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ABSTRACT 

 

Radical orchifunicolectomy has traditionally been the 

main clinical treatment for small testicular masses (STMs); 

however STMs represent a constantly increasing and often 

incidental finding. Since many of them result benign, a more 

conservative testis-sparing surgery was proposed, but it 

requires a preliminary differentiation between benign and 

malignant masses: this however remains challenging. 

Although common understanding in radiology and oncology 

is that perfusion patterns might provide a useful information 

about the type of masses, no guidelines or consensus is 

available for the differentiation of STMs. 

We propose to build a dictionary of relevant perfusion 

patterns, extracted using non-negative matrix factorization on 

pixel-wise time-intensity curves from contrast-enhanced 

ultrasound data.  

When data from a lesion are reconstructed using this 

dictionary, a vector containing the frequency of utilization of 

each pattern can be used as a tissue signature.  

Using this signature, a support vector machine classifier has 

been trained, and the cross validated accuracy reached 100% 

in our pilot cohort.    

 

Index Terms— CEUS, ultrasound non-negative matrix 

factorization, dictionary learning, SVM, cancer 

 

 

1. INTRODUCTION 

 

Testicular tumours has been increasing for many decades. 

Despite its relatively low incidence, they contribute to 

approximately 1% of all malignancies in males, they appear 

at a young age adversely affecting the quality of life of 

patients. The majority of testicular tumours arise from 

spermatogenic cells (germ cells) and are almost uniformly 

malignant. Non-germ cell tumours represent the remainder of 

primary and secondary testicular tumours, and they consist of 

sex cord stromal tumours (Leydig or Sertoli cell tumours), 

lymphoma and metastasis [1]; in particular Leydig cell 

tumours (LCT) are benign and are elective for testis-sparing 

surgery.   

  

 

Figure 1 Effects of tissue heterogeneity. The perfusion parameters 

extracted from the average TIC (black line, right panels) of a region 

of interest (red outline, left panel), can be markedly different from 

those estimated on TICs extracted from sub-regions (green and blue 

lines). 

Ultrasound is the first-line imaging technique for many 

testicular diseases, being a sensitive and accurate technique 

for the detection of testicular abnormalities. Additionally, 

ultrasound is the one scrotal imaging technique that a patient 

will undergo prior to surgery. However, even if B-mode 

ultrasound proves extremely sensitive for the detection of 

testicular masses, it does not provide the possibilities of 

differentiating the tumours type, i.e. histological diagnosis, 

which could potentially result in a conservative surgical 

approach [2]. Currently, there are no ultrasound criteria that 

allow definitive differentiation of benign from malignant 

testicular lesions [1], so that the diagnosis can only be carried 

out with an histological examination.  Unfortunately, at 

variance with many cancers, where a biopsy can be obtained, 

the only way to examine a testicular lump is by removing the 

affected testicle completely [3].  

One of the most important parameters for assessing the tumor 

status of a particular tissue is the degree of vascularization, 

since it reflects the metabolic requirements of the surrounding 

tissue, characterizes tissue pathology, and impacts the 

effectiveness of the therapy [4]. The macroscopic 
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characteristics of tumor microvasculature are very different 

from those of a normal one [5], that is reflected in an altered 

and heterogeneous blood flow. [6]. 

Contrast-enhanced ultrasound (CEUS) has become an 

important part of clinical radiography to observe blood 

perfusion in organs and measure blood flow rate. It is 

obtained by imaging an ultrasound contrast agent composed 

by microbubbles whose size constrain them to remain 

confined purely intravascular. Traditionally,  a set of 

parameters are extracted from the CEUS data to quantify the 

perfusion patterns [7] [8] [9], and they have been proposed as 

biomarkers of therapeutic response in human cancers [10] 

[11]. However, even if has been reported that the use of 

CEUS improves the characterization of testicular lesions, 

through the qualitative evaluation of vascular flow [12], the 

use of CEUS-derived parameters showed limited success in 

differentiating testicular masses [13]. 

At variance with other data-driven approaches where 

overcomplete dictionaries of patterns are learnt [14], we 

propose to build a dictionary using a limited set of patterns 

estimated by means of Non-negative Matrix Factorization 

(NMF). The identification of the patterns in the dictionary in 

unknown lesions provide a tissue signature that may be used 

to assess its malignancy.  

2. MATERIALS 

 

A retrospective analysis of testicular CEUS data from 20 

histologically proven testicular lesions (10 seminoma and 10 

LCT; size mean: 11.4 mm, range: 3 mm - 28.6 mm) were 

performed. Ethics approval for reporting was granted from 

each patient to report this retrospective analysis. 

Ultrasound examinations were performed with Acuson 

Sequoia™ or a S2000™ system (Siemens Medical Solutions, 

Mountain View, CA): CEUS data were acquired using 

harmonic imaging with a low–mechanical index technique 

(Cadence contrast pulse sequencing (CPS™); Siemens 

Medical Solutions, Mountain View, CA)) with mechanical 

index set at or below 0.10 dB/cm/MHz, after the 

administration of a bolus of 4.8 mL of SonoVue™ (Bracco 

SpA, Milan, Italy), a sulfur hexafluoride microbubble 

contrast agent is injected, followed by 10 mL of normal saline 

via an antecubital vein cannula. An imaging plane is fixed 

and investigated. Continuous observation was usually 

performed from the time of arrival and the lesion of the 

microbubbles for at least 90 seconds in most cases (some 

cases may have reduced periods of observation), using split-

screen mode so that matched CEUS and B-mode frames are 

available at any time point. 

Figure 2 Supervised training phase. From each patient, pixel-wise perfusion curves are extracted and decomposed with NMF into a fixed 

number of components. All components from all patients create a dictionary that is used to sparsely reconstruct the pixel-wise perfusion 

curves, obtaining the perfusion signature for each patient. This is used as feature input to train a SVM classifier. 



3. METHODS 

 

3.1 Preprocessing 

Ultrasound data for each patient underwent the same 

preprocessing steps, separately.  

First, in order to correct for rigid translation of the field of 

view, a frame by frame registration is applied to the 

ultrasound data: a user-defined B-mode frame is used as 

reference, and all other frames are registered to the reference  

using phase correlation method [15]; the estimated 

transformation is then applied to all corresponding CEUS 

frames.  

Then, an expert radiologist outlined the region of interest, and  

all time-intensity curves (TIC) from the pixels within the 

outlined region are extracted. 

In order to account for non-zero baseline signal, this is 

estimated as the average intensity in the frames before the 

time of arrival of the contrast and subtracted from the original 

data [8]. By this means, all pixel-wise TICs start from zero 

intensity.  

Finally, TICs are regularized using a cubic smoothing spline 

and aligned by shifting in time the curves so to have the same 

time to peak, set equal to an arbitrary reference value for all 

patients. 

  

3.2 Perfusion curve decomposition 

Many real-world data are non-negative and the corresponding 

hidden components express physical or physiological 

meanings only when the non-negative condition are imposed 

[16]. In particular this is especially true when dealing with 

signals that represent the appearance of a contrast agent 

within a region. This will also impose than when imaging a 

discrete region (pixel or voxel), the observed intensity can be 

only a positive summation of the underlying contribution, 

coming from possibly heterogenous tissues (partial volume 

effect).  The decomposition of the observed signals into 

components that are at the same time positive and additive is 

not ensured by commonly used methods as Singular Value 

Decomposition, Principal Component Analysis, or 

Independent Component Analysis. At variance with the 

aforementioned methods, Nonnegative Matrix Factorization 

(NMF) imposes the non-negativity constraint on the 

factorizing matrices so that NMF allows only additive but not 

subtractive combinations during the factorization and the 

estimated components are forced to take only positive values. 

This result in parts-based representation of the data, which 

can discover hidden components that have specific structures 

and physical or physiological meanings. 

If all TICs extracted from a region of the CEUS data of the 

𝑝𝑡ℎ patient are stacked into a matrix 𝑌𝑝 ∈ ℳ𝑁×𝑇, where 𝑁 is 

the number of pixels and 𝑇 is the number of time samples, 

NMF tries to find a matrix 𝑋𝑝 ∈ ℳ𝐶×𝑇   of 𝐶 non-negative 

components of 𝑇 time samples, that can be added using non-

negative weights 𝑊𝑝 ∈ ℳ𝑁×𝐶 to provide an approximation 

of the original data 𝑌𝑝: 

argmin
𝑋𝑝≥0,𝑊𝑝≥0

‖𝑌𝑝 − 𝑊𝑝𝑋𝑝‖
2

2
 

 

The number of components is fixed and represent a parameter 

of the method, so that for each patient 𝐶 components are 

extracted. 

 

3.3 Tissue perfusion signature 

After all 𝐶 components from all 𝑃 patients in the dataset are 

extracted, they are used as words of a dictionary 𝒟, that is 

thus composed of 𝐶 ∙ 𝑃  perfusion components. 

Figure 3 Test phase. The perfusion curves extracted from the CEUS data of a suspect mass with unknown diagnosis are 

reconstructed using the learnt dictionary, and the resulting signature is fed to the SVM to classify the tissue as benign (LCT) 

or malignant (seminoma). 



When the data from a patient 𝑝 are available, all 𝑁𝑝 perfusion 

curves are stacked in the data matrix 𝑌𝑝, and can then be 

approximated as a non-negative and sparse linear 

combination of the patterns in the dictionary 𝒟. This is 

achieved by solving the non-negative LASSO optimization: 

 

argmin
𝐴∈ℝ𝑁𝑝×𝐶∙𝑃

‖𝑌𝑝 − 𝐴𝒟‖
2

2
𝑠. 𝑡. {

‖𝐴𝑖,−‖
1

≤ 𝜇

𝐴𝑖,− ≥ 0
   ∀𝑖 = 1, … , 𝑁 

 

where 𝐴𝑖,− is the 𝑖𝑡ℎ rows of the coefficient matrix 𝐴 ∈

ℝ𝑁𝑝×𝐶∙𝑃. A tissue perfusion signature 𝒮𝑝 ∈ ℝ𝐶∙𝑃can be 

obtained using the frequency with which each pattern in 𝒟 is 

used to reconstruct an element in  𝑌𝑝. Each 𝑗𝑡ℎ  element in the 

signature, with  𝑗 = 1, … , 𝐶𝑃 can be obtained as: 

   

𝒮𝑝(𝑗) = ‖𝐴−,𝑗‖
0

 /𝑁𝑝 

 

being 𝐴−,𝑗 the 𝑗𝑡ℎ column of 𝐴.  

 

3.4 Classification 

A SVM with a linear kernel has been trained (see Fig. 2 for 

the entire training pipeline) using the tissue signature 𝒮𝑝 from 

each patient as feature vector, and the corresponding binary 

diagnosis (malignant seminoma or benign LCT) as target 

class. When a new patient with a lesion of unknown diagnosis 

is evaluated, the classification pipeline is exemplified in 

Fig.3, where the dictionary   𝒟 and the SVM classifier is 

available from the previous training phase.  

 

4. RESULTS 

 

The whole procedure (NMF decomposition, dictionary 

building, SVM training) underwent 10-fold cross validation. 

It is worth noting that to ensure a balanced training set, we 

split the data making sure that in each fold a seminoma and 

an LCT patient were present.   

The number of components has been heuristically fixed to 

𝐶=2 to keep the dictionary size limited and to avoid the 

decomposition in un-physiological curves, the sparsity 

parameter in the LASSO optimization has been set to 𝜇 =
0.01 and the penalty parameter C in the SVM is set to 3. 

The resulting test accuracy is 100%. 

 

5. CONCLUSIONS 

 

We propose a data-driven pipeline that extract relevant 

perfusion patterns from the pixel-wise time-intensity curves 

from contrast-enhanced ultrasound data of lesions with 

known histology. The presence of this patterns in data from 

unknown lesions provide a tissue signature that might be used 

to classify the lesion as benign (LCT) or malignant 

(seminoma). Despite the perfect classification obtained, it is 

worth noting the limited number of patient in the cohort, so 

that the results, although promising, should be validated on 

larger dataset. 
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