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Abstract 
 

Ni-Cu alloys, also known as Monel alloys, are widely used in marine industry due 

to their high corrosion resistance and good mechanical properties. Submarine propeller 

shafts, diesel engine piston rods and centrifugal pump shafts are examples of application 

of these alloys. Despite their good mechanical and corrosion resistant properties, Ni-Cu 

components may fail in operation via sliding wear, galling and pitting corrosion. Since 

the Ni-base alloys are expensive, repair is often an economic choice than replacement.  

A possibility to use wire arc additive manufacturing (WAAM) technology for 

fabrication of new and repair of used Ni-Cu components was assessed in this thesis. 

Two Ni-Cu wires with various Ti, Mn, Al and C contents were deposited on a Ni-Cu 

substrate with a wide range of welding parameters (travel speed, wire feed rate). The 

solute atom concentrations and particle number density values were modified using 

various post processing heat treatment schedules. A comprehensive study of the 

microstructure, mechanical properties, wear and corrosion resistance of the Ni-Cu alloy 

components fabricated using WAAM has been conducted. Microstructure 

characterisation, in particular a detailed study of the precipitate’s parameters (size, 

number density and chemical composition) was carried out using optical, scanning, 

transmission and atomic resolution electron microscopy. Mechanical properties were 

assessed using hardness, tensile testing to fracture, wear and corrosion resistance.  

For similar deposition and heat treatment conditions, an alloy with higher C and 

Al, and lower Mn contents exhibited a higher number density of >20 nm TiC particles, 

higher number density of <20 nm γ′-Ni3(Al, Ti) particles, and, associated with these, 

superior hardness, tensile strength, strain hardening rate, toughness and wear resistance. 

The effects of alloy composition and heat treatment on the microstructure-properties 

relationship in the studied Ni-Cu alloys are discussed. The hot-rolled Ni-Cu plate was 

used as a reference for mechanical properties, wear and corrosion resistance of the 

fabricated samples. The results showed that, although the strength of the deposited 

alloys was lower than this of the plate, the toughness, wear and corrosion resistance of 

depositions were higher almost in all conditions than this of the base plate.  

A welding repair simulation by WAAM was performed by depositing the wire on 

a machined cylindrical rod. The chemical composition of the wire was chosen to match 

the composition of the component. The microstructure and mechanical properties 
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(hardness) of the deposition-component interface was analysed for three post-processing 

heat treatment conditions. Due to the difference in initial microstructure of the 

deposition (cast microstructure) and base metal (deformed microstructure), the hardness 

of the deposition was by 35% lower than this of base metal in as-welded condition. 

However, heat treatment reduced this difference down to 14%, which could be related 

to the precipitation of nano-sized TiC and γ′ - Ni3(Al,Ti) particles in the depositions, as 

was observed in fabricated by WAAM plates and walls after age-hardening heat 

treatment. 
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1. INTRODUCTION 
 

1.1. Background 
 

Nickel has good mechanical properties and excellent resistance to various 

corrosive environments. It is the “base” for the Ni-base alloys families, which are 

amongst the most important classes of engineering materials. Ni-base alloys retain 

austenitic matrix from solidification to absolute zero that is why they can be used both 

at cryogenic temperatures and at temperatures approaching 1200 °C. They sustain high 

strength, ductility and toughness in this whole temperature range.  Ni-base alloys have a 

higher tolerance for alloying elements in solid solution than stainless steels and other 

iron-base alloys but maintain good metallurgical stability. These factors have resulted in 

development of Ni-base alloys with multiple alloying additions to provide wide variety 

of properties. Major additions of copper (28-34%) provide solid solution strengthening 

and improve the resistance of Ni to nonoxidizing acids. 

The Ni - Cu system has complete solid solubility, which allows production of 

single-phase alloys over the entire composition range. The 70Ni-30Cu system forms the 

basis for the Monel alloys. Monel alloys family has high room temperature strength, in 

comparison to some Ni-Cr alloys and low-alloy precipitation hardening steels, and are 

resistant to a wide range of corrosive media, including rapidly flowing seawater. Due to 

their excellent properties, Monel alloys have a wide area of applications, including 

marine industry, where they are used to produce propeller shafts, valves, marine fixtures 

and fasteners, electrical and electronic components.  

The strength of cast Monel alloys can be increased by work hardening, solid 

solution strengthening (non-heat treatable alloys) and precipitation strengthening (heat-

treatable alloys). The ability to significantly increase strength of Ni-Cu alloys by 

precipitation strengthening became one of the most prominent discoveries of the Ni 

alloy industry in the 20th century. Additions of Al and Ti to Ni - Cu matrix help to 

produce a much stronger version of the 70Ni - 30Cu alloy, if a proper heat treatment is 

applied. The microstructure of age-hardened alloy may contain the following 

intermetallic precipitates: Ni3(Al,X), where X can be Cu, Mn, Ti or Si, known as gamma 

prime precipitates (γ'), Ni3Ti and Ni,Fe3(Al,Fe). 
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γ′ has an ordered fcc crystal structure that has a very good crystallographic 

matching with the Ni fcc matrix (1% or less mismatch). The Al atoms reside in the cube 

corners while the Ni ones reside on the face centres. In commercial alloys, elements 

such as Co and Fe can substitute Ni, while Cu, Mn and Si have a tendency to substitute 

Al. γ′ precipitates nucleate homogeneously, remain spherical in shape and coherent with 

the matrix even after prolonged ageing. No tendency for precipitate alignment or for 

preferred nucleation at dislocations has been reported. The good crystallographic 

matching between the γ matrix and γ′ precipitates leads to a very low interface energy 

that, in turn, leads to very low coarsening rates of the precipitates. The γ' solvus 

temperature for the solution treated and quenched samples is between 700 and 750 °C. 

This upper temperature limit for the γ + γ' phase field is rather low compared with those 

for most of the commercial γ'-hardened Ni-base superalloys in which the total amount of 

precipitate-forming elements such as Al, Ti, Nb and Ta is generally quite larger than the 

total Al and Ti content in Monel K500. The stable form of Ni3Ti phase, often designated 

as eta (η), exhibits a hexagonal closed packed crystal structure and forms at the specific 

stoichiometric composition of 75Ni - 25Ti (at. %). The η phase can form the ordered 

metastable fcc structure at lower temperatures, it typically appears as coarse platelets 

and does not provide significant strengthening. Thus, the γ′ - Ni3(Al,Ti) phase is 

preferred in this system. 

In many Ni-base alloys with significant C levels, various types of carbides can 

form. Composition of the carbides and their amount depend on the alloy composition, 

processing route and service history. The MC-type carbide is the principal carbide phase 

in Monel alloys. It is identified as a titanium-rich MC-type phase, coarse particles of 

which are distributed in a non-uniform manner within the grains or along the grain 

boundaries. MC-type carbides exhibit the fcc crystal structure and typically form at the 

end of solidification of the alloy by eutectic-type reactions with γ matrix. 

Historically, Ni-Cu alloys were produced by casting, followed by hot rolling and 

cold rolling process. Additive manufacturing is a novel rapidly developing alternative to 

traditional fabricating methods. It has a capacity to produce complex lightweight parts 

by adding material layers directly from 3D CAD model. In addition, it can be 

implemented as a repair technology of components that failed after being in service. 

Namely, Ni-Cu alloys are often used for manufacturing of machine parts with mating 

metal surfaces, thus wear is one of the key failure origins. Not only this directly affects 
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equipment life, especially when operated in corrosion environment, but also it may 

endanger an entire mechanical system if a critical part is damaged. Pitting corrosion, 

which is extremely localized corrosion leading to the creation of small holes on the 

surface, is another form of failure of Ni-Cu components. Since Ni-base alloys are 

expensive, repair is often a more economic choice than replacement.  

Additive manufacturing of metals can be classified into two large groups with 

respect to a feedstock material type: powder-based and wire-based. Powder-based 

processes, such as selective laser melting, selective laser sintering or electron-beam 

melting are capable of producing complex parts with high geometrical accuracy. A 

typical layer thickness in powder-based fabrication is 20-100 µm, the dimensional 

accuracy can be up to ±0.05mm and the surface roughness is about 9-16 µm. However, 

powder-based process has significant downsides: porosity, low deposition rates (0.1-0.2 

kg/h), limited size of the fabricated parts, high cost of powder and the inert gas required 

for the process.  

In contrast, the wire-based additive manufacturing is a relatively simple and cheap 

process. Compared to powder, metal wires are lower in cost and readily available. The 

wire-feed processes are more environmentally friendly and have a higher material usage 

efficiency with up to 100% of melted wire material deposited to build a component. 

Compared to the powder-based methods, the deposition rates of wire-based methods are 

much higher (up to 12 kg/h), which allows to economically produce larger size 

components, although the complexity and accuracy of the fabricated part may be 

sacrificed. Depending on the energy source used for wire melting, wire-feed additive 

manufacturing can be classified into three groups, namely: laser-based, electron beam-

based and arc welding-based. Laser-based methods are advantageous due to their 

precision; however, they have very poor energy efficiency of 2–5%. Electron beam-

based methods have a slightly higher energy efficiency of 15–20 %, but they require a 

high vacuum working environment. On another hand, the energy efficiency of the arc 

welding processes can be up to 90 % in some circumstances. Additionally, the cost of 

the traditional arc welding equipment is relatively low, compared to the laser or electron 

beam equipment. 

Wire arc additive manufacturing (WAAM) is a popular rapidly developing wire-

based additive manufacturing technology. It employs an electric arc as a heat source and 

a wire as a feedstock and utilizes either gas metal arc welding (GMAW), gas tungsten 
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arc welding (GTAW) or plasma arc welding (PAW). The wire is deposited layer by 

layer perpendicularly on the substrate to manufacture a new component or repair an old 

component reducing material wastage and production/repair time. This process 

combines all the advantages of the wire-based methods (e.g. high deposition rates, high 

energy efficiency, readily available feedstock), in addition, WAAM can be applied 

using off the shelf welding machinery: welding power sources, torches and wire feeding 

systems. Moreover, it has potentially unlimited build volume, which allows to fabricate 

large machinery parts. WAAM has already been successfully applied to produce 

components from stainless steel, low carbon steel, Fe intermetallics, Ti-base, Al-base, 

Cu-base, and Ni-Cr-base alloys. In spite of significant number of works dedicated to the 

analysis of technology-properties relationships, detailed microstructural characterisation 

of WAAM components is rarely conducted, which slows down the properties 

optimisation. The key dependences observed up-to-date are as follows. An increase in 

deposition rate may result in smaller grain sizes, fracture void sizes and higher 

toughness. In multi-phase materials, such as Fe intermetallics and Ti-base alloys, 

interpass temperature should be controlled, as it may affect the room temperature phase 

balance and related to it combination of strength and ductility. In both single phase and 

multi-phase alloys the tensile properties have been reported to depend on test direction, 

which is related to the temperature and cooling rate gradient through the deposited 

object. Stress relief, homogenisation and age-hardening heat treatments improve 

mechanical properties. In particular, homogenisation may result in less disordered 

crystal structure, lower segregation, finer grain size and increased strength and ductility. 

Age-hardening leads to particle precipitation and may increase strength and toughness. 

 

1.2 Thesis aim and objectives 
 

Based on the analysis of previously published work, the following aim was set for 

this thesis: to develop for the first time a wire arc additive manufacturing technology for 

fabrication and repair of Ni-Cu components.  

To achieve this aim the following objectives were defined: 

1. To investigate the effect of welding parameters (torch travel speed, wire feed 

rate) on mechanical properties of depositions (strength, wear and corrosion 

resistance).  
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2. To study the effect of wire alloy chemistry on microstructure (in particular, 

precipitation of hard nano-particles) and mechanical properties of depositions;  

3. To develop the post processing heat treatment procedure (temperature range, 

holding time, cooling rate) to assure stress relief and optimal combination of  

strength, toughness, wear and corrosion resistance.  

 

1.3 Major contributions 

 
The research presented in this thesis has shown a feasibility to fabricate Ni-Cu 

alloys using wire arc additive manufacturing. An opportunity for the wire arc additive 

manufacturing to become a new economical way of repairing damaged Ni-Cu parts was 

also proved. 

The effect of travel speed and wire feed rate on the beads geometry and the 

dilution has been investigated for the Ni-Cu alloys deposited on a substrate plate with 

matching chemical composition. The knowledge obtained in this work allowed to 

fabricate defect-free simple shape components (multi-layered walls and single layer 

multi-bead plates) from two Ni-Cu alloys with various concentrations of Al, Ti, Mn and 

C. Post-deposition heat treatment designed in this work provided microstructure 

homogenisation, stress relieve and optimal partitioning of microalloying elements 

between solid solution and particles leading to improvement of mechanical properties. 

The findings of the present research have contributed to in-depth understanding of 

the technology-microstructure-properties relationship in Ni-Cu alloys fabricated using 

wire arc additive manufacturing. The effect of alloy composition on microstructure (in 

particular, particle precipitation), hardness, tensile strength and wear resistance of as-

deposited and heat treated alloys has been thoroughly investigated. A higher C content 

in alloy composition facilitated precipitation of TiC particles in all size ranges in as-

deposited condition. In addition, a higher Al content could lead to a vast precipitation of 

nano-sized Ni3(Al,Ti) particles after heat treatment. As a result, the Ni-Cu alloy with 

higher Al and C contents exhibited higher hardness, yield stress, tensile strength, 

toughness and wear resistance in all studied conditions. The strain hardening behaviour 

of the studied alloys varied with heat treatment condition, and was affected by the 

dislocation density, size and number density of precipitates, and solid solute 

concentrations. Both alloys exhibited ductile fracture behaviour in all studied conditions 
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and decreasing average void size, corresponding to decreasing elongation, with age 

hardening heat treatment. 

The results obtained for Ni-Cu alloys fabricated by WAAM were compared to 

these for hot-rolled Ni-Cu plate. It was proved that, although WAAM components have 

lower strength, due to cast microstructure, they possess similar or higher elongation and 

toughness than these of a hot-rolled plate in all heat treatment conditions. In addition, 

wire arc additively manufactured Ni-Cu components were found to retain good 

corrosion resistance in 3.5%NaCl environment, which is typical operating environment 

for traditionally manufactured Ni-Cu alloys. 

 

1.4 Thesis organisation 

 
Introduction, the current chapter, presents the research background, the thesis aim 

and objectives and contributions of this work. Rest of the thesis is organized as follows. 

Chapter 2 Literature review presents a summary of the current knowledge 

related to this research work. It is divided into three subheadings. 2.1 Chemical 

composition and manufacturing technologies of Ni alloys gives a brief overview of 

existing Ni-base alloys, summarises the role of alloying elements in Ni-Cu alloys and 

describes fabrication process of Ni-Cu alloys, mainly hot and cold working, heat 

treatment, machining and surface finishing. 2.2 Microstructure-property relationships of 

Ni-Cu alloys is a characterisation of microstructure (in particular, matrix, intermetallic 

precipitates, carbides and carbonitrides, dislocations and annealing twins) and 

strengthening mechanisms (grain size strengthening, solution and precipitation 

strengthening and dislocations strengthening) in Ni-Cu alloys. It also provides 

information about mechanical properties (tensile strength, hardness, impact and fatigue 

strength) and corrosion resistance of Ni-Cu alloys in various media. 2.3 Repair 

techniques of Ni-base alloys addresses existing repair methods such as thermal spraying 

and considers additive manufacturing (namely, laser metal deposition and wire arc 

additive manufacturing) as possible repair technique for the given alloys.  

The materials and experimental techniques used in this study are described in 

Chapter 3 Materials and experimental techniques. It provides information about a 

chemical composition of the studied alloys and substrate; describes samples fabrication 
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and post processing heat treatment. It also describes equipment used for microstructural 

analysis, mechanical and corrosion testing. 

The results obtained in this thesis are presented in Chapter 4 Results and 

discussion, which is divided into 6 subheadings as follows.  

4.1 Analysis of the as-received materials presents an analysis of microstructure 

and mechanical properties (hardness) of the substrate Ni-Cu plate and two Ni-Cu wires 

chosen for WAAM deposition. 4.2 Development of the WAAM technology for Ni-Cu 

alloys states the feasibility study of using WAAM for fabrication of Ni-Cu components 

and gives an analysis of the effect of deposition parameters (wire feed rate, travel speed, 

resulting heat input) on the geometry, microstructure and mechanical properties of the 

fabricated components. It also demonstrates the effect of post-processing heat treatment 

on the microstructure and mechanical properties of the depositions. 

4.3 Microstructure and mechanical properties of as-welded Ni-Cu alloys 

represents an in-depth study of microstructure and mechanical properties of as-

deposited beads, walls and plates fabricated using two Ni-Cu alloys at three travel 

speeds. 

4.4 Microstructure and mechanical properties of heat treated Ni-Cu alloys is a 

further investigation which primarily focuses on the effect of heat treatment on 

microstructure (in particular, nano-size intermetallic precipitates) and mechanical 

properties of the two Ni-Cu alloys depositions (strength, hardness, wear resistance). In 

addition, considering the application environment of Ni-Cu alloys, the corrosion 

resistance of the depositions in all heat treatment conditions was investigated in this 

chapter. The results are compared with hot-rolled Ni-Cu plate. 

4.5 Work hardening behaviour and fracture in as-welded and heat treated Ni-Cu 

alloys is a more detailed characterisation of nano-sized precipitates and their significant 

effect on work hardening and fracture behaviour in Ni-Cu alloys produced by WAAM 

is discussed. 

4.6 Repair of a functional component by wire arc additive manufacturing shows 

the results obtained during simulation of repair of damaged Ni-Cu cylindrical shaft. 

Chapter 5 Thesis Conclusions is a summary chapter, which concludes the major 

findings of this thesis. Chapter 6 Future work states the main challenges that could be 

addressed in future investigations of microstructure and mechanical properties of Ni-Cu 

alloys produced using WAAM. 
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2. LITERATURE REVIEW 

 

2.1 Chemical composition and manufacturing technologies of Ni-base 

alloys 
 

2.1.1 Ni-base alloys 
 

Nickel 200 and 201 is a commercially pure nickel with up to 1 % additions of 

other elements (Table 2.1). It has good mechanical properties and excellent resistance to 

various corrosive environments. Ni retains an austenitic face-centered-cubic (FCC) 

crystal structure from its melting point down to sub-zero temperatures, providing 

freedom from ductile-to-brittle transitions and minimizing the fabrication problems that 

can be encountered with other metals [1]. When added to other alloys, Ni provides 

metallurgical stability, improved thermal stability and weldability, improved resistance 

to reducing acids and caustics, and increased resistance to stress corrosion cracking 

particularly in chlorides and caustics [2]. Ni is the “base” for various Ni-base alloys 

families which are one of the most important classes of engineering materials [3]. 

 

Table 2.1 Chemical composition of Nickel 200 and 201, wt. % 

Alloy Ni C Mn Fe Co S Si 

Nickel 200 
Max - 0.15 0.35 0.40 0.25 0.01 0.35 

Min 99.0 - - - - - - 

Nickel 201 
Max - 0.02 0.35 0.40 0.25 0.01 0.35 

Min 99.0 - - - - - - 

 

Ni - base alloys retain austenitic matrix from solidification to absolute zero that is 

why they can be used both at cryogenic temperatures and temperatures approaching 

1200 °C. They sustain high strength, ductility and toughness in this whole temperature 

range [4]. Ni is not a chemically active element and does not readily evolve hydrogen 

from acid solutions. The presence of an oxidizing agent is usually required for 

significant corrosion to occur. Generally, reducing conditions retard corrosion, whereas 

oxidizing conditions accelerate corrosion of Ni in chemical solutions. However, Ni may 

also form a protective corrosion-resistant, or passive, oxide film on exposure to some 
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oxidizing conditions [5]. These properties result in excellent aqueous and high 

temperature corrosion resistance of Ni-base alloys. 

 
Figure 2.1. Ni-base alloys [2]. 

 

With appropriate alloying additions, these alloys provide useful properties and 

have applications in a wide range of industries, including marine engineering, power 

generation, petrochemical, chemical processing, aerospace, and pollution control [4]. 

Ni-base alloys have a higher tolerance for alloying elements in solid solution than 

stainless steels and other iron-based alloys but maintain good metallurgical stability. 

These factors have resulted in development of Ni-base alloys with multiple alloying 

additions to provide wide variety of properties (Figure 2.1) [2]. 

 

2.1.1.1 Monel alloy family 

 

Major additions of copper (28-34 %) provide improvement in the resistance of Ni 

to nonoxidizing acids [5], [2]. In addition, Cu provides solid solution strengthening [6]. 

Ni and Cu exhibit very similar atomic characteristics. They are each face-centered-

cubic, have less than three percent difference in atomic radii, and exhibit similar 

electronegativity and valence state. The Ni - Cu system has complete solid solubility, 

which allows production of single phase alloys over the entire composition range 

(Figure 2.2) [7]. Although the Ni - Cu system exhibits complete solid solubility [8], the 
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large differences in melting points between Ni (1455 °C) and Cu (1085 °C), coupled 

with the low diffusivity of Cu in Ni, can result in microsegregation of Cu. This may 

lead to inhomogeneity of microstructure and mechanical properties in fusion welds of 

Ni - Cu alloys, and therefore should be carefully controlled [9]. 

 
Figure 2.2. Ni-Cu binary phase diagram [7]. 

 

The Ni - Cu system forms the basis for the Monel alloy family. Monel was 

discovered by Robert Crooks Stanley who worked for the International Nickel 

Company (INCO) in 1901. The new alloy was named in honour of the president of the 

company, Ambrose Monell. The name is now a trademark of Special Metals 

Corporation [10]. 

 

Table 2.2. Chemical compositions of Monel alloys, wt. % 

Monel 
Alloys  Ni Cu C Mn Fe Co S Si Al Ti 

Monel 
400 

Max - 34.0 0.3 2.0 2.5 - 0.024 0.5 - - 
Min 63.0 28.0 - - - - - - - - 

Monel 
401 

Max 45.0 Balance 0.1 2.25 0.75 0.25 0.015 0.25 - - 
Min 40.0 - - - - - - - - - 

Monel 
404 

Max 57.0 Balance 0.15 0.1 0.5 - 0.024 0.1 0.05 - 
Min 52.0 - - - - - - - - - 

Monel 
R405 

Max - 34.0 0.3 2.0 2.5 - 0.060 0.5 - - 
Min 63.0 28.0 - - - - 0.025 - - - 

Monel 
K500 

Max - 33.0 0.18 1.5 2.0 0.25 0.006 0.5 3.15 0.85 
Min 63.0 27.0 - - - - - - 2.3 0.35 
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Minor alloy additions are made to Monel to provide unique properties of the 

Monel alloy family (Table 2.2), which composes of Monel 400, Monel 401, Monel 404, 

Monel R405 and Monel K500. The standard product forms are round, hexagon, flats, 

forging stock, pipe, tube, plate, sheet, strip, and wire [11]. 

Monel alloys are stronger than pure Ni and are resistant to corrosion by many 

agents, including rapidly flowing seawater. They can be fabricated readily by hot- and 

cold-working and machining. These alloys are usually quite weldable, but may be 

susceptible to porosity if proper shielding or well deoxidized consumables are not used 

[12]. The strength of Monel alloys can be increased by work hardening, solid solution 

strengthening (non-heat treatable) and precipitation strengthening (heat-treatable). The 

addition of Al and Ti to Ni - Cu alloys help to produce a much stronger version of the 

70Ni - 30Cu alloy that would form a second phase when properly heat-treated [13]. The 

second phase is known as gamma prime (γ′). The ability to significantly increase the 

strength of Ni-base alloys by precipitation hardening became one of the most 

transformational technical discoveries of the Ni alloy industry in the 20th century [14]. 

Monel alloys are expensive, with their cost ranging from 5 to 10 times the cost of 

Cu and Ni, hence their use is limited to those applications where they cannot be 

replaced with cheaper alternative.  Compared to carbon steel, piping in Monel is about 

30-120 times more expensive [15]. 

Monel 400 - is characterized by good general corrosion resistance, good 

weldability and moderate to high strength. The alloy has been used in a variety of 

applications. It has excellent resistance to rapidly flowing brackish water or seawater. It 

is particularly resistant to hydrochloric and hydrofluoric acids when they are de-aerated. 

The alloy is slightly magnetic at room temperature. It is widely used in the chemical, oil 

and marine industries for manufacturing of chemical plant equipment, pumps, valves, 

marine fixtures and piping systems [16], [17]. 

Monel 401 - has higher Cu content than Monel 400 for better electrical properties 

and good brazing characteristics. It is readily autogenously welded in the thin sections 

in which it is most often used. The alloy is designed for use in specialized electrical and 

electronic applications such as wire wound resistors, bimetal contacts, etc. [18]. 

Monel 404 - is used primarily in specialised electrical and electronic applications. 

The composition of Monel 404 is carefully adjusted to provide a very low Curie 

temperature, low permeability, and good brazing characteristics. Monel 404 can be 
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welded using common welding techniques and hot worked by forging. Cold working 

may be done using standard tooling and soft die materials for better finish. The alloy is 

used for manufacturing of capsules for transistors and ceramic-to-metal sealing [19]. 

Monel R405 - is the free machining version of Monel 400. It has a controlled 

amount of sulphur added to provide sulphide inclusions that act as chip breakers during 

machining and thus improve machinability. This alloy is resistant to sea water, steam at 

high temperatures, salt and caustic solutions, it also exhibits high strength [20]. The 

alloy is used for screw machine stock, fasteners and similar high production run items 

[21]. 

Monel K500 - combines the excellent corrosion resistance of Monel alloy 400 

with the added advantages of greater strength and hardness. Depending on processing 

(cold worked, age-hardened), it may have approximately three times the yield stress and 

double the tensile strength when compared with Monel 400 [22]. The increased 

properties of the alloy are obtained by adding Al and Ti to the Ni-Cu, and by heating 

under controlled conditions (commonly called age hardening or aging) so that 

submicroscopic particles of Ni3(Ti, Al) precipitate throughout the matrix [23]. Monel 

K500 can further be strengthened by cold working. It should be annealed before 

welding, and the weldment requires stress relief or annealing before aging. The alloy is 

non-magnetic [24]. 

The corrosion resistance of Monel K500 is substantially equivalent to that of 

Monel 400 except that, when in the age-hardened condition, Monel K500 is more 

susceptible to stress-corrosion cracking in some environments. Monel K500 has been 

found to be resistant to a sour-gas environment. The combination of very low corrosion 

rates in high-velocity seawater and high strength make Monel K500 particularly suitable 

for shafts of centrifugal pumps, propeller shafts, impellers, valve components in marine 

service (Figure 2.3). In stagnant or slow-moving seawater, fouling may occur followed 

by pitting, but this pitting slows down after a fairly rapid initial attack [25]. Monel K500 

became a popular propeller shaft alloy for sea-going vessels and was chosen by naval 

architects for its good torsional stiffness, toughness, and corrosion resistance in marine 

environments. Later, it was widely used for non-magnetic drill collars [14]. 
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Figure 2.3. Maritime components made of Monel K500: (a) submarine propeller shaft 

[26], (b) diesel engine piston rod [27] and (c) centrifugal pump shaft [28]. 
 

2.1.1.2 Role of alloying elements in Ni-Cu alloys 

 

The number of alloying elements can be combined with Ni to provide alloys with 

high mechanical properties and good corrosion resistance in a wide variety of 

environments (Table 2.3) [29]. Ni is capable of dissolving high concentrations of 

alloying elements compared to other metals [30]. 

Copper (33 % max) – provides solid solution strengthening [5]. Additions of 

copper also provide improvement in the resistance of Ni to nonoxidizing acids. In 

particular, alloys containing 30 to 40 % Cu offer useful resistance to nonaerated 

sulphuric acid and offer excellent resistance to all concentrations of nonaerated 

hydrofluoric acid [2]. 

Carbon (0.25 % max) – allows formation of carbides, which improve creep 

resistance [31]. Because C is relatively mobile in the Ni matrix above 315 °C, C 
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additions beyond the solubility limit (∼0.02 wt. %) will result in precipitation of 

graphite particles that render the material brittle and weak [7]. 

Manganese (1.5 % max) – highly soluble in Ni, improves corrosion resistance and 

weldability. Promotes formation of M23C6 type carbides [8, 32]. 

Iron (2.0 % max) – provides solid solution strengthening, reduces costs of the Ni-

base alloys, but does not promote corrosion resistance [2]. It also increases the solubility 

of C in Ni; this improves resistance to high-temperature carburizing environments [5]. 

Cobalt (0.25 % max) – provides increased high-temperature strength, solid 

solution strengthening, and resistance to carburization and sulphidation [2]. Additions 

of Co also raise solvus temperature of γ′ [5]. 

Sulphur (0.006 % max) - enhances machinability of Ni-base alloys [20]. 

Silicon (0.5 % max) - is typically present only in minor amounts in most Ni-base 

alloys as a residual element from deoxidation practice or as an intentional addition to 

promote high-temperature oxidation resistance [5]. 
 

Table 2.3. The effects of various alloying elements on phase stability in Ni-base alloys 

Effect Element 
Solid solution strengthener Cu, Co, Fe, Ti, Al 

Gamma prime (γ′) - Ni3(Al,Ti) former Al, Ti 
Carbide formers: 

MC 
M23C6 

 
Ti 
Mn 

Surface oxide (Al2O) former Al 
 

Aluminium (2.3-3.15 %) - provides excellent corrosion resistance resulting from 

the formation of a protective Al2O3 surface oxide layer. This permits use of Ni-base 

alloys in a wide variety of applications that require protection due to various forms of 

degradation, such as aqueous corrosion, oxidation, and sulfidation [7]. 

Titanium (0.35-0.85 %) – promotes formation of MC-type carbides [33]. 

Although Ti and Al can be effective solid solution strengtheners, they typically 

improve strength by precipitation of the γ′ - Ni3(Ti,Al) phase in Ni-base superalloys 

used for applications that require a combination of high temperature strength and 

corrosion resistance [5]. Together they are often used in minor amounts in corrosion 

resistant alloys for the purpose of deoxidation or to tie up carbon and/or nitrogen 

respectively [2]. Both Ti and Al combine with oxygen to form oxides, thereby 

controlling porosity in the weld deposits [7]. 
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2.1.2 Fabrication process of Ni-Cu alloys 
 

2.1.2.1. Hot working and cold working 

 

The hot working of Ni alloys is performed by the following methods: forging 

(Figure 2.4 a), hot rolling (Figure 2.4b) and extrusion [11]. Ni alloys are often closed-

die forged into turbine blades, turbine discs, exhaust valves, chain hooks, heat-

exchanger headers, valve bodies and pump bodies. Shafts and seamless rings are made 

by open-die forging. Seamless rings are also made by ring rolling [34].  

Proper temperature during deformation is the most important factor in 

achievement of hot malleability. The maximum recommended heating temperature for 

hot working of Monel alloy K500 is 1150 °C. Metal should be charged into a hot 

furnace and withdrawn when uniformly heated. Prolonged soaking at this temperature is 

harmful. If a delay occurs, such that the material should be subjected to prolonged 

soaking, the temperature should be reduced to or held at 1038°C until shortly before 

ready to work, then brought to 1150 °C. When the piece is uniformly heated, it should 

be withdrawn. In the event of long delay, the work should be removed from the furnace 

and water-quenched [36]. 

The hot working temperature range is from 870 to 1150 °C. Heavy work is best 

done between 1040 and 1150 °C; deformation below 870 °C is not recommended. To 

produce finer grain structure in forgings, the final reheat temperature should be 1090 °C 

and at least 30% reduction of area should be applied in the last forging operation [38]. 

The rate of cooling after forging is critical for Monel K500 [34].When hot working has 

been completed, or when it is necessary to cool the alloy before further hot working, it 

should not be allowed to cool in air but should be quenched from a temperature of 790 

°C or higher. If the piece is allowed to cool slowly it will self-heat-treat (age-harden) to 

some extent, and stress will be set up that may lead to thermal splitting or tearing during 

subsequent reheating. In addition, quenched material has better response to age-

hardening, since more of the age-hardening constituent is retained in solution [36].  

The cold working of Ni alloys is performed by rolling (Figure 1.6), drawing and 

pilgering (Figure 2.5) [11]. Nickel alloys are known for their excellent ductility and 

malleability in the annealed condition which makes them adaptable to virtually all 

methods of cold fabrication [40]. Resistance to deformation is a primary consideration 
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in cold forming of Ni and Ni-Cu alloys. However, when properly annealed, even the 

high-strength alloys have a substantial range between the yield and ultimate tensile 

strength. This range is the plastic region of the material and all cold forming is 

accomplished within the limits of this region. Hence, the high-strength alloys require 

only stronger tooling and more powerful equipment for successful cold forming [41]. 

 

 
Figure 2.4. (a) Forging process [35]; (b) billet in hot rolling process [37]; (c) cold-

rolling process [42]. 

 

A universal characteristic of the Ni-base alloys is that they have face-centered 

cubic crystal structures, and, consequently, are subject to rapid strain hardening [43]. 

This characteristic is used to advantage in increasing the room-temperature tensile 

properties and hardness of alloys which otherwise would have low mechanical strength, 

or in adding strength to those alloys which are hardened by precipitation. Because of 

this increased strength, large reductions or extensive draws can be made without rupture 

of the material. However, the number of reductions in a forming sequence will be 

limited before annealing is required, and the percentage reduction in each successive 

operation must be reduced rapidly [40]. 
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Figure 2.5. Pilgering (left) and drawing process (right) [44]. 

 

Since strain hardening is related to the solid-solution strengthening of alloying 

elements, the strain-hardening rate generally increases with the complexity of the alloy. 

Similarly, the age-hardenable alloys have higher strain-hardening rates than their solid-

solution equivalents [45]. 

 

 
Figure 2.6. (a) Effect of cold work on hardness [23], (b) Effect of cold work and age 

hardening on properties of Monel K500 [23]. 

 

In the annealed condition, Monel K500 can be cold-worked by standard 

procedures. Although the alloy requires considerable power to form, it has excellent 

ductility. Its increase in hardness with increasing cold work, in comparison with other 

materials, is shown in Figure 2.6a. Figure 2.6b shows the effect of cold work and cold 

work plus age-hardening on tensile strength and hardness. 
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2.1.2.2 Heat treatment 

 

The metallic alloys become work-hardened when they are plastically deformed at 

temperatures lower than their recrystallization points. This increases hardness and 

strength, decreases ductility, alters the grain structure and develops residual stresses in 

the material. It is usually necessary to reduce or eliminate the stresses resulting from 

cold working and soften the alloy by controlled heating before it can be further 

processed or placed in service [39]. There are two main heating methods used for Ni-

base alloys: open heating and closed heating. The third method, salt-bath heating is used 

for special work with small parts. 

In open heating the material is charged directly into the furnace and heated at the 

selected temperature for the desired time. This method is widey used in heating for 

mechanical properties and is the usual method in heating for hot working. Continuous 

furnaces are used for annealing; oil- or gas-burning directly fired furnaces are usually 

used in heating for hot working; bath furnaces are normally used for age hardening 

because of long time required to complete the operation. 

In closed or box heating the work is placed in a container which is then sealed and 

charged into the furnace. Although both annealing and hardening can be accomplished 

by this method, closed heating is more appropriate for hardening. Box annealing is 

usually carried out at lower temperatures than open annealing and longer times are 

required. 

Heating in salt bath is accomplished by placing the material in the molten salts, 

where it absorbs heat rapidly. After heating the work is washed in water to remove 

particles of the salt mixture [41]. Accurate temperature control is one of the most 

important factors in achieving good results in heating. The effect of heating temperature 

on the room temperature mechanical properties of precipitation hardened Monel K500 

is shown on Figure 2.7. 

After being heated for any purpose except age hardening, Monel alloy K500 

should be water quenched not only to avoid excessive hardening and cracking that could 

occur if it was cooled slowly through the age hardening range, but also to maintain good 

response to subsequent aging [32]. All of the Ni-base alloys form an adherent oxide film 

if allowed to cool in air after heating. The film is difficult to remove and should be 

prevented if a bright surface is to be produced by subsequent pickling. When a cooling 
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rate equal to air cooling is desired, the material should be cooled in a protective 

atmosphere. If rapid cooling is required, it should be done by high-speed convection 

under a protective atmosphere or by a reducing quench bath [30]. 

 

 
Figure 2.7. Mechanical properties of precipitation hardened Monel K500 [11]. 

 

There are five principal heat treatments used to produce desired mechanical 

properties in the Monel K500. These methods include stress equalizing, precipitation 

hardening, process annealing, solution annealing and full annealing [46]. The optimum 

temperature and time-at-temperature for any heat treatment depend on the composition, 

section size, shape and prior processing of the alloy [36]. Time and temperature are 

usually experimentally determined for each application. 

Stress equalizing - is a low-temperature heat treatment, usually requiring 

temperatures in the range of 260 to 370 °C for work-hardened Ni alloys. Stress 

equalizing is a partial recovery of cold-worked coil springs, wire forms, and flat spring 

stampings. It is used to balance stresses in the material without an appreciable decrease 

in the mechanical strength produced by cold working [27]. This recovery precedes any 

detectable microscopic structural changes and consists of a considerable increase in the 

yield stress, a slight increase in hardness and tensile strength, and no significant change 

in elongation and reduction of area. In addition, stresses in the metal are balanced, and 

electrical conductivity returns toward the characteristic value of the material in the 
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annealed condition. This treatment enables springs to withstand higher stresses and 

usually lengthens fatigue life. If coil springs are to be given a cold set or cold pressing 

after coiling, stress equalizing should be done before the setting operation. Cold setting 

involves stressing the material beyond the elastic limit, and the cold-working stresses 

set up in the spring are in such a direction that they are beneficial rather than harmful. 

Stress equalizing after cold pressing removes this beneficial result of cold working [39]. 

Precipitation hardening (age hardening) – is a time-temperature-dependent 

process, the optimum schedule for heat treatment varies with the alloy composition and 

the end use for the material. Table 2.4 shows various age hardening methods found in 

the literature. 

 

Table 2.4. Age hardening procedures 

Step 1 Step 2 Step 3 
[36] 

At 590 °C, hold for 16 hours; 
furnace cool to 540 °C, 

hold 6 hours; furnace cool 
to 480 °C, hold 8 hours; 

air-cool 

At 590-610 °C 
hold for 8-16 hrs; 

furnace cool to 480 °C, at 
10-15 °C/hr air-cool 

[41] 

At 590-610 °C 
hold for 16 hrs(a) 

furnace cool to 480°C 
at 10-15 °C/hr 

Furnace/air cool or quench 
from 480 °C to RT without 

regard for cooling rate 

At 590-610 °C 
hold for 8 hrs or longer(b) 

furnace cool to 480°C 
at 10-15 °C/hr 

Furnace/air cool or quench 
from 480 °C to RT without 

regard for cooling rate 

At 530-540 °C 
hold for 6 hrs or longer(c) 

furnace cool to 480°C 
at 10-15 °C/hr 

Furnace/air cool or quench 
from 480 °C to RT without 

regard for cooling rate 
Remarks: 

(a) The procedure is recommended for soft materials (140-180 Brinell, 75-90 

Rockwell B): as-forged and quenched or annealed forgings, annealed or hot-rolled rods, 

large cold-drawn rods, soft-temper wire and strip. 

(b) The procedure is recommended for moderately cold-worked materials (175-250 

Brinell, 8-25 Rockwell C): cold-drawn rods, half-hard strip, cold-upset pieces and 

intermediate-temper wire. 

(c) The procedure is recommended for fully cold-worked material (260-325 Brinell, 

25-35 Rockwell C): spring-temper strip, spring wire or heavily cold-worked pieces such 

as small, cold-formed balls. 
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Three types of annealing procedures are performed on Monel K500: solution 

annealing, process annealing and full annealing. The treatments are different in both 

their purpose and procedure [46].  

Process Annealing - during mechanical processing in production and subsequent 

forming of Monel K500 products, intermediate process annealing may be required to 

soften the product. Such anneals recrystallize the structure and are typically conducted 

at temperatures between 760 – 870 °C. While higher temperatures will anneal the 

product, intermediate process annealing temperatures are limited to avoid excessive 

grain growth. Time at temperature must be limited to avoid the formation of secondary 

phases which can compromise the hardness of the aged Monel K500 product. Holding 

for one hour after the part has reached the set temperature and equalized is normally 

sufficient to soften the alloy product during processing. The exposure at temperature for 

times greater than 1.5 hours is not recommended. Excessive exposure can result in the 

formation of titanium carbide (TiC) [33].  This compound is stable at the aging 

temperatures used to harden Monel K500 such that Ti cannot participate in the 

hardening reaction (the formation of Ni3(Ti,Al)). Thus, the strength and hardness can be 

compromised.  

It is best to avoid the formation of the TiC phase. If, however, the phase is formed 

as a result of improper processing, solution annealing at 1120 °C for 30 minutes is 

required to dissolve the particles. It should be noted that this heat treatment will result in 

a large grain size which can somewhat compromise formability. However, the high-

temperature solution treatment is necessary if the component is to develop full hardness 

and strength during the aging treatment [25].  

Solution annealing (solution treating) - prior to the aging treatment, Monel K500 

should be solution-annealed to dissolve any phases that may have formed in the alloy 

during previous processing. Solution annealing is normally performed by heating hot-

finished products to 980 °C and cold-worked products to 1040 °C. To avoid excessive 

grain growth, time at temperature should be kept to a minimum (normally, less than 30 

minutes). Heating and cooling times must be kept to a minimum to avoid precipitation 

of detrimental phases. Cooling after solution annealing is normally accomplished by 

water quenching [36]. 

Full Annealing – is used for complete softening of work-hardened material. The 

treatment requires exposure to a sufficient temperature for a time long enough to cause 
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full recrystallization of the work- hardened grain structure (Figure 2.8). That removes 

all of the stresses, softens the material, and decreases mechanical strength. 

Temperatures in the range of 705 to 1260 °C are used to anneal the Ni-base alloys [39].  

 

 

 
Figure 2.8. Schematic representation of the effect of annealing temperature  

on the properties and grain structure/size of Ni alloys [46]. 
 

Material which has been heated for any appreciable length of time in the 

temperature range 590 to 760 °C will be overaged to an extent dependent on time and 

temperature of exposure. Overaged material will have lower mechanical properties than 

properly aged metal, and the properties cannot be raised by subsequent aging 

treatments. In order to strengthen overaged material, it must be solution-annealed (980 -

1040 °C) to redissolve the age-hardening constituents, and then re-aged. All benefits of 

cold work are lost in annealing. The highest strength obtainable is that corresponding to 

the annealed and age-hardened conditions [46]. 

Material that has been age-hardened to produce maximum hardness will not show 

an appreciable change in properties if again heated to or held at any temperature up to 

that at which the original heat treatment was carried out. There may be a small increase 
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in properties if the rate of cooling in the original heat treatment was too rapid between 

570 and 430 °C. If the hardened material is subsequently heated above 590 °C and then 

cooled, there will be a decrease in properties [40]. 

 

2.1.2.3 Machining, surface finishing 

 

Ni-base corrosion-, temperature- and wear-resistant alloys, such as Monel K500, are 

classified as moderate to difficult when machining [45]. During machining these alloys work 

harden rapidly, generate high heat during cutting, weld to the cutting tool surface and offer 

high resistance to metal removal because of their high shear strengths [47].  

The Ni alloys have an austenitic matrix and, like the austenitic stainless steels, work 

harden rapidly (Figure 2.9). The high pressures developed between the tool and workpiece 

during cutting or grinding produce a stressed layer of deformed material on the surface of the 

work. The deformation causes a hardening effect that retards further machining. The stresses 

in this deformed layer not only affect the mechanical properties of the workpiece but also can 

cause distortion of parts that have small cross sections [48, 49].  

Grain size has little direct effect on machinability; indirectly it may have some effect 

since grain size does reflect thermal processing and change in constitution of structure. Some 

difference in surface finish may be noted but this can be minimized by correct cutting 

procedure. In general, microstructure affects machinability in two ways: i) The presence of 

graphite or sulphide phases will greatly enhance machinability; ii) Hard phases such as 

carbides, nitrides, carbonitrides, oxides, silicates and the gamma prime Ni3(Al, Ti) particles 

are abrasive and tend to cause rapid tool wear. 

The hardest and most abrasive of all the phases is titanium carbide (TiC), which is 

present in age-hardenable Monel K500 alloy. This and other phases are usually present in as-

rolled or mill-annealed products. Solution annealing at high temperatures, 1095°C and above, 

is required to dissolve them. Age hardening facilitates precipitation of greater amounts of 

titanium carbides and the gamma prime particles. The refractory nature of these phases, 

together with their strengthening effect, makes age-hardened material less machinable 

although chip action is improved [23]. 
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Figure 2.9. Degree of work hardening of some metals and alloys 

as indicated by the effect of cold reduction on hardness [48]. 

 

In unaged condition Monel alloy K500 can be hardened only by cold work and is 

machined most readily in the cold-drawn or cold-drawn stress-relieved condition. In aged 

condition Monel K500 is characterized by high strength and hardness. Material which has 

been solution annealed and quenched or rapidly air cooled is in the softest condition and does 

machine easily. Because of softness, the unaged condition is necessary for ease in drilling, 

tapping and all threading operations [48]. 

Heavy machining of the age-hardenable alloys is best accomplished when they are in 

one of the following conditions: solution annealed or hot worked and quenched or rapidly air 

cooled. Although fully age-hardened material is usually too hard for tools with weak cutting 

edges, such as small drills and taps, and also for rough machining, material in this condition 

can be finish-machined to fine finishes and close tolerances. The best way to machine Monel 

K500, therefore, is to machine slightly oversize in the un-aged condition, age-harden, then 

finish to size. Because the age-hardening treatment will relieve machining stresses, allowance 

must be made for possible warpage. A slight permanent contraction (up to about 0.07%) takes 

place during aging [48]. Aged material has good dimensional stability.  
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2.2 Microstructure-property relationships of Ni-Cu alloys 
 

2.2.1 Microstructure 
 

2.2.1.1 Matrix 

 

Monel K500 has Ni-Cu face-centered-cubic matrix (γ) with lattice parameter of 

3.534 Å (Figure 2.10) [23]. The average grain size of the solution-treated specimens 

was measured being about 5 µm [50]. Due to full mutual solubility of Ni and Cu, the 

second phase does not form, although small particles of various chemistries can 

precipitate. Therefore, in this alloy strengthening occurs via four mechanisms: grain 

refinement, solid solution and precipitation strengthening, and work hardening 

(dislocation strengthening). To achieve a required level of precipitation 

strengthening the age hardening heat treatment can be applied. Work hardening 

usually occurs as a result of cold working [51]. 

 

2.2.1.2 Intermetallic precipitates 

 

After an appropriate heat treatment, the alloy may contain the following 

intermetallic precipitates: Ni3(Al,X), Ni3Ti and Ni,Fe3(Al,Fe) [52], [33]. Ni3(Al,X) 

particles, where X can be Cu, Mn, Ti or Si, are known as gamma prime precipitates (γ'). 

Gamma prime (γ') particles have an ordered fcc crystal structure (Figure 2.11a) that has 

very good crystallographic matching with the Ni fcc matrix (1% or less mismatch) [53]. 

The Al atoms reside in the cube corners while the Ni ones reside on the face centres. In 

commercial alloys, elements such as Co and Fe can substitute Ni [54], while Cu, Mn and 

Si have a tendency to substitute Al. 

Gamma prime particles nucleate homogeneously, remain spherical in shape and 

coherent with the matrix even after prolonged aging (Figure 2.12) [55]. There is no 

tendency for precipitate alignment or for preferred nucleation at dislocations at small 

undercoolings. The good crystallographic matching between the γ matrix and γ′ 

precipitates in superalloys leads to a very low surface energy that, in turn, leads to very 

low coarsening rates of the precipitates [56]. The average γ' particle radius remains 

proportional to the cube root of time during coarsening, implying that the process is 
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controlled by the bulk diffusion of the γ'-forming solutes. The activation energy of the 

coarsening process is close to that of diffusion of Al in Ni. The precipitates can form 6-

7% of volume fraction upon aging at 700°C or less, and remain spherical and coherent 

during coarsening [33].  

 

 
Figure 2.10. Typical microstructure of hot-rolled Monel K500 

(etchant: Carapella’s and glyceregia, magnification x100) [23]. 

 

The γ' solvus temperature for the solution treated and quenched samples is 

between 700 and 750 °C [33]. This upper temperature limit for the γ + γ' phase field is 

rather low compared with those for most of the commercial γ'-hardened Ni-base 

superalloys in which the total amount of precipitate-forming elements such as Al, Ti, Nb 

and Ta is generally quite larger than the total Al and Ti content in Monel K500 [57]. The 

solution annealing temperature (950 °C and above) is well above the gamma-prime 

solvus; and the decomposition of the supersaturated austenite (γ), even on a very fine 

scale, did not occur during quenching [33]. This differs from other Ni-Al and Ni-Ti 

alloys, where γ' forms readily on quenching [58], [59]. The substitution of some 

neighbouring elements in the periodic table for Ni is known to decrease γ' solubility and, 

for this reason, Cr, Fe and Co can all be added to increase the γ' volume fraction at a given 

Al-plus-Ti level [60]. 
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Figure 2.11. (a) Ordered fcc crystal structure of the γ′-Ni3(Ti,Al) particle and (b) TiC 

particle. 

 

The fact that γ' precipitation occurred in Monel K500 at 750 °C while the solubility 

of Al in Ni at this temperature is about 5wt.% in binary Ni-A1 alloys  suggested that Cu 

also has a similar effect on γ' solubility [61]. The γ′ phase shows the remarkable effect of 

increasing yield strength with increasing temperature up to ∼800 °C [62]. This effect is 

thought to occur due to ordering effects and the relatively low mobility of super lattice 

dislocations that occurs with increasing temperature. 

 

 
Figure 2.12. Micrographs illustrating the homogeneous distribution and the spherical 

shape of the γ′ precipitates retained even after prolonged aging: aged at 700 °C for a) 64 

h, b) 128 h and c) 1000 h [33]. 

 

The Ni-Al and Ni-Ti systems (Figure 2.13) form the basis for precipitation 

hardened microstructures of Ni - base superalloys [63]. Ni can dissolve a maximum of 

approximately 11 wt.% of both Al and Ti. The solubility decreases appreciably with 

temperature, thus providing the driving force for precipitation strengthening reactions. 

Most superalloys have a combined Al + Ti content below 10 wt.%, and even small 



28 
 

additions of Al or Ti will result in precipitation of the Ni3Al or Ni3Ti phases. The stable 

form of Ni3Ti phase, often designated as eta (η), exhibits a hexagonal closed packed 

crystal structure and forms at the specific stoichiometric composition of 75Ni - 25Ti (at. 

%). The Ni3Ti phase can form the ordered metastable fcc structure at lower 

temperatures. Ti additions promote formation of the η - Ni3Ti phase, while Al additions 

promote formation of the γ′ - Ni3Al phase. The hexagonal η - Ni3Ti phase typically 

appears as coarse platelets and does not provide significant strengthening. Thus, the γ′ - 

Ni3Al phase is preferred in this system [62]. 

 

 
Figure 2.13. a) Binary Ni-Al phase diagram, b) binary Ni-Ti phase diagram [64]. 

 

2.2.1.3 Carbides and carbonitrides 

 

In many Ni-base alloys with appreciable C levels, 0.18 wt. % in Monel K500, 

various types of carbides can form. Composition of the carbides and their amount 

depend on the alloy composition, processing route and service history [7]. The MC-type 

carbide is the principal carbide phase in Monel K500. It is identified as a titanium-rich 

MC-type phase (Figure 2.11b), coarse particles of which are distributed in a non-

uniform manner within the grains or along the grain boundaries (Figure 2.14) [33]. MC-

type carbides exhibit the fcc crystal structure and typically form at the end of 

solidification of the alloy by eutectic-type reactions with γ matrix [64]. 
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Figure 2.14. Formation of TiC particles: (a) within the grains and (b) at the grain boundaries [33]. 

 

The morphology and the heterogeneous distribution of these precipitates remain 

essentially unaltered during heat treatments at temperatures lower than 980 °C. 

However, these particles may slightly grow during these treatments [33]. Primary 

carbides are not easily dissolved during subsequent processing of the alloy and thus are 

present as stringers along the rolling direction. The MC carbides can often be replaced 

by M23C6 carbides during thermal processing and/or high temperature service [13]. The 

M23C6 carbides in Monel K500 are generally Mn rich and form in the 760-980 °C 

temperature range. These carbides tend to form on grain boundaries and, when present 

as discrete particles, can improve creep strength by restricting grain boundary sliding 

(Figure 2.15a).  

 

 
Figure 2.15. (a) Precipitates in Monel K500: (a) M23C6 – type carbides at the grain boundaries 

[50] and (b) Nitrides observed after the following heat treatment: holding during 1 h at  

1205 °C, aging for 4 h at 595 °C, water quenching (magnification x100) [39]. 
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In corrosion resistant alloys, many types of carbides are considered harmful because 

they can precipitate at grain boundaries during heat treatment or weld fabrication and 

subsequently promote intergranular corrosion or cracking in service. This results from the 

depletion of matrix in elements essential to corrosion resistance during the carbide 

precipitation process. In high-temperature alloys, the presence of carbides is generally 

desired to control grain size and to enhance elevated-temperature strength and ductility. 

However, careful attention must be paid to the carbide types and morphologies after 

solution heat treatment or post fabrication heat treatment in order to avoid cracking during 

component manufacture or loss of strength or ductility in service [39]. 

The M(CN) carbonitrides are similar to MC carbides, except that substantial 

levels of C are replaced by N (Figure 2.15b). These eutectic-type reactions and the 

concomitant carbides and carbonitrides are promoted by the strong tendency of C, N 

and some metallic elements (most notably Ti) to segregate to the liquid during 

solidification. As a result, carbonitrides are typically distributed along the interdendritic 

and solidification grain boundary regions. The following types of carbides and nitrides 

were observed in Monel K500: TiC; M23C6 (where M is Mn, Fe or Ni) form on isolated 

grain boundaries during prolonged aging [65]; TiN [39]. 
 

2.2.1.4 Dislocations 
 

A moderate density of dislocations have been observed in Monel K500 thin (0.2 

mm) sheets that were solution annealed, aged and water quenched [33]. It was proposed 

that the dislocations were formed as a result of the quenching stresses. These dislocations 

did not show any marked tendency either for distribution along planar arrays or for pairing 

suggesting that the stacking fault energy of the alloy was quite high, and that short-range 

order was absent in the solution-annealed and quenched material. The arrangement of 

dislocations in the solution-treated and deformed (3 pct deformation) specimens was found 

to be nonplanar in several regions of the grains (Figure 2.16) [50]. 

Although Ni is endowed with a high stacking fault energy [66], alloying may 

decrease the value of this parameter as has been noted, for instance, for many Ni-Cr-

base alloys [67]. However, it appears that Cu additions to Ni are not very effective in 

reducing the stacking fault energy of the latter [68], [69]. The other alloying elements in 

Monel K500 are present only in small quantities and are unlikely to cause a large 

reduction in the stacking fault energy of the Ni-Cu matrix [33]. 
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Figure 2.16. Non-planar dislocation arrangement in a slightly deformed sample:  

(a) a bright field micrograph and (b) a weak beam dark field micrograph [33]. 
 

2.2.1.5 Annealing twins  
 

 
Figure 2.17. Annealing twins in the fully annealed specimen [50]. 

 

Annealing twins form a prominent feature of the microstructure of those 

recrystallized fcc metals and alloys in which the interfacial energies associated with the 

coherent twin boundaries are very much smaller than those associated with grain 

boundaries. Murr et al. [65] have reported that the coherent twin boundary energy in 

nickel is only about 3% of the grain boundary energy and that the situation is 

qualitatively similar in Nickel-2%ThO2 alloy (TD Nickel) as well as in Inconel 600. 

Annealing twins in Monel K500 are prevalent in solution annealed, water quenched, air-

cooled or aged material [33], [65]. The solutionized alloy was found to contain a 

moderate density of annealing twins, which usually appeared as parallel-sided bands 

bounded by coherent (111) planes (Figure 2.17).   
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2.2.2 Strengthening mechanisms 
 

As Monel K500 is a single phase alloy, four strengthening mechanisms operate in 

it: grain size strengthening, solid solution strengthening, precipitation strengthening and 

work hardening. Depending on the microalloying element content (in particular, Ti, Al, 

Co, Fe) and processing schedule (age hardening heat treatment) either the solid solution 

strengthening or precipitation strengthening dominates. 

 

2.2.2.1 Grain size strengthening 

 

The strength of polycrystalline metals and alloys increases with a decrease in 

grain size (increase in grain boundary length), following the Hall-Petch relationship. 

This phenomenon has been attributed to the grain boundaries acting as barriers to the 

dislocation motion [70]. Grain boundaries are efficient in strengthening metals and 

alloys for two main reasons. First, the internal elastic stresses resisting plastic flow are 

greater in the vicinity of boundaries and second, the defect structures are more complex 

at lower overall strains near grain boundaries than in the grain interior [71]. These 

defect structures (secondary dislocations, microbands, tangles, etc.) increase the local 

flow stress necessary to penetrate this boundary layer, and, potentially, suppress the 

operation of dislocation sources at the boundary during subsequent plastic straining. 

Figure 2.18 shows an example of grain boundary strengthening in Monel 400. As can be 

seen, the grain size increase from 9.5 to 202 µm reduces the quasi-static yield stress 

from 290 to 130 MPa, while having a minimal effect on the work-hardening behaviour, 

i.e. the stress-strain curves for all the grain sizes are essentially parallel (Figure 2.18a). 

With strain rate increasing from the quasi-static to dynamic the stress-strain curves 

move up along the stress axis; however, the effect of strain rate on grain size 

dependence is weak (Figure 2.18b). The work-hardening rate at high strain rates 

remained invariant as a function of grain size [72]. 
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Figure 2.18. The stress-strain curves of Monel 400 for various grain sizes at (a) low and 

(b) high strain rate [72]. 

 

2.2.2.2 Solid solution strengthening 

 

The ability of a dissolved element to increase an alloy strength by solid solution 

hardening is determined by its atomic size difference compared to that of the primary 

element. Addition of the substitutional alloying elements results in expansion of the fcc 

lattice of austenitic matrix, resulting in a net strengthening (hardening) of the austenite 

[73], [6]. Table 2.5 summarizes approximate atomic diameter variation between Ni and 

some other elements and solubility data for these elements in Ni at 1000 °C (1830 °F). 

As can be seen, Al, Ti, Mn, Ta, Mo and W provide the best combination of atomic radii 

mismatch and appreciable solubility needed for solid solution strengthening. Therefore, 

Mo, Mn, and W are frequently used in many single phase commercial alloys for solid 

solution strengthening. Cr, Fe, Cu, Co also can be used for solid solution strengthening 

due to their high solubility in Ni [22, 75]. The solid solution strengthening from 

additions of these elements will be effective only if the element concentrations do not 

exceed their solubility limits in Ni-based austenite (Table 2.5). Although Ti and Al can 

be effective solid solution strengtheners, they typically improve strength by 

precipitation of the γ′-Ni3(Ti,Al) precipitates [7]. Nb may provide some solid solution 

strengthening, however it is primarily added to form carbides or Ni3Nb intermetallic 

particles.  
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Table 2.5. Approximate atomic size variations and solubility limits of some elements in Ni. 

Solute 
Approximate atomic 

size difference 
compared to Ni, % 

Approximate solubility in 
Ni at 1000°C, wt% [76] 

C 82 0.2 
Al 31 7 
Si 38 8 
Ti -27 10 
V -22 20 
Cr -17 40 
Mn -12 20 
Fe -9 100 
Co -3 100 
Cu 4 100 
Nb -49 6 
Mo -41 34 
Ta -51 14 
W -44 38 

 

2.2.2.3 Precipitation strengthening 

 

In Monel K500 significant hardening is associated with the precipitation of gamma 

prime (γ') particles. The γ' precipitates have the ordered fcc crystal structure; therefore, the 

dislocation interaction mechanisms with ordered precipitates dictate the level of 

strengthening. In most cases of precipitation hardening, in the initial stages of particle 

coarsening, the interparticle spacing is small and particle shearing is favoured. With the 

progress of coarsening, as the interparticle spacing increases, looping of the precipitates 

becomes possible. When precipitate shearing occurs, the strengthening of an alloy can arise 

from (a) lattice mismatch between particles and the matrix, (b) order hardening, and (c) 

modulus mismatch. In Monel K500, the order hardening prevails over other shearing 

mechanisms. The lattice mismatch is likely to make a very small contribution to the overall 

precipitation hardening effect, because the coherency strain value is extremely small (less 

than 0.003) [50]. The precipitation strengthening mechanism may change with aging, due to 

the precipitate size variation with aging. In the underaged and peak-aged condition, 

precipitation strengthening is governed solely by the shearing of particles. This is due to the 

fact that the shear stress required for particle shearing is lower than the Orowan stress 

associated with the looping of dislocations around precipitates [77]. In the overaged 

condition, two processes may take place, concurrently or in succession: (i) particle cutting 
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in slightly overaged conditions and (ii) looping in substantially overaged conditions. In a 

moving dislocation pair, when the first dislocation is impeded by a dislocation loop around 

a precipitate, the approach of the second dislocation increases the shear stress between the 

leading dislocation and the loop, and consequently, the particle may be sheared and the loop 

annihilated. Thus, planar slip may be observed in an alloy containing slightly overaged γ' 

particles. The reduction in stress due to the coarsening of precipitates is compensated by the 

transition of dislocation pairs to single dislocations, and thus, there is a net increase in 

strength in the initial stages of overaging. 

Order hardening is brought about by the interaction of dislocations with ordered 

precipitates. As shown schematically in Figure 2.19, the initial cutting of an ordered 

precipitate by a single dislocation creates an antiphase boundary (APB) across the slip plane 

that represents an atomic layer of incorrect bonding (Figure 2.19b). Subsequent movement 

of a second dislocation through the ordered phase restores the order (Figure 2.19c, d). Thus, 

dislocations are forced to travel in pairs (often referred to as superlattice dislocations) to 

maintain the ordered structure after precipitate cutting.  

 

 

 
Figure 2.19. Schematic illustration of dislocations interacting with an ordered Ni3Al 

precipitate [75]. 
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Figure 2.20 shows examples of such paired super lattice dislocations and particle 

cutting in a Ni-base superalloy. This deformation involves cross-slip of segments of the 

superlattice dislocations from the {111} slip plane to {001} cross-slip plane. These 

cross-slipped segments cannot move without forming an APB and thus resist 

deformation. Strengthening from cross-slip becomes more important with increasing 

temperature because the cross-slip is thermally activated. 

 

 
Figure 2.20. TEM photomicrographs showing a) paired super lattice dislocations and 

b) γ′ precipitate cutting by the moving dislocations in a Ni superalloys [75]. 

 

The initial cutting of an ordered precipitate by a single dislocation requires an 

increase in force that is associated with formation of the antiphase boundary. Thus, as 

the antiphase boundary energy increases more force is required to cut the precipitate, 

resulting in an increase in strength. The antiphase boundary energy is a significant 

contribution to the overall strength, but measurements to determine the effect of 

individual alloying elements are difficult. The data available all suggest that Ti, Co, Mo, 

and Fe are effective at increasing antiphase boundary energy [74]. 

For small precipitates (<20 nm) the pair of dislocations may not lie within an 

individual precipitate (Figure 2.21a). This case is referred to as weak pair coupling. 

When the precipitates are larger, the trailing dislocation enters a precipitate before the 

leading dislocation exits (Figure 2.21b). This situation is referred to as strong pair 

coupling. In both situations, the strengthening increment is due to the formation of an 

APB within the precipitate. Figure 2.21c schematically compares the stress required to 

push a pair of dislocations though a precipitate for each mechanism as a function of 

precipitate size. The active mechanism changes from weak pair coupling to strong pair 

coupling as the γ' size increases. 
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Figure 2.21. Schematic illustration of (a) weak dislocation coupling, (b) strong 

dislocation coupling and (c) strengthening effect variation with particle size [70]. 

 

Alloy strength shows a dependence with maximum on particle size (Figure 2.21), 

which is a function of the aging temperature and time [78]. At first, precipitation of the 

γ' from the supersaturated matrix leads to an increase in strength with increasing 

temperature and time; however, with further increase in temperature / time, an over-

aging may lead to the particle coarsening and a decrease in particle volume fraction 

(Figure 2.22).  

 
Figure 2.22. Effect of aging time on the γ′ size and volume fraction for various aging 

temperatures: 1 – 600 °C, 2 – 650 °C, 3 – 700 °C [22]. 
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A decrease in particle volume fraction should be avoided as it results in a decrease in 

potential number of dislocation-particle interaction sites and strengthening capacity. 

Therefore, a careful design of heat treatment schedule is required to simultaneously 

maximise the particle size and particle volume fraction. 

Figure 2.23 shows an example of the change in precipitate morphology as a 

function of γ/γ′ lattice mismatch in a Ni-base alloy [79]. The degree of lattice mismatch 

is noted in each figure. The shape of the precipitate will evolve in a manner that 

minimizes strain and surface energies. At small degrees of lattice mismatch, the strain 

energy is low and the most favourable shape that minimizes the surface energy is a 

sphere. At higher degrees of lattice mismatch, the strain energy becomes important and 

is orientation dependent. In this case, the orientation relationship between the γ and γ′ 

promotes a cuboidal morphology, where the γ ′ precipitates typically align themselves 

along the < 100 > directions of the matrix which have the lowest elastic stiffness. The 

precipitate morphology will also change as the precipitates coarsen. In this case, the 

starting morphology is typically spherical, but often gradually changes to cubes, arrays 

of cubes, and dendritic as coarsening proceeds. The lattice mismatch has important 

effects on long-term mechanical properties. 

 

 
Figure 2.23. Optical images of γ′ particles in a Ni-Al-Mo alloy at different lattice 

mismatches [79]. 
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Although it is not often recognized, the γ′ precipitate can also be hardened by 

solid solution strengthening (Figure 2.24). Mo, Si and Ti are the most effective elements 

for particle strengthening. Cu and Co exhibit appreciable solubility, although do not 

impart much the strength to γ′. 

 
Figure 2.24. (a) Solubility of various elements in γ′ particles at 1150 °C in Ni-Al-X 

alloy system, (b) effect of various elements on the hardness of γ′ particles at 25 °C [80]. 
 

The lattice parameter of both the γ and γ′ phases will depend on the amount and 

type of alloying elements in solution. As elemental additions are made to an alloy, each 

element may partition differently to each phase and change the lattice parameter of each 

phase in a different way. The extent of γ/γ′ lattice mismatch thus depends on the relative 

partitioning and lattice parameter changes induced by each alloying element (Figure 

2.25). 

 
Figure 2.25. Effect of Ti/Al ratio on the γ/γ′ mismatch for Ni-20Cr-Al-Ti and Ni-20Cr-

5Mo-Al-Ti alloys with a constant (Al+Ti) content of 3.5 wt.% [81].  
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2.2.2.4 Work hardening (dislocation strengthening) 

 

The rate of work hardening in the presence of precipitates was found to be higher 

than that obtained in the case of the precipitate-free (solution-treated) matrix and 

increased with increasing precipitate size. In specimens where cutting of particles was 

noticed, the increase in work hardening rate was small. The enhancement in work 

hardening rate with increasing particle size, even in specimens where particle shearing 

occurred, was presumably owing to the fact that the passage of dislocations through a 

particle reduced that particle's diameter, making the passage of the next pair easier. The 

relative reduction in diameter for a small particle is known to be larger than that for a 

large particle. In specimens where looping occurred, work hardening was found to be 

very strong. A straightforward explanation for this is the gradual reduction in the 

effective interparticle spacing with the formation of loops around precipitates, making 

passage of dislocations progressively difficult [82]. 

The strength increases and ductility decreases with an increase in cold 

deformation (Figure 2.26a). The optimum deformation strain for Monel K500 was 

found to be about 20 % [22]: at this strain an increment to the yield stress is quite 

substantial (about 300 MPa) and the remaining ductility is still significant (about 30 % 

of elongation to failure). 

Cold deformation has been shown to affect the strength variation during aging 

(Figure 2.26b). With an increase in aging temperature up to 600 °C the strength 

increased for 0 and 10 % cold worked samples. However, the samples cold worked to 

20 % and 25 % showed strength peaks in the range of 560-600 °C followed by the 

strength decrease. Obviously with increase in cold deformation the strain induced 

precipitation occurs faster; this leads to faster particle growth, decrease in particle 

number density and strength decrease. 

Irrespective of the aging temperature the strength was the lowest for 10 % of prior 

cold worked material (Figure 2.27). This could be explained if small amounts of 

deformation facilitated the dislocation breaking from their pinning points, increasing the 

dislocation mobility and decreasing the yield stress. 
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Figure 2.26. (a) Effects of cold work on properties of Monel K500 [22] and (b) Effect of 

age hardening temperatures on properties of Monel K500 at room temperature for 

various cold deformation strains: 1 – 0, 2 – 0.10, 3 – 0.20 and 4 – 0.25 [22]. 

 

 

 
Figure 2.27. Effect of cold deformation on the yield stress of Monel K500 for various 

aging temperatures [22]. 

  



42 
 

2.2.3 Mechanical properties 
 

2.2.3.1 Tensile properties and hardness 

 

Monel K500 has outstanding mechanical properties in a wide temperature range. 

The nominal range of room temperature mechanical properties of Monel K500 is shown 

in Table 2.6 [2]. Cold forming results in slightly higher yield stress values, compared to 

the hot forming, however the tensile strength varies insignificantly for both production 

methods. For the hot finished products, annealing may lead to strength decrease by 

about 30 %; on the other hand, age-hardening may result in 1.3-2.5 times increase in 

strength, although 1.5 times decrease in elongation. For the cold finish products, 

annealing may decrease strength by about 40-50 %; and the age-hardening may increase 

strength by up to 1.3 times and decrease elongation by about 15 %. As seen, the age-

hardening heat treatment is more effective in increasing strength of the hot finished 

products, compared to the cold finished. 

The relationships between tensile properties and hardness for various Monel K500 

products are shown in Figure 2.28. Short time high temperature tensile properties of 

Monel K500 rod in various conditions are shown in Figures 2.29. For hot rolled product, 

with an increase in temperature the yield stress does not vary significantly until 650 °C 

(1200 °F), and the tensile strength starts decreasing at about 150 °C (300 °F).  The hot 

rolled age-hardened material maintains its strength until about 300 °C (600 °F) and then 

decreases rapidly with increasing temperature. In contrast, the annealed age-hardened 

Monel K500 exhibits more stable properties: until about 370 °C (700 °F) no significant 

variation in YS, TS and elongation were observed (Figure 2.29c). 

With a decrease in temperature, the tensile strength and yield stress both increase 

while ductility and toughness remain virtually unimpaired (Figure 2.30). No ductile-to-

brittle transition occurs even at temperatures as low as that of liquid hydrogen. Thus, 

this alloy is suitable for many cryogenic applications.  
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Table 2.6. Nominal mechanical property ranges(a) of Monel K500 [2]. 

Form and Condition 
Tensile 
Strength, 

MPa 

Yield Strength, 
MPa 

Elongation, 
% 

Hardness, 
Brinell 

(3000-kg) 
Rod and Bar     

Hot-Finished 621-1069 276-758 45-20 140-315 
Hot-Finished, Aged(b) 965-1310 690-1034 30-20 265-346 
Hot-Finished, Annealed 621-758 276-414 45-25 140-185 
Hot-Finished, Annealed and 
Aged(b) 896-1138 586-827 35-20 250-315 

Cold-Drawn, As-Drawn 690-965 483-862 35-13 175-260 
Cold-Drawn, Aged(b) 931-1276 655-1103 30-15 255-370 
Cold-Drawn, Annealed 621-758 276-414 50-25 140-185 
Cold-Drawn, Annealed and 
Aged(b) 896-1310 586-827 30-20 250-315 

Sheet, Cold-Rolled, Annealed 621-724 276-448 45-25 - 
Strip, Cold-Rolled    - 

Annealed 621-724 276-448 45-25 - 
Annealed and Aged(b) 896-1172 621-827 25-15 - 
Spring Temper  1000-1138 896-1103 8-3 - 
Spring Temper, Aged(b) 1172-1517 896-1345 10-5 - 

Tube and Pipe, Seamless     
Cold-Drawn, Annealed  621-758 276-448 45-25 - 
Cold-Drawn, Annealed and 
Aged(b) 896-1241 586-827 30-15 - 

Cold-Drawn, As-Drawn  758-1103 586-965 15-2 - 
Cold-Drawn, As-Drawn, 
Aged(b) 965-1517 690-1379 25-3 - 

Plate     
Hot-Finished  621-931 276-758 45-20 140-260 
Hot-Finished, Aged(b) 965-1241 690-981 30-20 265-337 

Wire, Cold Drawn(c)     
Annealed  552-758 241-448 40-20 - 
Annealed and Aged(b) 827-1034 621-758 30-15 - 
Spring Temper  1000-1310 896-1241 5-2 - 
Spring Temper, Aged(b) 1103-1379 965-1310 8-3 - 

Remarks: 

(a) The ranges shown are composites for various product sizes and therefore are not 

suitable for specification purposes. 

(b) Nominal properties for material age-hardened to produce maximum properties. 

(c) Properties shown are for sizes 0.0625 - 0.250-in. diameter. Properties for other sizes 

may vary from these. 
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Figure 2.28. Relationships between tensile properties and hardness of Monel K500 for 

(a) hot-finished rods and forgings, (b) age-hardened rods and forgings and (c) strip and 

sheet [23]. 

 

 
Figure 2.29. High-temperature tensile properties of Monel K500 (a) hot-rolled rod (b) 

hot-finished age-hardened and (c) annealed and age-hardened [23]. 

 

2.2.3.2 Compressive properties 

 

The results of compressive tests on Monel K500, made on triplicate samples from 

the same melt, are given in Table 2.7 [23]. As seen, there is no significant difference 

between compression and tensile yield stress values. 
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Figure 2.30. Low temperature tensile properties of Monel K500 (1.6 mm sheet) [23]. 

 

Table 2.7. Compressive strength of Monel K500 rod. 

Property Hot-rolled Cold-drawn 
As-rolled Aged As-drawn Aged 

Hardness 
Brinell (3000 kg) 165 300 205 330 

Rockwell C 5 33 23 35 
Vickers (30 kg – diamond pyramid) 167 316 210 336 
Tension 

Yield strength (0.2% offset), ksi 47.0 111.0 85.0 120.0 
Elongation, % 42.5 30.0 26.5 22.0 

Compression 
Yield strength (0.2% offset), ksi 40.0 121.0 76.0 121.0 
Yield strength (0.1% offset), ksi 34.0 96.0 55.0 102.0 

 

2.2.3.3 Impact and fatigue strength 
 

Charpy V-notch impact energy of hot-rolled and cold-drawn rod after annealing and 

ageing is shown in Tables 2.8 and 2.9, respectively [23]. As seen, there is no significant 

variation in impact properties with deformation temperature. 

Fatigue strength (determined at room temperature for 108 loading cycles) for various 

Monel K500 products is given in Table 2.10 [83]. The fatigue strength slightly increases from 

the annealed condition to hot/cold rolled and to aged, which corresponds to the variation in 

tensile strength with processing history. 

With an increase in test temperature to 540 °C the fatigue strength of aged Monel K500 

decreases by about 6 % (Table 2.11). Such a minor variation in fatigue strength with 

increasing temperature is a significant advantage of this alloy. With a decrease in temperature 
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the fatigue strength increases (Table 2.12), which corresponds to the increasing tensile 

properties and almost unaffected ductility with a decrease in temperature (Figure 2.31). 

The surface finish was found to alter the fatigue properties (Table 2.13): the surface 

oxidation may reduce the fatigue fracture stress by 20 % for hot-rolled and by 30 % for cold-

rolled material. These tests indicate the preference of polished surfaces for parts subjected to 

cyclical stresses in service. The fatigue curve for Monel K500 shows a modest decrease (0.5 

% with 104 times increase in the number of cycles) in the stress amplitude with an increase in 

number of cycles (Figure 2.31).  
 

Table 2.8. Properties of hot-rolled Monel K500 rod after annealing at 980 °C for 30 

min, ageing at 590 °C for 16 hr, furnace cooling to 540 °C during 6 hr, cooling to 480°C 

during 6 hr, air cooling to room temperature. 

Rod diameter, (a) in. Yield strength (0.2% 
offset), ksi 

Charpy V-notch impact 
strength, ft-lb 

1.250 97.3 54 
1.250 92.5 72 
0.875 109.3 45 
1.00 111.0 38 

Remarks: (a) each diameter from different heat. 
 

Table 2.9. Properties of cold-drawn Monel K500 rod after annealing at 980 °C for 30 

min, ageing at 590 °C for 16 hr, furnace cooling to 540 °C during 6 hr, cooling to 480°C 

during 6 hr, air cooling to room temperature. 

Rod diameter, in Yield strength (0.2% 
offset), ksi 

Charpy V-notch impact strength, 
 ft-lb 

1.250 92.5 76.25 
0.812 103.0 43.75 
0.687 110.6 39.5 

 

Table 2.10. Room-temperature fatigue strength of Monel K500. 

Condition Fatigue strength  
(108 cycles), ksi 

Tensile 
strength, 

ksi 

Ratio, 
fatigue strength / 
tensile strength 

Form: Rod 
Annealed 38 88 0.43 
Hot-rolled 43 99 0.43 
Hot-rolled, aged 51 155 0.33 
Cold-drawn 45 120 0.37 
Cold-drawn, aged 47 170 0.28 

Form: Strip 
Annealed 27 88 0.31 
Hot-rolled, aged 37 153 0.24 
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Table 2.11. Fatigue strength of Monel K500 (cold-rolled and aged sheet) at elevated 

temperatures. 

Condition Temperature, °C Fatigue strength (108 cycles), ksi 
Hot-rolled, aged 27 46.0 

 540 43.0 
Cold-drawn, aged 27 52.0 

 540 48.0 
 

Table 2.12. Fatigue strength of Monel K500 at low temperatures. 

Temperature, °C Stress, ksi, for a fatigue life of 
105 cycles 106 cycles 107 cycles 

20 90 55 37 
-80 99 67 - 
-195 105 69 - 
-250 143 101 - 

 

Table 2.13. Effect of surface finish on fatigue strength of Monel K500 (R.R. Moore 

rotating-beam specimens). 

Condition Surface 
finish 

Tensile 
strength, ksi 

Fatigue strength 
(108 cycles), ksi 

Ratio, fatigue 
strength/tensile 

strength 

Hot-rolled, aged Polished 171.0 50.0 0.29 
Oxidized 172.5 39.5 0.23 

Cold-drawn, 
aged 

Polished 174.5 57.0 0.33 
Oxidized 167.5 39.5 0.24 

 

 
Figure 2.31. Typical stress-cycle fatigue curve of age-hardened Monel K500 [23]. 

 

 

  



48 
 

2.2.4 Corrosion resistance 
 

Corrosion is the electrochemical deterioration of metallic materials by reaction 

with environment. Chemical change of a metallic alloy leading to corrosion either 

causes or is caused by the flow of direct electrical current. A complete electrical circuit 

is required for a current to flow. In a corroding system, this circuit is made up of four 

components: anode, electrolyte, cathode and metallic path (Figure 2.32). The anode is 

the electrode of an electrolytic cell at which oxidation is the principal reaction. 

Electrons flow away from the anode to the external circuit. It is usually the electrode at 

which corrosion occurs and metal ions enter solution. The electrolyte is a conductive 

liquid through which the current is conveyed by positively charged ions to the cathode. 

Negatively charged ions are simultaneously attracted to the anode. The cathode is the 

electrode of an electrolytic cell at which reduction is the principal reaction. Electrons 

flow toward the cathode in the external circuit. A metallic path is an external circuit to 

complete the connection between anode and cathode. 

 

 
Figure 2.32. Schematic illustration of a corroding system [2]. 

 

In the absence of an externally applied current, a potential difference or voltage 

must exist between the anode and cathode or no current will flow. This voltage is the 

driving force of the corrosion reaction. The potential difference or driving force for 

corrosion is most evident in the case of bi-metallic junctions. It is somewhat more 

difficult to see why a single metal should display both anodic and cathodic areas. In 

practice, such differences are caused by many factors inherent in the metal such as 

inclusions, exposure of various crystallographic planes, variations in alloy content, or 

microscopic surface imperfections. Discrete anodes and cathodes can also be caused by 
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variations in the electrolyte, such as temperature differences or concentration gradients 

of the solution, of ions in the solution, or of dissolved gases such as oxygen. In any 

event, the anodic reaction converts the metal atom to its positive ion, releasing electrons 

through the metallic junction, which comprises the external circuit. 

Metallic corrosion under aqueous conditions can take place by many mechanisms 

with quite various results. Corrosion may be general or localised. There are also several 

types of the environmentally assisted corrosion. General corrosion is a process of 

uniform surface deterioration and is the mostly observed type of corrosion. It is 

characterized by a chemical or electrochemical reaction which progresses uniformly 

over the whole surface area. In certain conditions the corrosion may occur in specific 

locations. Such attack is called localized corrosion and may appear in several forms: 

pitting, crevice and microbially influenced corrosion.  

Pitting is a form of localized corrosion that results in formation of holes in the 

metal. While these holes are generally small at the beginning they can grow very 

quickly, which leads to the material perforation and failure. Crevice corrosion usually 

takes place in confined volumes, for example in narrow gaps between two surfaces. As 

with pitting, the micro-environment in the crevice can substantially differ from the 

general medium. Concentration cells can cause this type of corrosion to progress at a 

very rapid rate. Microbially influenced corrosion is a recently identified form of crevice 

attack. Certain types of bacteria form dome-shaped colonies on the metallic surface. The 

inside of the structure is sealed from the outside. The life cycle of the bacteria produces 

a corrosive environment within the colony which causes a crevice attack of the metal. 

While this type of corrosion usually takes place on components exposed to natural 

water, it has also been encountered in industrial waters. 

Some types of corrosion take place as a result of chemical conditions within the 

environment and the mechanical condition of the metal itself. Both conditions must be 

present for this type of corrosion to take place. Corrosion fatigue, stress corrosion 

cracking, liquid metal cracking, and hydrogen embrittlement are all forms of 

environmentally assisted cracking. Corrosion fatigue takes place due to the reduction 

of fatigue resistance of a metal with the presence of a corrosive medium. Thus it is 

normally encountered not as a visible degradation of the metal but as a premature 

failure of a component under cyclic loading. The stress under which the material fails 

as a result of corrosion fatigue would not normally be considered sufficient to cause 
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failure. Stress corrosion cracking is caused by the simultaneous presence of tensile stress 

and a specific corrosive medium. During this type of cracking, the metal is unattacked 

over most of the surface while fine cracks progress faster due to the corrosive 

environment. Chloride stress cracking of stainless steels and ammonia stress cracking of 

nickel-copper alloys are examples of this type of attack. Figure 2.33 shows a 

dependence of the time to cracking on Ni content in an alloy: alloys containing 

more than 45% Ni, including Monel, are not susceptible to the stress corrosion 

cracking in chloride environment. 

Hydrogen embrittlement takes place due to the penetration of the surface of 

vulnerable metals by elemental hydrogen. Formation of metallic hydride compounds 

and interatomic interaction of dissolved hydrogen may lead to formation and 

propagation of fine voids and cracks in the metallic structure.  

Intergranular corrosion is a selective type of attack at the grain boundaries. 

Several conditions can lead to a material being susceptible to intergranular corrosion: (i) 

because of thermal or mechanical processing some metallic compounds may precipitate 

or migrate to the grain boundaries; if these are more reactive than the metallic matrix, 

they can be selectively attacked; (ii) areas adjacent to the grain boundaries may become 

depleted of some element, making these zones less resistant to corrosion.  

Erosion corrosion is the acceleration in rate of surface degradation due to relative 

movement of a corrosive medium along the metal surface. Mechanical wear or abrasion, 

which is involved with the relative movement, helps to sweep away the corrosion 

products and, thus, helps deeper propagation of the corrosion attack.  

 
Figure 2.33. Susceptibility of Ni-base alloys to chloride-ion stress-corrosion cracking [23].  
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2.2.4.1 Corrosion resistance of Ni-Cu alloys in different media 

 

The corrosion resistance of Monel K500 is similar to this of Monel 400, although 

Monel K500 is more susceptible to stress corrosion cracking in certain environments 

(sulphide brines) in the age-hardened condition [25]. Table 2.14 summarised the 

corrosion resistance of Ni and Ni-base alloys in various corrosive media. 

 

Table 2.14. Corrosion resistance of Ni and Ni-base alloys [2]. 

 
Alloy 

 
 Good to excellent 
 Acceptable 
 Not suitable 
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Nickel 200 and 201     -    
Monel 400     -    

Monel R405     -    
Monel K500     -    

 

Atmospheric Corrosion 

Atmospheric corrosion depends on a number of factors, such as relative humidity, 

temperature, sulphur dioxide content, hydrogen sulphide content, chloride content, 

amount of rainfall, dust. In an atmosphere free of contaminants only negligible 

corrosion would be expected. In an industrial atmosphere many types of contaminants 

can be expected, but the presence of sulphur (in the form of sulphur dioxide, sulphur 

trioxide or hydrogen sulphide) is the most important. The formation of sulphurous and 

sulfuric acids in the presence of air and moisture accelerates corrosion. Marine 

atmospheres severely corrode many metals. The atmospheric test laboratory at Kure 

Beach in North Carolina shows that steels exposed 25 meters from the ocean corrode 

ten to fifteen times faster than steels exposed at a distance of 250 meters [2]. However, 

corrosion of Monel K500 is negligible in all types of atmospheres, including the marine 

(Table 2.15). Indoor exposure produces a very light tarnish, which is easily removed 

by wiping. Outdoor surfaces, that are exposed to rain, develop a thin gray-green patina. 

In sulfurous atmospheres a smooth, brown, adherent film forms.  
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Table 2.15. Corrosion resistance of Ni alloys to marine atmosphere at Kure 

Beach, North California [2]. 

 
 

Corrosion in waters 

Water can be divided into three main types: distilled and high purity water, fresh 

water, and seawater. Distilled and high purity waters are the least corrosive because of 

minimum contents of dissolved gases and solids in them. Fresh waters (potable or "tap" 

water) are intermediate, and seawater is the most severe. Monel alloys 400 and K500 

have excellent resistance to distilled and both hard and soft fresh waters. Rates of 

corrosion are usually less than 1 mpy (0.03 mm/a) under the most severe conditions of 

temperature and aeration. In acid mine waters that contain oxidizing salts, attack is 

accelerated. In seawater Monel alloys 400 and K500 exhibit excellent corrosion 

resistance in moderate and high velocity interactions (corrosion is 0.01 mm/a). The 

position of Monel 400 in the galvanic series in seawater with a reference to other metals 

and alloys is shown on Figure 2.34. 

The alloys have excellent resistance to cavitation and erosion corrosion, and the 

corrosion rates in flowing seawater are usually less than 0.03 mm/a. Monel K500 has 

very good corrosion fatigue strength of 179 MPa at 108 cycles. In stagnant or slow 

moving seawater, fouling may occur followed by pitting. Such pitting tends to slow 

down after a fairly rapid initial attack and rarely exceeds 1.3 mm in depth, even after 

exposure for several years [2]. Salts dissolved in water increase their conductivity and 

corrosion currents. Therefore, galvanic effects are more pronounced in salt solutions 

than in pure water. However, Nickel 200 and Monel 400 are not subject to stress 

corrosion cracking in any of the chloride salts and have excellent general resistance to 

all of the non-oxidizing halides. 
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Figure 2.34. Galvanic series in seawater [2]. 

 

2.2.4.2 Effects of welding on corrosion resistance 

 

The welding process and choice of welding product can greatly affect the 

corrosion resistance of the component being fabricated. In most corrosive media, the 

resistance of the weld metal to corrosion is similar to that of the base metal. If the 

component is designed to be used in aggressive environments, it is recommended to 

weld the material with over-matching composition (more highly alloyed, more 

corrosion-resistant) welding products. Aqueous corrosion takes place as a flow of 

electric current between an anode and a cathode, corrosion occurs at the anode. The 

relative sizes of the anode and the cathode can significantly affect the corrosion rate. If 

the cathode is significantly larger than the anode, the rate can be significantly increased. 

Thus, when designing a welded structure it is best that the weld metal be cathodic to the 

base metal. In other words, the weld should be more corrosion-resistant than the base 
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metal. Since the weld is generally much smaller in area than the base metal, were the 

weld to be anodic, disastrous consequences could result. For example, the weld could 

simply corrode away preferentially to the base metal [74]. 

Corrosion may be due to sensitization of the base metal in heat-affected zones, 

formation of secondary phases, segregation in the weld metal, or residual stress. The 

structure of a weldment is similar to that of a casting. Dendrite formation and growth 

occur first from the highest melting point constituents as the liquid pool solidifies. As 

dendrites grow, lower melting point materials segregate into the inter-dendrite spaces. 

Such a chemical inhomogeneity dendritic structure can cause the weld metal to become 

anodic to the base metal in corrosive environments. Thus, a relatively small anode (weld 

metal) and a large cathode (base metal) can lead to galvanic corrosion. Post-weld heat 

treatment is usually impossible and gives only a limited improvement in the corrosion 

resistance of Ni-base alloy welds. A proven method to prevent corrosion of the welded 

structures is to use a welding metal, which is more noble than the base metal. The use of 

more highly alloyed welding metal can compensate for the elemental segregation 

inherent in the welds [2]. Figure 2.35a shows a corner of GTAW weld from a shipboard 

desalination unit manufactured using Monel 400. The weld made using the ERNiCu7 

welding material with a matching composition has suffered severe pitting (Figure 

2.35b) and local corrosion at the fusion boundary (Figure 2.35c) with little attack in the 

base metal. To avoid this, the NiCrMo-3 consumable was suggested to make the weld 

cathodic to the base metal in seawater and brine (Tables 2.16 and 2.17) [74]. 

 

 
Figure 2.35. (a) A corner welded of Monel 400, (b) the corner cross section, (c) 

localised corrosion at the fusion boundary [74]. 
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Table 2.16. Galvanic series for several Ni based alloys in synthetic seawater at 25 °C [84] 

 
 

Table 2.17. Galvanic series for several Ni based alloys in brine at 67 °C [84] 
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2.3 Additive manufacturing as a repair technique for Ni-base alloys 
 

Despite its good mechanical and corrosion resistance properties, Monel K500 

components may fail in operation. As this alloy is often used for manufacturing of 

machine parts in which mating metal surfaces rub together, wear is one of the key 

failure origins. Not only this directly affects equipment life, especially when operated in 

corrosion environment, but also it may endanger an entire mechanical system if a 

critical part is damaged [85]. Sliding wear is the most common form of wear that results 

from two metal surfaces rubbing together under sufficient load (Figure 2.36a, b). This 

type of wear is dependent on physical and chemical factors such as material properties, 

presence of corrosive atmosphere or chemicals, as well as the dynamics such as the 

velocity and applied load. Galling is another form of wear caused by adhesion of one 

sliding surface to another. When a material galls, some part of it is pulled with the 

contacting surface, especially if there is a large amount of force compressing the 

surfaces. Galling is caused by a combination of friction and adhesion between the 

surfaces, followed by slipping and tearing of crystal structure beneath the surface. This 

will generally leave some material stuck or even friction welded to the adjacent surface, 

whereas the galled material may appear gouged with balled-up or torn lumps of material 

stuck to its surface. Galling is a major challenge for large components of equipment 

(Figure 2.36c) [85]. It is common in nickel alloys used for manufacturing high-pressure 

premium connections, such as valve reciprocating pistons [86]. Pitting corrosion, which 

is extremely localized corrosion leading to the creation of small holes on the surface, is 

another form of failure of Monel K500 components (Figure 2.36d). The driving power 

for pitting corrosion is the depassivation of a small area, which becomes anodic while 

an unknown but potentially vast area becomes cathodic, leading to very localized 

galvanic corrosion. 

Since Ni-base alloys are expensive, repair is often a more economic choice than 

replacement. For example, turbine engine components such as frames, buckets, and 

blades may be repaired multiple times during their service lifetime. There are several 

principles of repair of such components, the main two of them, thermal spraying and 

additive manufacturing, are discussed and compared below. 
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Figure 2.36. Examples of (a, b) sliding wear of Monel K500 piston rods (courtesy of 

MacTaggart Scott Australia), (c) galling [87], (d) pitting corrosion [88]. 

 

Additive manufacturing, or 3D printing, can be applied not only for production of 

new functional components, but also for repair of old components. This technology is 

considered one of the rapidly developing advanced manufacturing techniques in the 

world [89]. Different to the material removal method in conventional machining 

processes, additive manufacturing is based on a completely contrary principle, i.e. 

material incremental manufacturing. Additive manufacturing involves layer-by-layer 

depositing of feedstock (powder or wire) using a computer controlled laser or an electric 

arc as the energy resource [90].  

The microstructural features (such as grain size or texture) and resultant 

mechanical properties (strength, hardness, residual stresses) are normally difficult to 

adjust for a specific material processed with additive manufacturing technology [91, 

92]. The complex metallurgical phenomena during additive manufacturing processing 

are strongly material and process dependent and governed by both feedstock 

characteristics (chemical composition, particle shape, size and distribution, loose 

packing density, and flowability (for powders)) and processing parameters (heat source 

type, scan/deposition speed and spacing, feedstock layer thickness) [93]. That is why 
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significant attention is required for both design strategy of feedstock materials and 

control of heat source, in order to achieve the feasible metallurgical mechanism for 

powder consolidation in additive manufacturing processes and resultant favourable 

microstructural and mechanical properties.  

 

2.3.1. Thermal spraying 
 

Thermal spraying is often used for repair of the components which have shallow 

evenly distributed defects. In this process a coating material is heated in a hot gaseous 

medium, and simultaneously projected at a high velocity onto a prepared substrate 

surface where it builds up to produce the desired coating. It is possible to spray any 

material that melts (or becomes substantially molten) without significant degradation 

during a short residence in a heat source [94, 95]. A finishing process is often required 

for components repaired using this technique as tight control on depth and spread of 

deposited material is not possible in thermal spraying. The machining of such material 

can be a difficult task. Sprayed coatings are composed of well-defined particles and 

have poor thermal conductivity compared to the same material in wrought form. Heat 

transfer away from the cutting point is slow. The acceptable methods, practices and 

techniques used for machining materials in their wrought form do not apply to the same 

materials when sprayed. Materials which are abrasion resistant are especially difficult to 

machine. To prevent the repair ‘plug’ from coming away off the component, the 

adhesion of the repair material to the substrate has to be strong enough to resist the 

forces involved in cutting. Also, the bond between the sprayed particles is primarily 

mechanical, therefore individual particles can be pulled out if cutting pressures are 

excessive. For certain applications where surface finish is important, highly reflective 

finishes are difficult to achieve for sprayed materials with a relatively porous structure. 

Factors which influence the choice of finishing method include type of material to be 

finished, the shape of the part, finish and tolerance required, and economics [96].  

The high velocity oxygen fuel (HVOF) thermal spraying process (Figure 2.37a) is 

based on a combination of thermal and kinetic energy transfer, i.e. the melting and 

accelerating of powder particles, to deposit desired coatings. Powder particles of the 

coating material are fed axially into a hot gas stream, then into a spray gun, are melted, 

and propelled to the surface of the workpiece to be coated. Carbon-hydrogen gases 
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(propane, propylene, acetylene) or pure hydrogen are used as fuel gases and the gas 

temperature depends on the choice of fuel gas [97]. 

 
Figure 2.37. (a) Schematic illustrations of: (a) thermal spraying [98] and  

b) laser metal deposition [104] systems. 
 

HVOF thermally sprayed components contain residual stresses that result from 

contraction during cooling and solidification. The magnitude of the stresses vary 

depending upon process parameters used in spraying the coating. The coated material 

will crack if the magnitude of its tensile residual stresses exceeds its adhesion strength 

to the substrate. Methods which are generally used to reduce residual stresses in the 

coatings include: expanding the substrate prior to spraying by pre-heating, selecting a 

coating material with matching properties to the substrate, and macro-roughening of the 

substrate surface [99]. Also a degree of inherent porosity can be found in thermal spray 

coatings ranging from 2 to 20% [100]. Porosity can have a detrimental effect on the 

performance of anti-corrosion coatings in service because the corrosive media 

eventually find a path to the substrate [101]. 

 

2.3.2 Laser metal deposition 

 

Laser metal deposition allows to coat, build, and rebuild components having 

complex geometries with a sound material integrity and dimensional accuracy [102]. 

The laser metal deposits are metallurgically bonded to the substrate, not mechanically 

bonded like spray or chroming processes [103]. Its powder delivery system consists of a 

powder feeder that delivers powder into a gas delivery system via the nozzles. The high-

energy laser beam is delivered along the z-axis in the centre of the nozzle array and 

focused by a lens in close proximity to the work piece (Figure 2.37b). Moving the lens 

and powder nozzles in the z-direction controls the height of the focuses of both laser 
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and powder. The work piece is moved in the x–y direction by a computer-controlled 

drive system under the beam/ powder interaction zone to form the desired cross-

sectional geometry. Consecutive layers are additively deposited, producing a three-

dimensional component. 

The temperature during laser metal deposition is difficult to control. At the same 

time, processing problems (insufficient densification, heterogeneous microstructures 

and properties) tend to occur in laser sintering processed prealloyed powders. Therefore, 

post-processing treatment such as furnace post-sintering [105], hot isostatic pressing 

[106] or secondary infiltration with a low melting point material [107] is normally 

required to improve mechanical properties. The powder melting by a laser requires a 

higher energy level, good beam quality, high laser power and thin powder layer 

thickness, which results in long building time. Consequently, the laser melting suffers 

from the instability of molten pool. A large degree of shrinkage tends to occur during 

liquid–solid transformation, accumulating considerable stresses in the processed parts 

[107]. The residual stresses arising during cooling are regarded as key factors 

responsible for the distortion and even delamination of the final products. Also, the melt 

instabilities may result in spheroidisation of the liquid melt pool (known as balling 

effect) and attendant interior porosity [98]. 

Due to the layer by layer additive nature of laser metal deposition, the complex 

thermal histories are experienced repeatedly in different regions of the deposited 

material, e.g melting and numerous reheating cycles at a relatively lower temperature 

[108]. Such complicated thermal behaviour during laser metal deposition results in the 

complex phase transformations and microstructural developments [109]. There, 

consequently, exist significant difficulties in tailoring a required composition-

microstructure-property relationship. Complicated residual stresses tend to be locked 

into the parts during the building process, due to the thermal transients encountered 

during solidification [110]. The presence of residual stresses causes deformation or, in 

the worst instance, cracks formation in laser metal deposition processed components. 

The uncontrollability of microstructure-property relationship and the formation of 

residual stresses are regarded as two major difficulties associated with laser metal 

deposition. During laser melting and laser metal deposition of Ni based superalloys, 

there is a high cracking susceptivity because of a high amount of alloying elements and 

gamma-prime forming elements. Cracks mainly nucleate and propagate in the overlap 
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zone between two adjacent deposited passes. Post-processing, such as hot isostatic 

processing, are required to realise a substantial improvement of mechanical properties 

[111]. 

 

2.3.3 Wire arc additive manufacturing 

 

Wire arc additive manufacturing (WAAM) has been closely investigated since the 

1990s [112] to nowadays [113]. This technique combines an electric arc as heat source 

and a wire as feedstock and employs either gas tungsten arc welding (GTAW) [114], 

gas metal arc welding (GMAW) [115], or plasma arc welding (PAW) [116] (Figure 

2.38). A consumable electrode is deposited layer by layer to manufacture a new 

component or repair an old component reducing material wastage and production/repair 

time [117]. This technique is advantageous due to its high deposition rate, low cost and 

has virtually no limitations in deposition size. Another advantage of WAAM technology 

is the absence of a technically complex and expensive powder bed system. WAAM can 

be implemented using off-the-shelf welding equipment.  

 

 
Figure 2.38. Schematic illustration of wire arc additive manufacturing technology. 

 

The solid solution strengthened Ni-base alloys can be easily welded. The weld 

fabrication does not require preheat, but may require stress relief or annealing, and interpass 

temperature control during welding is normally not critical. The precipitation hardenable 

alloys, on the other hand, are less weldable and, because of the presence of the gamma prime 
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particles, tend to be susceptible to strain-age cracking [5]. Cracks can occur in the heat 

affected zone (HAZ) on aging or in service at temperatures above the aging temperature, as a 

result of residual welding stress and stress induced by precipitation. A solution annealing is 

usually recommended before welding these alloys, and after welding, the appropriate ageing 

heat treatment is performed. If possible, heat treatment should be done in a controlled-

atmosphere furnace to limit oxidation and minimize subsequent surface cleaning. The alloys 

age-hardenable by Al and Ti precipitates must be solution treated after welding [14]. To avoid 

prolonged exposure of the welded structure to temperatures within the precipitation range, 

rapid heating in a preheated to the appropriate temperature furnace is recommended.  

The stresses created by welding repair must be relieved in a similar fashion by rapid 

heating to the solution-treating temperature prior to re-aging. If satisfactory stress relief of the 

weldment is not feasible, particularly if the structure is complicated, then preweld overaging 

treatments may be helpful. Preheating, however, is not a satisfactory substitute for postweld 

heat treatment. Although age-hardenable alloys can be welded in the aged condition, if 

temperatures encountered in service are in temperature range for precipitation, then the 

weldment must be solution treated and re-aged [118]. 

Precipitation hardenable alloys are usually welded by the gas tungsten arc welding 

(GTAW) process (Figure 2.39a), but gas metal arc welding (GMAW) (Figure 2.39b) and 

Shield metal arc welding (SMAW) processes are also applicable [119]. Heat input during the 

weld operations should be held to a moderately low level in order to obtain the highest 

possible joint efficiency and minimize the extent of heat affected zone. For multiple-bead or 

multiple-layer welds, many narrow stringer beads should be used instead of a few large beads. 

Either precipitation hardenable or solid solution strengthened filler metal may be used for 

welding precipitation hardenable alloys. Maximum mechanical properties, particularly in 

thick metal, are obtained when precipitation hardenable filler metals are used, because most of 

the weld deposit is composed of filler metal. The solid solution filler metals produce welds 

with lower mechanical properties, but they can be used where maximum strength is not 

needed [14]. 

For GTAW helium, argon, or a mixture of the two are recommended for shielding. 

Additions of oxygen, carbon dioxide, or nitrogen to argon gas will usually cause 

porosity or erosion of the electrode and thus should be avoided. Pure-tungsten 

electrodes or tungsten alloyed with thorium or zirconia can be used. A 2% thoria 

electrode will give good results for most welding applications. Although the initial cost 
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of the alloyed electrodes is greater, their longer life, resulting from lower vaporization 

and cooler operation in conjunction with greater current-carrying capacity make them 

more economical in the long term. Regardless of the electrode used, it is important to 

avoid overheating them at excessive current levels. The shape of the electrode tip can 

have a significant effect on the depth of penetration and the width of the bead, 

especially with welding current over 100 A [118]. 

 

 
Figure 2.39. Schematic illustrations of (a) gas tungsten arc welding [120], and (b) gas 

metal arc welding [121] processes. 

 

Compositions of the filler metals used with the GTAW process are, in general, 

similar to those of the base metals with which they are used. Because of high welding 

temperatures, filler metals are alloyed to resist porosity and hot cracking of the weld 

metal. Filler-metal additions and dilution ratios should be adjusted to ensure that the 

weld metal contains about 75% of filler metal [5].  

GTAW process for welding Ni-base alloys provides the following advantages: 

minimal post-weld cleanup (no slag to remove); all position welding capability 

(particularly useful for pipe welding); no weld spatter; no alloy loss during welding; 

good as-welded surface, which helps to minimise the finishing procedure [122]. The 

guidelines for GTAW of Monel 400 are presented in Table 2.18.  

In the GMAW process, an arc is established between a consumable, bare wire electrode, 

and the work piece. The protective atmosphere dependent upon the metals being joined and 

the welding procedure. The optimum shielding gas will vary with the type of metal transfer 

used. Argon or argon mixed with helium are used for most Ni alloy welding applications. 
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Welding torches that are rated for use with inert gases (argon and helium) should be selected 

for use with nickel alloy filler metals. They are shielded with inert gas with an air-cooled 

torch. Occasionally wire feed problems are reported. These problems are usually traced to 

torch overheating. This is because air-cooled torches are normally rated for use with CO2 

shielding gas. CO2 provides significantly more cooling than inert gases. When inert gas 

shielding is used, the torch rating is reduced by approximately half of the standard duty cycle 

rating with CO2. Optimum welding conditions vary with method of metal transfer. The arc 

should be maintained at a length that will not cause spatter. A too short arc will cause spatter, 

but an excessively long arc is difficult to control. The wire feed should be adjusted in 

combination with the current to give the proper arc length. Lack of fusion can occur with the 

short-circuiting method if proper manipulation is not used. The gun should be advanced at a 

rate that will keep the arc in contact with the base metal and not the puddle. In multiple pass 

welding, highly convex beads can increase the tendency toward cold lapping. With pulsing 

transfer, manipulation is similar to that used for shielded metal-arc welding. A slight pause at 

the limit of the weaves is required to avoid undercut. [118]. 

 

Table 2.18. Guidelines for manual gas tungsten arc welding of 1.6 mm thick Monel 400 [5]. 

Joint type Beveled butt, 1.6 mm root opening 
Electrode 2.4 mm diam., EWTh-2, tapered to 0.04 mm diam. 
Filler metal 1.6 mm diam., ERNiCu-7 
Number of passes 3 
Welding current, A 70-90 (DCEN) 
Voltage, V 10-12 
Shielding gas: 

At torch, m3/h 
Backing gas, m3/h 

 
0.6 
0.08-0.14 

Preheat and postheat treatment None 
Interpass temperature, ºC 175 maximum 

 

GMAW has the following advantages over GTAW: faster welding speeds; no slag, 

minimizing post-weld cleanup; ease of automation; good transfer of elements across the arc 

[5]. The guidelines for GMAW with filler metal FM60 are given in Tables 2.19 and 2.20. 

Welds of Monel K500 can be produced with the strength of age-hardened base 

metal with no serious loss in ductility if age hardening is performed after welding 

annealed material. Welding of age-hardened material should be avoided because of 

greatly reduced ductility. Welding of the alloy K500 is best accomplished by the 
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GTAW process [14] using the filler metals FM64 and 60, the chemical compositions of 

which are shown in Table 2.21. 

 

Table 2.19. Guidelines for spray arc transfer gas metal arc welding with FM60 (gas flow 

35-60 ft3/h, direct current electrode positive polarity) [118]. 

Wire diameter 
(mm) 

Wire feed 
(in/min) Voltage (V) Current (A) Shielding gas 

0.89 475-520 26-32 175-260 
Argon 1.14 250-300 26-32 225-300 

1.57 150-200 27-33 250-330 
 

Table 2.20. Guidelines for pulsed-arc-transfer gas metal arc welding with FM60 [118]. 

 
 

Table 2.21. Composition (wt.%) of typical filler metals used for Monel K500 [14]. 

Alloy Classification C Fe Mn Ni Ti Al Cu 

FM64 UNS: N05500 0.25 2.00 1.50 63.0-
70.0 

0.35-
0.85 

2.3-
3.15 Bal. 

FM60 AWS: ERNiCu-7 0.15 2.5 4.0 62-69 1.5-
3.0 1.25 Bal. 

 

Typical mechanical property ranges of filler metals used for welding of Monel 

K500 are given in Table 2.22. The tensile properties of filler metals are approximately 

the same as of the base metals in the annealed condition. For maximum tensile strength, 

a post weld solution annealing is typically used followed by a custom-designed heat 

treatment that precipitates the pertinent strengthening phase. Slightly higher temperature 

and longer aging times generally provide for better impact properties.  
 

Table 2.22. Mechanical properties of filler metals used for Monel K500 [14]. 

Alloy Tensile 
strength, MPa 

Yield 
strength, MPa Elongation, % Reduction in 

area, % 
Hardness, 

HV 
FM64 690-1035 550-760 30-15 45-28 290-350 
FM60 483-517 276 30-40 50 160 
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Although nowadays thermal spraying is often used for repair of Ni-base alloys, it 

can be applied only in case where small evenly distributed defects are present. Additive 

manufacturing techniques, on the other hand, give wider opportunities for building of a 

new component as well as for repair of a damaged component. Powder-based processes, 

such as selective laser melting, selective laser sintering or electron-beam melting are 

capable of producing complex parts with high geometrical accuracy. However, powder-

based process has significant downsides: porosity, low deposition rates (0.1-0.2 kg/h), 

limited size of the fabricated parts, high cost of powder and the inert gas required for the 

process. 

In contrast, the wire-based additive manufacturing is a relatively simple and cheap 

process. Compared to powder, metal wires are lower in cost and readily available. The 

wire-feed processes are more environmentally friendly and have a higher material usage 

efficiency with up to 100% of melted wire material deposited to build a component. 

Compared to the powder-based methods, the deposition rates of wire-based methods are 

much higher (up to 12 kg/h), which allows to economically produce larger size 

components, although the complexity and accuracy of the fabricated part may be 

sacrificed. 

WAAM combines all the advantages of wire-based additive manufacturing 

methods, such as: 

- Use of readily available feedstock - metal wire that can be produced of a very 

complicated chemical composition, for example it may contain particle forming 

elements, which helps to equalise mechanical properties of the repair and base metal in 

such a precipitation hardenable alloy as Monel K500; 

 

- A stronger adhesion of the repair plug to the base metal, due to full melting of the 

deposited material and a layer of the base metal. Reliability of a repair technology is of 

primary importance for such components as maritime; 

 

- A more accurate control over welding parameters results in a more homogeneous 

grain structure, less porosity and cracking, better mechanical properties, wear resistance 

and corrosion resistance; 
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- High deposition rates (high wire feed rate and welding speed), which can result in 

minimal repair time and faster return of a component to service; 

- High energy efficiency. 

 

In addition, WAAM can be applied using off the shelf welding machinery: 

welding power sources, torches and wire feeding systems. Moreover, it has potentially 

unlimited build volume, which allows to fabricate large machinery parts. 

 

Recent publications reported successful application of WAAM for making Ti-

base [123, 124], Fe-base [125,126], Al-base [127], Cu-base [128] and Ni-Cr-base [129, 

130] alloy components. However, a detailed investigation of the effect of WAAM 

processing parameters on microstructure and mechanical properties of the components 

has not been conducted. WAAM of Ni-Cu alloys has not been previously reported. In 

this work a first ever study of the effect of heat treatment on microstructure, mechanical 

properties, wear resistance and corrosion resistance of Ni-Cu alloys fabricated using 

WAAM technology is presented.  
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3. MATERIALS AND EXPERIMENTAL TECHNIQUES 
 

3.1 Materials 
 

Two welding consumables, commercially produced Monel K500 wire with 

diameter 1.0 mm and ERNiCu-7 (FM60) wire with diameter 1.2 mm were used in this 

study for comparison. Monel K500 plate with dimensions 600x260x8 mm was used as 

the substrate and a reference for the mechanical properties. The chemical compositions 

of Monel K500 (plate, wire and component) and FM60, measured in this work using 

Optical emission spectroscopy, are listed in Table 3.1. 
 

Table 3.1. The chemical compositions of Monel K500 (plate and wire) and FM60 used 

in the study (wt. %) 

Element 
 

       Alloy 
Ni Mn Fe Si Al Ti C S P Cu 

Monel K500 
(plate) 68.1 1.01 1.25 0.09 3.18 0.68 0.009 0.004 0.004 bal. 

Monel K500 
(wire) 68.3 0.8 1.29 0.17 3.0 0.5 0.088 0.003 0.003 bal. 

FM60 
(wire) 67.2 3.2 0.08 0.07 0.2 1.5 0.004 0.014 0.003 bal. 

 

3.2 Experimental techniques 
 

3.2.1 Samples fabrication 
The samples for the study were produced using a robotic welding system at the 

University of Wollongong (Figure 3.1). A computer interface (a) was used to program 

the experimental processes, the robot controller (b) aided in coordinating both the 

welding power source (c) and the robot motions (d). CMT welding torch (e) was used to 

deliver the wire arc. The process parameters were monitored from control panel (f). The 

experiment set up is shown in Figure 3.1g. 

The wire deposition was carried out by cold metal transfer (CMT) technology 

using an ABB 1400 robot with a Fronius CMT welder in flat position. CMT technology 

is a modified gas metal arc welding process with controlled droplet detachment in short 

circuit transfer mode. When a short circuit occurs, the welding current drops and the 

filler wire starts to retract. At this moment one droplet of metal is detached into the 
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molten weld pool, then the filler wire moves forwards and the cycle is repeated. This 

technology facilitates a controlled droplet detachment and gives a clean, spatter-free 

material transfer. No base metal preheating was conducted prior to commencing the 

deposition process; therefore, the cooling rate of the first deposited layer was maximum. 

The deposition of two alloys was carried out using a wide range of welding parameters: 

welding torch travel speed varied from 200 to 500 mm/min, wire feed from 5.4 to 10.5 

m/min; heat input from 200 to 700 J/mm. Welding grade argon (99.995% purity) was 

used for shielding with 10 L/ min gas flow rate.  

 
Figure 3.1. Schematic diagrams of the WAAM system: (a) computer, (b) robot 

controller, (c) welder, (d) ABB 1400 robot, (e) CMT welding torch, (f) control panel, 

(g) set up of the robotic CMT process.  

 

Both wires were deposited in simple forms of beads, plates and walls. The 

resulting heat input was higher for Monel K500, even though the deposition of FM60 

was carried out using the same pre-set welding parameters (travel speed and wire feed 

rate). This can be related to the variation in the wires diameter and alloys composition 

(thermal conductivity). Thus, the average calculated heat input in Monel K500 was 530, 

430 and 330 J/mm, and in FM60 - 410, 300 and 240 J/mm, for travel speeds of 300, 400 

and 500 mm/min, respectively. 

The horizontal plates (55 mm wide by 180 mm long) were fabricated by 

depositing one pass of material next to the other until the required width was reached 
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(Figure 3.2a,c,d). Fewer layers were required for a slower travel speed and more layers 

for a faster travel speed. Namely, 10, 11 and 15 beads were required for Monel K500 

depositions at 300, 400, 500 mm/min travel speed, respectively; and 11, 14 and 16 

beads were required for FM60 depositions at 300, 400, 500 mm/min travel speed, 

respectively.  

 

 
 

Figure 3.2 Wire arc additive manufacturing process: (a) deposition of multi-bead single-

layer plates; (b) deposition of single-bead multi-layer walls; plates and walls produced 

at travel speeds of 300, 400, 500 mm/min with (c) Monel K500 and (d) FM60. 

 

The vertical walls (40 mm high by 180 mm long) were built by depositing one 

layer of material on top of another until the required height was reached (Figure 3.2b-d). 

The number of layers varied with a welding travel speed: bigger bead was produced 
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with slower travel speed, so that fewer layers were required to build the wall with 300 

mm/min travel speed, than with 500 mm/min travel speed. Namely, 15, 18 and 20 layers 

were deposited with Monel K500 and 18, 21 and 24 layers were deposited with FM60 at 

travel speeds of 300, 400, 500 mm/min, respectively. 

The deposited walls and plates were cut using an EDM wire cutting machine, 

Struers Axitom and Struers Accutom cutting machines according to the required 

geometry (Figure 3.3). 

 

 
Figure 3.3 Geometry of samples for mechanical testing: (a) tensile test sample; (b) wear 

test sample; (c) corrosion test sample; (d) schematic diagram showing the direction of 

vertical wall deposition and samples extraction locations. 

 

A summary of all experiments conducted in this work is given in Table 3.2. 
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Table 3.2. Summary of experiments conducted in this work 

          Experiment 
Stage WAAM Heat 

treatment 

Macro- and 
microstructure 
characterisation 

Mechanical 
properties 

testing 
Development of 
WAAM: 
Monel K500 wire 
on Monel K500 
plate 

12 single-bead 
lines, 5-layered 

wall, travel 
speed 300-500 

mm/min 

3 schedules 
Microscopy: 

Optical, 
 Scanning electron  

hardness 

Investigation of 
WAAM: 
Monel K500 and 
FM60 wires on 
Monel K500 plate 

6 single-bead 
lines, 6 walls and 

6 plates,  
travel speed  

300-500 mm/min 

3 schedules 

Microscopy: 
Optical,  

Scanning electron, 
Transmission 

electron, 
 Atomic resolution  

hardness, 
tensile, 
wear, 

corrosion 

Repair using 
WAAM:  
Monel K500 wire 
on Monel K500 rod 

single-bead lines 
along the 

cylindrical 
surface of the 

rod, travel speed  
200 mm/min 

3 schedules 
Microscopy: 

Optical,  
Scanning electron  

hardness 

 

3.2.2 Heat treatment 
The heat treatment procedures have been designed in order to improve the 

properties of the depositions following the guidance given in the current Defence 

standard 02-771. These schedules included heating up to the annealing temperature of 

1100°C with a rate of 10°C per minute, holding for 15 minutes and either: i) air cooling 

to room temperature, or ii) furnace cooling to 610°C followed by holding for 8 hours at 

this temperature and air cooling to room temperature, or (iii) furnace cooling to 610°C, 

holding for 8 hours, furnace cooling to 480°C, holding for 8 hours, followed by air 

cooling to room temperature.  
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Figure 3.4. The heat treatment procedures. 

 

The three heat treatment schedules are shown in Figure 3.4. Heat treatment was 

performed using an “Across International” KTL1400 Tube Furnace. The samples were 

treated in vacuum. 

 

3.2.3 Microstructural analysis 
The chemical compositions of Monel K500 plate, Monel K500 wire and FM60 

wire were measured using the Optical emission spectroscopy by Oxford Instruments 

UVTouch probe (Figure 3.5). This method uses arc and spark excitation (Arc Spark 

OES) in order to determine the chemical composition of metallic samples. At least 

seven test probes were taken in order to calculate accurate average values, first three 

have not been taken in consideration as they were used for the gun warm up and 

recalibration. 

 
Figure 3.5. (a) Oxford Instruments UVTouch probe; (b) testing of sample;  

(c) monitor displaying test results. 
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Sample preparation for optical and scanning electron microscopy included 

mounting in Polyfast resin, polishing on Struers Tegramin-25 automatic polisher to 1 

μm finish and etching with ferric chloride solution. Samples for transmission electron 

microscopy and atomic resolution microscopy, 3mm in diameter discs, were manually 

polished to approximately 80 μm in thickness, dimpled ground to 35-40 μm thick in the 

centre of the dimple, polished with alumina, and ion milled on Gatan precision ion 

polishing system (PIPS) model 691. The foil thickness was measured by converging 

beam diffraction technique to be about 80 nm. 

Optical microscopy was carried out by using Leica M205A stereo microscope and 

Leica DM 6000M microscope equipped with Leica Application Suite (LAS) 4.0.0 

image processing software. Scanning electron microscopy was conducted using 

JEOL7001F FEG scanning electron microscope (SEM) operating at 15 kV. The energy 

dispersive X-ray spectroscopy (EDS) of precipitates and the element distribution 

mapping were carried out using an AZtec 2.0 Oxford SEM EDS system. For the 

determination of >20 nm particles size and number density values, up to 350 particles 

have been measured for each studied condition. Particle compositions were analysed on 

up to 60 particles for each condition. The element distribution mapping was carried out 

2-3 times from various locations for each studied condition. The line scans for 

evaluation of Cu segregation were carried out 3-4 times per each studied welding 

condition. The data was taken from at least 35 points per image with a step of 0.4 µm 

between points. 

Transmission electron microscopy was conducted using JEOL JEM-2011 

operating at 200 kV. For the determination of <20 nm particles size and number density 

values, up to 1600 particles have been measured for each studied condition. Particle 

types were analysed using selected area diffraction technique. The dislocation density 

was evaluated on area of 980059.6 nm2 for each studied condition. The dislocation 

imaging was conducted near the [101] grain zone axis. Atomic resolution microscopy 

was carried out using JEOL JEM-ARM200F, a probe corrected scanning transmission 

electron microscope, operating at 200kV. Atomic resolution EDS mapping was 

conducted using a JEOL Centurio SDD detector. 
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3.2.4 Tensile testing 
Tensile tests were performed on MTS Landmark servohydraulic testing machine, 

model 370.02 (Figure 3.6a). Flat dog-bone type samples of 10-mm gage length, 2-mm 

width, and 1.5-mm thickness (Figure 3.6b) were cut perpendicular to the direction of 

material deposition. For each condition, 3-4 samples were tested at an ambient 

temperature at a strain rate of 1 x 10-3 s-1. 

 

 
Figure 3.6. Tensile testing: (a) MTS Landmark servohydraulic test system;  

(b) tensile test sample. 

 

3.2.5 Wear testing 
Wear resistance of material depositions and base plate was investigated using the 

pin-on-disk type of test utilised in a CETR tribometer (Figure 3.7a). The wear testing 

was performed according to the standard ASTM G 99-95a. For this test two specimens 

are required: a pin with a radiused tip, which is positioned perpendicular to the flat 

circular disk. The test machine causes the disk specimen to revolve about the disk 

centre, the sliding path is a circle on the disk surface. The rigidly held pin specimen is 

pressed against the disk at a specified load. Wear results are reported as mass loss in 

grams for the disk.  

Discs for the wear testing (Figure 3.7b), were grinded to flat surface and polished 

on Struers Tegramin automatic polisher with silicon carbide polishing foil 2000 (10 
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micron). 6 samples (Monel K500 wire and FM 60 deposited with three welding speeds) 

were tested for each heat treatment condition (in as-weld, annealed and aged at 610°C, 

and annealed and aged at 610°C and 480°C condition). The wear resistant steel with 

martensitic microstructure (hardness 500HV) was used as a pin. Each sample underwent 

3 successive testing cycles, 750 sec of total sample-disk interaction time, track diameter 

30 mm, velocity 0.758 m/c (500 rpm), total path length 600 m. One test cycle included 

vertical loading of the pin to 15 N load (in compression against the sample disk) and 

rotation of the disk for 250 sec. The wear resistance was assessed via the sample mass 

loss measured after each cycle (i.e. after 250, 500 and 750 sec of testing time). The 

sample mass was measured on fine analytical scales Nuweight AS 310.R2 with 

accuracy of 0.0001 gram. 

 

 
Figure 3.7. Wear testing (a) CETR tribometer; (b) wear test sample. 

 

3.2.6 Surface roughness testing 
The roughness of the samples’ surface after the wear testing was assessed with a 

help of the ContourGT-K 3D Optical Microscope equipped with the Vision 64 software 

(Figure 3.8). The measurements were performed in the VSI mode, green light was used 

to illuminate the sample.  
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Figure 3.8. (a) ContourGT-K 3D Optical Microscope; (b) Vision 64 software interface. 

 

3.2.7 Hardness testing 

Micro hardness testing was performed on Struers DuraScan Vickers hardness 

tester with 0.5 kg load. The data was acquired from the base metal, heat affected zone 

(HAZ), remelted zone (RZ) and fusion zone (FZ) for evaluation study, as-weld 

condition of single-bead weld lines of deposited Monel K500 and FM 60 and 

component repair. The microhardness of all other samples was measured in the FZ only. 

Up to ten indentations were performed in each section, with a distance of approximately 

five times the length of the indent diagonals to ensure that the results were not 

contaminated by work hardening from previous indentations. The indentation dwell 

time was 14 s according to the standard ASTM E384. 

 

3.2.8 Corrosion testing 
The electrochemical corrosion behaviour of all samples was studied with a help of 

a standard three-electrode polarisation cell. The polarisation cell consisted of an 

electrolyte solution - 3.5 wt. % NaCl, a counter electrode (CE) - Pt wire, a reference 

electrode (RE) - saturated calomel electrode Hg/Hg2Cl2 and a working electrode (WE) – 

the sample of interest (Figure 3.9). The electrical circuit of polarisation cell is shown in 

Figure 3.10. The 3.5 wt. % NaCl electrolyte solution was chosen as similar to seawater 

environment, in which the tested alloys would potentially be operated.  

The electrodes were connected to the potentiostat Gill AC - ACM Instruments. 

The samples were polished with 1200 µm polishing foil, degreased with ethanol, rinsed 
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with water and placed in the electrochemical cell. The samples’ surface area exposed to 

the electrolyte was 0.95 cm2.The data was analysed with the Sequencer software. The 

open circuit potential (Eocp) was recorded after the values were stabilized 

(approximately after 5 min). The cyclic polarisation test was performed with the sweep 

rate 120 mV/min. The polarisation start potential and reverse potential were -250 mV 

and +700 mV from Eocp, respectively. One complete cycle of polarisation was 

performed. The corrosion current (Icorr) was measured with a classic Tafel analysis of 

polarisation curves. At least 3 tests have been performed for each sample condition to 

improve the accuracy.  

 

 
Figure 3.9. Electrochemical test set-up. 

 

 
Figure 3.10. Electrical circuit of polarisation cell.  
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4. RESULTS AND DISCUSSION 
 

4.1 Analysis of as-received materials 
 

4.1.1 Monel K500 plate 
Three pieces have been cut out of the received Monel K500 plate for 

determination of the rolling direction (Figure 4.1.1), microstructural analysis and 

mechanical testing. 

 

 
Figure 4.1.1. Diagram showing cutting lines of the sample. 

 

Optical microscopy of as-received Monel K500 plate has shown the hot rolled 

microstructure. The microstructure consisted of single phase fcc grains with average 

size of 25 μm and 200-600 nm particles evenly distributed through the volume (Figure 

4.1.2). The SEM-EDS elemental mapping has shown the particles to be of TiCN type 

(Figure 4.1.3). Some particles contained sulphur (Figure 4.1.4). The mean hardness 

value of 180 HV, which is quite low for Monel K500, suggested that the plate did not 

undergo the age hardening heat treatment after rolling. 
 

 

Figure 4.1.2. (a) Optical and (b) SEM images showing Ti-rich particles in as-received 

Monel K500 plate. 
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Figure 4.1.3. (a) Representative SEM image of as-received Monel K500 plate 

microstructure and (b-f) EDS maps showing TiCN particles. 

 
Figure 4.1.4. EDS spectra showing chemical composition of TiCNS particles; the 

matrix spectrum is shown in purple, the particle spectrum is shown in yellow. 

 

4.1.2 Monel K500 and FM60 wires 
 

The microstructure of Monel K500 and FM60 wires consisted of single phase fcc 

grains. The average grain size in Monel K500 was 8 μm and 300-850 nm spherical and 

rectangular particles were evenly distributed through the volume (Figure 4.1.5 a-c). 

More than 60 particles have been analysed on the SEM-EDS, the point and ID analysis 

has shown them to be Ti-rich (TiC and TiCN) (Figure 4.1.6). The mean hardness value 

was measured to be 334 HV. Larger average grain size of 20 µm was observed for 

FM60 (Figure 4.1.5 d-f). Bulky spherical and rectangular particles of 500-1500 nm have 

shown to be Mg-rich. Some of the particles contained Ce (Figure 4.1.6c), which 

sometimes is added to the welding consumables to form (CeTi)-based oxide in order to 
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increase the trapping efficiency for hydrogen [131]. The number density of particles in 

as-received Monel K500 wire was 25 times higher than in FM60 (Table 4.1.1). A finer 

grain size and a higher particle number density explain a higher hardness of Monel 

K500 wire (334 HV) compared to this of FM60 (296 HV). 

 

 
Figure 4.1.5. Optical and SEM images of as-received wires: (a-c) Monel K500  

and (d-f) FM60. 

 

 
Figure 4.1.6. EDS spectra showing chemical composition of (a) TiCN particles in 

Monel K500; and (b) MgS and MgSCeO particles in FM60 in as-received condition; the 

matrix spectrum shown in black, the particle spectrum shown in red. 
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The comparison of Monel K500 and FM60 matrixes is shown on Figure 4.1.7. It can 

be seen that Al concentration is higher in Monel K500, whereas FM60 has higher 

concentrations of Ti and Mn. The SEM spectra qualitatively correspond to the elements 

concentrations in alloy compositions measured with Optical emission spectroscopy 

(Table 4.1.1). 

 

Table 4.1.1. Microstructural parameters of as-received Monel K500 and FM60 wire. 

Sample 
Average 

grain size, 
μm 

particles 
HV0.5 chemistry number density, 

x10-3 μm-2 
average size, 

nm 
Monel K500 8 Ti-rich 55.21 480 334 

FM60 20 Mg-rich 2.27 800 296 
 

 
Figure 4.1.7. Comparison of Monel K500 (black) and FM60 (red) matrices. 

 

4.2 Development of the WAAM technology for Monel alloys 

 
In order to adjust welding parameters and understand the material behaviour, the 

WAAM technology for Ni-Cu alloys has been developed for the first time. 12 single-

bead weld lines of Monel K500 wire have been deposited on a Monel K500 plate 

(Figure 4.2.1). A wide range of welding parameters has been tested in order to 

determine the optimum combination of welding speed and wire feed. One single bead 

was deposited for each of 12 procedures; a single-bead 5-layer wall was built using the 

most successful welding speed/wire feed combination obtained from deposition of 12 

weld lines (Table 4.2.1).  
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Figure 4.2.1. Deposited single-bead lines and a single-bead 5-layered wall (on the right) 

with cut lines. 

 

The substrate plate with depositions was cut into three strips representing the 

beginning, middle and end sections of the weld bead (see white horizontal lines in 

Figure 4.2.1). Then the strips were cut vertically, separating each test sample. Three 

conditions for each bead underwent optical and scanning microscopy investigations, 

micro-hardness was measured for the three welding zones: heat affected zone (HAZ), 

remelted zone (RZ) and fusion zone (FZ).  

 

Table 4.2.1. Welding parameters for deposition of Monel K500 single-beads and a 

single-bead 5-layered wall. 

Te
st 

nu
m

be
r Single beads Wall 

Travel 
speed, 

mm/min 

Current, 
A 

Voltage, 
V 

Heat 
input, 
J/mm 

Wire 
feed, 

m/min 

Travel 
speed, 

mm/min 

Current, 
A 

Voltage, 
V 

Heat 
input, 
J/mm 

Wire 
feed, 

m/min 
1 400 161 17.2 420 8.6 400 157 16.7 390 8.0 
2 400 133 16.0 320 7.2 400 162 17.1 420 8.2 
3 400 124 15.8 290 6.4 400 158 18.6 440 8.5 
4 400 112 15.4 260 5.8 400 158 18.3 430 8.8 
5 300 154 17.1 530 8.0 400 156 19.6 460 9.2 
6 300 127 15.7 400 6.6      
7 300 123 15.9 390 6.3      
8 300 113 15.1 340 5.8      
9 500 162 19.2 370 8.6      
10 500 134 16.0 260 7.0      
11 500 120 14.9 210 6.2      
12 500 115 15.2 210 6.1      
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4.2.1 Macrostructure of single beads cross section 
An example of the variation in the shape of the single bead line along the 

deposition path is illustrated in Figure 4.2.2. The high dome-shape cross section was 

observed at the beginning of the deposition, it usually got lower in the middle where the 

welding process was stabilized, and got more flat at the end due to heat accumulation.  

 

 
Figure 4.2.2. Optical image illustrating the variation in shape of a welding bead, 

deposited with a heat input 420 J/mm and cut from different sections: (a) beginning;  

(b) middle; (c) end of a bead. 

 

The optical images of 12 single beads cross sections are sorted according to the 

welding heat input in descending order (Figure 4.2.3 and 4.2.4 at higher magnification). 

With a decrease in heat input from 530 J/mm to 210 J/mm the bead height and width 

decreased by 58% and 37 %, respectively. The dilution of beads (the cross section area 

of the melted base metal divided by the total area of the weld metal) showed 

dependence on the heat input: beads deposited at a higher heat input had higher dilution 

values (Figure 4.2.5). In high strength steels, the high dilution values may result in 

decreased strength of welds [132]. The effect of dilution in Ni-Cu alloys depositions 

requires further investigation. 
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Figure 4.2.3. Optical images at lower (x14) magnification taken from the middle cross 

section of 12 weld beads, heat input is decreasing from a to l: (a) 530; (b) 420; (c) 400; 

(d) 390; (e) 370; (f) 340; (g) 320; (h) 290; (i-j) 260; (k-l) 210 J/mm. 
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Figure 4.2.4. Optical images at higher (x50) magnification taken from the middle 

cross section of 12 weld beads, heat input is decreasing from a to l: (a) 530; (b) 420; (c) 

400; (d) 390; (e) 370; (f) 340; (g) 320; (h) 290; (i-j) 260; (k-l) 210 J/mm.  

 

 
Figure 4.2.5. Dilution variation with heat input. 
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Table 4.2.2. Characterisation of single weld beads 

Heat 
input, 
J/mm 

Welding 
speed, 

mm/min 

Bead 
width, 
mm 

Bead 
height, 

mm 

Width/
height 
ratio 

Dilution, 
% 

Mean HV 

HAZ RZ FZ 
530 300 10.0 3.8 2.6 21.7 170 166 147 
420 400 9.3 3.5 2.7 16.9 170 152 143 
400 300 8.2 3.5 2.3 15.8 170 160 146 
390 300 8.3 3.2 2.6 15.5 170 160 155 
370 500 9.2 2.8 3.3 14.9 170 157 149 
340 300 8.7 3.3 2.6 12.4 170 161 152 
320 400 8.3 2.9 2.5 12.2 170 163 144 
290 400 8.2 2.8 2.9 12.1 170 161 141 
260 400 7.5 2.8 2.7 12.0 170 156 149 
260 500 7.0 2.5 2.8 9.8 170 159 153 
210 500 7.5 2.6 2.9 8.9 170 157 150 
210 500 7.3 2.4 3.0 6.5 170 159 145 

 

The selected optical images of the three welding zones: HAZ, RZ and FZ are 

shown in Figure 4.2.6. A typical dendritic microstructure was observed in the FZ 

(Figure 4.2.6b). Columnar grain growth and heterogeneous epitaxial grain growth 

(Figure 4.2.6c and d, respectively) were registered in the whole range of heat inputs 

(from 530 to 210 J/mm). The grain growth occurred along the heat flow direction (from 

the base metal towards the fusion zone). The middle cross section of a 5-layered single 

bead wall is shown in Figure 4.2.7. The columnar grains grow through each deposited 

layer in the direction of heat flow.  

The microhardness in different zones of the weld cross section did not vary 

significantly with the heat input (Table 4.2.2). The average microhardness decreased 

from 180 HV for the base metal to 170 HV for HAZ, to 160 HV for the RZ and to 150 

HV for the FZ. The decreased hardness in HAZ, compared to the base metal, can be 

related to stress relief and dislocations annihilation following heating in this area. RZ 

and FZ exhibited typical cast microstructure the hardness of which is obviously lower 

than that of based metal with deformed microstructure. 
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Figure 4.2.6. Optical micrographs of (a) as-welded single bead cross section showing 

three welding zones; (b) dendritic microstructure in the fusion zone; (c) columnar grains 

in the fusion zone; (d) epitaxial grains in remelted zone; (e) no significant grain growth 

observed in the heat affected zone of the base metal. 

 

 
Figure 4.2.7. Optical micrographs of the middle cross section of 5-layered wall at (a) a 

lower (x10) and b) higher (x50) magnification. 
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4.2.2 Microstructure of single beads in as-welded condition 
 

A detailed SEM-EDS analysis of three weld samples with maximum, 

medium and minimum heat inputs (530, 370 and 210 J/mm respectively) was 

carried out. The analysis revealed segregation of Cu in the fusion zone of all 

samples (Figure 4.2.8 a-i), which was caused primarily by the large differences in 

melting points of Ni (1455 °C) and Cu (1085 °C) and by the low diffusivity of Cu 

in Ni [9]. The segregation was characterised by the thickness of Cu-rich bands 

determined by EDS maps (Figure 4.2.8) and relative Cu concentrations in the Cu-

rich bands determined by EDS line scans across the bands (Figure 4.2.9a). With a 

decrease in heat input the segregation decreased: the Cu-rich bands thickness 

decreased from about 6±0.2 µm for 530 J/mm to 5±0.2 µm for 370 J/mm and to 

4±0.2 µm for 210 J/mm; and the Cu concentration in the bands decreased by 

about 15% with a decrease in heat input from 530 J/mm to 210 J/mm (Figure 

4.2.9b). No segregation was found in the base metal (Figure 4.2.8 j-l).  

TiSCN particles with average size of 400 nm were observed in the fusion 

zone for the whole studied range of heat inputs (Figure 4.2.10 a-l). There was no 

significant variation in particle parameters with heat input. These particles 

number density was measured to be 3 times higher in the base metal (Figure 

4.2.10 m-p) compared to the welds. This can be explained by short solidification 

time after fusion to allow for the particles precipitation and growth to the sizes 

visible in SEM. 
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Figure 4.2.8. Variation of Cu segregation in fusion zone with heat input:  

(a-c) 530 J/mm, (d-f) 370 J/mm, (g-i) 210 J/mm and (j-l) base metal. 

 

 
Figure 4.2.9. (a) EDS line scan across Cu-rich bands; (b) diagram showing variation 

in Cu concentrations along the line of scan for depositions at 530 J/mm, 370 J/mm and 

210 J/mm before annealing. 
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Figure 4.2.10. EDS elemental maps of TiSCN particles in fusion zone of samples with 

heat inputs of (a-d) 530 J/mm, (e-h) 370 J/mm, (i-l) 210 J/mm in as-weld condition and 

in the (m-p) base metal. 

 

4.2.3 Microstructure of single beads after heat treatment 
 

The microsegregation of Cu in fusion zone is a very undesirable phenomenon as it 

may lead to inhomogeneity of microstructure and mechanical properties of the welds. 

That is why the first stage of post weld heat treatment was chosen to be annealing. The 

annealing temperature of 1100 °C was applied in compliance with the melting 

temperatures of Ni and Cu and the annealing time (15 minutes) was kept at minimum to 

avoid excessive grain growth. After annealing, the segregation was removed in all 

studied samples (Figure 4.2.11). The difference in Cu concentration measured by the 

EDS line scan did not exceed 10% for all welding conditions (Figure 4.2.12). 

During annealing the bulky TiSCN particles partially dissolved in the depositions 

for all studied heat inputs (Figure 4.2.13 e-h). The new TiC particles precipitated during 

ageing (Figure 4.2.13 i-l and n-q). A few Al-rich particles were observed after ageing 
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(Figure 4.2.13 m and r). This may indicate precipitation of <20 nm γ′ Al-rich 

precipitates known to give additional strengthening. A detailed characterisation of fine 

precipitates using transmission electron microscopy (TEM) was carried out later. 

In contrast to the depositions, no significant variation in the TiSCN particles 

distribution with heat treatment has been observed in the base metal (Figure 4.2.13). 

 
Figure 4.2.11. EDS elemental maps showing Cu and Ni distribution after annealing at 

1100 °C for 15 min in welds with heat inputs of (a-c) 530 J/mm, (d-f) 370 J/mm, (g-i) 

210 J/mm and in the (j-l) base metal. 

 

The different dissolution behaviour of the TiSCN particles was mainly due to the 

different initial processing conditions of the base metal (hot-rolled) and depositions 

(cast). In the base metal particles had longer time to precipitate and grow during multi-
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pass rolling process, which resulted in larger particle sizes and number density in the 

rolled product, compared to the cast (Figure 4.2.14). Consequently, during 15 minutes 

annealing at 1100 °C large particles in the rolled base did not fully dissolve. Whereas in 

depositions (Figure 4.2.13) particles formed during welding, followed by fast air 

cooling, were of smaller sizes and a lower number densities, compared to the base 

metal, and thus they dissolved faster during annealing. 

 

 
Figure 4.2.12. (a) EDS line scan across the former Cu-rich band; (b) diagram 

showing minor variation in Cu concentrations in welds with heat inputs of 530 J/mm, 

370 J/mm and 210 J/mm after annealing. 

 
Figure 4.2.13. Particle variation in the fusion zone of the bead (heat input 530 J/mm) for 

various heat treatment conditions: (a-d) as-welded; (e-h) annealed; (i-m) annealed + 

aged at 610 °C; (n-r) annealed + aged at 610 °C + aged at 480 °C. 
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Figure 4.2.14. Particle variation in the base metal for various heat treatment conditions: 

(a-d) as-welded; (e-h) annealed; (i-l) annealed + aged at 610 °C; (m-p) annealed + aged 

at 610 °C+ aged at 480 °C. 

 

4.2.4 Hardness of single beads in as-welded condition and after heat 

treatment 

Hardness variation with processing condition is shown in Table 4.2.3 and Figure 

4.2.15. As expected, hardness in both depositions and base metal increased after ageing, 

following annealing, due to precipitation of new Ti-rich particles. However, the 

hardness profile varied with heat input (Figure 4.2.15d): lower heat input applied during 

welding led to a higher strengthening effect during ageing. This can be related to a 

variation in the particle precipitation kinetics with heat input, leading to a variation in 

the <20 nm particles distribution after ageing. A more detailed investigation of this 

effect was carried out in the following chapters. The second ageing stage did not show a 

significant hardness increase compared to the condition after the first ageing stage. 

However, this stage may affect ductility and wear resistance of the welds.  
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Table 4.2.3. Hardness variation with heat treatment in selected depositions and base metal 

Heat treatment condition 
530 J/mm 370 J/mm 210 J/mm Base 

metal RZ FZ RZ FZ RZ FZ 

As-welded 158 141 151 146 154 140 180 

Aged at 610°C 243 241 249 247 263 256 247 

Aged at 610°C + 480°C 251 243 266 255 273 263 259 

 

 

 
Figure 4.2.15. Hardness variation with processing conditions for selected heat inputs: 

(a) 530 J/mm; (b) 370 J/mm and (c) 210 J/mm; (d) hardness variation with processing 

condition in the fusion zone for selected heat inputs. 
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4.2.5 Conclusions to Chapter 4.2 
 

Welding trials conducted at the University of Wollongong have proved a 

possibility of using welding as a repair and manufacturing method for Monel K500 

components. The first experiments, deposition of a Monel K500 wire on as-rolled 

Monel K500 plate, were successfully carried out with various welding parameters. The 

following major results were obtained: 

 

1. The strength of depositions is slightly lower than that of base metal due to the 

variation in microstructure (in particular, larger grain size and lower particle 

number density). However, the variation in strength can be minimised with post-

processing heat treatment. 

 

2. Microstructure inhomogeneity of weldments (microsegregation of Cu) increases 

with an increase in heat input, which should be taken into account while 

designing the wire arc additive manufacturing technology. 

 

3. Annealing at 1100°C for 15 min was shown to effectively minimise the Cu 

mirosegregation. 

 

4. The first ageing at 610 °C for 8 hours results in 70% hardness increase in both 

base metal and depositions and a decrease in hardness variation between them. 

This is considered to be related to precipitation of <20nm Al-rich particles, which 

should be further confirmed by transmission electron microscopy. 

 

5. The second ageing, namely holding at 480 °C for 8 hours, did not result in 

significant hardness variation. Thus, the effect of this stage on microstructure and 

mechanical properties requires further investigation. 
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4.3 Microstructure and mechanical properties of as-welded Ni-Cu 

alloys 

4.3.1 Grain structure and segregation  
 

Based on the results obtained in previous chapter, new deposition trials have been 

carried out. This time two Ni-Cu alloys, Monel K500 and FM60 wires have been 

deposited in shapes of single beads, multi-bead single-layer plates and of single-bead 

multi-layer walls at three welding conditions: 300, 400 and 500 mm/min of welding 

torch travel speed and 8.3 m/min of the wire feed rate. Monel K500 hot-rolled plate was 

used as the substrate.  

Optical microscopy of 6 single weld beads was applied to analyse the shape and 

size variation of a single bead cross sections with different welding parameters (Figure 

4.3.1). The higher heat input resulted in deposition of bigger welding bead. The Monel 

K500 bead deposited at travel speed 300 mm/min was 9.1 mm width and 4.4 mm high. 

In FM60 the bead was smaller: 8.1 mm wide and 3.7 mm high for the same travel 

speed. The width to height ratio was 2.1 for both alloys irrespective of welding 

condition. 

 
Figure 4.3.1. Optical images at lower (x14) magnification taken from the cross section of 

single bead depositions of (a-c) Monel K500 and (d-f) FM60; deposition speed is 

increasing from left to right. W and H are width and height of a bead, respectively, in mm,  

D is dilution.  
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As shown in Figure 4.3.1, with an increase in deposition speed (decrease in heat 

input) the dilution of welds reduced for both deposited materials. Namely, the dilution 

in Monel K500 was calculated to be of 12%, 11% and 9% for travel speed of 300, 400 

and 500 mm/min, respectively. In FM60, the dilution was much smaller due to lower 

heat input: 4%, 3% and 2% for travel speed of 300, 400 and 500 mm/min, respectively. 

Dilution was calculated as remelted zone area divided by the total bead area multiplied 

by 100%. 
 

 
Figure 4.3.2. Optical images of a-b Monel K500 and c-d FM60 beads showing 

columnar grains (a and c) and epitaxial grains (b and d) in the fusion zone. 
 

Columnar grain growth in the fusion zone (Figure 4.3.2a,c) and heterogeneous 

epitaxial grain growth in the heat affected zone of base metal (Figure 4.3.2b,d) were 

observed for both materials at all deposition speeds. The grain growth occurred from the 

base metal towards the fusion zone. The grain size in the fusion zone was characterised 

as a space between the secondary dendrite arms (Figure 4.3.3c). Due to the large grain 

size in cast microstructure of depositions, the number of primary dendrite arms was 

insufficient to obtain good statistics to characterise the grain structure. In addition, the 

secondary dendrite arm spacing is a more representative because moving dislocations 

would earlier interact with the secondary arm boundaries than with the primary arm 

boundaries. This was measured to be smaller in Monel K500, 4-9 μm, compared to 

FM60, 6-12 μm (Table 4.3.1). Probably, strong TiCN particles, present in Monel K500, 

effectively pinned the grain boundaries retarding the grain growth in this alloy. 
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Capability of TiCN particles to control the grain size was previously observed in Ti-

microalloyed steels [133, 134].  

In Monel K500 the average grain size slightly decreased with an increase in 

deposition speed (decrease in heat input), which could be a result of faster cooling time, 

lower average temperature and less pronounced grain growth during deposition at a 

higher speed. Although in FM60, the grain size did not vary significantly with 

deposition speed. Grain coarsening behaviour requires further investigation in the 

studied alloys.  
 

 
Figure 4.3.3. Optical images of as-welded dendritic microstructure in the fusion zone of 

(a) Monel K500; and (b) FM60; (c) characterisation of the grain growth. 
 

The microstructure of fabricated walls and plates was similar to one observed for 

single beads (Figure 4.3.4).  
 

 
Figure 4.3.4. Optical images of as-welded walls: (a) Monel K500 and (b) FM60. The 

interface between deposited layers is shown in red broken lines. Z build direction 

increases vertically upward. 
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Energy dispersive X-ray spectroscopy (EDS) of two alloys revealed moderate 

segregation of Cu in the fusion zone in all welding conditions (Figure 4.3.5b,e). This 

was caused primarily by the large difference in melting points of Ni and Cu [9l]. With a 

decrease in heat input, the segregation decreased. No segregation was found for other 

alloying elements (Figure 4.3.5c,f). 

 
Figure 4.3.5. Representative SEM images of microstructure in (a) Monel K500 and (d) 

FM60, and EDS maps showing Cu segregation in (b) Monel K500 and (e) FM60 and 

absence of Ti segregation in (c) Monel K500 and (f) FM60. 

 

4.3.2 Particle precipitation 
 

In Monel K500 the Ti-rich particles of TiCN and TiCAlMgS type dominated, 64-

72% to the total amount analysed, other particles including Mn-rich ones of MnS, 

MnSMgO, MnMgSTiC, and MnMgSAlO type, 14-18%, and Al-rich particles of AlOMgS 

type, 11-18%, were also observed (Figure 6.3.6 a-c, Table 6.3.1). The particle sizes were in 

the range of 300-700 nm for 300 and 400 mm/min deposition speeds and in the range of 

250-550 nm for the 500 mm/min deposition speed. The average particle size decreased with 

an increase in deposition speed, which can be explained by faster cooling and less time 

available for the particle growth. The particle number density decreased from 3.64 to 2.62 

x10-3 μm-2 with an increase in deposition speed from 300 to 500 mm/min, which is 

consistent with a decrease in average particle size.  
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In FM60 the majority of particles were Mn-rich of MnSMgO and MnSAlMgOCa 

type, 66 to 80% of all the analysed particles, Ti-rich ones of TiAlMgO and TiSAlMgO 

type, 18-30%, and Al-rich particles of AlMgO type, 2-7%, were also present (Figure 

4.3.6 d-f, Table 4.3.1). It is worth to note a much lower fraction of Ti-rich particles in 

FM60, compared to Monel K500, although the Ti content in FM60 composition is 

higher. This could result from lower carbon and nitrogen contents in FM60, and a 

possible increase in solubility of Ti in FM60 due to increased Mn content. In Ti-

microalloyed steels the rate of Ti particle precipitation has been shown to decrease with 

an increase in Mn content [135, 136].  

 

 
Figure 4.3.6. EDS spectra showing chemical composition of particles in as-deposited (a-

c) Monel K500 and (d-f) FM60; the matrix spectrum shown in black, the particle 

spectrum shown in red. 
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The particle sizes were in the range of 200-800 nm for all deposition speeds. The 

average particle size showed a maximum at the speed of 400 mm/min, although the 

particle size variation with deposition speed was within the measurement error. The 

particle number density in FM60 decreased from 11.4 to 4.7 x10-3 μm-2 with an increase 

in deposition speed from 300 to 500 mm/min, which is consistent with similar trend in 

Monel K500. The average particle size was slightly larger in Monel K500 than in FM 

60 because the temperature of TiCN precipitation is usually much higher (1000-1500 °C 

[137]) than that of MnS precipitation (800-1000 °C [138]). Thus, TiCN particles have 

more time for growth.  

 

Table 4.3.1. Microstructural parameters and mechanical properties of the studied 

materials in as-welded condition 

Parameter Monel K500 FM60 
300 400 500 300 400 500 

Grain size, μm 6-9 5-9 4-8 6-10 6-12 6-10 

Pa
rti

cl
es

 

size, nm 437±150 448±140 331±160 311±170 392±150 388±160 
ND*  

x10-3 μm-2 3.64 3.06 2.62 11.39 7.24 4.71 

C
he

m
is

tr
y,

%
 72Ti-rich 

17Mn-rich 
11Al-rich 

69Ti-rich 
14Mn-rich 
17Al-rich 

64Ti-rich 
18Mn-rich 
18Al-rich 

67Mn-rich 
26Ti-rich 
7Al-rich 

66Mn-rich 
30Ti-rich 
4Al-rich 

80Mn-rich 
18Ti-rich 
2Al-rich 

Hardness in 
FZ/RZ/HAZ 
of bead 

131/136/ 
156 

135/142/ 
159 

140/150/ 
163 

125/131/ 
141 

122/129/ 
139 

130/132/ 
142 

Hardness in 
FZ of wall 144 141 148 131 132 134 

Hardness in 
FZ of plate 178 165 171 200 192 187 

YS, MPa 170±5 165±10 160±5 146±14 160±12 150±5 
UTS, MPa 430±15 410±10 408±15 356±10 363±20 360±5 
Elongation, % 47±2 51±3 50 48±3 47±1 48±2 
MPa·% 14100 14662 14200 12048 12290 12240 
Wear mass loss, g 0.0560 0.0420 0.0460 0.0622 0.0574 0.0628 
Wear track 
width, mm 2.101 2.124 2.160 2.234 2.240 2.379 

Wear track 
depth, µm 106 100 75 132 124 95 

ND* - number density of particles 
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4.3.3. Hardness, strength, toughness and wear resistance 
 

The microhardness (HV), yield stress (YS) and ultimate tensile strength (UTS) in 

Monel K500 plates obtained in this work using WAAM were in the range of 141-163 

HV, 160-170 MPa and 408-430 MPa, respectively. This is about 1.7, 2.4 and 1.6 times 

lower than the values expected for a cast microstructure, 277 HV, 415 MPa and 690 

MPa, respectively [139]. In accordance with lower strength, the elongation to failure 

(El) 47-51 % was 5 times higher than this for a cast microstructure, 10 %. On the 

contrary, hardness 133-142 HV, YS = 146-160 MPa and UTS = 356-363 MPa in FM60 

were only 5.5, 6 and 24 % lower than the corresponding values in cast Monel 400 with 

composition similar to FM60, 150 HV, 170 MPa and 450 MPa, respectively. And the 

elongation to failure, 48 % in FM60, was about 2 times higher compared to the cast 

Monel 400, 25 % [139].  

The significant variation in properties of Monel K500 could be explained by the 

variation in cooling rates between WAAM and casting: very fast cooling rates (short 

cooling time) inherent for WAAM prevent particle precipitation required for enhanced 

strength of Monel K500. However, for FM60 the same variation in cooling rates is not 

so critical for the mechanical properties variation, because the FM60 and Monel 400 are 

not designed for age-hardening (the precipitation strengthening mechanism is weak).  

Analysis of the stress-strain curves (Figure 4.3.7 a-c) has shown that Monel K500 

exhibits slightly higher YS, UTS and elongation to failure than FM60, which was 

expected due to the variation in alloy composition, in particular a higher C content 

(Table 4.3.1). Although the particle number density measured using SEM imaging was 

higher in FM60, a higher C content in Monel K500 could result in more pronounced 

particle precipitation in the <15 nm size range. This would explain higher strength and 

ductility in Monel K500. To support this a more detailed characterisation of particles 

with transmission electron microscopy is required. For the tested deposition speed 

range, no significant variation in tensile properties with speed was observed. 

Toughness, evaluated as a product of 0.5(YS+UTS) and El [140], was higher in Monel 

K500 than in FM60. This corresponds to the higher strength and ductility of Monel 

K500. For both alloys, the maximum average toughness was observed for the medium 

deposition speed of 400 mm/min.  
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Figure 4.3.7. Mechanical properties of wire deposited Monel K500 (red) and FM 60 

(black): (a-c) tensile stress-strain curves; (d-f) hardness variations in different welding 

zones; (g-i) wear resistance (mass loss). 

 

The average microhardness of Monel K500 depositions decreased from 170 HV 

for the base metal to 160 HV for HAZ, to 150 HV for the remelted zone and to 145 HV 

for the fusion zone (Figure 4.3.7 d-f). The average microhardness of FM60 depositions 

decreased from 170 HV for the base metal to 140 HV for HAZ, to 135 HV for the 

remelted and fusion zones. The decreased microhardness in HAZ, compared to the base 

metal, can be related to stress relief and dislocation annihilation following heating in 

this area. Remelted and fusion zones exhibited typical cast microstructure the hardness 

of which is obviously lower than that of base metal with deformed microstructure. The 

microhardness in different zones of the weld cross section did not vary significantly 

with the deposition speed for both alloys (Table 4.3.1). However, the hardness of Monel 

K500 was definitely higher than that of FM60 for all deposition speeds, which 

corresponds to the smaller SDAS and precipitation of hard TiCN particles in Monel 

K500. 
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Figure 4.3.8. Optical images of the wear track on (a) Monel K500 and (b) FM60 disks 

after full cycle of the pin-on-disk test. 

 

The wear resistance of Monel K500 depositions was higher (mass loss lower) than 

that of FM60 depositions for all three speeds (Figure 4.3.7 g-i). This corresponds to the 

higher hardness and toughness of Monel K500, related to its smaller SDAS and 

precipitation of hard TiCN particles. For both alloys the highest toughness at 400 

mm/min deposition speed corresponded to the highest wear resistance (lowest mass loss 

during the wear testing) for this speed. Optical images of the wear tracks (Figure 4.3.8) 

illustrate rough wear surfaces for both alloys with numerous debris and deep wear track 

grooves, indicating pronounced plastic deformation, fatigue and ductile fracture during 

the wear process. The wear track width was 7% narrower for Monel K500 than for 

FM60, which corresponds to a lower mass loss of Monel K500 and supports its higher 

wear resistance. An increase in wear resistance with an increase in hardness was 

previously observed in medium carbon steels [141, 142]. In particular, wear resistance 

increased with precipitation of hard Nb- and Cr-rich carbides [143, 144]. On another 

hand, increased toughness, or rather a proper balance between hardness and toughness, 

was suggested to be the major reason for increased wear resistance [145, 146]. 

On the next stage of this research age-hardening heat treatment will be used to 

modify the precipitate distributions and further improve the mechanical properties of 

WAAM-deposited Ni-Cu alloys. In addition to the Ti-rich particles, Ni-rich gamma 

prime particles may be expected to affect the microstructure-properties relationship in 

the studied alloys. However, due to their small size, <15 nm, they cannot be observed in 

SEM. Therefore, an in-depth study of precipitates will be conducted using transmission 

electron microscopy. 
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4.3.4 Conclusions to Chapter 4.3 
 

Investigation of the microstructure and mechanical properties of WAAM-

produced Ni-Cu alloys resulted in the following conclusions: 

 

1. In Monel K500 the secondary dendrite arm spacing was smaller than in FM60, which 

corresponded to a higher number density of TiCN precipitates in Monel K500. 

Moderate Cu segregation in depositions was observed in both alloys. This could 

result from a variation in the Ni and Cu solidification temperatures irrespective of 

other elements concentrations.  

 

2. The majority of precipitates were Ti-rich particles in Monel K500 and Mn-rich ones 

in FM60, although the Ti content is higher in FM60. This could result from the lower 

carbon and nitrogen contents in FM60 and a possible increase in Ti solubility in 

FM60 due to an increased Mn content in it. With an increase in deposition speed, the 

particles number densities decreased in both alloys, which can be explained by a 

faster cooling rate (less time available for precipitation) for a faster deposition speed. 

 

3. Hardness, strength, ductility, toughness and wear resistance were higher in Monel 

K500, compared to FM60. This mainly resulted from the precipitation of Ti-rich 

particles in Monel K500. For both alloys, the highest wear resistance corresponded to 

the highest toughness observed at the medium deposition speed of 400 mm/min. 
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4.4 Microstructure and mechanical properties of heat treated  

Ni-Cu alloys 

 

4.4.1 Grain structure and segregation  
 

In order to remove the segregation of Cu, observed in all as-welded samples 

(Figure 4.4.1 a-f), an annealing heat treatment at 1100 °C for 15 minutes was carried out 

(Figure 4.4.1 g-l).  

 
Figure 4.4.1. Representative SEM images of microstructure in (a,g) Monel K500 and 

(d,j) FM60, and EDS maps showing Cu segregation in as-welded (b) Monel K500 and 

(e) FM60, absence of Cu segregation in annealed (h) Monel K500 and (k) FM 60, 

absence of Ti segregation in as-welded (c) Monel K500 and (f) FM60, and absence of 

Ti segregation in annealed (i) Monel K500 and (l) FM60. 
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The secondary dendrite arm spacing (SDAS) was measured to be 4-12 µm in both 

alloys in as-welded condition. In Monel K500 SDAS decreased with an increase in 

deposition speed, from 6-12 µm for 300 mm/min to 5-10 µm for 400 mm/min to 4-8 µm 

for 500 mm/min. Higher travel speed leads to higher cooling rate, which means that less 

time is available for grain growth. In addition, higher travel speed (higher cooling rate) 

probably results in precipitation of higher number density of nano-sized TiAl-rich 

precipitates, which means a more pronounced grain boundary pinning effect. 

However, in FM60 no dependence of SDAS on deposition speed was observed. 

Although the same trend – smaller grain growth with higher travel speed (faster cooling 

rate) would be expected for this alloy, the absence of nano-sized TiAl-rich precipitates 

in FM60, which play an important role in grain boundary pinning effect, makes 

variation of SDAS with travel speed less pronounced. 

During annealing and subsequent ageing, the SDAS was growing in both alloys, 

however the growth was larger in FM60 (up to 10-18 µm after the second ageing) 

compared to Monel K500 (up to 6-14 µm after the second ageing).  

 

4.4.2 Particle precipitation  
 

In the as-welded condition, the majority of particles were Ti-rich (64-72 %) in 

Monel K500 and Mn-rich (66-80 %) in FM60. The particle number density was on 

average 2 times higher in FM60. The particle number density decreased with an 

increase in deposition speed from 3.6x10
-3
 μm

-2
 for 300 mm/min to 3.1x10

-3
 μm

-2
  for 400 

mm/min to 2.6x10
-3
 μm

-2
 for 500 mm/min in Monel K500 and from 11.4x10

-3
 μm

-2
 for 300 

mm/min to 7.2x10
-3
 μm

-2
  for 400 mm/min to 4.7x10

-3
 μm

-2
 for 500 mm/min in FM60.  
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Figure 4.4.2. SEM images of precipitates in (a, b) Monel K500 and (c, d) FM60 in (a,c) 

as-welded and (b,d) aged at 610°C conditions. 

 

After annealing and ageing at 610 °C the particle number density increased by 

240 - 290 times in Monel K500 and only up to 70% in FM60. This coincided with 4 - 6 

times decrease in the average particle size in Monel K500 and only 10-60 % decrease in 

FM60. After annealing and ageing almost all the particles in Monel were Ti-rich (Figure 

4.4.3 a,b). Although in the as-welded condition, around 70 % of particles were Ti-rich. 

In contrast, in FM60 the particle chemistry did not vary significantly in aged condition 

compared to the as-welded (Figure 4.4.3 c,d). In Monel K500 the dependence of particle 

parameters on deposition speed, observed in the as-welded conditions, disappeared after 

annealing and ageing. Although in FM60 the dependence on deposition speed (a 

decrease in the particle number density with an increase in speed) remained after 

annealing and ageing. All these indicate a stronger effect of annealing and ageing on 

particle precipitation in Monel K500, compared to FM60: Ti-rich particles broadly 

precipitated in Monel K500 during ageing, although in FM60 this process was much 

slower.  
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Figure 4.4.3. EDS spectra showing chemical composition of (a) TiC and (b) TiCN particles in 

Monel K500 aged at 610°C, and (c) MgSAlO and (d) AlTiOMgS in FM60 aged at 610°C; the 

matrix spectrum is shown in black, the particle spectrum is shown in red. 

 

During the second ageing at 480 °C, following annealing and ageing at 610 °C, 

the particle coarsening accompanied by a decrease in the particle number density took 

place in both alloys.  However, this was more pronounced in Monel K500 (up to 1.7 

times increase in the average particle size and up to 2 times decrease in the particle 

number density with respect to the condition after first ageing) compared to FM60 (up 

to 10 % increase in the average particle size, which could be within the experimental 

error, and up to 40 % decrease in the particle number density). In Monel K500 no 

significant variation in the particle chemistry was observed with the second ageing, all 

the particles were Ti-rich. In FM60 the relative amount of Mn-rich particles increased 

after the second ageing.   
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Table 4.4.1. Microstructural parameters and mechanical properties variation with heat 

treatment in Monel K500. 
H

ea
t t

re
at

m
en

t  

Tr
av

el 
sp

ee
d, 

m
m

/m
in

 Particles  
(SEM size range) 

Mechanical properties 

ND* 

x10
-3
 

μm
-2
 

size, 
nm 

Chemistry, 
% 

HV 
YS, 
MPa 

UTS, 
MPa 

El, % MPa·% 
Wear 
mass 

loss, g 

Wear track  

width, 
mm 

max. 
depth, 
µm 

A
s-

w
el

de
d 

300 3.6 
437 

±150 

72Ti-rich 
28 Mn-

rich 
144 170±5 430±15 47±2 14100 0.0896 2.101 106 

400 3.1 
448 

±140 
69Ti-rich 
31Mn-rich 

141 165±10 410±10 51±3 14662 0.0662 2.124 100 

500 2.6 
331 

±160 

64Ti-rich 
36 Mn-

rich 
148 160±5 408±15 50±1 14200 0.0685 2.160 75 

A
ge

d 
at

 6
10

 °C
 300 865 

90 
±50 

100 Ti-
rich 

256 250±4 522±25 39±1 15054 0.0758 1.923 106 

400 898 
75 

±45 
100 Ti-

rich 
255 300±3 615±20 37±1 16928 0.0601 2.057 90 

500 692 
85 

±47 
100 Ti-

rich 
262 290±4 609±15 32±1 14384 0.0556 2.190 47 

A
ge

d 
at

 6
10

°C
 +

48
0 

°C
 

300 448 
160 
±74 

100 Ti-
rich 

259 320±3 536±5 12±1 5136 0.0748 2.020 82 

400 667 
90 

±50 
100 Ti-

rich 
236 250±5 563±5 34±4 13821 0.0625 2.105 48 

500 641 
95 

±45 
100 Ti-

rich 
265 280±3 622±20 31±1 13981 0.0589 2.270 43 

ND* - number density of particles.  
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Table 4.4.2. Microstructural parameters and mechanical properties variation with heat 

treatment in FM60 
H

ea
t t

re
at

m
en

t 

Tr
av

el 
sp

ee
d,

 m
m

/m
in

 Particles  
(SEM size range) 

Mechanical properties 

ND 

x10
-3
 

μm
-2
 

size, 
nm 

Chemistry,  
% 

HV 
YS, 
MPa 

UTS, 
MPa 

El, % MPa·% 
Wear 
mass 

loss, g 

Wear track  

width, 
mm 

max. 
depth, 
µm 

A
s-

w
el

de
d 

300 11.4 
311 

±170 
67Mn-rich 
33TiAl-rich 

131 146±3 356±10 48±3 12048 0.0902 2.234 132 

400 7.2 
392 

±150 
66Mn-rich 
34TiAl-rich 

132 149±5 361±20 47±1 11985 0.0722 2.240 124 

500 4.7 
388 

±160 
80Mn-rich 
20TiAl-rich 

134 160±4 375±5 48±2 12840 0.0744 2.379 95 

A
ge

d 
at

 6
10

 °C
 300 12.7 

278 
±90 

52Mn-rich 
48TiAl-rich 

163 160±3 397±5 41±1 10804 0.0689 1.730 107 

400 8.5 
274 

±110 
50Mn-rich 
50TiAl-rich 

164 155±5 410±10 43±1 11718 0.0639 2.085 85 

500 8.1 
236 
±95 

55Mn-rich 
45TiAl-rich 

162 205±3 428±20 36±3 11034 0.0587 2.105 65 

A
ge

d 
at

 6
10

°C
 +

48
0°

C
 

300 9.2 
285 

±100 
61Mn-rich 
39TiAl-rich 

139 115±4 358±10 48±2 11160 0.0734 2.200 94 

400 8.9 
288 
±97 

70Mn-rich 
30TiAl-rich 

192 170±3 490±20 39±1 12870 0.0680 2.208 86 

500 7.7 
261 
±95 

62Mn-rich 
38TiAl-rich 

173 190±5 428±20 40±2 11760 0.0602 2.220 79 
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4.4.3 Hardness, strength, toughness and wear resistance 
 

Hardness in Monel K500 was higher than in FM60 for all studied conditions 

(Table 4.4.1 and 4.4.2). However, the difference was minor (9-14 HV) in the as-welded 

condition and increased significantly (90-100 HV) after annealing and ageing at 610 °C. 

This coincides with a larger hardness response of Monel K500 to ageing: as a result of 

annealing and ageing at 610 °C, hardness in Monel K500 increased by 112-114 HV, 

although in FM60 it increased by only 28-32 HV. The second ageing at 480 °C did not 

improve hardness of Monel K500. However, in FM60 hardness could increase by up to 

28 HV as a result of second ageing. A decrease in hardness following the second ageing 

was also observed (for 400 mm/min deposition speed in Monel K500 and for 300 

mm/min speed in FM60). 

The yield stress (YS) and ultimate tensile strength (UTS) were higher in Monel 

K500 than in FM60 for all studied conditions, although this discrepancy varied with 

heat treatment (Figure 4.4.4, Tables 4.4.1 and 4.4.2). In the as-welded condition YS and 

UTS were 16-24 MPa (depending on deposition speed) and 33-74 MPa, respectively, 

higher in Monel K500. And after annealing and ageing at 610 °C the YS and UTS were 

90-145 MPa and 125-205 MPa, respectively, higher in Monel K500. These indicate a 

higher strength growth with ageing at 610 °C in Monel K500, compared to FM60: in 

Monel K500 the YS and UTS increased by 80-130 MPa and 92-205 MPa, respectively; 

however, in FM60 the YS and UTS increased by only 6-45 MPa and 42-53 MPa, 

respectively. With the second ageing at 480 °C, following annealing and ageing at 610 

°C, the YS and UTS could decrease in both alloys by up to 45 MPa. In the as-welded 

condition the elongation to failure was slightly higher in Monel K500 (50-51 %) 

compared to FM60 (47-48 %). However, after ageing the elongation in Monel K500 

decreased faster than in FM60 and became lower than in FM60.  

Toughness was assessed via calculation of the area under stress-strain curves. The 

shape under stress-strain curves was approximated by a trapezoid with the area 

calculated as 0.5(YS+UTS)·elongation. For such a calculation method, the toughness 

units were MPa·%. Toughness in Monel K500 was higher than in FM60 for all studied 

conditions (except for 300 mm/min deposition speed aged at 480 °C, which showed 

abnormally low elongation in Monel K500). In Monel K500 toughness increased after 

annealing and ageing at 610 °C by up to 15 %, which corresponds to a significant 
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increase in strength, and decreased after the second ageing at 480 °C by up to 8 %, due 

to a decrease in elongation. In FM60 the opposite trend was observed: toughness 

decreased after annealing and ageing at 610 °C by up to 15 % and increased after the 

second ageing at 480 °C by up to 10 %. 

 

 
Figure 4.4.4. Stress-strain curves of (a-c) Monel K500 and (d-f) FM60 for various travel 

speeds and heat treatment conditions.  
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Figure 4.4.5. SEM images of wear tracks for Monel K500 (a) as-welded and (b) 

annealed and aged at 610°C conditions, and for FM60 (c) as-welded and (d) annealed 

and aged at 610°C conditions. 

 

The wear resistance was higher (sample mass loss lower) in Monel K500 for 

almost all studied conditions. After annealing and ageing at 610 °C, the wear resistance 

increased by up to 16 % in Monel K500 and up to 24 % in FM60. These correspond to 

an increase in hardness in both alloys and some increase in toughness in Monel K500. 

After the second ageing at 480 °C the wear resistance slightly (by up to 6 %) decreased 

in both alloys. In Monel K500 this coincided with a decrease in toughness. Although in 

FM60 no direct correlation with hardness and toughness was observed. Imaging of the 

wear surfaces (Figure 4.4.5) and measurements of the wear track roughness (Figures 

4.4.6 – 4.4.8) supported the mass loss data. In the as-welded condition, both alloys 

exhibited quite rough wear surfaces with numerous debris and deep wear track grooves 

(Figure 4.4.9), indicating pronounced plastic deformation, fatigue and ductile fracture 

during the wear process (Figures 4.4.5 a,c and 4.4.6 – 4.4.8 a,d). This indicates 

existence of a mixed abrasive-adhesive wear mechanism in the studied alloys. 

Although, the wear track width was 6-10 % narrower and the depth was 25 % shallower 

for Monel K500 than for FM60, meaning more difficult penetration of the pin into the 

Monel K500 disk surface. This corresponds to a lower mass loss measured for Monel 
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K500 and contributes to the overall conclusion that the wear resistance of as-welded 

Monel K500 was higher.  

After annealing followed by ageing at 610 °C the wear track roughness decreased 

for both alloys (Figures 4.4.5 b,d, 4.4.6- 4.4.8 b,e and 4.4.9). In particular, the track 

depth decrease reached 65 % in both alloys, which corresponds to a decrease in mass 

loss for both alloys. This can be correlated to an increase in hardness for both alloys 

with the ageing, and indicates transition towards a more sliding abrasion type of wear 

from more fatigue type for the as-welded condition. After the second ageing at 480 °C 

the wear track width could increase for both alloys, although the track depth mainly 

decreased. This corresponds to an increase in mass loss and supports a decrease in wear 

resistance with the second ageing. 

 

 
Figure 4.4.6. Wear track surface roughness for (a-c) Monel K500 and (d-f) FM60 

deposited with travel speed 300 mm/min. 
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Figure 4.4.7. Wear track surface roughness for (a-c) Monel K500 and (d-f) FM60 

deposited with travel speed 400 mm/min. 

 

 
Figure 4.4.8. Wear track surface roughness for (a-c) Monel K500 and (d-f) FM60 

deposited with travel speed 500 mm/min. 
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Figure 4.4.9. Variation in wear track surface roughness with deposition travel speed in 

(a-c) Monel K500 and (d-f) FM60. 

 

4.4.4 Effect of alloy composition and processing on grain 

structure and particle parameters 
 

Compared to FM60, Monel K500 wire contained several times lower Mn and 

Ti contents, although higher Al and C contents. The higher C content has led to 

precipitation of TiC/TiCN particles in Monel K500. However, in FM60 a higher Ti 

content did not lead to precipitation of TiCN but rather to precipitation of Ti-rich 

oxides. Ti-rich oxides were frequently observed in Ni-based alloys [149, 150], in 

particular, in the core of TiN particles [151]. The latest indicates a possibility of Ti 
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oxide precipitation at temperatures higher than TiCN. In our alloy FM60 this would 

mean a decrease in free Ti in solid solution available for carbonitride precipitation 

after the Ti-rich oxides have precipitated.  

In the as-welded condition, the number density of particles in both alloys 

decreased with an increase in deposition speed. This resulted from an increased 

cooling rate and decreased time available for precipitation with an increase in 

deposition speed. The number density of precipitates was 2-3 times (depending on 

deposition speed) higher in FM60 than in Monel K500. This mainly originated from 

4-7 times higher number density of Mn-rich particles in FM60, what corresponded 

to the 4 times higher Mn content in the FM60 composition. With an increase in 

deposition speed the relative amount of Ti-rich particles decreased in both alloys 

(although to a greater extent in FM60). Faster cooling rates, due to higher deposition 

speeds, largely affected the precipitation of Ti-rich particles than the Mn-rich ones, 

as the precipitation temperatures of Ti oxides (>1600 °C [150]), nitrides (>1200 °C 

[151]) and carbide (>1000 °C [137, 133]) are higher than those observed for Mn-rich 

particles (down to 800 °C [138, 152]).  

After annealing and ageing at 610 °C almost all the particles in Monel K500 

were TiC/TiCN, and the particles number density dramatically (by 240 - 290 times) 

increased compared to the as-welded condition. It remains unclear whether the 

precipitation of Ti occurred during annealing or during subsequent ageing. For the 

Ti and C contents in Monel K500 (0.5 and 0.088 wt. %, respectively) and the 

solubility equation log [Ti]⋅[C] = 2.75 - 7000/T presented in [133], the temperature 

of full TiC dissolution could be about 1430 °C in our Monel K500. This means that 

during annealing at 1100 °C not dissolution but precipitation of TiC could take 

place. In FM60 the calculated dissolution temperature of TiC was lower (1135 °C) 

than in Monel K500, although still a bit higher than the annealing temperature. 

However, precipitation of TiC in FM60 had to be slower not only because of lower 

C content, but also because of higher Mn content. Mn was reported to increase 

solubility of Ti in fcc lattice [135, 136]. A decrease in relative amount of Mn-rich 

particles and increase in TiAl-rich ones in FM60 after annealing and ageing at 610 

°C could be due to the dissolution of some Mn-rich particles and growth of fine 

TiAl-rich ones to the sizes large enough for observation in SEM. The variation in 

particle number density with deposition speed (namely, a decrease in number density 
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with the speed increase) disappeared after annealing and ageing in Monel K500 and 

remained in FM60. Obviously, a significant variation in the particle chemistry, 

associated with precipitation of TiC/TiCN in Monel K500 for all deposition speeds, 

altered this dependence. 

During the second ageing at 480 °C, particle coarsening (Oswald ripening), 

accompanied by a decrease in number density, took place in both alloys. This 

phenomenon was observed previously in aged Ni alloys [153, 154]. In addition, in 

FM60 either precipitation and growth of new Mn-rich particles or growth of the Mn-

rich shell on top of the Ti-rich core took place. This has led to the increase in 

relative amount of Mn-rich particles in FM60 after the second ageing. 

In the as-welded condition, secondary dendrite arm spacing (SDAS) was in the 

same range of 4-12 µm in both alloys. This can be related to similar solidification 

and cooling conditions irrespective of the alloy composition. However, in Monel 

K500 SDAS decreased with an increase in deposition speed, and in FM60 no 

dependence of SDAS on deposition speed was observed. SEM visible Ti-rich 

particles, which could affect the grain growth rate during solidification, were of 

similar number density in both alloys; and therefore, probably, did not play a 

significant role in formation of SDAS value. Particles smaller than 20 nm could be 

of varying density and might have influenced SDAS. However, these were not 

studied here and require further investigation using transmission electron 

microscopy (TEM). During annealing and subsequent ageing SDAS was growing in 

both alloys. However, the growth was larger in FM60 (up to 10-18 µm after the 

second ageing) compared to Monel K500 (up to 6-14 µm after the second ageing). 

Slower SDAS growth in Monel K500 can be explained by a much higher number 

density of TiC/TiCN particles pinning the dendrite boundaries and preventing their 

migration. 

 

4.4.5 Effect of alloy composition and processing on mechanical 

and wear properties 
 

Due to precipitation of TiC/TiCN particles and smaller SDAS, Monel K500 

exhibited higher hardness, YS and UTS than FM60 for all the studied conditions 

(Tables 4.4.1 and 4.4.2). In spite of FM60 elongation being larger in annealed and 
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aged conditions, toughness of Monel K500 was higher due to higher strength. In 

accordance with higher hardness and toughness, the wear resistance of Monel K500 

was higher in almost all conditions (Figure 4.4.10). 

 

 
Figure 4.4.10. Variation in mechanical properties of Monel K500 (red) and FM60 

(black) with heat treatment for three travel speeds: (a) hardness, (b) toughness  

(c) wear resistance (mass loss). 

 

Annealing followed by ageing at 610 °C led to the hardness, strength and wear 

resistance increase in both alloys and toughness increase in Monel K500. These 

were due to precipitation of Ti-rich particles in both alloys: TiC/TiCN in Monel 

K500 and Ti-rich oxides in FM60. However, 240 - 290 times increase in the particle 

number density in Monel K500 seems being disproportional to only 16 % increase in 

wear resistance, as only 2 times increase in the particle number density in FM60 

resulted in 24 % increase in wear resistance. Obviously, fine (< 20 nm) particles not 

visible in SEM play a significant role in determining mechanical properties in the 
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studied alloys. These particles require a detailed investigation using TEM. Second 

ageing at 480 °C, following ageing at 610 °C, resulted in the particle growth 

accompanied by a decrease in the particle number density in both alloys. This could 

lead to either minor variations in hardness and strength or noticeable decrease in 

those parameters in both alloys, and a decrease in toughness in Monel K500. In spite 

of some increase in toughness in FM60, the wear resistance decreased in both alloys 

after the second ageing. 

In the as-welded condition, the lowest hardness, strength and wear resistance 

in both alloys were observed for the slowest deposition speed of 300 mm/min. These 

coincided with the highest particle number density in both alloys. At slow deposition 

speed the cooling time is longer and particles have more time for precipitation in 

growth. While the large (SEM visible) particles are growing, the fine (TEM visible) 

particles may lose their number density, which would soften the matrix and reduce 

strength and wear resistance. In the annealed and aged conditions, the highest wear 

resistance (supported by either the highest hardness or strength) in both alloys was 

obtained at the highest deposition speed of 500 mm/min. These coincided with the 

low particle number density in the SEM visible particle size range (>20 nm). The 

role of <20 nm particles requires further investigation.  

On the basis of this discussion, for future practical applications of wire 

deposited Ni-Cu alloys we would recommend to avoid the second ageing heat 

treatment and apply reasonably high speeds during wire-arc deposition. 

 

4.4.6 Mechanical properties of hot rolled Monel K500 plate  
 

Mechanical properties of Monel K500 hot rolled plate are presented in Figure 

4.4.10 and Table 4.4.3. As can be seen, the age hardening heat treatment at 610 °C 

has led to the increased strength, hardness and wear resistance compared to the 

annealed condition. Although the elongation to failure decreased after ageing by 

60%. The second stage of ageing at 480 °C did not affect the mechanical properties 

significantly. The same trend was observed for both Monel K500 and FM60 

depositions, however, the absolute values of strength and wear resistance varied.  
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Figure 4.4.11. Tensile stress-strain curves of Monel K500 plate. 

 

The comparison of as-welded depositions to the annealed hot-rolled plate and the 

corresponding age-hardening treatments has shown the hardness values of wire-arc 

deposited Monel K500 to be very close to the corresponding hardness values of Monel 

K500 plate. However, the strength of plate was higher than this of depositions for all 

studied heat treatment conditions. Thus, YS and UTS in annealed Monel K500 plate 

were 198-208 MPa and 294-316 MPa, respectively, higher than in deposited Monel 

K500. After annealing and ageing at 610 °C the YS and UTS were 215-265 MPa and 

218-311 MPa, respectively, higher in the plate. Despite that, for all studied conditions, 

the wear resistance of the plate was on average 2 times lower (mass loss higher) than 

that of the depositions. This coincided with a 2-2.5 times lower elongation and up to 1.7 

times lower toughness in Monel K500 plate. In addition, the fracture of Monel K500 

plate was quasi-cleavage in contrast to fully ductile fracture in Monel K500 and FM60 

depositions (Figure 4.4.12). 

 

Table 4.4.3. Mechanical properties of Monel K500 plate 

Heat treatment 

condition 
HV 

YS, 

MPa 

UTS, 

MPa 
El, % MPa·% Mass loss, g 

Anneal 155 368 724±20 25±1 13 650 0.1821 

Age at 610 °C 250 515 833±5 15±1 10 110 0.1392 

Age at 610°C +480°C 270 518 815±10 12±1 7 998 0.1380 
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Figure 4.4.12. SEM images of fracture surface in annealed and aged at 610 °C 

condition: (a,b) Monel K500, (c,d) FM60 and (e,f) Monel K500 plate. 

 

4.4.7 Corrosion resistance of Monel K500 and FM60 and Monel 

K500 plate 
 

All corrosion is an electrochemical process of oxidation and reduction reactions. 

As corrosion occurs, electrons are released by the metal (oxidation) and gained by 

elements (reduction) in the corroding solution. Because there is a flow of electrons 

(current) in the corrosion reaction, it can be measured and controlled electronically. 

Therefore, controlled electrochemical experimental methods can be used to characterize 

the corrosion properties of metals and metal components in combination with various 

electrolyte solutions [147]. Electrochemical corrosion experiments measure and/or 

control the potential and current of the oxidation/reduction reactions.  
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The corrosion behaviour of Monel K500 and FM60 depositions in as-welded, 

annealed, aged at 610°C and aged at 610°C+480°C in three welding conditions have been 

studied in this work. The corrosion of Monel K500 hot-rolled plate in as-received and aged 

according to similar heat treatment conditions as depositions has been used for comparison. 

Open-circuit potential (Eocp), a potential at which the rate of anodic dissolution of 

the electrode equals the rate of cathodic reactions and there is no net current flowing in 

or out of the electrode, was measured between the sample (working electrode, WE) and 

reference electrode (RE). The material with higher negative value of Eocp will be 

sacrificed first when used in galvanic couple. 

A potentiodynamic experiment, the cyclic polarisation test, has been performed in 

a standard three-electrode cell to determine the corrosion current density (Icorr), which 

characterises the corrosion rate. In this test, the potential was applied to the working 

electrode and the resulting current was constantly measured. Polarisation begun -250 

mV from Eocp and increased until the potential was  +700 mV from OCP. Anodic 

polarisation was reversed at 700 mV and the scan proceeded  back to OCP.  

The oxidation and reduction reactions are given below: 

Oxidation (anodic) reaction: 

Ni → Ni 2+ + 2e- 

Ni 2+ +2OH → Ni(OH)2 

Reduction (cathodic) reaction: 

½ O2+H2O+2e- → 2OH- 

 
Figure 4.4.13. Samples after cyclic polarisation test: (a) Monel K500 and (b) FM60. 

 

After the test all samples looked like ones shown in Figure 4.4.13. The area, 

which was exposed to the electrolyte solution 3.5%NaCl, changed its original colour 
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from Ni-white to Cu-yellow. This happened because Ni, as less noble metal, compared 

to Cu, acted as a sacrifice metal, protecting the sample. 

The corrosion current density, which indicates how fast the corrosion proceeds, 

was calculated using Tafel Slope Analysis. It was determined as the current at the 

intersection of the linear extrapolation of the cathodic Tafel slope with the rest potential. 

An example of cyclic polarisation curves and Icorr measurements are shown in Figure 

4.4.14 for as-welded Monel K500 and FM60.  

 

 
Figure 4.4.14. Cyclic polarisation curves for as-welded depositions:  

(a) MonelK500 and (b) FM60. 

 

The cyclic polarization curves for Monel K500 and FM60 depositions in all heat 

treatment conditions exhibited a passive behaviour of both alloys. The summary of 

cyclic polarization parameters for Monel K500 and FM60 depositions in various heat 
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treatment conditions are given in Table 4.4.4. A very low values of corrosion current 

density (0.5-4.0 nA/cm2) suggest that these alloys would have a good corrosion 

resistance in 3.5%NaCl environment. To compare, Ni-Cr alloys 600, 601 and C22, 

tested under similar conditions in 3.5%NaCl environment, demonstrated Icorr values 100 

times higher [148] than values obtained in this study for Ni-Cu alloys. 

The order of Icorr measured for Monel K500 plate was the same as for both 

depositions, which suggests a similar corrosion resistance in the tested media, regardless 

of the manufacturing method (Table 4.4.5). 

For most studied conditions the value of Icorr increased in both depositions and 

plate after first ageing and futher increased after second ageing. It was observed before 

that this allloys are more susceptible to corrosion in age-hardened state [25]. The 

variation in Icorr with heat treatment for two depositions at welding speed of 300 

mm/min and a base plate is shown in Figure 4.4.15. 

 

Table 4.4.4. Summary of cyclic polarization parameters for Monel K500 and 

FM60 depositions in various heat treatment conditions 

Heat 
treatment 

Travel 
speed, 

mm/min 

Eocp vs ERE, 
mV* 

Icorr, 
nA/cm2 # 

Eocp vs 
ERE, mV Icorr, nA/cm2 

Monel K500 FM60 

As-welded 
300 -163 1.11 -99 0.72 
400 -115 0.86 -102 0.69 
500 -105 1.74 -50 1.40 

Aged at 
610°C 

300 -174 1.18 -69 2.53 
400 -172 1.78 -92 2.20 
500 -146 2.77 -141 3.01 

Aged at 610°C 
+ 480°C 

300 -165 2.16 -118 2.55 
400 -175 2.78 -96 4.02 
500 -57 2.97 -45 3.78 

*standard deviation for Eocp is ±25mV; #standard deviation for Icorr is ±0.2 nA/ cm2 

 

Table 4.4.5. Summary of cyclic polarization parameters for Monel K500 plate 

tested in various heat treatment conditions 

Heat treatment condition Eocp vs ERE, mV Icorr, nA/cm2 
As-received -125 1.44 

Aged at 610 °C -144 2.62 
Aged at 610°C + 480°C -72 5.69 
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Figure 4.4.15. The variation in Icorr with heat treatment for Monel K500 and FM60 deposited 

at welding speed of 300 mm/min (red and black) and Monel K500 plate (blue). 
 

 

4.4.8 Conclusions to chapter 4.4 
 

First ever investigation of the effect of heat treatment on microstructure, 

mechanical properties and wear resistance of Ni-Cu alloys processed using the wire arc 

additive manufacturing technology has resulted in the following conclusions: 

 

1. In the as-welded condition, precipitation of TiC and TiCN particles was observed in 

Monel K500, the alloy with a higher C content, rather than in FM60, containing a 

higher Ti content. In FM60 the precipitation of Ti-rich oxides and MnS-core 

particles took place, what coincided with a higher Mn content in FM60.  

 

2. Annealing at 1100 °C followed by ageing at 610 °C resulted in extensive 

precipitation of TiC particles in Monel K500 (240-290 times increase in the TiC 

number density compared to the as-welded condition). However, in FM60 the 

particle precipitation was relatively sluggish (up to 70% increase in the number 

density). The second ageing at 480 °C has led to the particle coarsening, 

accompanied by a decrease in the particle number density, in both alloys. 
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3. Due to precipitation of TiC/TiCN particles and smaller secondary dendrite arm 

spacing, Monel K500 exhibited higher hardness, yield stress and tensile strength 

than FM60 for all the studied conditions. In spite of FM60 elongation being larger 

in annealed and aged conditions, toughness of Monel K500 was higher due to 

higher strength. In accordance with higher hardness and toughness, the wear 

resistance of Monel K500 was higher in almost all conditions. 

 

4. In the as-welded condition, the lowest hardness, strength and wear resistance in 

both alloys were observed for the slowest deposition speed of 300 mm/min. These 

coincided with the highest particle number density in both alloys. In the annealed 

and aged conditions, the highest wear resistance (supported by either the highest 

hardness or strength) in both alloys was obtained at the highest deposition speed of 

500 mm/min. These coincided with the low particle number density. In spite of 240 

- 290 times increase in the particle number density in Monel K500, after annealing 

and ageing at 610 °C the wear resistance increase by only 16 %; and only 70% 

increase in the particle number density in FM60 resulted in 24 % increase in the 

wear resistance. Obviously, fine (<20 nm) particles, not visible in SEM and not 

studied here, played their role in properties development. This requires further 

investigation.  

 

5. In all heat treatment conditions both Monel K500 and FM60 depositions and Monel 

K500 plate exhibited passive behaviour with low corrosion rates in 3.5 wt. % NaCl. 

The value of Icorr increased after ageing, which suggested that these alloys are more 

susceptible to corrosion in age hardened state.  

 

6. The corrosion behaviour of hot-rolled Monel K500 plate was similar to that observed 

for both Monel K500 and FM60 depositions in all heat treatment conditions. This 

indicates that WAAM samples retain good corrosion resistance typical for Monel 

K500. 
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4.5 Work hardening behaviour and fracture in as-welded and heat 

treated Ni-Cu alloys 
 

4.5.1 SEM characterisation of >20 nm precipitates 
 

SEM studies of as-welded depositions have shown 200-700 nm particles in both 

alloys, with average sizes of 448 nm and 400 nm in Monel K500 and FM60, 

respectively (Figure 4.5.1a,e). The number density of these particles was 2.4 times 

higher in FM60 than in Monel K500. The particles chemical compositions were 

identified as Ti-, Mg- and Al-rich, namely, MgMnS, TiC and TiCAlMgO in Monel 

K500 (Figure 4.5.2 a, b) and MgMnS, AlTiO and AlTiMgO in FM60 (Figure 4.5.3c, d). 

The pronounced difference in precipitation between the two alloys occurred 

following annealing. In Monel K500 annealing resulted in almost complete dissolution 

of Mn-, Mg- and Al-rich particles and led to precipitation of new densely dispersed 

primary carbides TiC. SEM studies have shown down to 30 nm particles in Monel K500 

with their number density increasing by 170 times and average size decreasing by 2.9 

times compared to the as-welded condition (Table 4.5.1). Whereas, in FM60 the 

chemical composition, size and number density of particles in SEM visible size range 

remained virtually the same as in as-welded condition (Table 4.5.2). 

 

 
Figure 4.5.1. Representative SEM images summarising evolution of the particles with 

heat treatment: (a-d) in Monel K500 and (e-h) in FM60. 
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The first stage of age hardening at 610 °C for 8 hours led to the increase in 

particles number density and decrease in particles average size in both alloys, although 

this was more pronounced in Monel K500. In Monel K500 the >30 nm particles number 

density increased by 1.7 times and the average particle size decreased by 2 times 

compared to the annealed condition. In FM60, these particles number density increased 

by 23% and the particles average size decrease by 1.5 times compared to the annealed 

condition. The particle chemical compositions after the first age hardening were mainly 

TiC, TiCS in Monel K500 and TiAlOMgS, MgAlO in FM60 (Figure 4.5.3). 

 

 
Figure 4.5.2. SEM images and EDS spectra showing chemical composition of particles 

in as-welded depositions: (a, b) MgMnS, TiC and TiCAlMgO in Monel K500 and (c, d) 

MgMnS, AlTiO and AlTiMgO in FM60. The matrix spectrum in shown in orange. 

 

During the second age hardening at 480 °C for 8 hours, following age hardening 

at 610 °C, a 20% increase in the average size and a 35% decrease in the number density 

were observed for >30 nm particles in Monel K500 (Table 4.5.1). In FM60 no 

significant variation in the >30 nm particle parameters with the second ageing was 

observed. The particle compositions did not change with the second ageing: TiC, TiCS 

were observed in Monel K500 and TiAlOMgS, MgAlO in FM60. 
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Figure 4.5.3. SEM images and EDS spectra showing chemical composition of particles 

in annealed and aged at 610°C depositions: (a-c) TiC/TiCN in Monel K500 and (d-f) 

MgAlO and TiAlOMgS in FM60. The matrix spectrum in shown in orange. 

 

The evolution of particle size distributions with heat treatment in both alloys is 

shown in Figure 4.5.4. The difference in particle sizes in as-welded, annealed and aged 

conditions is clearly seen for Monel K500: with annealing and ageing the fraction of 

smaller particles increased (notice a shift of the peak of particle size distribution to the 

left, Figure 4.5.4a). Although in FM60 the distributions look similar irrespective of the 

heat treatment condition (Figure 4.5.4b). 

 

 
Figure 4.5.4. Size distributions of >30 nm particles observed with SEM  

in: (a) Monel K500 and (b) FM60. 

 

  

Monel K500 FM60

a b
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4.5.2 TEM and TEM-ARM characterisation of <20 nm precipitates 
 

Transmission electron microscopy has shown spherical evenly distributed 

precipitates with <10 nm sizes in all samples (Figure 4.5.5). The as-welded Monel K500 

contained precipitates 2 times larger in size and 1.4 times lower in number density than 

as-welded FM60 (Figure 4.5.5a,e, Tables 4.5.1 and 4.5.2). The analysis of TEM 

diffraction patters confirmed the precipitates to be TiC in both alloys. A diffraction 

pattern showing the [112] matrix || [011] TiC orientation relationship on Figure 6.5.7 a,c 

originated from the cubic crystal lattice, characteristic for TiC particles; and the 

measured 𝑑2�00 spacing of 0.217 nm was in good agreement with 0.216 nm calculated 

based on the TiC lattice parameter a = 0.432 nm [155, 156]. The ARM-EDS mapping 

did not show any local increase in element concentrations (Figure 4.5.7 a-c and g-i), 

which might be expected due to atom clustering or precipitation. Most likely, this was 

caused by very small sizes of particles.  

Annealing led to an increase in the <10 nm average precipitates size by 15% and 

30% in Monel K500 and FM60, respectively. Compared to as-welded condition, the 

precipitate number density increased by 9% in Monel K500 (Table 4.5.1), although in 

FM60 no variation in the <10 nm particle number density was observed (Table 4.5.2). 

Particle growth during annealing increased the particle volume fraction by 1.4 times in 

Monel K500 and by 3 times in FM60. Similar to as-welded condition, the chemical 

composition of nano-sized precipitates in both alloys after annealing was identified as 

TiC.  

 
Figure 4.5.5. Representative TEM images showing distribution of particles for different 

heat treatment  conditions: (a, e) as-welded; (b, f) annealed; (c, g) aged at 610 °C; (d, h) 

aged at 610 °C + aged at 480 °C in (a-d) Monel K500 and (e-h) FM60.  
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The first stage of age hardening resulted in 2.8 times increase in the precipitate 

number density and 1.8 decrease in the average precipitate size in Monel K500 (Table 

4.5.1). TEM diffraction patterns have shown the presence of two types of precipitates – 

TiC and supposedly Ni3(Al,Ti) phase (Figure 4.5.6b). Due to the good crystallographic 

matching with the matrix, Ni3(Al,Ti) was hard to identify, although the forbidden 

reflection of its diffraction pattern can be clearly seen on Figure 4.5.6b (red circles). 

ARM-EDS maps have shown Ni-, Al- and Ti-rich areas (Figure 4.5.7 d-f), which 

confirm presence of γ′ - Ni3(Al,Ti) phase. The second age hardening led to 24% 

decrease in the precipitate number density and slight (8%) increase in the average 

precipitate size. The chemical composition of precipitates did not vary during the 

second stage of ageing. Particle growth during the first and second stages of age 

hardening decreased the <10 nm particle volume fraction. 

 

 
Figure 4.5.6. TEM diffraction patterns of: (a) as-welded Monel K500 showing [112] 

matrix || [011] TiC orientation relationship, (b) aged at 610 °C Monel K500 with [112] 

matrix || [112] Ni3(Al, Ti) || [011] TiC, (c) as-welded FM60 [112] with matrix || [011] 

TiC, (d) aged at 610 °C FM60 with [112] matrix || [011] TiC. Matrix is shown in white 

broken line, TiC in yellow line and Ni3(Al, Ti) in red broken line and red circles for its 

forbidden reflection.  

 

In contrast to Monel K500, the age hardening heat treatment has shown little 

effect on FM60. During the first and second age hardening the precipitate number 
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density and average size increased by only 1% and the volume fraction increased by up 

to 10 % (Table 6.5.2). The chemical composition did not change during ageing (observe 

similar diffraction patterns in Figure 6.5.6c,d). Analysis of ARM-EDS maps of FM60 

aged at 610 °C provided additional confirmation of the precipitates chemical 

composition: Ti-rich areas can be seen in Figure 6.5.7l. These results support the 

general perception that FM60 is a non-heat treatable alloy, i.e. can be strengthened only 

by solid solution strengthening.  

 

 
Figure 4.5.7. ARM-EDS elemental maps showing absence of AlTi-rich particles in as-

welded (a-c) Monel K500 and (g-i) FM60; and presence of (d-f) AlTi-rich particles in 

aged at 610 °C Monel K500 and (j-l) Ti-rich particles in aged at 610 °C FM60. 

 

The variation in <10 nm precipitate number density distributions with heat 

treatment is shown in Figure 4.5.8. It is clearly seen that in Monel K500 age hardening 

led to pronounced precipitation of new particles (observe the increase in <4 nm particle 

number density after age hardening). However, in FM60 new particle probably did not 

precipitate, although some growth of existing particles could take place.  

 

 
Figure 4.5.8. TEM size particle distributions in (a) Monel K500 and (b) FM60. 

a b

Monel K500 FM60
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The variation in particle precipitation in the studied alloys followed their 

discrepancies in chemical composition. The C content was 22 times higher in Monel 

K500, although the Ti content was 3 times higher in FM60. In the as-welded condition, 

this facilitated precipitation of TiC/TiCN particles in Monel K500 in all size ranges. 

However, in FM60 only minor precipitation of TiC in <10 nm size range took place. 

The majority of coarse particles in both alloys were TiMnMgAl-rich sulphides and 

oxides. Although, the number density of these coarse particles was 2.4 times higher in 

FM60, due to a 3 times higher Ti and 4 times higher Mn content in FM60. The volume 

fraction of <10 nm TiC was 7 times higher in Monel K500 due to a higher C content. 

In Monel K500 the majority of MnMgAl-rich particles dissolved during 

annealing, and new Ti-rich carbides, carbonitrides and sulphides precipitated. This 

increased the number density of coarse particles by 170 times and the volume fraction 

of <10nm TiC by 45%. For the given Ti and C contents in Monel K500 (0.5 and 0.088 

wt. %, respectively) and the solubility equation log [Ti]⋅[C] = 2.75 - 7000/T presented 

in [133], the temperature of full TiC dissolution could be about 1430 °C. This supports 

the suggestion that during annealing at 1100 °C not dissolution but precipitation of TiC 

took place. In FM60 no Mn-rich particles have been observed after annealing, most 

particles were MgTiAl-rich oxides and sulphides. The amount of sulphides increased 

after annealing by 25%, compared to the as-welded condition. This may indicate that a 

slight growth of particles during annealing could occur via precipitation of S atoms on 

top of the existing particles. Although the volume fraction of <10 nm TiC precipitates in 

FM60 increased by 3 times, compared to the as-welded condition, it was still 3.4 times 

lower than in annealed Monel K500. Precipitation of TiC in FM60 had to be slower not 

only because of lower C content, but also because of higher Mn content, which can 

increase solubility of Ti in fcc lattice [135, 136]. 

After the first stage of ageing, in Monel K500 the particle number density 

increased and the average size decreased in all size ranges. In TEM-size range this 

resulted from precipitation of new Ni3(Al,Ti) particles, in addition to TiC. The relative 

fraction of TiC and γ′ in the <10 nm size range was not calculated. Although, judging 

from the increased number density and decreased average particle size in SEM-size 

range, we can assume that more TiC particles have grown to sizes larger than 20 nm 

(SEM visible size threshold). The size of γ′ appeared rather small, ranging from 3 to 8 
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nm, with an average size of 2.5. This resulted from a relatively short ageing times used 

in this study. Coarser γ′ precipitates have been previously observed in Monel K500 after 

prolonged ageing at higher temperatures (for example, 8 h at 700°C was required to 

obtain 7 nm precipitates and 1000 h at 700°C – to get up to 100 nm precipitates [33]). In 

FM60, first ageing led to a slight increase in number density and decrease in size of 

coarse particles (by 23% and 50%, respectively), due to dissolution of large complex 

MgTiAl-rich oxides and precipitation of Mg-rich oxides and sulphides. No significant 

changes in parameters of <10 nm particles were observed. 

The second ageing led to particles coarsening (Oswald ripening), accompanied by 

a decrease in number density, in Monel K500. This phenomenon was observed 

previously in aged Ni alloys [153, 154]. The fraction of Ti-rich carbosulfides in the 

range of coarse particles has increased with ageing, which also could contribute to an 

increase in average particle size. In FM60 no significant changes have been observed 

with the second ageing. The lattice parameter decreased with heat treatment in both 

alloys, which corresponded to precipitation and growth of particles, leading to solution 

depletion.  

 

4.5.3 Dislocation structure 
 

The dislocation structure was characterised for as-welded and annealed 

conditions. Both as-welded alloys exhibited a quite developed dislocation structure with 

knots and tangles (Figure 4.5.9a,c), which might be associated with fast cooling and 

local stress gradients. During annealing the dislocation annihilation occurred leading to 

the breakdown of tangles and appearance of single isolated dislocations (Figure 

4.5.9b,d). The dislocation densities in the as-welded condition were measured to be 

3.7·1014 m-2 and 3.6·1014 m-2 in Monel K500 and FM60, respectively. These values 

correspond to those observed in hot deformed nickel alloys [157]. The dislocation 

densities in the annealed condition were 3.4·1013 m-2 and 7.4·1013 m-2 in Monel K500 

and FM60, respectively. An order of magnitude decrease in dislocation density during 

annealing might be expected on the basis of previously published data [157], although 

the absolute values after annealing looked a bit high. Probably, the dislocation 

annihilation during annealing was retarded by the highly concentrated solute atoms and 

precipitates. 



138 
 

 
Figure 4.5.9. Typical dislocation structures in as-welded (a) Monel K500 and (c) FM60, 

and annealed (b) Monel K500 and (d) FM60.  

 

To estimate the levels of solute atom concentrations in the matrix, the matrix 

lattice parameters have been measured using diffraction patterns for both alloys in all 

studied heat treatment conditions (Tables 4.5.1 and 4.5.2). A larger matrix expansion 

would indicate a higher concentration of solute atoms [158]. The absolute values of 

lattice parameter in the studied alloys were 5-8 % larger than the reported for other 

nickel alloy [33, 159], which may be due to an increased concentration of elements in 

the alloy compositions. No significant variation in the lattice parameter between Monel 

K500 and FM60 was observed. For both alloys, the lattice parameter decreased with 

heat treatment. This corresponds to precipitation and growth of particles, leading to 

solution depletion. 
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Table 4.5.1. Microstructure and mechanical properties of Monel K500 

Heat treatment 
condition 

As-welded Annealed Aged at 610 °C 
Aged at 610 
°C +480 °C 

SE
M

 p
ar

tic
le

s ND* x10
-3
 μm

-2
 3.06 522 898 667 

Average 
size, nm 

448±140 155±60 75± 45 90±50 

Chemistry 
TiMnMgAl-

rich 
TiC TiCS TiCS 

TE
M

 p
ar

tic
le

s 

ND x103 μm-3 20.5 22.4 62.0 50.0 

Average 
size, nm 3.8±1.5 4.4±1.8 2.5±0.8 2.7±1.2 

Volume 
fraction 

0.00114 0.00165 0.00094 0.00055 

Matrix lattice 
parameter, nm 

0.3838 0.3790 0.3770 0.3742 

Chemistry TiC TiC TiC +Ni3(Al,Ti) TiC +Ni3(Al,Ti) 

M
ec

ha
ni

ca
l p

ro
pe

rti
es

 

HV 141 186 255 236 

YS, MPa 165±10 195±5 300±3 250±5 

UTS, MPa 410±10 477±20 615±20 563±5 

El, % 51±3 43±3 37±1 34±4 

MPa·% 14663 14448 16928 13821 

Fracture 
area, % 

33 39 49 54 

Average void 
size, μm 

1.93 1.47 1.00 0.87 
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Table 4.5.2. Microstructure and mechanical properties of FM60 

Heat treatment 
condition 

As-welded Annealed Aged at 610 °C 
Aged at 610 
°C +480 °C 

SE
M

 p
ar

tic
le

s ND x10
-3
 μm

-2
 7.2 6.9 8.5 8.9 

Average 
size, nm 

392±150 412±90 274±110 288±97 

Chemistry 
TiMnMgAl-

rich 
TiMgAl-rich TiMgAl-rich TiMgAl-rich 

TE
M

 p
ar

tic
le

s 

ND x103 μm-3 28.4 28.6 29.0 29.4 

Average 
size, nm 1.9±0.7 2.5±1.1 2.6±1.5 2.6±1.5 

Volume 
fraction  

0.00016 0.00048 0.00051 0.00057 

Matrix lattice 
parameter, nm 

0.3855 0.3780 0.3754 0.3752 

Chemistry TiC TiC TiC TiC 

M
ec

ha
ni

ca
l p

ro
pe

rti
es

 

HV 132 123 164 174 

YS, MPa 149±5 99±3 155±5 170±3 

UTS, MPa 361±20 356±2 410±10 490±20 

El, % 47±1 49±1 43±1 39±1 

MPa·% 11985 11148 11718 12870 

Fracture 
area, % 

30 23 32 40 

Average 
void size, 

μm 
1.86 2.75 1.66 1.49 
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4.5.4 Work hardening behaviour 

 

For all studied conditions, the yield stress (YS) and ultimate tensile strength 

(UTS) were higher in Monel K500 than in FM60 (Tables 4.5.1 and 4.5.2). In the as-

welded condition YS, UTS and elongation to failure were 10, 13 and 9 %, respectively, 

higher in Monel K500. The YS and UTS of annealed Monel K500 were 2 times and 

34%, respectively, higher than these of FM60, although the elongation of Monel K500 

was 14% lower than of FM60. Ageing at 610 °C resulted in the increase of YS and UTS 

in both alloys, yet it was more noticeable in Monel K500. The YS and UTS of Monel 

K500 aged at 610 °C was by 94% and by 50%, respectively, higher than these in FM60. 

The elongation of Monel K500 after first stage of ageing was 16% lower than this in 

FM60. The second ageing resulted in a decrease in strength for Monel K500 and in an 

increase in strength for FM60. Thus, the YS and UTS of Monel K500 after second 

ageing were 47% and 15%, respectively, higher than these of FM60; and the elongation 

was 14% higher in FM60.  

The two alloys have shown a different behaviour during heat treatment. The trend 

of mechanical properties variation with heat treatment is demonstrated in Figure 4.5.10. 

In Monel K500 annealing resulted in YS and UTS increase by 30 and 67 MPa, 

respectively, compared to as-welded condition. After the first stage of ageing, this alloy 

showed its maximum strength: YS and UTS further increased by 105 and 138 MPa. The 

second ageing led to both YS and UTS decrease by 50 MPa. The elongation to failure 

decreased by 50% compared to the as-welded condition. 

In contrast, the annealing of FM60 led to a decrease in YS and UTS by 50 and 5 

MPa, respectively, and to an increase in elongation by 2%, compared to the as-welded 

condition. The first ageing resulted in YS and UTS increase by 56 and 54 MPa, 

respectively, compared to annealed condition, and the second ageing led to further 

increase in YS and UTS by 55 and 97 MPa, respectively. The elongation decreased by 

only 20%, compared to the as-welded condition. 
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Figure 4.5.10. Mechanical properties variation with heat treatment for  

(a) Monel K500 and (b) FM60. 

 

The stress-strain curves and corresponding strain hardening rates variations with 

strain for both alloys are shown in Figure 4.5.11. In Monel K500 the highest strength 

and strain hardening rate were observed after the first ageing (red curve in Figure 

4.5.11a,b), and these went down along the stress axis after the second ageing. In FM60 

the stress-strain curve was moving upwards with each stage of ageing, and the 

maximum strain hardening rate was reached after the second ageing (black curve in 

Figure 4.5.11c,d). 

The work hardening behaviour of the samples comprised of three stages (see for 

example Figure 4.5.11d black curve). In regime I, a rapid decrease of strain hardening 

rate with increasing strain was observed. Regime II was identified by slight increase in 

strain hardening rate followed by a period of near-constant strain hardening rate, which 

corresponded to the linear section on the stress-strain curve (Figure 4.5.11c). In regime 

III the strain hardening rate gradually decreased. The data characterising strain 

hardening behaviour for all conditions is given in Table 4.5.3, where ε1/ σ1/ θ1 stands for 

strain/stress/strain hardening rate at the end of regime I and ε2/ σ2/ θ2 – for the 

strain/stress/strain hardening rate at the end of regime II. Stress and strain hardening rate 

values are given in MPa. Strain hardening rate was calculated as θ=(dσ/dε). 

In regime I a sharp decrease in strain hardening rate was observed in all 

conditions, although the values at the end of this stage varied with alloy composition 

and heat treatment. In Monel K500 the minimum strain hardening rate was observed for 
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the as-welded condition. With annealing and age hardening at 610 °C strain hardening 

rate increased by 8% and 57%, respectively, and decreased after the second age 

hardening at 480 °C by 10%. In contrast, in FM60 the minimum strain hardening rate 

was measured for the annealed condition. It increased after ageing at 610 °C and 480 °C 

by 17% and 57%, respectively.  

 

 
Figure 4.5.11. Effect of heat treatment on stress-strain behaviour (a,c) and strain 

hardening rate (b,d) in (a,b) Monel K500 and (c,d) FM60. 

 

In regime II both alloys in as-welded condition demonstrated a near-constant 

strain hardening rate of the same values. In annealed condition, both alloys first 

exhibited an increase in strain hardening rate by 29% and 67% in Monel K500 and 

FM60, respectively, and then a section with a near-constant strain hardening rate. 

Compared to the as-welded condition, the average strain hardening rate in regime II 

increased with annealing by 27% and 22% in Monel K500 and FM60, respectively. 

After age hardening both alloys revealed a near-constant strain hardening rate, although 

the maximum values in Monel K500 were reached after one stage of ageing, and in 

FM60 – after two stages of ageing.  

In regime III the strain hardening rate decreased in both alloys in all conditions, 

although a more rapid decrease was observed for Monel K500 after one and two stages 

of ageing and for FM60 after two stages of ageing.  
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Table 4.5.3. Strain hardening behaviour. 

Heat treatment 
condition As-welded Annealed Aged at 610°C Aged at 610°C 

+480°C 
M

on
el

 K
50

0 ε1/ σ1/ θ1 0.05/220/650 0.06/267/700 0.04/389/1100 0.04/335/1000 

ε2/ σ2/ θ2 0.27/373/650 0.23/408/900 0.19/546/1200 0.20/486/1000 

θ average in 
regime II 653 829  1121 956 

FM
60

 

ε1/ σ1/ θ1 0.02/166/700 0.03/165/600 0.05/206/700 0.05/273/1100 

ε2/ σ2/ θ2 0.22/296/650 0.26/294/800 0.26/360/700 0.20/455/1000 

θ average in 
regime II  652  794 727  1072 

 

For all studied heat treatment conditions, Monel K500 has shown higher hardness, 

than FM60 (Table 4.5.1 and 4.5.2), which corresponds to higher tensile properties. In 

Monel K500 the hardness increased by 1.8 times from as-welded to aged at 610°C 

condition, but then dropped by 8% after the second ageing (blue line in Figure 4.5.12a). 

In FM60 the hardness decreased by 7% after annealing, and then gradually increased 

with ageing: by 33% and by 17% after the first and second ageing, respectively (blue 

line in Figure 4.5.12b). Thus, the maximum hardness values of 255 HV were reached in 

Monel K500 after the first ageing and 192 HV in FM60 after the second ageing. 

Toughness was estimated via calculation of the area under stress-strain curves. 

The shape under stress-strain curves was approximated by a trapezoid with the area 

calculated as 0.5(YS+UTS)·elongation. For this calculation method, the toughness units 

were MPa·%. Toughness in Monel K500 was by up to 40% higher than in FM60 for all 

heat treatment conditions (red broken line in Figure 4.5.12). Similarly to hardness and 

strength, the maximum toughness in Monel K500 was reached after the first age 

hardening (16928 MPa·%), and in FM60 after the second age hardening (12870 

MPa·%). The minimum toughness in Monel K500 (13821 MPa·%) was observed after 

the second ageing, due to the lowest elongation at this condition, and in FM60 (11148 

MPa·%) after the annealing, due to the lowest strength.  

Due to precipitation of TiC/TiCNS and γ′ particles, Monel K500 exhibited higher 

hardness, YS and UTS than FM60 for all the studied conditions (Tables 4.5.1 and 

4.5.2). In spite of FM60 elongation being larger in annealed and aged conditions, 

toughness of Monel K500 was higher due to higher strength. The first ageing led to the 
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hardness and strength increase in both alloys and toughness increase in Monel K500. 

These were due to precipitation of >30 nm TiCNS and <10 nm TiC and γ′ in Monel 

K500 and >100 nm MgTiAl-rich oxides and <10 nm TiC in FM60. Obviously age 

hardening improves the properties of FM60 to some extent, even if it is considered a 

solely solution strengthened alloy, but not as much as of Monel K500. The second 

ageing resulted in the particle growth accompanied by a decrease in the particle number 

density in Monel K500, which lead to decrease in hardness and strength. In FM60 the 

growth and precipitation of particles continued, even though slowly, which resulted in 

further slight increase in hardness and strength. 

 

 
Figure 4.5.12. Hardness and toughness variations with heat treatment in 

 (a) Monel K500 and (b) FM60. 

 

The work hardening behaviour of polycrystal alloys is a complex phenomenon 

influenced by many factors, such as stacking fault energy, grain size, elements in 

solution, previous processing history [160, 161, 162, 163]. The strain hardening 

behaviour of precipitation hardenable polycrystal alloys is even more complex and, in 

addition to the mentioned above, is dictated by the nature, number density and size of 

precipitates, which in turn affect the mechanism of dislocation bypass (looping or 

shearing) [164, 165, 166]. The alloys studied here exhibit coarse grain size due to cast 

microstructure, high stacking fault energies (between 106 and 124 mJ/m2, measured for 

Cu-Ni system containing 60% and 80% Ni, respectively [167]), elements in solution as 

well as precipitates which are different in composition and number density for each 
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alloy and heat treatment condition. In Monel K500 both SEM and TEM visible particles 

contribute to the work hardening, as the average size of particles visible in SEM for 

aged conditions is small (<100 nm). In FM60 only TEM visible particles play 

significant role in work hardening, as long as SEM visible particles remain bulk in size 

and low in number density even after ageing. We can assume that solution and 

clustering contributed to the work hardening of this alloy, although this has not been 

studied here and requires additional investigation. 

The initial strain hardening rate at 1% strain in both alloys was highest for the age 

hardened conditions (4800 MPa in both alloys after two ageing) and lowest for the 

annealed condition (2800 MPa in Monel K500 and 800 MPa in FM60). Age hardened 

alloys have a higher number density of precipitates, which act as anchoring points 

slowing down the dislocation motion. This dependence was previously observed in 

precipitation hardenable Cu-base [168] and Ni-base alloys [164, 165]. 

The decreasing strain hardening rate in regime I is associated with a dynamic 

recovery caused by cross-slip and annihilation of screw components of dislocations 

[169, 170, 164, 165]. The decrease is less sharp in aged conditions of both alloys, which 

could be due to the higher number density of particles that could potentially pin 

dislocations and hamper the fall of strain hardening rate. Lower number density of 

particles in as-welded and annealed condition result in “easier” deformation with lower 

strain hardening rates. The lowest strain hardening rate at the end of regime I was 

observed in the annealed FM60. This condition may be regarded as the “weakest” 

among others: it has a minimal dislocation density (by an order of magnitude lower than 

in as-welded condition) combined with a lower number density of precipitates 

(compared to the aged conditions). In FM60, the volume fraction of Ti-rich precipitates 

in annealed condition increased by only 3 times compared to the as-welded condition, 

which could not compensate a considerable decrease in the dislocation density, and thus 

the minimal strain hardening rate at the end if regime I was by 17 % lower than in as-

welded condition. In contrast, in Monel K500 the number density of Ti-rich particles of 

SEM size range increased by 170 times and the volume fraction of <10 nm Ti-rich 

precipitates increased by 45%, compared to the as-welded condition. Because of this, 

the minimal strain hardening rate at the end of regime I in annealed Monel K500 was 

not lower but 8% higher, than in as-welded condition (Table 4.5.3). 
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An increase or stabilisation of strain hardening rate indicates the beginning of 

regime II (Figure 4.5.12b and d). A near-constant strain hardening rate on this stage was 

seen in both alloys in as-welded and aged conditions. Although, in annealed condition, a 

section with a near-constant strain hardening rate was preceded by an increase in strain 

hardening rate by 29% in Monel K500 and by 67% in FM60. This resulted in the 

average strain hardening rate of annealed alloys in regime II being by 27% and 22% 

higher than in as-welded Monel K500 and FM60, respectively. A similar behaviour was 

previously observed in hot-rolled Cu-Ni alloys with various Ni content [160]. An 

increase in strain hardening rate may have resulted from the formation of planar-slip 

dislocation structures (planar slip bands) caused by well-developed short-range 

clustering. With increasing strain, the dominant dislocation structures become extended 

dislocation walls, which act similar to the grain refinement and thus lead to an increase 

in work hardening rate. On the near-constant section of strain hardening rate vs strain 

curve a pronounced planar slip was previously observed in solid solutions with well-

developed short-range ordering and short-range clustering as well as in precipitation-

hardened alloys where the precipitates have an ordered atomic structure [171]. As the 

deformation proceeds, the interaction of moving dislocations with other dislocations 

(forest hardening) leads to the formation of dislocation tangled network structure (i.e. 

cell like structure), which has a similar effect as reducing a grain size and thereby leads 

to nearly constant strain hardening rate [164]. In Monel K500 the highest strain 

hardening rate of 1200 MPa was demonstrated after the first ageing. In this condition 

the highest number density of <100nm particles and the highest number density and 

volume fraction of <10nm particles were observed. After the second ageing the strain 

hardening rate decreased by 20%, which coincided with particles coarsening and a 

decrease in their number density by 35% and 24% for <100 nm and <10 nm particles, 

respectively, compared to the first ageing. A similar strain hardening behaviour was 

previously observed for the precipitation hardenable Ni alloys Nimonic C-263 and 

Supercast 247A [164, 165]. Precipitation of γ' after ageing, in addition to TiC, played 

and important strengthening role and provided an additional barrier for dislocation 

movement, thus, increasing strain hardening rate. In contrast to Monel K500, in FM60 

the strain hardening rate was increasing with each step of heat treatment, which goes in 

a good agreement with a gradual increase in the precipitates average size and volume 

fraction. Thus, by the second ageing the maximum strain hardening rate of 1100 MPa 
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was demonstrated in FM60, which was by 57% higher than in as-welded condition. The 

average size and volume fraction of precipitates after the second ageing increased by 

37% and 3.6 times, respectively, compared to the as-welded condition. 

The decreasing strain hardening rate in regime III may be related to dynamic 

recovery caused by cross-slip and annihilation of screw components of dislocations of 

opposite sign from adjacent cells or tangled dislocation networks [164, 165, 169]. Both 

alloys demonstrated a sharper decrease of strain hardening rate in regime III for the 

aged conditions, compared to the annealed and as-welded. Obviously, earlier occurring 

dislocation-particle interactions, due to a higher particle number densities, facilitated the 

operation of dislocation generation sources leading to the increase in dislocation density 

prior to pile-up and micro crack development.  

Although the dislocation structure at various stages of deformation has not been 

studied here, an evidence of dislocation-particle interaction and planar slip were noticed 

in Monel K500 (Figure 4.5.13). 

 

 
Figure 4.5.13. Selected TEM images of (a) dislocation-particle interactions and (b) 

planar slip in as-welded Monel K500. 

 

4.5.5 Fracture 
 

Figure 4.5.14 displays the surface deformation features of both alloys after 

tensile tests to fracture. It can be seen that the specimens experience a severe 

plastic deformation, and show an obvious necking near the fracture point. The 

fracture area was calculated as the remaining portion of the tensile specimen cross 

section (highlighted by black lines in Figure 4.5.14a,c,e,g) divided by the initial 

specimen cross section. As seen from Table 4.5.1, the fracture area was increasing 
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with heat treatment in Monel K500. This corresponds to the decreasing total 

elongation and indicates transition to more brittle mode of fracture in Monel K500 

with heat treatment. Such fracture behaviour in Monel K500 can be explained by 

particle coarsening and its role in fracture stimulation. In FM60 the minimum 

fracture area (maximum total elongation) was observed for annealed condition, and 

the maximum fracture area (minimum total elongation) was in the condition after 

second ageing (Table 4.5.2). Obviously, in FM60 the dislocation annihilation 

during annealing, and softening related to it, plaid a more significant role than the 

particle precipitation, and possible hardening related to it.  

 

 
Figure 4.5.14. SEM images showing the fracture surfaces at (a,c,e,g) lower and (b,d,f,h) 

higher magnifications in (a-d) Monel K500 and (e-h) FM60 for as-welded and aged at 

610 °C conditions. 

 

The fracture surfaces studied at a higher magnification have shown a dimpled 

structure for both alloys in all processing conditions (Figure 4.5.14 b,d,f,h). It is known 

that the dimple formation comprises three stages, void nucleation, growth and 

coalescence [172], and indicates ductile fracture behaviour. The void nucleation often 

occurs in metals via loss of cohesion at the particle-matrix interface. In this work, SEM 

images of the fracture surfaces of Monel K500 and FM60 confirmed the void nucleation 

on particles (Figure 4.5.15). In spite of presence of large carbide/oxide particles, the 

fracture was ductile in both alloys, as the stress concentrations around spherical 

particles are relatively low to initiate brittle fracture, which is known to occur when 

cuboidal particles precipitate. Voids nucleation was preferred over particle fracture 
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because less stress was required to brake the softer Ni matrix away from particles than 

to break the hard carbide/oxide particles themselves.  

The average void size in as-welded condition was 1.9 μm for both alloys (Tables 

4.5.1 and 4.5.2). Although the fraction of <2 μm voids was higher in FM60 (observe the 

peak difference on the void size distributions, Figure 4.5.17), which may suggest a more 

brittle fracture behaviour in as-welded FM60. The average void size was decreasing in 

Monel K500 by 30%, 47% and 15% after annealing, first ageing and second ageing, 

respectively (observe an increase in fraction of <2 μm voids with heat treatment in 

Figure 4.5.16a). However, in FM60 the average void size increased after annealing by 

48% compared to the as-welded condition and remained 66-87% larger than in Monel 

K500 for all heat treated conditions. This indicates more ductile fracture behaviour in 

FM60, than in Monel K500, and coincides with its higher elongation.  

 

 
Figure 4.5.15. Void formation initiated by spherical TiC and TiMgAl-rich oxides 

(marked with arrows) in (a) Monel K500 and (b) FM60 aged at 610°C condition. 

 

 
Figure 4.5.16. Distributions of fracture void sizes in (a) Monel K500 and (b) FM60. 
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4.5.6 Conclusions to Chapter 4.5 
 

The investigation of work hardening behaviour and fracture of heat-treated Ni-Cu 

alloys fabricated using the wire arc additive manufacturing technology has resulted in 

the following conclusions: 

 

1. Heat treatment (annealing followed by age hardening) resulted in a vast precipitation 

of TiC and Ni3(Al,Ti) particles in Monel K500. Precipitation of Ni3(Al,Ti) coincided 

with substantial (3.0 wt.%) Al content in Monel K500. In contrast, in FM60 age 

hardening led to only minor increase in the particles number density in all size 

ranges. 
 

2. Due to precipitation of TiC and Ni3(Al,Ti) particles, Monel K500 exhibited higher 

hardness, yield stress and tensile strength than FM60 in all the studied conditions. In 

spite of FM60 elongation being larger in annealed and aged conditions, toughness of 

Monel K500 was higher due to higher strength. 

 

3. The strain hardening behaviour of the studied alloys varied with heat treatment 

condition, and was affected by the dislocation density, size and number density of 

precipitates, and solid solute concentrations. The lowest strain hardening rate at the 

end of regime I (following the yield point) was observed in both alloys in annealed 

condition. This corresponded to the lowest dislocation density after annealing. The 

highest strain hardening rate was observed after the first ageing in Monel K500, and 

after the second ageing in FM60. This can be related to the highest number density of 

<10 nm precipitates, and potentially the highest number of dislocation-particle 

interaction sites, in Monel K500 and FM60 after the first and second ageing, 

respectively. 

 

4. Both alloys exhibited ductile fracture behaviour in all studied conditions and 

decreasing average void size, corresponding to decreasing elongation, with age 

hardening. This supports transition to a more brittle fracture mode with age 

hardening in both alloys. However, toughness did not follow the trend for elongation 

and void size, i.e. did not decrease with heat treatment, but rather followed the trend 

for strength.  
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4.6 Repair of a functional component by wire arc additive 

manufacturing 
 

A used Monel K500 component, a cylinder 120 mm long and 40 mm in diameter, 

has been provided by MacTaggart Scott Australia for simulation of the weld repair 

technology. The component was covered by multiple defects 2-6 mm in diameter, 0.2-

0.4 mm deep, caused by pitting corrosion. To prepare the part for repair, 2/3 of the 

component surface was machined to the depth of 0.6 mm in order to remove all defects, 

1/3 of the length remained untouched for further comparison (Figure 4.6.1a). Monel 

K500 wire was deposited by cold metal transfer technology using an ABB 1400 robot 

with a Fronius welder on the machined surface (Figure 4.6.1b and 4.6.2a,b).  

 

 
Figure 4.6.1. Schematic diagram of the component repair procedure: (a) machining of 

2/3 surface, (b) depositing of the wire, (c) cutting-off cross section for microstructure 

and mechanical properties investigation. 

 

Geometry of the component’s surface resulted in faster cooling rates during wire 

deposition and the welding parameters tested previously for the plate substrate did not 

work for a cylindrical substrate (the heat input was too low for a proper wire 

deposition). Therefore, a higher travel speed was used. The welding parameters were as 

follows: welding travel speed of 200 mm/min, average current value of 153 A, average 

voltage of 14.8 V; the resulting average heat input was 679 J/mm. After deposition, 3 
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mm thick discs were cut perpendicular to the wire deposition to investigate the 

component-bead interface (Figure 4.6.1c and 4.6.2c).  

 

 
Figure 4.6.2. (a and b) wire-arc deposition of Monel K500 wire on the component 

surface (c) polished and etched cross section of a component with deposited layer 

without post-machining. 

 

The following heat treatment conditions have been studied: (i) as-welded/as-

received; (ii) annealed at 1100 ºC for 15 minutes, then age-hardened at 610 ºC for 8 

hours, followed by air-cooling; (iii) age-hardened at 610 ºC for 8 hours, followed by air-

cooling (Figure 4.6.3). 

 
Figure 4.6.3. Heat treatment schedules for the component repair. 
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Optical microscopy of the repaired component cross section was used to analyse 

the microstructure of the deposition and base metal (Figure 4.6.4a). Columnar grains in 

the fusion zone (Figure 4.6.4b), heterogeneous epitaxial grains in the remelted zone 

(Figure 4.6.4c) and single phase fcc grains in base metal (Figure 4.6.4d) were observed. 

Small areas of lack of fusion can also be seen. 

Figure 4.6.4. (a) Optical image of the component cross section with as-deposited layer; 

SEM images of the (b) fusion zone; (c) remelted and heat affected zone; and  

(d) component base metal. 

 

4.6.1 Microstructure characterisation of the deposition 
 
The grain size of the deposition, characterised as a space between the secondary 

dendrite arms, was measured to be 5-15 µm in as-welded and aged at 610 ºC conditions. 

In annealed + aged at 610 ºC condition it was by 30% larger (Figure 4.6.5 and Table 

4.6.1), due to grain growth taking place during annealing. 

Energy dispersive X-ray spectroscopy (EDS) of deposition revealed moderate 

segregation of Cu between the secondary dendrite arms in as-welded and aged at 610 ºC 

conditions (Figure 4.6.6 b and j). Annealing at 1100 ºC, followed by ageing at 610 ºC 

removed this segregation (Figure 4.6.6f). No segregation was found in other alloying 

elements (Figure 4.6.6 d, h and l). The areas around large particles, which were 
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observed in all previous experiments and looked like a dimple, were found to be caused 

by Cu segregation. During solidification the particle is pushed out to the last solidifying 

volume, which is reach in Cu (Ni solidifies first). During preparation, the samples were 

etched with ferric chloride, which washes out Cu leaving a dimple. This was confirmed 

by SEM-EDS maps shown in Figures 4.6.8 - 4.6.10: no Cu signal was coming from the 

area around particles, whereas the Ni signal did come. 

 

 
Figure 4.6.5. SEM images showing grain size in the depositions for various heat 

treatment conditions. 
 

 
Figure 4.6.6. SEM-EDS elemental maps showing variation in Cu segregation (purple) 

for various heat treatment conditions in: (a-d) as-welded, (e-h) annealed and  

aged at 610 ºC, (i-l) aged at 610 ºC conditions. 
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Spherical and cubic particles were evenly distributed in depositions in all studied heat 

treatment conditions. In the as-welded condition, particles ranged from 350 to 950 nm in size 

(Table 4.6.1). In the annealed + aged condition the average particle size decreased by 60%, 

compared to the as-welded condition, whereas in the aged only condition it remained within 

the same range as in the as-welded condition. The number density of particles in as-welded 

and aged at 610 ºC conditions was similar around 4 x10-3 μm-2
. In the annealed + aged at 610 

ºC condition it was by 25% lower (Figure 4.6.7 and Table 4.6.1). In the as-welded condition, 

particles were of TiCNMgMnSAlO-rich type (Figures 4.6.8), although in the annealed + aged 

and aged only conditions they were TiCNMgSAlO-rich (Figures 4.6.9 and 4.6.10). All these 

data indicate that most Mn dissolved during annealing or ageing; this corresponds to the 

results obtained previously in this work. However, a significant difference in particle 

precipitation during annealing was observed for these depositions on a cylindrical shape 

component, compared to the previously studied deposition on plate. Thus, deposition on plate 

showed an increasing particle number density in SEM size range after annealing, in contrast 

to a decreasing particle number density observed for the deposition on component. This can 

be related to a variation in heat input and cooling rates during solidification. If during 

deposition on plate the cooling rate was slower, it would allow more time for the particle 

nucleation and growth to <5 nm size; during annealing these particles would grow to those 

visible in SEM (>20 nm), and an increase in the particle number density during annealing was 

observed for the deposition on plate. In contrast, in the depositions on a component the 

cooling rate was faster, particle nucleation did not occur, and during annealing only 

nucleation and slight growth to <15 nm particle sizes occurred. To prove this theory a more 

detailed investigation, in particular TEM imaging of particles in deposition on the component 

is required. This can be done in future. 
 

 
Figure 4.6.7. SEM images showing distribution of particles in the deposition for various 

heat treatment conditions. 
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Figure 4.6.8. SEM-EDS elemental maps showing TiCNMgMnSAlO–rich particles in 

deposition in as-welded condition: (a) representative SEM image of a particle; (b-k) EDS maps 
of Ti, C, N, Mg, Mn, S, Al, O, Cu and Ni, respectively; (l) EDS elemental overlay. 

 
Figure 4.6.9 SEM-EDS elemental maps showing TiCNMgSAlO–rich particles in 
deposition after annealing and ageing at 610 ºC condition: (a) representative SEM 

image of a particle; (b-k) EDS maps of Ti, C, N, Mg, Mn, S, Al, O, Cu and Ni, 
respectively; (l) EDS elemental overlay. 
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Figure 4.6.10. SEM-EDS elemental maps showing TiCNMgAlO–rich particles in deposition 

after ageing at 610º C: (a) representative SEM image of a particle; (b-k) EDS maps of Ti, C, 

N, Mg, Mn, S, Al, O, Cu and Ni, respectively; (l) EDS elemental overlay. 

 

4.6.2 Microstructure characterisation of the component 
 
The microstructure of the as-received Monel K500 component consisted of 

single phase fcc grains with average size of 48 µm (Figure 4.6.11 and Table 

4.6.1). After deposition the grain size in the heat affected zone increased by up to 

25 %, the width of heat affected zone was about 0.5 mm. 250-1100 nm particles 

were distributed in strings along the grain boundaries and across the grains 

(Figure 4.6.12). The SEM-EDS elemental mapping confirmed the particles to be 

of TiCN type (Figure 4.6.13). 

Annealing followed by ageing has led to the grain growth by 2.5 times, 

compared to the as-received component (Table 4.6.1). After ageing without 

annealing, the grain growth was only 35%, compared to the as-received 

condition, due to a much lower temperature of ageing compared to this of 

annealing. The particle chemistry did not change during annealing. Although the 

average particle size and number density both decreased in the annealed + aged 

condition by 25%, compared to the as-received condition. Obviously, during long 
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hot processing of the component material the majority of TiC precipitated in the 

form of large SEM visible particles and the solid solution was depleted in Ti and 

C. Therefore, no new particles were precipitating in the component during 

annealing. The average particle size, number density and chemical composition 

of TiCN particles in the aged only condition did not vary significantly compared 

to the as-received condition. Although some precipitation of NiAlTi-rich 

particles is possible during ageing, their sizes would be too small to be visible in 

SEM. 

 

 
Figure 4.6.11. Optical images showing grain size variation in the component with heat 

treatment. 

 

 
Figure 4.6.12. SEM images showing distribution of particles in the component for 

various heat treatment conditions. 
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Figure 4.6.13. SEM-EDS elemental maps showing TiCN particle in the as-received 

component: (a) representative SEM image of a particle; (b-k) EDS maps of Ti, C, N, 

Mg, Mn, S, Al, O, Cu and Ni, respectively; (l) EDS elemental overlay. 

 

4.6.3 Hardness of deposition and component 
 

The microhardness was measured for deposition and base metal in all heat 

treatment conditions. The indents were positioned along the line with an interval of 0.5 

mm to record the variation in hardness across the bead towards the base metal. Two 

types of measurement were performed for each condition: perpendicular to the bead, 

shown in blue arrow in Figure 4.7.14a, and in a place where two neighbouring beads 

overlap, shown in red arrow in Figure 4.6.14a. The charts in Figure 4.6.14b and c 

illustrate the hardness variation along the lines shown in Figure 4.6.14a. Both 

measurements have shown similar hardness profiles. This suggests rather similar 

properties of the deposition in the component circumference.  
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Figure 4.6.14. (a) Hardness variation across welding zones toward the base metal 

perpendicular to the bead (blue arrow) and in place where two beads overlap (red arrow); 

hardness variation with heat treatment: (b) perpendicular measurement and (c) bead overlap 

measurement (the interface deposition-base metal comes to the mark of 4.5 mm). 

 

The average hardness value in the fusion zone of as-welded deposition, 146 HV 

(Table 4.6.1), is similar to the results obtained previously for the deposition on plate 

(Table 4.4.1). The hardness of as-received component (198 HV) was higher than this of 

the deposition, due to the influence of hot deformation on microstructure development 

in the component. After annealing + ageing the hardness of both deposition and 

component increased by 65% and 40%, respectively. Although, ageing without 

annealing resulted in a larger hardness increase compared to the as-welded/as-received 
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conditions, by 80% and 55% for the deposition and the component, respectively. To a 

significant extent, this difference originated from a variation in the grain size after 

annealing+ageing or after aging only. In addition, the fine particle precipitation should 

be affected by annealing: the <20 nm particle number density (size) may be larger 

(smaller) after ageing without annealing. The hardness increase after heat treatment 

most likely resulted from the precipitation of <20 nm TiC and γ′ - Ni3(Al,Ti) particles.  

 
Table 4.6.1. Microstructural parameters and hardness variation with heat treatment in 

Monel K500 deposition and component. 

Parameter 

Deposition Component 

As-welded 
Annealed+ 

aged at  
610 ºC 

Aged at  
610 ºC 

As-
received 

Annealed
+ aged at 
610 ºC 

Aged at 
610 ºC 

SDAS/Grain 
size, μm 

5-15 
(avg.* 9) 

15-20 
(avg. 18) 

5-15 
(avg. 10) 

10-75 
(avg. 48) 

55-165 
(avg. 122) 

15-111 
(avg. 65) 

Pa
rti

cl
es

 

size, nm 350-950 
(avg. 520) 

150-350 
(avg. 320) 

350-980 
(avg. 530) 

250-1100 
(avg. 560) 

140-670 
(avg. 450) 

250-990 
(avg. 550) 

ND* 
x10-3 
μm-2 

4 3 4 35 28 32 

Chemistry TiCNMgMn
SAlO 

TiCNMgS
AlO 

TiCNMgS
AlO TiCN TiCN TiCN 

Hardness 
0.5HV 146±7 242±4 262±9 198±5 276±7 309±5 

*avg. stands for average. 
 

 

 
Figure 4.6.15. Difference in hardness between deposition (black) and component (red) 

for various heat treatment conditions. 
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The biggest difference in average hardness between the component and deposition 

was measured to be 52 HV in the as-welded condition (Figure 4.6.15). However, this 

difference decreased after heat treatment: to 34 HV and 47 HV after annealing + ageing 

and ageing only, respectively.  Due to fast cooling rates during deposition, the matrix in 

deposition is, probably, more enriched with particle forming elements, compared to the 

component, which was hot deformed. Therefore, the nano-particle precipitation during 

heat treatment may be more intensive in the deposition compared to the component, this 

requires further investigation. 

 

4.6.4 Conclusions to Chapter 4.6 

A simulation of repair of a functional component was carried out by WAAM. 

Monel K500 wire was deposited on top of the machined Monel K500 cylindrical 

component; after deposition cross sections of the component underwent heat treatment 

(ageing with and without previous annealing) and the variation of the deposition/base 

metal microstructure and mechanical properties with heat treatment has been 

investigated. It has resulted in the following conclusions:  

1. In deposited layer, the secondary dendrite arm spacing was by 30% larger in annealed 

and aged condition, than in as-welded and annealed only conditions, due to grain 

growth during annealing. 

 

2. Similar size and number density of particles in SEM size range was measured for the 

as-welded and aged only conditions. Annealing + ageing led to a decrease in the 

average particle size and number density. However, in our previous investigations, 

annealing led to a significant increase in particle number density in SEM size range. 

This could be related to a variation in heat input and cooling rates during 

solidification when the wire is deposited on either a flat or a cylindrical surface. If 

during the deposition on a cylindrical component the cooling rate was faster than 

during deposition on a flat surface, particle nucleation did not occur, thus annealing 

heat treatment led only to nucleation and slight growth of <15 nm particles, not 

visible in SEM. A more detailed investigation is required to prove this theory. 
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3. After wire deposition, a 0.5 mm wide heat affected zone was observed in the 

component; the grain size in the heat affected zone was up to 25% larger than in the 

as-received component. 

 

4. Annealing followed by ageing led to the grain growth by 2.5 times, compared to the 

as-received component. Although after ageing without annealing, the grain growth 

was only 35%, compared to the as-received condition, due to a much lower 

temperature of ageing compared to this of annealing. 

 

5. The hardness of both deposition and component increased after annealing + ageing 

by 65% and 40%, respectively, compared to as-welded/as-received condition. 

Although, ageing without annealing resulted in a larger hardness increase compared 

to the as-welded/as-received conditions, by 80% and 55% for the deposition and the 

component, respectively. The hardness increase after heat treatment most likely 

resulted from the precipitation of <20 nm TiC and γ′ - Ni3(Al,Ti) particles. The 

hardness of deposition was by 35%, 14% and 19% lower in the as-welded, annealed 

+ aged and aged only conditions, compared to the base metal of corresponding 

condition mainly due to the difference in microstructure (cast or deformed). 
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5. THESIS CONCLUSIONS 
 

Ni-Cu alloys have been fabricated for the first time at the University of 

Wollongong using wire arc additive manufacturing technology. The technology was 

tested for two Ni-Cu alloys with various contents of Ti, Mn, Al and C, by depositing 

them on flat and curved surfaces in shapes of horizontal plates and vertical walls. The 

wire deposition was carried out using a wide range of welding parameters: torch travel 

speed from 200 to 500 mm/min, wire feed rate from 5.4 to 10.5 m/min, resulting heat 

input from 200 to 700 J/mm. To modify solute atom concentrations and particle number 

density values, the depositions were treated by applying the following procedures: 

annealing at 1100 °C for 15 min followed by either (i) air cooling to room temperature, 

(ii) slow cooling to 610 °C, holding for 8 h and air cooling to room temperature, (iii) 

slow cooling to 610 °C, holding for 8 h, slow cooling to 480 °C, holding for 8 h and air 

cooling to room temperature or (iv) heating to 610 °C, holding for 8 h and air cooling to 

room temperature. Microstructure characterisation, in particular a detailed study of the 

precipitate’s parameters (size, number density and chemical composition) and 

mechanical properties (hardness, tensile testing, wear and corrosion resistance testing) 

were carried out for as-deposited and heat treated samples.  

 

This research work resulted in the following conclusions: 

 

Depositions on a plate: 

 

1. In the as-welded condition, precipitation of TiC particles in all size ranges was 

observed in Monel K500, the alloy with a higher C content, rather than in FM60, 

containing a higher Ti content. In FM60 only minor precipitation of TiC in <10 nm 

size range took place. The majority of coarse particles in both alloys were 

TiMnMgAl-rich sulphides and oxides.  

 

2. Heat treatment (annealing followed by age hardening) resulted in a vast precipitation 

of TiC and Ni3(Al,Ti) particles in Monel K500. Precipitation of Ni3(Al,Ti) coincided 

with substantial (3.0 wt.%) Al content in Monel K500. In contrast, in FM60 age 

hardening led to only minor increase in the particles number density in all size 
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ranges. The second ageing at 480 °C could led to the particle coarsening, 

accompanied by a decrease in the particle number density, in both alloys. 

 

3. Due to precipitation of TiC/TiCN particles and smaller secondary dendrite arm 

spacing, Monel K500 exhibited a higher hardness, yield stress and tensile strength 

than FM60 for all the studied conditions. In spite of FM60 elongation being larger in 

annealed and aged conditions, toughness of Monel K500 was higher due to a higher 

strength. In accordance with a higher hardness and toughness, the wear resistance of 

Monel K500 was higher in almost all conditions. 

 

4. In the as-welded condition, the lowest hardness, strength and wear resistance in both 

alloys were observed for the slowest deposition speed of 300 mm/min. These 

coincided with the highest particle number density in both alloys. In the annealed and 

aged conditions, the highest wear resistance (supported by either the highest hardness 

or strength) in both alloys was obtained at the highest deposition speed of 500 

mm/min. These coincided with the low >20 nm particle number density.  

  

5. The strain hardening behaviour of the studied alloys varied with heat treatment 

condition, and was affected by the dislocation density, size and number density of 

precipitates, and solid solute concentrations. The lowest strain hardening rate at the 

end of regime I (following the yield point) was observed in both alloys in annealed 

condition. This corresponded to the lowest dislocation density after annealing. The 

highest strain hardening rate was observed after the first ageing in Monel K500, and 

after the second ageing in FM60. This can be related to the highest number density of 

<10 nm precipitates, and potentially the highest number of dislocation-particle 

interaction sites, in Monel K500 and FM60 after the first and second ageing, 

respectively. 

 

6. Both alloys exhibited ductile fracture behaviour in all studied conditions and 

decreasing average void size, corresponding to decreasing elongation, with age 

hardening. This supports transition to a more brittle fracture mode with age 

hardening in both alloys. However, toughness did not follow the trend for elongation 
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and void size, i.e. did not decrease with heat treatment, but rather followed the trend 

for strength. 

 

7. In all heat treatment conditions both Monel K500 and FM60 depositions exhibited 

passive behaviour with low corrosion rates in 3.5 wt. % NaCl. The value of Icorr 

slightly increased after age hardening, which suggests that these alloys are more 

susceptible to corrosion in age hardened state.  

 

8. The corrosion behaviour of hot-rolled Monel K500 plate was similar to that observed 

for both Monel K500 and FM60 depositions in all heat treatment conditions. This 

indicates that WAAM fabricated parts retain good corrosion resistance typical for 

conventionally fabricated Monel K500. 

 

Depositions on a cylindrical component: 

 

1. After wire deposition, a 0.5 mm wide heat affected zone was observed in the 

component; the grain size in the heat affected zone was up to 25% larger than in the 

as-received component. Annealing followed by ageing led to the grain growth by 2.5 

times, compared to the as-received component. Although after ageing without 

annealing, the grain growth was only 35%, compared to the as-received condition, 

due to a much lower temperature of ageing compared to this of annealing. 

 

2. In a deposited layer, the secondary dendrite arm spacing was by 30% larger in 

annealed and aged condition, than in as-welded and annealed only conditions, due to 

grain growth during annealing. 

 

3. Similar size and number density of particles in SEM size range was measured for the 

as-welded and aged only depositions. Annealing + ageing led to a decrease in the 

average particle size and number density. However, in our previous investigations, 

annealing led to a significant increase in particle number density in SEM size range. 

This could be related to a variation in heat input and cooling rates during 

solidification when the wire is deposited on either a flat or a cylindrical surface. If 

during the deposition on a cylindrical component the cooling rate was faster than 
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during a deposition on a flat surface, particle nucleation did not occur, thus annealing 

heat treatment led only to nucleation and slight growth of <15 nm particles, not 

visible in SEM. A more detailed investigation is required to prove this theory. 

 

4. The hardness of both deposition and component increased after annealing + ageing 

by 65% and 40%, respectively, compared to as-welded/as-received condition. 

Although, ageing without annealing resulted in a larger hardness increase compared 

to the as-welded/as-received conditions, by 80% and 55% for the deposition and the 

component, respectively. The hardness increase after heat treatment most likely 

resulted from the precipitation of <20 nm TiC and γ′ - Ni3(Al,Ti) particles. The 

hardness of deposition was by 35%, 14% and 19% lower in as-welded, annealed + 

aged and aged only conditions, compared to the base metal of corresponding 

condition mainly due to the difference in microstructure (cast or deformed). 
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6. FUTURE WORK 
 

This work present a unique in-depth study of the microstructure and mechanical 

properties of Ni-Cu alloys, fabricated using wire arc additive manufacturing technology. 

It also provides recommendations for the optimal welding parameters and subsequent 

heat treatment. However, this study is only a step forward in understanding the 

possibilities of wire arc manufacturing technology during fabrication or repair of Ni-Cu 

alloys and it raises a number of questions and challenges, which need to be answered in 

the future. 
 

1. The effect of an object shape on thermal history during deposition and 

mechanical properties of a fabricated component. 

It was observed that the value of resulting heat input may be different for different 

shapes of deposition (single bead, horizontal plate or vertical wall) even when similar 

welding parameters are used (torch travel speed and wire feed rate). For example, the 

average heat input during deposition of a plate may be by 50 J/mm and of a wall by 60 

J/mm higher than this of a single bead. As a result, the mechanical properties of the 

fabricated part may be to some extent different depending on the way the part was built 

up. The variation in properties with the deposition method is likely to be larger in as-

deposited condition, although in heat treated components the properties are less 

dependent on the deposition method. For example, the average hardness in as-deposited 

wall and plate can be up to 10 HV and 50 HV, respectively, higher than this in a single 

bead. Although after heat treatment, the hardness of both wall and plate could only be 

by up to 10 HV higher than this of a single bead. Perhaps a higher heat input during 

deposition of walls/plates could induce some heat treatment effect leading to 

precipitation of particles with larger size and number density, than during deposition of 

beads. However, this effect was not deeply studied here. 
 

2. The effect of a base component shape on thermal history during deposition and 

mechanical properties of depositions. 

It was noticed during the simulation of welding repair procedure (deposition of a 

wire on a cylindrical surface of the component) that the welding parameters optimised 

for a wire deposition on a plate did not work for a wire deposition on a cylindrical 

surface. In order to compensate the fast cooling rate due to the surface curvature of the 
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component, a lower torch travel speed (higher heat input) was required. Namely, a 

successful wire deposition on a plate was carried out at a travel speed of 500 mm/min, 

while for a deposition on a component a travel speed of 200 mm/min was required. 

Thus, when conducting repair/deposition using WAAM, a base metal surface curvature 

should be taken into account. A preheat of a component may also be a way to avoid 

application of a high heat input. This requires further investigation. 

 

3. The effect of annealing stage of heat treatment on microstructure and properties of 

depositions. 

A short investigation of the effect of annealing heat treatment was done during 

simulation of welding repair of a functional component. The cross section of a 

component with a deposited layer underwent annealing heat treatment, annealing 

followed by age hardening and age hardening without annealing. The highest hardness 

of both depositions and a base metal was observed for the age hardened only sample. 

The effect of ageing without annealing on other mechanical properties (strength, 

toughness, wear and corrosion resistance) was not studied here.  
 

4. The effect of heat treatment parameters (holding temperature and time) on 

microstructure and properties of the studied Ni-Cu alloys. 

In this work age hardening at 610 °C for 8 hours showed a positive effect on 

mechanical properties following precipitation of fine (<10 nm) TiC and Ni3(Al, Ti) 

particles. Second age hardening stage at 480 °C for another 8 hours could reduce 

mechanical properties following the particle coarsening. Optimisation of the heat 

treatment parameters (holding time during annealing, cooling rate and finish cooling 

temperature after annealing, age hardening temperature in the 480-610 °C range, and 

ageing time) to obtain a combination of maximum strength and maximum toughness 

can be undertaken in the future. 
 

5. Effect of alloying element additions on microstructure and properties of Ni-Cu alloys 
fabricated using WAAM. 

Increased C and Al contents in the studied Ni-Cu alloys have been shown to 

increase strength via precipitation of TiC and Ni3(Al, Ti) particles. However, the 

solution strengthening effect of Ti, Mn and Fe was not studied, although may be 

significant.   
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