydCas9:sgRNA complexes [59]. Additionally, 

steady-state kinetic analysis of the dissociation of radiolabelled cleavage products 

exhibited slow multiple-turnover rates for both the HNH (kcat 4.45 ×10-6 s-1) and RuvC 

domains (kcat 2.1 ×10-6 s-1) [34]. Thus, SpyCas9:gRNA acts as a single-turnover 

enzyme. Recently, bulk biochemical experiments have shown the ability of RNA 

polymerase to dislodge SpyCas9 bound to cleavage products [60]. Displacement of 



8 
 

the SpyCas9:sgRNA complex resulted in a multiple-turnover enzyme [60]. 

Interestingly, displacement of the SpyCas9:sgRNA complex only occurred if the 

sgRNA had hybridized with the RNAP template strand [60]. The SpyCas9 homolog, 

Staphylococcus aureus (SauCas9) was recently identified as a multiple-turnover 

Cas9 enzyme [61]. In vitro cleavage reactions analysed by capillary electrophoresis 

showed that SauCas9 cleavage resulted in 5-fold more cleavage product formation 

over 24 hours in comparison to SpyCas9, suggesting that one SauCas9 complex 

can cleave multiple DNA substrates [61]. This enhanced rate of turnover is 

potentially attributable to an enhanced rate of product release [61]. Collectively, 

these studies indicate that SpyCas9:gRNA complexes remain stably bound to 

cleavage products and are essentially single-turnover enzymes, unless acted upon 

by cellular machinery undertaking DNA transcription. 

4.1 Conclusions and future perspectives   

Single-molecule techniques have been crucial for assembling detailed models for the 

various kinetic mechanisms involved in effector maturation, target search and 

discrimination, conformational changes involved in catalysis and product release. 

Extensive characterisation of these mechanisms has contributed to the continuous 

adaptation of SpyCas9 for a range molecular biology tools. Whereas SpyCas9 has 

been extensively studied and remains at the forefront of the revolution in genetic 

engineering, other class I and 2 CRISPR/Cas systems remain relatively under-

characterized. The single-molecule approaches used to characterize the enzymology 

of this exciting new family of proteins represent a broad and powerful toolkit for 

future investigation of other CRISPR/Cas systems. Ultimately, these approaches will 

enable the engineering of refined CRISPR/Cas systems for applications in genetic 

engineering, biotechnology, diagnostics and even fundamental discovery. 
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Figure Legends:  

Figure 1: CRISPR adaptive immunity mechanism. (1) Acquisition; foreign DNA sequence (green) is 

incorporated as a new spacer within the CRISPR repeat-spacer array. (2) Expression; the repeat-

spacer array is transcribed, expressing pre-crRNA, which anneals to tracrRNA (red). Further 

processing yields mature gRNA duplexes that are recruited by effector proteins (blue). (3) 

Interference; mature gRNA guides the effector proteins to cleave the complementary sequences of 

subsequent invading DNA that contain PAM sequences. 

Figure 2: Structural biology of SpyCas9 in complex with sgRNA and target DNA. (a) Domain 

organization of SpyCas9. BH, bridge helix; REC, recognition; NUC, nuclease; PI, PAM-interacting. (b) 

Schematic representation of the sgRNA hybridized to complementary target DNA sequence. (c) 

Ribbon representation of the SpyCas9:sgRNA:DNA complex. Red dotted line represents disordered 

linker. (d) Surface representation of SpyCas9:sgRNA:DNA complex. Dashed yellow circles represent 

HNH and RuvC active sites, H840A and D10A, respectively. Figure adapted with permission from 

[30**].  

Figure 3: Domain flexibility of SpyCas9. Cryo-EM structures of apo-SpyCas9 (a) (19-Å resolution) 

and SpyCas9:gRNA (b) (21-Å resolution) reveal flexibility of the bilobed structure. Cartoon 

representations (left) are shown alongside single-particle EM reconstructions of structures. The 

smaller NUC lobe (blue) rotates away from the larger REC lobe (gray) upon binding of gRNA. Figure 

adapted with permission from [29].  

Figure 4: Target search and binding of SpyCas9. (a) Schematic of double-tethered DNA curtain 

assay. λ-DNA substrates (48, 502 bp) are anchored by one end to a lipid bilayer through a biotin-

streptavidin linkage. Hydrodynamic force is then used to stretch the DNA molecules until they 

encounter antibody-coated pentagons, with which they bind to through DIG-labelled ends. (b) WT 

SpyCas9 or SpydCas9 (top) was programmed with crRNA:tracrRNA targeting one of six specified 

sites (λ1-6). (c) YOYO1-stained DNA (green) bound by QD-tagged SpyCas9 (magenta) programmed 

with λ2 gRNA. Binding site of programmed SpyCas9 corresponds to expected target site of λ2 gRNA. 

SpyCas9 remains bound after cleavage of dsDNA. (d) Kymographs of a single DNA molecule 

illustrating distinct stable and transient binding events (top). Zoomed in image of transient binding 

events (bottom). (e) Pearson correlation analysis of PAM distribution and non-target SpyCas9:gRNA 

binding distribution for λ2 gRNA (blue) and a non-complementary gRNA (green) (r = 0.59, P < 0.05). 

Figures adapted with permission from [44]. (f) Schematic of live-cell imaging experimental setup used 

for kinetic analysis of SpydCas9-Ypet:sgRNA. The microfluidic device (left) contains three ports 

assigned for medium, running waste and loading waste. The chamber contains three rows, each 

containing 17 traps. Cells are introduced from the running waste and are caught in the traps. Each 

trap is a 40 X 40 X 0.9 µm compartment, confined by two rigid walls and two openings. Cells that 

reach the openings are freed from the traps into the 10 µm deep surrounding (right). Figure adapted 

with permission from [46] (g) Schematic of single-molecule assay (top panel) where in the absence of 

IPTG, lacO1 sites are occupied by LacI, preventing binding of SpydCas9-Ypet:sgRNA (bottom panel). 

Addition of IPTG dissociates LacI, allowing SpydCas9-Ypet:sgRNA to bind to the lacO1 target, 

enabling detection of specific fluorescent spots using exposure times of 5 s. Bottom panel shows 

fluorescence images obtained before (left) and 10 min after (right) IPTG addition. Scale bar, 2 µm. 

Figure adapted with permission from [12*].  
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